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Abstract In this paper, we develop the Runge-Kutta generalized convolution quadra-
ture with variable time stepping for the numerical solution of convolution equations
for time and space-time problems and present the corresponding stability and con-
vergence analysis. For this purpose, some new theoretical tools such as tensorial
divided differences, summation by parts with Runge-Kutta differences and a calculus
for Runge-Kutta discretizations of generalized convolution operators such as an asso-
ciativity property will be developed in this paper. Numerical examples will illustrate
the stable and efficient behavior of the resulting discretization.

Mathematics Subject Classification 65M15 · 65R20 · 65L06 · 65M38

1 Introduction

Convolution operators play an important role in numerous applications which are
modelled by linear time-invariant nonhomogeneous evolution equations. This includes
problems in time and space-time wave and heat propagation problems which are
formulated either by ordinary and partial differential equations or by the corresponding
integral equations.

The discretization will be based on the convolution quadrature (CQ) method which
has been developed originally by Lubich, see [12,13,15,16] for parabolic problems
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and [14] for hyperbolic ones. The idea is to express the convolution kernel k as the
inverse Laplace transform of some transfer operator K and to formulate the problem
as an integro-differential equation in the Laplace domain.

The discretization then consists of approximating the (time-dependent) differential
equation in theLaplace domain by a time steppingmethod—besidesmultistepmethods
also Runge-Kutta methods have been proposed and analyzed for this purpose [1–3,5,
12,13,15]. The transformation back to the time domain results in a discrete convolution
equation which then can be solved numerically. This method is nowadays one of the
most popular method in this field.

However, the CQ method as well as its analysis relies strongly on the use of con-
stant time stepping. In [9,11], the generalized convolution quadrature (gCQ) has been
introduced which allows for variable time stepping. The approach was limited to the
first order implicit Euler scheme.

The goal of this paper is to introduce the Runge-Kutta generalized convolution
quadrature which results in a method with much faster convergence rates as well as
an improved long time behavior of the approximation compared to the implicit Euler
method. The possibility to use variable time stepping allows to resolve adaptively a
non-smooth behavior of the temporal solution which often occurs, e.g., in the short
time range after an electric circuit is switched on and before it has reached a periodic
state.

The paper is structured as follows. In Sect. 2 we will briefly recall the definition
of one-sided convolution operators and define the class of convolution kernels which
we will consider in this paper. In Sect. 3 we will introduce Runge-Kutta generalized
convolution quadrature for the discretization of convolution operators. Its stability
and convergence will be analyzed in Sect. 4 and the summation-by-parts formula for
dividedRunge-Kutta differenceswill be derived for this purpose. Section 5 is devoted to
the numerical solution of convolution equations.Wewill present the discrete equations
and derive an associativity property for the composition of Runge-Kutta generalized
convolution operators which allows to use the stability and error analysis as in Sect.
4 to derive corresponding estimates for the discrete solution. Finally, we will report
in Sect. 6 the results of numerical experiments to illustrate that, for problems where
the regularity of the solution is not uniformly distributed in the time interval, our
method converges with optimal convergence rates while other CQ-type methods are
converging suboptimally.

2 The class of problems

We will consider the class of convolution operators as described in [14, Sect. 2.1] and
recall its definition. Let B and D denote some normed vector spaces and let L (B, D)

be the space of continuous, linear mappings. As a norm in L (B, D) we take the usual
operator norm

‖F‖D←B := sup
u∈B\{0}

‖Fu‖D
‖u‖B .
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Generalized convolution quadrature based on Runge-Kutta methods 745

For given φ : R≥0 → B, we consider the convolution

∫ t

0
k (t − τ) φ (τ) dτ in D for all t ∈ [0, T ] . (1)

The kernel operator k is defined as the inverse Laplace transform of a given transfer
operator K . The class of problems under consideration is defined as follows. For
σ ∈ R we introduce

Cσ = {z ∈ C | Re z > σ }.

Assumption 1 For some σK ∈ R (describing the analyticity region) and someμ ∈ R

(describing the growth behavior), the class Aμ
σK (B, D) of transfer operators consists

of operator valued mappings K : CσK → L (B, D) which satisfy:

1. K : CσK → L (B, D) is analytic.
2. For any σ > σK , there exists a constantCop > 0 such that K satisfies the algebraic

growth estimate1

‖K (z)‖D←B ≤ Cop (1 + |z|)μ , ∀ z ∈ Cσ . (2)

For j ∈ Z, we define
K j (z) := z− j K (z) . (3)

For any
ν ∈ N0 such that ν > μ + 1, (4)

the Laplace inversion formula

kν (t) := 1

2π i

∫
γ

ezt Kν (z) dz, (5)

for a contour γ = σ + iR, with σ > σK , defines a continuous and exponentially
bounded operator kν (t), which by Cauchy’s integral theorem vanishes for t < 0.

Let

C j
0 ([0, T ] , B) :=

{
ψ ∈ C j ([0, T ] , B) | ∀ 0 ≤ r ≤ j − 1 : ψ(r) (0) = 0

}
.

As in [14] we denote the convolution k ∗ φ for φ ∈ Cν
0 ([0, T ] , B) and ν as in (4) by

(K (∂t ) φ) (t) :=
∫ t

0
kν (τ ) ∂ν

t φ (t − τ) dτ. (6)

1 The generic constant C in the following estimates will depend on Cop but not explicitly on σ . Hence, if
Cop is independent of σ so is the constant C .
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746 M. Lopez-Fernandez, S. Sauter

Then

(K (∂t ) φ) (t) =
∫ t

0

(
1

2π i

∫
γ

ezt Kν(z)dz

)
∂ν
t φ (t − τ) dτ, (7)

where the integrals exist as Riemann integrals.

Remark 2 Equation (7) can be rewritten as the coupled system

(K (∂t ) φ) (t) = 1

2π i

∫
γ

Kν(z)uν (z, t) dz (8a)

with the solution uν of

∂t uν(z, t) = zuν(z, t) + ∂ν
t φ(t), uν(z, 0) = 0, (8b)

and γ a suitable contour in the complex plane: either a vertical contour running from
σ − i∞ to σ + i∞, for some ν which satisfies (4), or a suitable closed contour
clockwise oriented.

3 Runge-Kutta generalized convolution quadrature

3.1 Runge-Kutta methods

The discretization of the convolution (6) will be based on a discretization of the
ordinary differential equation by a Runge-Kutta method with variable time steps.
In this section, we will introduce the class of Runge-Kutta methods which we will
consider and collect some basic properties—for proofs and further details we refer to
[8].

We consider Runge-Kutta method of s stages given by the Butcher table A =(
ai, j

)s
i, j=1, b = (bi )si=1, c = (ci )si=1. For the discretization we employ a sequence of

time points 
 := (tn)Nn=0 with

0 = t0 < t1 < · · · < tN = T, � j = t j − t j−1, � := max
1≤i≤n

� j . (9)

The local quasi-uniformity of the mesh is defined as the constant

c
 := 1

2
max
2≤i≤N

(
�i

�i−1
+ �i−1

�i

)
. (10a)

As a further (mild) assumption on the mesh width we impose the condition on the
maximal mesh width

� ≤ C
T/N . (10b)

Notation 3 The internal time points are defined by tn,i = tn−1 + ci�n, i = 1, . . . , s.
For a function g which is defined in the time interval [0, T ], we introduce

g(n) := (
g
(
tn,i

))s
i=1 ∈ C

s .
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Generalized convolution quadrature based on Runge-Kutta methods 747

The time step n is denoted as a superscript for vectors and matrices in order not to
confuse with their components. The m-th time derivative of function u is denoted by
∂mt u and its evaluation at some time point tk is

∂mt u(k) := dmu

dtm
(tk) .

Further, we introduce 1 = (1)si=1 and, for vectors v,w ∈Cs , the bilinear (not
sesquilinear!) form

v · w :=
s∑

j=1

v jw j .

We also recall here the Hadamard product of two vectors v,w ∈ C
s by

v � w = (viwi )
s
i=1 and vm� = v � . . . � v︸ ︷︷ ︸

m-times

.

The application of the s-stage Runge-Kutta methods to the initial value problem
y′ = f (t, y), y (0) = y0 can be written as the following recursion

Y (n)
i = y(n−1) + �n

s∑
j=1

ai, j f
(
tn−1 + c j�n,Y

(n)
j

)
i = 1, . . . , s

y(n) = y(n−1) + �n

s∑
j=1

b j f
(
tn−1 + c j�n,Y

(n)
j

)
.

The Runge-Kutta method has (classical) order p ≥ 1 and stage order q if for
sufficiently smooth right-hand side f

Y (1)
i − y (ci�1) = O

(
�

q+1
1

)
∀ i = 1, . . . ,m and y(1) − y (t1) = O

(
�

p+1
1

)
,

as �1 → 0.
For the analysis of the Runge-Kutta method, the stability function

R (z) := 1 + zb · (I − zA)−1 1 (11)

plays a central role; here, and in the following I denotes the identitymatrix. Throughout
the paper we assume that the Runge-Kutta method satisfies the following assumption.

Assumption 4 The Runge-Kutta method is A-stable, this is

|R(z)| ≤ 1, for Re z ≤ 0, (12)
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748 M. Lopez-Fernandez, S. Sauter

with classical order p ≥ 1 and stage order q ≤ p and it is stiffly accurate, this is

b = Aᵀes with es = (0, . . . , 0, 1)ᵀ ∈ R
s . (13)

We will further assume that R is a Padé approximation to the exponential function and
cs = 1.

Two important families of methods satisfying Assumption 4 are RadauIIA and
LobattoIIIC methods.

Remark 5 In what follows we will repeatedly use the following properties of Runge-
Kutta methods satisfying Assumption 4:

1. Since R is a Padé approximation of the exponential function Theorem 4.12 in
[8] implies that the coefficient matrix A is diagonalizable and all eigenvalues di ,
1 ≤ i ≤ s, have strictly positive real part. In particular A is invertible.

2. Condition (13) implies R (∞) = 0 [8, Chap. IV, Prop.3.8].
3. If the method has stage order q, it holds ([8, (15.5)])

Ac(m−1)� = 1

m
cm� ∀ 1 ≤ m ≤ q. (14)

4. If the method has order p, it follows (cf. [1,16])

b · A�c(k−1)� = b · A�−1ck�/k = 1

(k + �)! , ∀ k + � ≤ p. (15)

3.2 Discretization of the convolution operator

The starting point of the discretization of the convolution operator is the representation
(8). We will add more flexibility in the discretization by replacing the regularization
parameter ν by a parameter ρ ∈ N0. The stability and convergence analysis will show
that ρ can be chosen in the range

ν − (q + 1) ≤ ρ ≤ p + ν − (q + 1), (16)

where ν > μ + 1 is as in (4)–(5), p is the order of the Runge-Kutta method which we
will employ for the discretization and q is the stage order; some hints for the choice
of ρ will be given in Remarks 7 and 20.

The discretization will be based on an approximation of the ordinary differential
equation (cf. (8b))

∂t uρ(z, t) = zuρ(z, t) + ∂
ρ
t φ(t), uρ(z, 0) = 0.

Assumption 4 implies (13) so that the chosen Runge-Kutta method can be written in
the form

u(n)
ρ (z) =

(
es · u(n−1)

ρ (z)
)
1 + �nA

(
zu(n)

ρ (z) + ∂
ρ
t φ(n)

)
. (17)
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Generalized convolution quadrature based on Runge-Kutta methods 749

We can write (17) as a recurrence for u(n)
ρ

u(n)
ρ (z) = (I − �nzA)−1

((
es · u(n−1)

ρ (z)
)
1 + �nA∂

ρ
t φ

(n)
)

=
(
es · u(n−1)

ρ (z)
)
R (�nz) + �n (I − z�nA)−1 A∂

ρ
t φ(n) (18)

with
R (z) := (I − zA)−1 1. (19)

From the identity

(I − zA)−1 A = 1

z
(I − zA)−1 − 1

z
I (20)

which holds for all square matricesAwith regular resolvent, we conclude that the last
component es · R equals the stability function R (cf. (11)).

The last component in (18),
(
u(n)

ρ

)
s
then defines the approximation of u (tn).

Definition 6 (Runge-Kutta generalized convolution quadrature) Let the transfer oper-
ator K satisfy (2) and let ν ∈ N0 be the smallest integer such that ν > μ + 1. Let
φ ∈ Cν

0 ([0, T ] , B) and consider the convolution operation

K (∂t ) φ (t) =
∫ t

0

(
1

2π i

∫
γ

ezt Kν(z)dz

)
∂ν
t φ (t − τ) dτ ∀ : t ∈ [0, T ] . (21)

Let a Runge-Kutta method be given which satisfies Assumption 4. Then the discretiza-
tion of (21) by Runge-Kutta generalized convolution quadrature is given by

(
Kρ

(
∂

t

)
∂

ρ
t φ

)(n) := 1

2π i

∫
γ

Kρ (z)u(n)
ρ (z) dz, n = 1, 2, . . . (22)

with u(0)
ρ = 0 and

u(n)
ρ (z) =

(
es · u(n−1)

ρ (z)
)
R (�nz) + �n (I − z�nA)−1A∂

ρ
t φ(n), n = 1, 2, . . . .

The approximation of K (∂t ) φ at time point tn is given by the last component es ·(
Kρ

(
∂

t

)
∂

ρ
t φ

)(n)
. Here, ρ ∈ N0 is a regularization parameter (cf. (16)) which can be

chosen in the range

ν − (q + 1) ≤ ρ ≤ p + ν − (q + 1) ,

where p is the classical order of the Runge-Kutta method and q denotes the stage
order.

Remark 7 It is important to mention that γ in (22), typically, is not chosen as the
vertical contour σ + iR but as a finite closed contour which encircles the poles of u(n)

ρ

and is counter clockwise oriented. For the practical realization the contour integral
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750 M. Lopez-Fernandez, S. Sauter

in (22) has to be approximated by numerical quadrature (see also Remark 20); for
the implicit Euler method this has been developed and analyzed in [10,11] while for
Runge-Kutta method this is the topic of a forthcoming paper.

4 Error analysis of Runge-Kutta generalized convolution quadrature

The analysis of the Runge-Kutta gCQ consists of several steps: First, we will resolve
the recursion in (18) to express u(n)

ρ as a sum over the history. This allows to employ
a summation-by-parts formula which allows to gain negative powers of z (and hence
a faster decay of the integrand for large z) on the expense of increased smoothness
requirements on the input function φ.

4.1 Summation-by-parts

The recursion (18) can be resolved and we obtain

u(n)
ρ (z) = �n (I − z�nA)−1 A∂

ρ
t φ(n)

+
n−1∑
k=1

�k

(
n−1∏

�=k+1

R (��z)

)(
es · (I − z�kA)−1 A∂

ρ
t φ(k)

)
R (�nz) .

For the last component es · u(n)
ρ (z) this formula simplifies and we obtain

es · u(n)
ρ (z) =

n∑
k=1

�k

(
n∏

�=k+1

R (��z)

)(
es · (I − z�kA)−1A∂

ρ
t φ(k)

)
. (23)

For the forthcoming analysis it is convenient to write this equation by using tensor
calculus. Let us define the tensor product of vectors for k ≥ 1 by2

ek⊗s :=
k⊗

�=1

es, 1k⊗ :=
k⊗

�=1

1 (24)

and the Kronecker tensor product of matrices

A
(k,n) (z) :=

n⊗
�=k

(I − z��A)−1 .

2 Note that the notation v ⊗
⊗k

j=1
w( j) sometimes appears also for k ≤ 0. In this case we set v ⊗

⊗k

j=1
w( j) := v if k ≤ 0.
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Generalized convolution quadrature based on Runge-Kutta methods 751

Recall that a Kronecker matrix
⊗d

j=1 B
( j) is applied to a tensor

⊗d
j=1 v

( j) of vectors

v( j) by means of

⎛
⎝ d⊗

j=1

B( j)

⎞
⎠

⎛
⎝ d⊗

j=1

v( j)

⎞
⎠ =

d⊗
j=1

B( j)v( j).

The canonical extension of the bilinear form v · w to tensors is

⎛
⎝ d⊗

j=1

v( j)

⎞
⎠ ·

⎛
⎝ d⊗

j=1

w( j)

⎞
⎠ =

d∏
j=1

v( j) · w( j).

Finally, the vectorization is given by

⎛
⎝
⎛
⎝d−1⊗

j=1

v( j)

⎞
⎠ ⊗ •

⎞
⎠ ·

⎛
⎝ d⊗

j=1

w( j)

⎞
⎠ :=

⎛
⎝
⎛
⎝d−1⊗

j=1

v( j)

⎞
⎠ ·

⎛
⎝d−1⊗

j=1

w( j)

⎞
⎠
⎞
⎠w(d) (25)

=
⎛
⎝d−1∏

j=1

v( j) · w( j)

⎞
⎠w(d). (26)

Then, we have

u(n)
ρ (z) =

n∑
k=1

�k

(
e(n−k)⊗
s ⊗ •

)
·
(
A

(k,n) (z)
(
A∂

ρ
t φ(k) ⊗ 1(n−k)⊗))

. (27)

In the next step, we will introduce difference operators which are related to the
time steps tk and we will discuss their relation to Newton’s divided differences later.
Let again 
 := (tn)Nn=1 denote the time grid with steps � j = t j − t j−1. Formally we
extend the time grid to the negative time axes by setting t− j = − j�1, j ∈ N.

Definition 8 (Divided Runge-Kutta differences) Let a Runge-Kutta method be given
by the Butcher table A, b, c with non-singular A and cs = 1. For a subset I ⊂ Z of
consecutive integers, let 
I := (xk)k∈I ⊂ R denote a sequence of strictly increasing
points with steps �k = xk − xk−1. We set

I ′ = {k ∈ Z | {k − 1, k} ⊂ I} .

For a function v which is defined in the points xk,r := xk−1 + cr�k , for all k ∈ I ′ and
1 ≤ r ≤ s, the Runge-Kutta differences [[. . .]]v are given by the recursion:

[[xk]]v := v(k) := (
v
(
xk,r

))s
r=1 ∀ k ∈ I ′ (28)

123



752 M. Lopez-Fernandez, S. Sauter

and for all i, k ∈ I ′ with i < k

[[xi , xi+1, . . . , xk]]v := (�kA)−1 ([[xi+1, . . . , xk]]v − (es · [[xi , . . . , xk−1]]v) 1) .

(29)
For m ∈ N0, the tuple of m-th order Runge-Kutta differences [[
I ]]mw ∈ ×k∈I C

s

is given by
[[
I ]]mv := ×

k∈I
[[xk−m, . . . , xk]]v. (30)

For a tuple V = × j∈I ′ v( j) of vectors v( j) =
(
v

( j)
m

)s
m=1

∈ C
s we set

[[xi , . . . , xk]]V := [[xi , . . . , xk]]v

for any continuous function v which interpolates V at the mesh points, i.e., v
(
xk,r

) =
v

(k)
r for all k ∈ I ′ and 1 ≤ r ≤ s.

In particular we have (cf. (28))

[[xk−1, xk]]v = (�kA)−1
(
v(k) −

(
es · v(k−1)

)
1
)

. (31)

Proposition 9 (Summation by parts formula) Let a Runge-Kutta method satisfy
Assuption 4. Let w : R≥0 → C be a function which can be continuously extended to
R<0 by zero. The time mesh satisfies (9) and is extended by t− j = − j�1 for j ∈ N.
Set w( j) = (

w
(
t j,r

))s
r=1 ∈ C

s , j ∈ Z≤N and let er⊗s , 1r⊗ be as in (24). Then, for any
m ∈ N0

n∑
k=0

�k

(
e(n−k)⊗
s ⊗ •

)
·
(
A

(k,n) (z)
(
Aw(k) ⊗ 1(n−k)⊗))

= −
m−1∑
�=0

[[tn−�, . . . , tn]]w
z�+1

+ 1

zm

n∑
k=0

�k

(
e(n−k)⊗
s ⊗ •

)
·
(
A

(k,n) (z)
(
A[[tk−m, . . . , tk]]w ⊗ 1(n−k)⊗))

.

(32)

For the corresponding generalized discrete convolution operator it holds

K
(
∂

t

)
w = Km

(
∂

t

) [[
]]mw. (33)

Proof We denote the left-hand side in (32) by lhs and obtain (cf. (20))

lhs =
n∑

k=0

�k

(
e(n−k)⊗
s ⊗ •

)
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Generalized convolution quadrature based on Runge-Kutta methods 753

·
(
(I − z�kA)−1 A ⊗ A

(k+1,n) (z)
) (

w(k) ⊗ 1(n−k)⊗)

(20)= 1

z

n∑
k=0

(
e(n−k)⊗
s ⊗ •

)

·
((

(I − z�kA)−1 − I
)

⊗ A
(k+1,n) (z)

) (
w(k) ⊗ 1(n−k)⊗)

= −w(n)

z
+ 1

z
(I − z�kA)−1 w(n) + 1

z

n−1∑
k=0

(
e(n−k)⊗
s ⊗ •

)

·
(
(I − z�kA)−1 ⊗ A

(k+1,n) (z)
) (

w(k) ⊗ 1(n−k)⊗)

− 1

z

n−1∑
k=0

(
e(n−k)⊗
s ⊗ •

)
·
(
I ⊗ A

(k+1,n) (z)
) (

w(k) ⊗ 1(n−k)⊗)

= −w(n)

z
+ 1

z

n∑
k=0

(
e(n−k)⊗
s ⊗ •

)
· A(k,n) (z)

(
w(k) ⊗ 1(n−k)⊗)

− 1

z

n∑
k=1

(
e(n−k)⊗
s ⊗ •

)
· A(k,n) (z)

(
(1 ⊗ es)w(k−1) ⊗ 1(n−k)⊗)

= −w(n)

z
+ 1

z

n∑
k=0

�k

(
e(n−k)⊗
s ⊗ •

)
· A(k,n) (z)

(
A[[tk−1, tk]]w ⊗ 1(n−k)⊗)

.

This onefold summation by parts can be iterated and leads to the assertion.
The second relation (33) is a simple consequence of Cauchy’s integral theorem. ��
The following proposition states the boundedness of the right-hand side in (32)

with respect to a decreasing step size in terms of the stage order of the underlying
Runge–Kutta method.

Definition 10 Let r ∈ N0, T > 0, and V be a normed vector space with norm ‖·‖V .
For a vector-valued function v ∈ V s , we set

‖v‖V := max
1≤i≤s

‖vi‖V

if no confusion is possible.
For a function w ∈ Cr ([0, T ] , V ) and any interval τ ⊂ [0, T ], we set

|w|Cr (τ,V ) := 1

r ! supt∈τ

∥∥∂rw (t)
∥∥
V and ‖w‖Cr (τ,V ) := max

0≤�≤r
|v|C�(τ,V ) .

Proposition 11 Let a Runge–Kutta method be given by the Butcher table A, b, c with
non-singular A and cs = 1. Let V be a normed vector space. If the method has stage
order q then for 0 ≤ � ≤ q + 1 and any w ∈ Cq+1

([
tk−�, tk

]
, V

)
it holds

[[tk−�, tk+1−�, . . . , tk]]w = ∂�
t w

(k) + T(k)
q+1−�,
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754 M. Lopez-Fernandez, S. Sauter

∥∥∥T(k)
q+1−�

∥∥∥
V

≤ C |w|Cq+1([tk−�,tk],V ) �
q+1−�
k ,

where C depends on c
 (cf. (10a)), q, and A.

Proof The proof is by induction. For � = 0 the result is obvious and we even have
equality: [[tk]]w = w(k) so that T(k)

q+1 = 0.
Let us assume now that the result is true for � − 1. Then for � we have

[[tk−�, tk−�+1, . . . , tk]]w = �−1
k A−1 ([[tk−�+1, . . . , tk]]w−(es · [[tk−�, . . . , tk−1]]w) 1)

= �−1
k A−1

(
∂�−1
t w(k) −

(
es · ∂�−1

t w(k−1)
)
1 + T̃(k)

q+1−�

)

= �−1
k A−1

((∫ tk,m

tk−1

∂�
t w

)s

m=1

+ T̃(k)
q+1−�

)
, (34)

where

T̃(k)
q+1−� := T(k)

q+2−� −
(
es · T(k−1)

q+2−�

)
1.

Conditions (14) imply

� jA∂�
tw

( j) =
(∫ t j,m

t j−1

∂�
t w

)s

m=1

+ ξ ( j),

with
∥∥∥ξ ( j)

∥∥∥
V

≤ Cq�
r+1
j

∥∥∥∂�+r
t w

∥∥∥
C0(τ j ,V )

0 ≤ r ≤ q.

We apply this for r = q + 1 − � and obtain

�−1
j A−1

(∫ t j,m

t j−1

∂�
t w

)s

m=1

= ∂�
t w

( j) + ξ̃
( j)

(35)

with ∥∥∥̃ξ ( j)
∥∥∥
V

≤ CqCA |w|Cq+1([t j−1,t j ],V ) �
q+1−�
j . (36)

The combination of (34) with the induction hypothesis, (35), and (36) yields

[[tk−�, tk−�+1, . . . , tk]]w = ∂�
t w

( j) + T(k)
q+1−�

with
∥∥∥T(k)

q+1−�

∥∥∥
V

≤ C |w|Cq+1([t j−1,t j ],V ) �
q+1−�
j

and the result follows. ��
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4.2 Stability

The starting point of the error estimates for the Runge-Kutta gCQ is the summation
formula with summation by parts (cf. (33)):

Kρ

(
∂

t

)
∂

ρ
t φ = Kρ+m

(
∂

t

) [[
]]m∂
ρ
t φ. (37)

In the next Lemma we collect some elementary estimates.

Lemma 12 Let a Runge–Kutta method be given which satisfies Assumption 4. Let di ,
i = 1, . . . , s, be the eigenvalues of the coefficient matrix A. We set

r0 = min

{
Re di
|di |2

: 1 ≤ i ≤ s

}
> 0 and α0 = min {|di | : 1 ≤ i ≤ s} > 0. (38)

(i) There exists a constant C depending on r0 and the Runge-Kutta coefficients such
that

|R (z)| ≤ 1 + C (Re z)+ ∀ z ∈ C with Re z ≤ r0
2

(39)

and (x)+ := max {0, x}.
(ii) Let A = V−1DV (cf. Remark 2). Then, it holds

∥∥∥(I − zA)−1
∥∥∥ ≤ β0 := 2

α0r0

∥∥∥V−1
∥∥∥ ‖V‖ ∀ z ∈ C with Re z ≤ r0

2
. (40)

Proof (i) By using Re
(
1
ζ

)
= (Re ζ ) / |ζ |2, we conclude that R is analytic for all

z ∈ C with Re z < r0. Then there exists CR > 0 such that |R (z)| ≤ CR for
all z ∈ C with Re z ≤ 3

4r0. We conclude from Cauchy’s integral theorem that∣∣R′ (z)
∣∣ ≤ 4CR

r0
for all z ∈ C with Re z ≤ r0

2 . Taylor’s theorem gives us the
estimate

|R (x + i y)| ≤ |R (i y)| + 4CR

r0
x ∀ 0 ≤ x ≤ r0/2 and y ∈ R.

Since A-stability implies |R (i y)| ≤ 1 we conclude that

|R (z)| ≤ 1 + C Re z ∀ z ∈ C with 0 ≤ Re z ≤ r0/2

holds. Estimate (39) is trivial for Re z ≤ 0 (cf. (12))
(ii) By Remark 2 we can estimate

∥∥∥(I − zA)−1
∥∥∥ ≤

∥∥∥V−1
∥∥∥ ‖V‖ max

1≤i≤s

{
1

|1 − zdi |
}

.

Writing z = x + i y and di = u + i v, we obtain

|1 − zdi |2 = (1 − xu + yv)2 + (yu + xv)2 =: κ (y) .
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The quadratic function κ attains its minimum at y = − v
u2+v2

so that

κ (y) ≥
(
u − x

(
u2 + v2

))2
u2 + v2

.

Note that for 0 ≤ x ≤ u
2(u2+v2)

, it holds

κ (y) ≥
(
x
(
u2 + v2

) − u
)2

u2 + v2
≥ 1

4

u2

u2 + v2
.

This proves (40). ��
Theorem 13 Let a Runge-Kutta method be given which satisfies Assumption 4. Fix
σ > σK and let the maximal step � satisfy

r0
2

− �σ ≥ 0. (41)

Let ρ̃ ∈ N0 be such that ν − (q + 1) ≤ ρ̃ ≤ ν holds. Assume that φ ∈ C ρ̃
0 ([0, T ] , D).

Then, for any m̃ ∈ N0 with

μ − ρ̃ + 1 < m̃ ≤ q + 1, (42)

the stability estimate

∥∥∥∥
(
Kρ̃

(
∂

t

)
∂

ρ̃
t φ

)(n)
∥∥∥∥
D

≤ C
n∑

k=0

�ke
cσ(tn−tk )

∥∥∥[[tk−m̃, . . . , tk]]∂ρ̃
t φ

∥∥∥
B

(43)

holds. If φ ∈ C ρ̃+m̃ ([0, T ] , D) then

∥∥∥Kρ̃

(
∂

t

)
∂

ρ̃
t φ

∥∥∥
D

≤ CecσT
∥∥∥∂ρ̃+m̃

t φ

∥∥∥
C0([0,T ],B)

. (44)

Proof By Proposition 11 the m̃-th order divided Runge-Kutta difference of ∂
ρ̃
t φ are

bounded and we apply m̃-times summation by parts, i.e., consider (37) for m̃ as in
(42). The assumption (42) ensures that the contour in the definition of the generalized
convolution Kρ̃+m̃

(
∂

t

)
can be chosen as the vertical axes γ = σ + iR. Note that

(37) equals

(
Kρ̃

(
∂

t

)
∂

ρ̃
t φ

)(n) = �n

2π i

∫
γ

Kρ̃+m̃ (z)
(
z�nI − A−1

)−1
dz

(
[[tn−m̃, . . . , tn]]∂ρ̃

t φ
)

+
n−1∑
k=0

�k

2π i

∫
γ

Kρ̃+m̃ (z)
(
I − z�nA−1

)−1
1
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·
(
es ·

(
z�kI − A−1

)−1 [[tk−m̃, . . . , tk]]∂ρ̃
t φ

) n−1∏
�=k+1

(
es · (I − z��A)−1 1

)
dz.

(45)

Assumption (13) implies that

R (z) = es · (I − zA)−1 1

and then by Lemma 12 we can bound

∣∣∣∣∣
n−1∏

�=k+1

(
es · (I − z��A)−1 1

)∣∣∣∣∣ ≤
n−1∏

�=k+1

(1 + Cσ��) ≤ ecσ(tn−1−tk ).

Furthermore, we have
∥∥∥∥es ·

(
z�kI − A−1

)−1 [[tk−m̃, . . . , tk]]∂ρ̃
t φ

∥∥∥∥
B

≤ β0 ‖A‖
∥∥∥[[tk−m̃, . . . , tk]]∂ρ̃

t φ

∥∥∥
B

and
∥∥∥∥
(
z�nI − A.−1

)−1 ([[tk−m̃, . . . , tk]]∂ρ̃
t φ

)∥∥∥∥
B

≤ β0 ‖A‖
∥∥∥[[tk−m̃, . . . , tk]]∂ρ̃

t φ

∥∥∥
B

.

Hence,
∥∥∥∥
(
Kρ̃

(
∂

t

)
∂

ρ̃
t φ

)(n)
∥∥∥∥
B

≤ √
s
(β0 ‖A‖)2

2π

n∑
k=0

�ke
cσ(tn−tk )

∥∥∥[[tk−m̃, . . . , tk]]∂ρ̃
t φ

∥∥∥
D

∫
γ

|z|μ−ρ̃−m̃ dz (46)

with an adjusted value of β0. The choice of ρ̃ as stated in the lemma implies

∥∥∥∥
(
Kρ̃

(
∂

t

)
∂

ρ̃
t φ

)(n)
∥∥∥∥
D

≤ C
n∑

k=0

�ke
cσ(tn−tk )

∥∥∥[[tk−m̃, . . . , tk]]∂ρ̃
t φ

∥∥∥
B

(47)

with C := √
s (β0‖A‖)2

2π

∫
γ

|z|μ−ρ̃−m̃ dz, which is (43). The combination with Proposi-
tion 11 gives (44). ��

4.3 Convergence

For given K ∈ Aμ
σK (B, D) we set

w := K (∂t ) φ and w(n)
ρ := es · (Kρ

(
∂

t

)
∂

ρ
t φ

)(n)
, (48)
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forρ being the regularization parameter in (22).We distinguish twomain cases accord-
ing to the choice of ρ.

If μ − ρ < −1 then (8a) holds with ν = ρ and the error can be written

δw(n) := w(tn) − w(n)
ρ = 1

2π i

∫
γ

Kρ (z)
(
uρ (z, tn) − u(n)

ρ (z)
)
dz. (49)

For σ > σK , we choose the contour γ = σ + iR and split it into

γnear := {
ζ ∈ γ : |ζ�| < Csplit

}
and γfar := γ \γnear (50)

with some 0 < Csplit = O (1)which will be fixed later. This induces the error splitting

δw(n)
near :=

1

2π i

∫
γnear

Kρ (z)
(
uρ (z, tn) − u(n)

ρ (z)
)
dz and δw

(n)
far :=δw(n) − δw(n)

near.

(51)
In the next two lemmas we estimate (49).

Lemma 14 Assume that μ − ρ < −1 and φ ∈ Cρ+p+1 ([0, T ] , B) with

φ(r)(0) = 0 ∀ : r = 0, . . . , ρ + q.

Then the far field component of the error in (51) can be bounded by

∥∥∥δw(n)
far

∥∥∥
D

≤ CecσT ‖φ‖Cρ+q+1([0,T ],B) �q+ρ−μ. (52)

Proof We assume in more generality that

φ(r)(0) = 0 ∀ r = 0, . . . , ρ + m − 1

and choose m ≤ q + 1 later in an appropriate way.
Further we introduce the solution of the Runge-Kutta gCQ with right-hand side

[[
]]m∂
ρ
t φ, given by (see (30) and (27))

u(n)
ρ,m (z) =

n∑
k=1

�k

(
e(n−k)⊗
s ⊗ •

)
·
(
A

(k,n) (z)
(
A[[tk−m, . . . , tk]]∂ρ

t φ ⊗ 1(n−k)⊗))
.

(53)
As usual in this paper, the last component is denoted by u(n)

ρ,m := es · u(n)
ρ,m (z).

In order to estimate the component of (49) which is related to the farfield we will
estimate the difference uρ (z, tn) − u(n)

ρ (z) for z ∈ γfar. On the one side we observe
that the exact solution of the ODE is given by

uρ (z, t) =
∫ t

0
ez(t−τ)∂

ρ
t φ (τ) dτ. (54)
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Since ∂
ρ+�
t φ (0) = 0 for 0 ≤ � ≤ m − 1 ≤ q and φ ∈ Cρ+m ([0, T ]), we get via

partial integration

uρ (z, t) = −
m−1∑
�=0

∂
ρ+�
t φ (t)

z�+1 + uρ+m (z, t)

zm
. (55)

On the other side, we recall that the numerical approximation by the Runge–Kutta
method can be written by using tensor notation as in (27), this is

u(n)
ρ (z) =

n∑
k=1

�k

(
e(n−k)⊗
s ⊗ •

)
·
(
A

(k,n) (z)
(
A∂

ρ
t φ(k) ⊗ 1(n−k)⊗))

.

Summation by parts (Proposition 9) yields

u(n)
ρ (z) = −

m−1∑
�=0

[[tn−�, . . . , tn]]∂ρ
t φ

z�+1 + u(n)
ρ,m (z)

zm
, (56)

with u(n)
ρ,m as in (53). Since u(n)

ρ = es · u(n)
ρ the error can be written in the form

δw
(n)
far =

m−1∑
�=0

δw
(n)
far,� + w

(n)
far,ρ,m − wfar,m (tn) (57)

with

δw
(n)
far,� := 1

2π i

∫
γfar

Kρ (z)

z�+1

(
es · [[tn−�, . . . , tn]]∂ρ

t φ − ∂
ρ+�
t φ (tn)

)
dz,

w
(n)
far,m := 1

2π i

∫
γfar

Kρ (z)

zm
u(n)

ρ,m (z) dz,

wfar,m (tn) := 1

2π i

∫
γfar

Kρ (z)

zm
uρ+m (z, tn) dz.

Proposition 11 implies

∥∥∥es · [[tn−�, . . . , tn]]∂ρ
t φ − ∂

ρ+�
t φ (tn)

∥∥∥
B

≤ C |φ|Cρ+m([tn−�,tn],B) �m−�
n , ∀ 0 ≤ � ≤ m,

so that the combination with (2) yields

∥∥∥∥∥
m−1∑
�=0

δw
(n)
far,�

∥∥∥∥∥
D

≤ C
m−1∑
�=0

|φ|Cρ+m([tn−�,tn],B) �m−�
n

∫
γfar

|z|μ−ρ−�−1 dz

≤ C |φ|Cρ+m([tn−m+1,tn],B) �m+ρ−μ. (58)
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To estimate w
(n)
far,m , we substitute γ by γfar in the right-hand side of (45), multiply

by es · from the left, and observe that “
(
Kρ

(
∂

t

) (
∂

ρ
t φ

))(n)
” in (45) then has to be

substituted by “w(n)
far,m”. From Proposition 11 and the proof of Theorem 13 we then

deduce (cf. (46))

∥∥∥w(n)
far,m

∥∥∥
D

≤ √
s
(β0 ‖A‖)2

2π

n∑
k=0

�ke
cσ(tn−tk )

∥∥[[tk−m, . . . , tk]]∂ρ
t φ

∥∥
B

∫
γfar

|z|μ−ρ−m dz

≤ CecσT�m+ρ−μ−1 ‖φ‖Cm+ρ([0,T ],B) .

The last term in (57), wfar,m (tn), can be estimated by using (54):

∥∥uρ+m (z, tn)
∥∥
B ≤ ‖φ‖Cρ+m ([0,T ],B)

∫ tn

0
ez(tn−τ)dτ ≤ eσT

|z| ‖φ‖Cρ+m ([0,T ],B)

and, in turn,

∥∥wfar,m (tn)
∥∥
D ≤ CeσT ‖φ‖Cρ+m ([0,T ],B) �m+ρ−μ.

The estimate of the farfield follows by choosing m = q + 1. ��
Lemma 15 Assume that μ − ρ < −1 and fix σ > σK . Let the maximal step � (cf.
(9)) satisfy

r0
2

− �σ ≥ 0, (59)

with r0 in (38). Assume further that φ ∈ Cρ+p+1 ([0, T ] , B) with φ(r)(0) = 0 for all
r = 0, . . . , ρ + q.

Then the error estimate
∥∥∥w (tn) − w(n)

ρ

∥∥∥
D

≤ CecσT ‖φ‖Cρ+p+1([0,T ],B) cμ−ρ+p−q−1 (�) �min{p, ρ+q−μ}

(60)
holds with w (tn), w

(n)
ρ as in (48) and

cν (�) :=
{
1 ν �= −1,
log 1

�
ν = −1.

(61)

Proof The far field component of the error (49) is bounded in Lemma 14. As in the
proof of Lemma 14, we assume in more generality that

φ(r)(0) = 0 ∀ r = 0, . . . , ρ + m − 1

for some m ≤ q + 1.
To estimate the near field component we start from

uρ (z, t) =
∫ t

0
ezτ ∂ρ

t φ (t − τ) dτ
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and notice that after differentiating this relation k times for some k ≤ p+1 we obtain,
for any z ∈ C,

∂kt uρ (z, t) =
∫ t

0
ez(t−τ)∂

ρ+k
t φ (τ) dτ + ezt

k−1∑
�=0

zk−1−�∂
ρ+�
t φ (0) .

Hence, we obtain

∥∥∥∂kt uρ (z, t)
∥∥∥
B

≤ eσT

⎛
⎜⎝|z|−1 |φ|Cρ+k ([0,T ],B) +

⎧⎪⎨
⎪⎩
0 k ≤ m
k−1∑
�=m

|z|k−1−�
∣∣∣∂ρ+�

t φ (0)
∣∣∣ m + 1 ≤ k ≤ p + 1

⎞
⎟⎠

≤ eσT |z|−1−min{0, m−k} ‖φ‖Cρ+k ([0,T ],B) . (62)

Solving the error recursion.
In order to estimate

1

2π i

∫
γnear

Kρ(z)
(
uρ(z, tn) − u(n)

ρ (z)
)
dz, (63)

we analyze the error

en(z) := uρ(z, tn) − u(n)
ρ (z), z ∈ γnear. (64)

Following [16, proof of Theorem 3.3], we set

d(n)
i (z) = uρ(z, tn−1 + ci�n) − uρ(z, tn−1) − �n

s∑
j=1

ai j u
′
ρ(z, tn−1 + c j�n),

d(n)(z) = uρ (z, tn) − uρ(z, tn−1) − �n

s∑
j=1

b ju
′
ρ(z, tn−1 + c j�n) = d(n)

s .

We set D(n) = (d(n)
i )si=1 and

δ(k) :=
(
δ
(k)
i

)s
i=1

:= 1

(k − 1)!
(
Ac(k−1)� − 1

k
ck�

)
.
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By inserting the exact solution into the Runge–Kutta scheme and performing Taylor
expansion around tn we obtain

D(n) (z) =
p∑

k=q+1

�k
n∂

k
t uρ (z, tn) δ(k) + �

p
nQ(n) (z) ,

d(n) (z) = �
p
n

∫ tn

tn−1

κ

(
t − tn−1

�n

)
∂
p+1
t uρ(z, t) dt,

(65)

where

Q(n) (z) :=
∫ tn

tn−1

κ

(
t − tn−1

�n

)
∂
p+1
t uρ(z, t) dt

and κ = (κi )
s
i=1, κ are bounded Peano kernels. Note that this implies

∥∥∥Q(n) (z) dz
∥∥∥
B

≤ C�n
∣∣uρ (z, ·)∣∣C p+1([tn−1,tn],B)

(62)≤ CeσT�n |z|p−m ‖φ‖Cρ+p+1([0,T ],B) ,

‖dn (z)‖D ≤ C�
p+1
n

∣∣uρ (z, ·)∣∣C p+1([tn−1,tn],B)

≤ CeσT�
p+1
n |z|p−m ‖φ‖Cρ+p+1([0,T ],B) .

Thus, the error satisfies the recursion

en(z) = R(�nz)en−1(z) − �nzb · (I − �nzA)−1D(n)(z) + d(n)(z),

for the stability function R of the Runge–Kutta method (11). Solving the recursion
and using that e0 = 0 we obtain

en(z) =
n∑
j=1

⎛
⎝ n∏

�= j+1

R(��z)

⎞
⎠(

� j zb · (I − � j zA)−1D( j)(z) + d( j)(z)
)

.

By Lemma 12 for � small enough we can estimate

|R(�nz)| ≤ ec�nσ , ∀ : z ∈ γ, n ≥ 1, (66)

so that

‖en (z) ‖B ≤ CecσT
n∑
j=1

(∥∥∥� j zb · (I − � j zA)−1D( j) (z)
∥∥∥
B

+
∥∥∥d( j)(z)

∥∥∥
B

)
. (67)

The combination of the order condition (15) with (65) allows to bound the first norm
in the right-hand side of (67) by
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∥∥∥� j zb · (I − � j zA)−1D( j) (z)
∥∥∥
B

≤
p∑

k=q+1

�k
j

∥∥∥∂kt uρ

(
z, t j

)∥∥∥
B

×
∥∥∥� j zb · (I − � j zA)−1δ(k)

∥∥∥
+ �

p
j

∥∥∥� j zb · (I − � j zA)−1Q( j)
∥∥∥
B

. (68)

For sufficiently small 0 < Csplit = O (1) in (50) we have
∥∥� j zA

∥∥ < 1 for all z ∈ γnear
so that a Neumann series argument gives us

∥∥∥� j zb · (I − � j zA
)−1

δ(k)
∥∥∥ ≤

(
C� j |z|

)p−k+2

(k − 1)!
where C depends on A,b, c. Recall that m ≤ q + 1. Thus, for all z ∈ γnear it holds
(cf. (62))

p∑
k=q+1

�k
j

∥∥∥∂kt uρ

(
z, t j

)∥∥∥
B

∥∥∥� j zb · (I − � j zA)−1δ(k)
∥∥∥
B

≤ C
p∑

k=q+1

�k
j

∥∥∥∂kt uρ

(
z, t j

)∥∥∥
B

(
C� j |z|

)p−k+2

(k − 1)!
≤ Cpe

σT�
p+2
j |z|p+1−m ‖φ‖Cρ+p([0,T ],B) .

For the second term in the right-hand side of (68) we get in a similar fashion

�
p
j

∥∥∥� j zb · (I − � j zA)−1Q( j)
∥∥∥
B

≤ C�
p
j

∥∥∥Q( j)
∥∥∥
B

≤ CeσT�
p+1
j |z|p−m ‖φ‖Cρ+p+1([0,T ],B) ,

so that

‖en (z) ‖B ≤ CecσT
(
�

p+1
j |z|p+1−m ‖φ‖Cρ+p([0,T ],B) + �p |z|p−m ‖φ‖Cρ+p+1([0,T ],B)

)
.

This estimate allows to bound the nearfield error by using (2)

∥∥δφnear
n

∥∥
B ≤ C

∫
γnear

|z|μ−ρ ‖en (z)‖D dz

≤ CecσT ‖φ‖Cρ+p+1([0,T ],D)

×
∫

γnear

(
�

p+1
j |z|μ−ρ+p+1−m + �p |z|μ−ρ+p−m

)
dz

≤ CecσT ‖φ‖Cρ+p+1([0,T ],D)

⎧⎨
⎩

�p μ − ρ + p − m < −1,
�p log 1

�
μ − ρ + p − m = −1,

�m+ρ−1−μ μ − ρ + p − m > −1.
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The combination with the farfield estimates leads to the assertion for m = q + 1. ��
Our approximation (22) has implicit a certain regularization of the integrand accord-

ing to the results in Sect. 4.1. As a consequence, it is not necessary to choose ρ > μ+1
for convergence in (22). It is actually enough to choose ρ > μ − q. The full conver-
gence result according to the choice of ρ is stated in the following theorem.

Theorem 16 Let K ∈ Aμ
σK (B, D) be a transfer operator and let ν ∈ N0 denote the

smallest integer with ν > μ + 1. Let a Runge-Kutta method be given which satisfies
Assumption 4. Fix σ > σK and let the maximal step � (cf. (9)) satisfy

r0
2

− �σ ≥ 0, (69)

with r0 in (38).
For any ρ ∈ N≥0 in (22) with ρ ≥ ν − (q + 1) and φ ∈ Cν

0 ([0, T ] , B) let

w := K (∂t ) φ and w(n)
ρ := es · (Kρ

(
∂

t

)
∂

ρ
t φ

)(n)
.

Then, the error estimate

∥∥∥w (tn) − w(n)
ρ

∥∥∥
D

≤ CecσT

⎧⎨
⎩

‖φ‖Cρ+p+1([0,T ],B) cμ−ρ+p−q−1 (�)�min{p, ρ+q−μ}, μ − ρ < −1,

‖φ‖Cν+p+1([0,T ],B) �min{p, ρ+q+1−ν}, μ − ρ ≥ −1

(70)

holds with cν (�) as in (61), provided that φ(r)(0) = 0 for all r = 0, . . . , ρ + q and
φ ∈ Cν+p+1 ([0, T ] , B).

Note that estimate (70) implies that the choice ρ = p + ν − (q + 1) (cf. (16))
leads to a convergence orderO (�p) for sufficiently smooth and compatible data; for
a further discussion see Remarks 7 and 20.

Proof The case μ− ρ < −1 is fully addressed in Lemma 15. Let us then assume that
μ − ρ ≥ −1 and let ν ∈ N0 be the smallest integer such that ν > μ + 1 holds. Then
the contour integral in

w = 1

2π i

∫
γ

Kν(z)uν(z, t) dz

is well defined for all φ ∈ Cν
0 ([0, T ] , D). Since ν is large enough we may choose

γ as any suitable contour in the complex plane: either a vertical contour γ⊥ running
from σ − i∞ to σ + i∞ or a suitable closed contour γ� clockwise oriented.
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The representation of the discrete solution

w(n)
ρ = 1

2π i

∫
γ�

Kρ (z) u(n)
ρ (z) dz = 1

2π i

∫
γ�

Kν (z) zν−ρu(n)
ρ (z) dz

is well defined by Theorem 13, (44) if we choose a closed contour γ� which encircles

the spectra
⋃N

k=1
spec

(
�−1

k A−1
)
. The error at time step tn is given by

w (tn) − w(n)
ρ = 1

2π i

∫
γ�

Kν(z)
(
uν(z, tn) − zν−ρu(n)

ρ (z)
)
dz. (71)

Following the notation introduced in the proof of Lemma 15, we add and subtract u(n)
ν

and split the error into two terms

T (n)
1 = 1

2π i

∫
γ⊥

Kν (z)
(
uν(z, tn) − u(n)

ν (z)
)
dz,

T (n)
2 = 1

2π i

∫
γ�

Kν (z)
(
u(n)

ν (z) − zν−ρu(n)
ρ (z)

)
dz.

The term T1 can be estimated by using Lemma 15 with the substitution ρ ← ν therein
and we get

∥∥Tn,1
∥∥
B ≤ CecσT ‖φ‖Cν+p+1([0,T ],D) cμ−ν+p−m (�) �min{p, ν+q−μ}. (72)

By Proposition 9, the term T (n)
2 is the s-th component of

T(n)
2 = (

Kν

(
∂

t

) (
∂ν
t φ − [[
]]ν−ρ∂

ρ
t φ

))(n)
.

Following the proof of Theorem 13 for the choices m̃ ← 0 and ρ̃ ← ν, which is
allowed because

μ − ρ̃ + 1 < m̃ < q + 1,

we obtain

∥∥∥T(n)
2

∥∥∥
B

≤ C
n∑

k=0

�ke
cσ(tn−tk )

∥∥∥∂ν−ρ
t

(
∂

ρ
t φ

)(k) − [[tk−(ν−ρ), . . . , tk]]∂ρ
t φ

∥∥∥
D

.

Proposition 11 gives now the estimate

∥∥∥T(n)
2

∥∥∥
B

≤ C
n∑

k=0

�ke
cσ(tn−tk )

∣∣∂ρ
t φ

∣∣
Cq+1([tk−(ν−ρ),tk],D)

�
q+ρ+1−ν
k

≤ CecσT
∣∣∂ρ

t φ
∣∣
Cq+1([0,T ],D)

�q+1−(ν−ρ). (73)
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Our assumptions

ρ ≤ μ + 1 < ν

imply that the �-exponents in (72) and (73) satisfy

ν + q − μ > q + 1 ≥ q + 1 − (ν − ρ) ,

which leads to the final error estimate
∥∥∥w (tn) − w(n)

ρ

∥∥∥
D

≤ CecσT ‖φ‖Cν+p+1([0,T ],B) �min{p, q+1+ρ−ν}.

��

5 Runge-Kutta generalized convolution quadrature for solving
convolution equations

5.1 Discretization

In this section we will consider the solution of one-sided convolution equations: for
given g, find φ

K (∂t ) φ = g. (74)

We assume that the transfer operator K satisfies

K ∈ Aθ
σ+ (B, D) for some σ+, θ ∈ R (75a)

and, in analogy to (4), we choose m ∈ N0 as the smallest integer such that m > θ + 1.
In view of (6) we are seeking the solution φ of (74) in Cm

0 ([0, T ] , B).
To ensure existence of a solution of (74) we assume

K−1 : Cσ− →L (D, B) exists and K−1 ∈ Aμ
σ− (D, B) for some σ−, μ ∈ R.

(75b)
We define ν according to (4) but emphasize that μ, this time, denotes the growth

exponent of the inverse operator K−1. We thus assume in what follows that

∥∥∥K−1(z)
∥∥∥
B←D

≤ C (1 + |z|)μ . (76)

Proposition 17 Let (75) be satisfied. If g ∈ Cν
0 ([0, T ] , D), then

φ (t) :=
(
K−1 (∂t ) g

)
(t) = 1

2π i

∫
γ

(
K−1

)
ν
(z)

(∫ t

0
ezτ ∂ν

t g (t − τ) dτ

)
dz (77)

for a contour γ = σ + iR and σ > σ− is well defined.
If g ∈ Cν+m

0 ([0, T ] , D), it holds φ ∈ Cm
0 ([0, T ] , B) so that K (∂t ) φ is well

defined and φ as in (77) satisfies (74).
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Proof The choice of ν and the smoothness assumption on g imply that φ in (77) is
well defined (cf. (7)). By differentiating (77) and using g ∈ Cν+m

0 ([0, T ] , D), we
obtain φ(r) = 0 for 0 ≤ r ≤ m − 1. Thus, the associativity for one-sided convolutions
(see [14, (2.3), (2.22)])

V (∂t )W (∂t ) = (VW ) (∂t ) (78)

yields K (∂t )
(
K−1 (∂t ) φ

) = g. ��
The inversion formula (77) allows us to discretize the convolution equation (74) by

the same method as developed for the forward equation (cf. Sect. 3):

N×
n=1

φ(n)
ρ :=

(
K−1

)
ρ

(
∂

t

)
∂

ρ
t g for some ρ as in (16) (79a)

and the approximation of φ at time point tn is given by the last component

φ (tn) ≈ φ(n)
ρ := es · φ(n)

ρ . (79b)

Remark 18 The representation of the generalized convolution quadrature in the form
(79) is well suited for theoretical investigations but not for the practical implementa-
tion: For important applications such as, e.g., for the solution of the space-time wave
equation, the operator K−1 (s) is infinite dimensional and not available explicitly so
that its discretization would be prohibitively expensive. Instead, we will prove that the
associativity of continuous convolutions (78) is inherited by the Runge-Kutta gCQ:
under assumptions which will be detailed in Theorem 28 it holds

V
(
∂

t

) ◦ W
(
∂

t

) = (VW )
(
∂

t

)
(80)

so that (79a) can be written in the form (cf. Remark 22, Corollary 29)

K−ρ

(
∂

t

) ( N×
n=1

φ(n)
ρ

)
=

N×
n=1

(
∂

ρ
t g

)(n)
.

Definition 19 (Runge-Kutta gCQ for solving convolution equations) Let the transfer
operator K satisfy (75) and let ν,m ∈ N0 be the smallest integers such that ν >

μ + 1 and m > θ + 1. Let g ∈ Cν+m
0 ([0, T ] , D). We consider the problem: find

φ ∈ Cm
0 ([0, T ] , B) such that

K (∂t ) φ = g. (81)

Let a Runge-Kutta method be given which satisfies Assumption 4. Then the discretiza-
tion of (81) by Runge-Kutta generalized Convolution Quadrature is given by

K−ρ

(
∂

t

) ( N×
n=1

φ(n)
ρ

)
=

N×
n=1

(
∂

ρ
t g

)(n) (82)
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and the approximation of φ at time tn by the last component φ
(n)
ρ := es · φ(n)

ρ . Here,
ρ ∈ N0 is a regularization parameter which can be chosen in the range

ν − (q + 1) ≤ ρ ≤ p + ν − (q + 1) , (83)

where p denotes the order and q the stage order of the Runge-Kutta method.

Remark 20 For the algorithmic realization of the Runge-Kutta gCQ (cf. (82)) one has
to approximate the contour integrals in

1

2π i

∫
γ

zρK (z)u(n)
ρ (z) dz (84)

by numerical quadrature. For the implicit Euler gCQ, such a quadrature scheme has
been proposed and analyzed in [10,11].

On one hand, Theorem 16 indicates that the upper bound in (83) for the choice
of ρ improves the convergence rates up to the optimal order O (�p) for sufficiently
smooth and compatible data, while smaller choices of ρ lead to amilder growth behav-
ior of the integrand in (84) and simplify the numerical quadrature. This also shows
the importance of the summation-by-parts representation which allows to achieve a
faster decay of the integrand in the error estimates without increasing the numerical
parameter ρ furthermore.

5.2 Associativity

The stability and convergence analysis of the approximation φ
(n)
ρ as in Definition 19

follows directly from Theorem 13 and 16 if we prove the inversion formula

N×
n=1

φ(n)
ρ =

(
K−1

)
ρ

(
∂

t

) ( N×
n=1

(
∂

ρ
t g

)(n)

)
.

In more generality, we will prove (80). This requires to reformulate the contour
integrals via tensorial divided differences which we will introduce and the proof of a
Leibniz rule for tensorial divided differences to derive the associativity property for
the composition of discrete generalized convolution operators. We refer to [7] and [6]
for an introduction to tensor calculus and advanced topics.

For i, j, i ′, j ′ ∈ {1, . . . , N },we consider sequencesB(k) ∈ C
s×s , k ∈ {i, . . . , j} and

C(k) ∈ C
s×s , k ∈ {

i ′, . . . , j ′
}
, of matrices. In Sect. 4.1 we introduced the Kronecker

products of matrices and their application to tensors of vectors. The composition of
Kronecker matrices is defined as the tensor of the “matching” matrix products by

⎛
⎝

j⊗
k=i

B(k)

⎞
⎠ ◦

⎛
⎝

j ′⊗
k=i ′

C(k)

⎞
⎠ =

max{ j, j ′}⊗
k=min{i,i ′}

B(k)C(k),
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where we set B(k) = I for k /∈ {i, . . . , j} and C(k) = I for k /∈ {
i ′, . . . , j ′

}
. For

i = i ′ and j = j ′ we suppress the composition sign “◦” as is usual for matrix–matrix
multiplication.

Finally we define the resolvent matrix for C ∈ C
s×s by

Rz (C) ∈ C
s×s with Rz (C) := (zI − C)−1 .

Definition 21 For a set of matrices C(k) ∈ C
s×s , 1 ≤ k ≤ n, and a function f which

is analytic in a complex neighborhood U of
⋃n

k=1
spec

(
C(k)

)
, the tensorial divided

difference
[×n

k=1 C
(k)

]
f is a Kronecker matrix given by3

[
n×

k=1
C(k)

]
f := 1

2π i

∫
�

f (z)

(
n⊗

k=1

Rz

(
C(k)

))
dz, (85)

for a counterclockwise oriented closed contour � in U which encircles⋃n

k=1
spec

(
C(k)

)
.

Notice that for s = 1, C(k) = c(k) ∈ C, for 1 ≤ k ≤ n, and the resolvent matrices
are just the scalar factors (z − c(k))−1. Then formula (85) becomes nothing but the
standard Newton’s divided difference of f at arguments c(k). This is a consequence
of the following contour integral representation [4]

[
c(1), c(2), . . . , c(n)

]
f = 1

2π i

∫
�

f (z)
N∏
i=1

(
z − c(k)

)dz, (86)

for � enclosing the arguments c(k). In this way, tensorial divided differences[× j
k=i C

(k)
]
f are generalizations of Newton’s divided differences for matrix-valued

arguments via the Cauchy formula (85). In Lemma 25 we will derive an alternative
representation of tensorial divided differences which mimics the recurrence relation
for classical divided differences.

These tensorial divided differences allow to express the generalized discrete con-
volution (22), (27) via

φ(n)
ρ =

((
K−1

)
ρ

(
∂

t

)
∂

ρ
t g

)(n)

=
n∑

k=1

ωn,k (0)
(
e(n−k)⊗
s ⊗ •

)

·
([

n×
�=k

A−1

��

](
K−1

)
ρ

(
∂

ρ
t g

(k) ⊗
(
A−11

)(n−k)⊗))
, (87)

3 We prefer the notation
[×n

k=1 C
(k)

]
f instead of

[
C(1),C(2), . . . ,C(n)

]
f because of brevity.
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for 1 ≤ n ≤ N . The result is an N -tuple of vectors in C
s .

The function ωn, j is given by

ωn, j (z) :=
n∏

�= j+1

(
z − �−1

�

)
. (88)

Remark 22 This representation shows that the generalized discrete convolution
depends only on the discrete values ∂

ρ
t g

(k) and thus can be applied also to tuples

×N
�=1

(
∂

ρ
t g

)(k) of stage vectors; thus, the composition of generalized discrete convo-
lutions is well defined.

Representation (87) extends the definition of generalized discrete convolutions
based on the implicit Euler method (cf. [11]) to Runge-Kutta methods as can be
seen from the following remark.

Remark 23 In [9, first formula in the proof of Lemma 4.1], it was shown that the gCQ
based on the implicit Euler method with variable step size can be written in the form

φ(n)
ρ =

n∑
k=1

ωn,k (0)

([
1

�k
,

1

�k+1
, . . . ,

1

�n

] (
K−1

)
ρ

)
∂

ρ
t g

(k), (89)

where ωn,k is as in (88). By using the contour integral representation (86) and taking
into account the clockwise orientation of the contour γ , (89) can be expressed in terms
of contour integrals as

φ(n)
ρ =

n∑
k=1

�k
1

2π i

∫
γ

(
n∏

�=k

1

1 − z��

)(
K−1

)
ρ

(z) ∂
ρ
t g

(k)dz. (90)

Alternatively, we consider equation (87) for the implicit Euler method. In this case we
have A = (1) ∈ R

1×1 and, in turn,

φ(n)
ρ

(87)=
n∑

k=1

ωn,k (0)

[
n×

�=k
�−1

�

](
K−1

)
ρ

∂
ρ
t g

(k)

(85)=
n∑

k=1

(
n∏

�=k+1

−1

��

)
−1

2π i

∫
γ

(
n∏

�=k

1

z − (��)
−1

)(
K−1

)
ρ

(z) ∂
ρ
t g

(k)dz.

This is the same expression as (90) and we see that (87) defines an extension of the
divided difference representation of scalar generalized convolution quadrature based
on the implicit Euler method to Runge-Kutta methods.

The key role for writing (79a) as a forward equation will be played by an elegant
inversion formula (which iswell known for Runge-Kutta ConvolutionQuadraturewith
constant time steps).
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In order to prove the associativity property of our discretization we develop a
tensorial Leibniz formula and a composition rule for tensorial divided differences.

By Cauchy’s integral theorem it is easy to see that [C] f is the value of the function
f applied to thematrixCwhich is the analogue to standard zero-th order divided differ-
ences. For higher order divided differences we first introduce the tensorial difference
�(k, j) (A,B) as the Kronecker matrix defined by

�(k, j) (A,B) =
(

k−1⊗
�=1

I

)
⊗ A ⊗

n⊗
�=k+1

I −
⎛
⎝

j−1⊗
�=1

I

⎞
⎠ ⊗ B ⊗

n⊗
�= j+1

I,

If A and B are simultaneously diagonalizable, this is, A = V−1D(1)V and B =
V−1D(2)V, for some V and diagonal matrices D(1), D(2), we have4

(
n⊗

i=1

v(i)

)
·
(

�(k, j) (A,B)

n⊗
i=1

w(i)

)

=
(

n⊗
i=1

V−ᵀv(i)

)
·
(

�(k, j)
(
D(1),D(2)

) n⊗
i=1

Vw(i)

)
.

Remark 24 The eigenvalues of �(k, j) (A,B) are given by λ
(1)
i1

− λ
(2)
i2

, where λ
(1)
i1

are

the eigenvalues of A and λ
(2)
i2

those of B. Hence, �(k, j) (A,B) is regular if and only if

spec (A) ∩ spec (B) = ∅. In this case, (�(k, j) (A,B)
)−1

exists, i.e.,

(
�(k, j) (A,B)

)−1 �(k, j) (A,B) = �(k, j) (A,B)
(
�(k, j) (A,B)

)−1 =
n⊗

i=1

I

but, in general, is not a Kronecker matrix. Further note that

(
n⊗

i=1

v(i)

)
·
((

�(k, j) (A,B)
)−1 n⊗

i=1

w(i)

)

=
(

n⊗
i=1

V−ᵀv(i)

)
·
((

�(k, j)
(
D(1),D(2)

))−1 n⊗
i=1

Vw(i)

)
.

Lemma 25 For a set of matrices C(k) ∈ C
s×s , 1 ≤ k ≤ n, which are simultaneously

diagonalizable, i.e.,
C(k) = V−1D(k)V, (91)

it holds [
n×

k=1
C(k)

]
f =

(
n⊗

k=1

V−1

)([
n×

k=1
D(k)

]
f

)(
n⊗

k=1

V

)
. (92)

4 ByVᵀ we denote the transposed of thematrixV (without complex conjugation) and byV−ᵀ =
(
V−1

)ᵀ
.
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Furthermore, if the intersection of the spectra of any pair C(k),C( j), k �= j , is empty,
the following recursion for tensorial divided differences holds true

[
C(1), . . . ,C(k)

]
f

=
((

I ⊗
[
C(2), . . . ,C(k)

]
f
)

−
([

C(1), . . . ,C(k−1)
]
f ⊗ I

))

×
(
�(k,1)

(
C(k),C(1)

))−1
. (93)

Proof Statement (92) is trivial.
Since the matrices C(k) are simultaneously diagonalizable it is sufficient to prove

the statement for diagonal matrices C(k) = D(k) and the statement follows from the
corresponding property for standard divided differences. ��
Lemma 26 (Leibniz rule for tensorial divided differences) Let C( j), 1 ≤ j ≤ n, be
simultaneously diagonalizable (91), and f be as in Definition 21. For mappings f, g

analytic in a neighborhood of
⋃n

k=1
spec(C(k)) the tensorial Leibniz’ rule for divided

differences holds

[
n×

k=1
C(k)

]
( f g) =

n∑
j=1

([
n×

k= j
C(k)

]
f

)
◦
⎛
⎝
⎡
⎣

j×
k=1

C(k)

⎤
⎦ g

⎞
⎠ . (94)

Proof Since the matrices C(k) are assumed to be simultaneously diagonalizable it is
sufficient to prove the statement for diagonal matrices C(k) = D(k), 1 ≤ k ≤ n.
Furthermore, continuity of divided differences with respect to the arguments C(k),
1 ≤ k ≤ n, implies that it is enough to prove (94) for matrices with pairwise disjoint
spectra, cf. [4].

The statement is trivial for n = 1 and we assume next that the assertion holds for
all m < n and derive it for n.

From Lemma 25, we deduce5

[
D(1), . . . ,D(n)

]
( f g)

=
((

I ⊗
[
D(2), . . . ,D(n)

]
( f g)

)
−

([
D(1), . . . ,D(n−1)

]
( f g) ⊗ I

))

×
(
�(n,1)

(
D(n),D(1)

))−1

5 To derive the third equality, we have inserted

0 = −
∑n

j=2

[
D( j), . . . ,D(n)

]
f ◦

([
D(1), . . . ,D( j−1)

]
g ⊗ I

)
+
∑n−1

j=1

(
I ⊗

[
D( j+1), . . . ,D(n)

]
f
)

◦
[
D(1), . . . ,D( j)

]
g

and used (93).
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ind. assump.=
⎛
⎝I ⊗

n∑
j=2

([
D( j), . . . ,D(n)

]
f
)

◦
([

D(2), . . . ,D( j)
]
g
)

−
⎛
⎝n−1∑

j=1

[
D( j), . . . ,D(n−1)

]
f ◦

[
D(1), . . . ,D( j)

]
g

⎞
⎠ ⊗ I

⎞
⎠

×
(
�(n,1)

(
D(n),D(1)

))−1

=
⎛
⎝ n∑

j=2

([
D( j), . . . ,D(n)

]
f ◦

[
D(1), . . . ,D( j)

]
g
)

�( j,1)
(
D( j),D(1)

)

+
n−1∑
j=1

([
D( j), . . . ,D(n)

]
f ◦

[
D(1), . . . ,D( j)

]
g
)

�(n, j)
(
D(n),D( j)

)⎞⎠

×
(
�(n,1)

(
D(n),D(1)

))−1
.

Since �(1,1)
(
D(1),D(1)

) = �(n,n)
(
D(n),D(n)

) = 0 the first sum can be extended
to j = 1 and the second one to j = n without changing the values. Since
�( j,1)

(
D( j),D(1)

) + �(n, j)
(
D(n),D( j)

) = �(n,1)
(
D(n),D(1)

)
, the result follows. ��

Finally, we will need a result for the composition of tensorized bilinear forms and
employ the notation of vectorization as in (25).

Lemma 27 For vectors v( j),w( j) ∈ C
s , let

q(k+1) := α(m+1,k)B(k+1)w(k+1)

with α(m+1,k) :=
⎛
⎝ k⊗

j=m+1

v( j)

⎞
⎠ ·

⎛
⎝ k⊗

j=m+1

B( j)

⎞
⎠ k⊗

j=m+1

w( j).

Then

(
n⊗

�=k+1

v(�) ⊗ •
)

·
(

n+1⊗
�=k+1

C(�)

)(
q(k+1) ⊗

n+1⊗
�=k+2

w( j)

)

=
(

n⊗
�=m+1

v(�) ⊗ •
)

·
(

n+1⊗
�=k+1

C(�)

)
◦
(

k+1⊗
�=m+1

B(�)

)
n+1⊗

�=k+1

w( j). (95)

Proof We denote the left-hand side in (95) by lhs. Then,

lhs = α(m+1,k)

(
n⊗

�=k+1

v(�) ⊗ •
)

·
(

n+1⊗
�=k+1

C(�)

)(
B(k+1)w(k+1) ⊗

n+1⊗
�=k+2

w( j)

)
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= α(m+1,k)
(
v(k+1) · C(k+1)B(k+1)w(k+1)

)(
n⊗

�=k+2

v(�) ⊗ •
)

·
(

n+1⊗
�=k+2

C(�)

)
n+1⊗

�=k+2

w( j)

=
⎛
⎝
⎛
⎝ k⊗

j=m+1

v( j)

⎞
⎠ ·

⎛
⎝ k⊗

j=m+1

B( j)

⎞
⎠ k⊗

j=m+1

w( j)

⎞
⎠

×
(
v(k+1) · C(k+1)B(k+1)w(k+1)

)

×
(

n⊗
�=k+2

v(�) ⊗ •
)

·
(

n+1⊗
�=k+2

C(�)

)
n+1⊗

�=k+2

w( j)

and this is the assertion. ��

Theorem 28 (Associativity) Let a Runge-Kutta method be given which satisfies
Assumption 4. Let W (s) ∈ L (B, D) and V (s) ∈ L (D, E) denote transfer oper-

ators which are analytic in some complex neighborhood U of
⋃N

k=1
spec

(
M(k)

)
. It

holds
V
(
∂

t

) ◦ W
(
∂

t

) = (VW )
(
∂

t

)
. (96)

Proof We set

q(k+1) :=
(
e(k−m)⊗
s ⊗ •

)([
k×

�=m

A−1

��

]
W

)(
w(m) ×

(
A−11

)(k−m)×)
.

The left-hand side in (96) can be written in the form

(
V
(
∂

t

) (
W

(
∂

t

)
w
))(n)

=
n∑

k=0

k∑
m=0

ωn,k (0) ωk,m (0)
(
e(n−k)⊗
s ⊗ •

)
·
[ n×

�=k

A−1

��

]
V

(
q(k+1) ⊗

(
A−11

)(n−k)⊗)

Lem. 27=
n∑

m=0

ωn,m (0)
n∑

k=m

(
e(n−m)⊗
s ⊗ •

)
·

·
([ n×

�=k

A−1

��

]
V

)
◦
⎛
⎝
⎡
⎣

k×
�=m

A−1

��

⎤
⎦W

⎞
⎠

(
w(m) ⊗

(
A−11

)(n−m)⊗)
.

Next we apply the tensorial Leibniz rule for divided differences (cf. Lemma 26) to
obtain
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(
V
(
∂

t

) (
W

(
∂

t

)
w
))(n)

=
n∑

m=0

ωn,m (0)
(
e(n−m)⊗
s ⊗ •

)
·
([

n×
�=m

A−1

��

]
(VW )

)(
w(m) ⊗

(
A−11

)(n−m)⊗)

= (
(VW )

(
∂

t

)
w
)(n)

.

��
Corollary 29 (Inversion formula) Let a Runge-Kutta method be given which satisfies
Assumption 4. Equation (79a) has an explicit inversion formula. It holds

K−ρ

(
∂

t

) ( N×
n=1

φ(n)

)
=

N×
n=1

∂
ρ
t g

(n). (97)

Proof We employ Theorem 28 with V := K−ρ and W := (
K−1

)
ρ
to obtain

(
K−ρ

(
∂

t

) ((
K−1

)
ρ

(
∂

t

)
w

))(n)

=
n∑

m=0

ωn,m (0)
(
e(n−m)⊗
s ⊗ •

)
·
[

n×
�=m

A−1

��

]
(Id)

(
w(m) ⊗

(
A−11

)(n−m)⊗)

with the identity mapping Id. Hence, only the summand with m = n is different from
zero and the assertion follows. ��

6 Implementation and experiment

Our implementation of the Runge–Kutta gCQ is based on quadrature applied to def-
inition (22). If a suitable quadrature with nodes z� and weights w�, � = 1, . . . , NQ ,
is available it is clear how to approximate the action of the (forward) convolution
K (∂


t )φ by a Runge-Kutta time stepping method applied to

∂t uρ(z, t) = z�uρ(z, t) + ∂
ρ
t φ; uρ(z�, 0) = 0, � = 1, . . . , NQ .

The solution of the convolution equation K (∂

t )φ = g, for given g, avoids the evalua-

tion of the inverse convolution φ = K−1(∂

t )g by employing the following algorithm

which is based on K and not on its inverse. We compute approximations ˜φ
(n) ≈ φ(n)

from

K−ρ

(
(�nA)−1

)
˜φ

(n) = g(n) −
NQ∑
�=1

w�K−ρ(z�)
(
es · u(n−1)(z�)

)
(I − �nz�A)−11

in the following way.
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Algorithm 30 (Runge-Kutta gCQ with contour quadrature)

• Initialization. Generate K−ρ (z�) for all contour quadrature nodes z�, � =
1, 2, . . . , NQ. Compute ˜φ

(1)
from

K−ρ

(
(�1A)−1

)
˜φ

(1) = ∂
ρ
t g

(1). (98)

• For n = 2, . . . , N
1. Runge–Kutta step. Perform a step of the Runge–Kutta method applied to (8b)

and compute

u(n−1)(z�) = (I − �n−1z�A)−1
((

es · u(n−2)(z�)
)
1 + �n−1A˜φ

(n−1))

for all contour quadrature nodes: z = z�, � = 1, . . . , NQ.
2. Generate linear system. If�n is a new time step, thengenerate K−ρ

(
(�nA)−1

)
.

Otherwise this operator was already generated in a previous step. Update the
right-hand side

r(n) = r(n)
(
u(n−1)

)

:= ∂
ρ
t g

(n) −
NQ∑
�=1

w�K−ρ(z�)
(
es · u(n−1)(z�)

)

× (I − �nz�A)−1 1.

3. Linear Solve. Solve the linear system

K−ρ

(
(�nA)−1

)
˜φ

(n) = r(n).

For gCQ based on the implicit Euler method the quadrature problem has been fully
solved in [10] and several experiments are reported in [11]. The contour of choice
in this case is the circle centered at �−1

min with radius �−1
min, which coincides with

the boundary of the region |R(�minz)| = 1. The parameterization of this circle uses
Jacobi elliptic functions in order to optimally exploit the analyticity domain of the
integrand in (22), whose poles are located in the real segment [�−1,�−1

min].
For higher order Runge–Kutta methods the poles of the integrand in (22) are typi-

cally located in a sector around the positive real axis and the boundary of the stability
region |R(�minz)| = 1 is more complicated than a circle. In Fig. 1 we show the
location of the poles, the curve |R(�minz)| = 1 and our contour of choice for the grid

t j =
(

j

20

)2

, j = 1, . . . , 20,

both for implicit Euler and RadauIIA5. In both cases we choose a circle as the
integration contour but in the case of RadauIIA5 the radius is much larger, namely
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Fig. 1 Poles of the integrand in (22), integration contour and curve |R(�minz)| = 1 for 20 steps
quadratically graded towards the origin. Left for implicit Euler method. Right for RadauIIA5

Fig. 2 Error with respect to the
number of steps for g in (99).
The straight lines indicate slopes
1, 2 and 3, respectively
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M = 5max(|λ|)/�min for λ ∈ spec(A). This implies that the boundary of the contour
becomes more vertical at z = 0 and thus avoids invading too much into the region
|R(�minz)| > 1 close to the origin. For this contour the number of quadrature nodes
needed to produce the error plot in Fig. 2 was NQ = 3N log2(N ). The optimization
of the integration contour and a rigorous error and complexity analysis are the subject
of ongoing research.

In order to illustrate the performance of high orderRunge–Kutta gCQ in comparison
with the original CQ, with uniform steps, we consider the following one-dimensional
example: find φ such that K (∂t )φ = g with

K (z) = 1 − e−2z

2z
and g(t) = t5/2e−t . (99)
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The exact solution to this problem is computed in [17] and is given by

φ(t) = 2
�t/2�∑
k=0

g′(t − 2k). (100)

We approximate φ(t) for t ∈ [0, 1] by applying Algorithm 30 with RadauIIA5 and
ρ = 0. Then we haveμ = 1 in Assumption 1, p = 5 and q = 3. The right-hand side g
satisfies g(�)(0) = 0 for � = 0, 1, 2 and is not three times differentiable at t = 0. This
lack of regularity suggests to use a time grid which is algebraically graded towards
the origin. We heuristically choose a quadratically graded mesh with points


 = (t j )
N
j=1 with t j =

(
j

N

)α

andα = 2. In this case it is� = N−1 and�min = N−2. For a comparisonwith uniform
steps we set α = 1. Figure 2 shows that the convergence rate isO(�3) for the graded
mesh and aboutO(�1.6) for the uniform mesh. For this example, we have μ = 1 and
thus the minimal integer ν > μ + 1 is ν = 3. For ρ = 0, with μ − ρ = 1 > −1,
Theorem16 thenpredicts a convergence rate likeO(�3+1−3) = O(�). The theoretical
estimate provided by this Theorem is of order 3 or higher only for ρ ≥ 2. More
precisely it is O (

�3
)
for ρ = 2 and O(�5) for ρ = 3. We believe this is due to a

limitation of our theory which does not allow in principle to choose a fractional value
of ν. In the limit (not allowed) case ν = 2, the theoretical estimate yields actually
an estimate like O(�2). However we observe a better convergence rate for ρ = 0 as
predicted by our theory, actually the rate coincides with the optimal convergence rate
for smooth and compatible problems with uniform time steps developed in [1]. It is
an open problem whether there exist examples where a bigger value of ρ is necessary
for variable steps than for uniform steps or whether our theory yields a suboptimal
estimate in terms of this parameter.
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