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Abstract This work constructs a new class of multirate schemes based on the recently
developed generalized additive Runge–Kutta (GARK) methods (Sandu and Günther,
SIAM J Numer Anal, 53(1):17–42, 2015). Multirate schemes use different step sizes
for different components and for different partitions of the right-hand side based on the
local activity levels.We show that the newmultirateGARK family includesmanywell-
knownmultirate schemes as special cases. The order conditions theory follows directly
from the GARK accuracy theory. Nonlinear stability and monotonicity investigations
show that these properties are inherited from the base schemes provided that additional
coupling conditions hold.

Mathematics Subject Classification 65L05 · 65L06 · 65L07 · 65L020

1 Introduction

Generalized additive Runge–Kutta (GARK) methods were introduced in [11] to
solve initial value problems for additively partitioned systems of ordinary differential
equations
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y′ = f (y) =
N∑

m=1

f {m}(y), y(t0) = y0, (1)

where the right-hand side f : Rd → R
d is split into in N different partswith respect to,

for example, stiffness, nonlinearity, dynamical behavior, and evaluation cost. Additive
partitioning includes the case of component partitioning as follows. The set of indices
{1, 2, . . . , d} that number the solution components yi is split into N subsets I{m} to
define

f {m} :=
∑

i∈I{m}
eTi ei f (y), i.e., f {m}i (y) =

{
f i (y), i ∈ I{m},
0, i /∈ I{m} , (2)

where ei denotes the i th unit vector in R
d . A GARK method advances the numerical

solution as follows [11]

Y {q}
i = yn + h

N∑

m=1

s{m}∑

j=1

a{q,m}
i, j f {m}(Y {m}

j ), q = 1, . . . , N , i = 1, . . . , s{q},

(3a)

yn+1 = yn + h
N∑

q=1

s{q}∑

i=1

b{q}
i f {q}(Y {q}

i ), (3b)

and is characterized by the extended Butcher tableau

A{1,1} A{1,2} . . . A{1,N }
A{2,1} A{2,2} . . . A{2,N }

...
...

...

A{N ,1} A{N ,2} . . . A{N ,N }
b{1} b{2} . . . b{N }

. (4)

Generalized additive Runge–Kutta methods show excellent stability properties and
flexibility to exploit the different behavior of the partitions. In contrast to additive
Runge–Kutta schemes introduced in [7], GARK schemes allow for different stage
values in the different partitions of f . Note that additive Runge–Kutta schemes are a
special case of GARK with A{m,�} := A{�} for all m, � = 1, . . . , N .

This study develops new multirate schemes in the generalized additive Runge–
Kutta framework. The paper is organized as follows. Section 2 introduces themultirate
GARK family and discusses their computational effort. The algebraic stability results
for GARK schemes are transferred to multirate GARK schemes and order conditions
are derived. Section 3 shows that many existing multirate Runge–Kutta schemes can
be represented and analyzed in the GARK framework. The generalization of additive
Runge–Kutta schemes tomultirate versions is considered inSect. 4. Section5discusses
absolutely monotonic multirate GARK schemes and shows how to construct such
schemes. Finally, conclusions are drawn in Sect. 6.
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Multirate generalized additive Runge Kutta methods 499

2 Generalized additive multirate schemes

2.1 Formulation of generalized additive multirate schemes

We consider a two-way partitioned system (1) with one slow component {s}, and one
active (fast) component {f}. The slow component is solved with a large step H , and the
fast one with small steps h = H/M . Denote by ỹ the intermediate solutions computed
by the fast micro-steps, stating with ỹn := yn . A multirate generalization of (3a, 3b)
withM micro steps h = H/M proceeds as follows. The slow stage values are given by:

Y {s}
i = yn + H

s{s}∑

j=1

a{s,s}
i, j f {s}(Y {s}

j )

+ h
M∑

λ=1

s{f}∑

j=1

a{s,f,λ}
i, j f {f}(Y {f,λ}

j ), i = 1, . . . , s{s}. (5a)

The fast micro-steps are:

For λ = 1, . . . , M

Y {f,λ}
i = ỹn+(λ−1)/M + H

s{s}∑

j=1

a{f,s,λ}
i, j f {s}(Y {s}

j )

+ h
s{f}∑

j=1

a{f,f}
i, j f {f}(Y {f,λ}

j ), i = 1, . . . , s{f}, (5b)

ỹn+λ/M = ỹn+(λ−1)/M + h
s{f}∑

i=1

b{f}
i f {f}(Y {f,λ}

i ). (5c)

The full (macro-step) solution is given by:

yn+1 = ỹn+M/M + H
s{s}∑

i=1

b{s}
i f {s}(Y {s}

i ). (5d)

After eliminating the micro-step solutions ỹ from the multirate GARKmethod (5a,
5b, 5c, 5d) we arrive at the following form.

Definition 1 (Multirate GARK method) One macro-step of a generalized additive
multirate Runge–Kutta method with M equal micro-steps reads

Y {s}
i = yn + H

s{s}∑

j=1

a{s,s}
i, j f {s}(Y {s}

j )

+ h
M∑

λ=1

s{f}∑

j=1

a{s,f,λ}
i, j f {f}(Y {f,λ}

j ), i = 1, . . . , s{s} (6a)
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Y {f,λ}
i = yn + h

λ−1∑

l=1

s{f}∑

j=1

b{f}
j f {f}(Y {f,l}

j ) +
s{s}∑

j=1

a{f,s,λ}
i, j f {s}(Y {s}

j )

+ h
s{f}∑

j=1

a{f,f}
i, j f {f}(Y {f,λ}

j ), λ = 1, . . . , M, i = 1, . . . , s{f} (6b)

yn+1 = yn + h
M∑

λ=1

s{f}∑

i=1

b{f}
i f {f}(Y {f,λ}

i ) + H
s{s}∑

j=1

b{s}
i f {s}(Y {s}

i ). (6c)

The base schemes are Runge–Kutta methods, (A{s,s}, b{s}) for the slow component
and (A{f,f}, b{f}) for the fast component. The coefficients A{s,f,λ}, A{f,s,λ} realize the
coupling between the two components.

The method (6a, 6b, 6c) can be written as a GARK scheme (3a, 3b) over the macro-
step H with the fast stage vectorsY {f} := [Y {f,1} T , . . . ,Y {f,M} T ]T . The corresponding
Butcher tableau (4) reads

A{f,f} A{f,s}

A{s,f} A{s,s}

b{f} T b{s} T
:=

1
M A{f,f} 0 · · · 0 A{f,s,1}
1
M 1b{f} T 1

M A{f,f} · · · 0 A{f,s,2}
...

. . .
...

1
M 1b{f} T 1

M 1b{f} T . . . 1
M A{f,f} A{f,s,M}

1
M A{s,f,1} 1

M A{s,f,2} · · · 1
M A{s,f,M} A{s,s}

1
M b{f} T 1

M b{f} T . . . 1
M b{f} T b{s} T

(7)

Example 1 (SimpleMRGARK)A simple versionof (6a, 6b, 6c) uses the samecoupling
in all micro-steps,

A{f,s,1} = · · · = A{f,s,N } = A{f,s}.

As we will see later, for stability reasons it is necessary in general to introduce addi-
tional freedom by using different coupling matrices for the micro-steps.

Example 2 (Telescopic MR GARK) Of particular interest are methods (6a, 6b, 6c)
which use the same base scheme for both the slow and the fast components,

A{f,f} = A{s,s} = A, b{f} = b{s} = b. (8)

Suchmethods can be easily extended to systemswithmore than two scales by applying
them in a telescopic fashion.

123
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2.2 Computational considerations

The general formulation of the method (5a, 5b, 5c, 5d) leads to a system of coupled
equations for all the fast and the slow stages, and the resulting computational effort is
larger, not smaller, than solving the coupled system with a small step. For an efficient
computational process the macro and micro-steps need to stay mostly decoupled.

A very effective approach is to have the slow stages (5a) for i = 1, . . . , s{s} coupled
only with the first fast micro-step,

Y {s}
i = yn + H

s{s}∑

j=1

a{s,s}
i, j f {s}(Y {s}

j ) + h
s{f}∑

j=1

a{s,f}
i, j f {f}(Y {f,1}

j ). (9)

Equations (9) and (5b) with λ = 1 are solved together.When bothmethods are implicit
this first computationhas a similar cost as one stepof the coupled system.The following
fast micro-steps (5b) with λ ≥ 2 are solved independently. The corresponding slow-
fast coupling matrix is

A{s,f} = [
1
M A{s,f} 0 · · · 0] . (10)

When the slow stages are computed in succession, e.g., when the slow method is
explicit or diagonally implicit, amore complex approach to decouple the computations
is possible. Namely, the slow stages are coupled only with the micro-steps that have
been computed already, and vice-versa, the micro-steps are coupled only with the
macro-stages whose solutions are already available. The fast and the slow methods
proceed side by side. This decoupling can be achieved by choosing

A{f,s,λ} = [
Ā{f,s,λ} 0

] ∈ R
s{f}×s{s}

, Ā{f,s,λ} ∈ R
s{f}× j (λ),

where j (λ) is the number of slow stages that have been computed before the current
micro-step, e.g., c{s}

j (λ) ≤ (λ−1)/M . Themicro-step λ is only coupled to these (known)
stages. Similarly,

A{s,f,λ} =
[

0
Ā{s,f,λ}

]
∈ R

s{s}×s{f} , Ā{s,f,λ} ∈ R
i(λ)×s{f} ,

where the first s{s} − i(λ) slow stages are computed before the micro-step λ, and
therefore they are not coupled to the current micro-step. An example of such methods
is discussed in detail Sect. 3.3.

2.3 Nonlinear stability

We consider systems (1) where each of the component functions is dispersive:

〈 f {m}(y) − f {m}(z), y − z〉 ≤ ν{m} ‖y − z‖2 , ν{m} < 0, m ∈ {f, s} (11)
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with respect to the same scalar product 〈·, ·〉. For two solutions y(t) and ỹ(t) of (1),
each starting from a different initial condition, the norm of the solution difference
�y(t) = ỹ(t) − y(t) is non-increasing, limε>0,ε→0 ‖�y(t + ε)‖ ≤ ‖�y(t)‖.

This section investigates the conditions under which the multirate scheme (6a, 6b,
6c) is nonlinearly stable, i.e. the inequality

‖yn+1 − ỹn+1‖ ≤ ‖yn − ỹn‖

holds for any two numerical approximations yn+1 and ỹn+1 obtained by applying the
scheme to the ODE (1) with (11) and with initial values yn and ỹn .

2.3.1 Algebraic stability

Following the stability analysis in [11], a multirate GARK scheme is algebraically
stable if the following matrix is non-negative definite

B{m} := diag(b{m}), (12a)

P{m,�} := A{m,�} T B{m} + B{�}A{�,m} − b{�}b{m} T , ∀ m, � ∈ {f, s}, (12b)

P =
[

P{f,f} P{f,s}
P{s,f} P{s,s}

]
≥ 0. (12c)

Algebraic stability guarantees unconditional nonlinear stability of the multirate
GARK scheme [11]. If the base schemes (A{f,f}, b{f}) and (A{s,s}, b{s}) are alge-
braically stable, one can easily verify that P{f,f} ≥ 0 and P{s,s} ≥ 0 hold, since

P{s,s} = P{s,s}, P{f,f} = 1

M2 IM×M ⊗ P{f,f},

where the matrices P{s,s} and P{f,f} are defined for both base schemes analogous
to (12a, 12b, 12c). The scheme (6a, 6b, 6c) is called stability-decoupled [11] ifP{f,s} =
0 (and therefore P{s,f} = P{f,s} T = 0). In this case the individual stability of the slow
and fast schemes is a sufficient condition for the stability of the overall multirate
method. We have the following result.

Theorem 1 (Stability of multirate GARK schemes) Consider a multirate GARK
scheme (6a, 6b, 6c) with positive fast weights, b{f} i > 0 for i = 1, . . . , s{f}. The
scheme is stability-decoupled iff A{f,s} is given by

A{f,s,λ} := B{f} −1(b{f}b{s} T − A{s,f,λ} T B{s}), λ = 1, . . . , M. (13)

Proof Equation (13) follows directly from setting (12b) to zero and solving for A{f,s,λ}.
�


Remark 1 If we use component partitioning, no additional coupling conditions have
to be fulfilled as shown in [11], provided that both base schemes (A{f,f}, b{f}) and
(A{s,s}, b{s}) are algebraically stable.
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2.3.2 Conditional stability for coercive problems

FollowingHigueras [4], consider partitioned systems (1) where each of the component
functions is coercive:

〈 f {s}(y) − f {s}(z), y − z〉 ≤ μ ‖ f {s}(y) − f {s}(z)‖2, (14)

〈 f {f}(y) − f {f}(z), y − z〉 ≤ μ M ‖ f {f}(y) − f {f}(z)‖2, μ < 0.

Assume that there exist r ≥ 0 such that the following matrix is positive definite

[
P{f,f} + r M B{f} P{f,s}

P{s,f} P{s,s} + r B{s}
]

≥ 0. (15)

The next result extends the one in [11].

Theorem 2 (Conditional stability of multirate GARK methods) Consider a parti-
tioned system (1) with coercive component functions (14) solved by a multirate GARK
method, and assume that (15) holds. The solution is nonlinearly stable under the step
size restriction

H ≤ −2μ

r
.

If the GARK method is stability decoupled then the weight r in (15) ensures stability
of the slow component for H ≤ −2μ/r , and of the fast component under the step
restriction h ≤ −2μ/(rM). The multirate GARK method imposes no additional step
size restrictions for conditional stability.

2.4 Order conditions

As the multirate method (6a, 6b, 6c) is a particular instance of a generalized additive
Runge–Kutta scheme (3a, 3b), the order conditions follow directly from the derivation
in [11]. The order conditions for the multirate GARK methods (6a, 6b, 6c) are given
in Tables 1 and 2. Hereby we have used the common notation of the identity matrices
I ∈ R

s{s}×s{s}
and I ∈ R

s{f}×s{f} , resp., and the unit vectors 11 = (1, . . . , 1)T ∈ R
s{s}

and 11 = (1, . . . , 1)T ∈ R
s{f} , resp.

2.4.1 Simplifying assumptions

Consider the basis schemes (A{f,f}, b{f}) and (A{s,s}, b{s}) of order three or higher. The
multirate order conditions simplify considerably if the following internal consistency
conditions[11]) hold

A{f,f}11 = A{f,s}11 := c{f} and A{s,s}11 = A{s,f}11 := c{s},
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504 M. Günther, A. Sandu

Table 1 Slow order conditions
for multirate GARK scheme (6a,
6b, 6c)

p Order condition

1 b{s} T 11 = 1

2 b{s} T A{s,s}11 = 1
2

b{s} T (
∑M

λ=1 A{s,f,λ})11 = M
2

3 b{s} T diag(A{s,s}11)A{s,s}11 = 1
3

b{s} T diag(A{s,s}11)(∑M
λ=1 A{s,f,λ})11 = M

3

b{s} T diag(∑M
λ=1 A{s,f,λ}11)A{s,s}11 = M

3

b{s} T diag(∑M
λ=1 A{s,f,λ}11)(∑M

λ=1 A{s,f,λ}11) = M2

3

b{s} T A{s,s}A{s,s}11 = 1
6

b{s} T A{s,s}(∑M
λ=1 A{s,f,λ}11) = M

6

b{s} T (
∑M

λ=1 A{s,f,λ}A{f,s,λ})11 = M
6

b{s} T (
∑M

λ=1 A{s,f,λ}{A{f,f} + (λ − 1)I }11) = M2

6

Table 2 Fast order conditions for multirate GARK scheme (6a, 6b, 6c)

p Order condition

1 b{f} T 11 = 1

2 b{f} T A{f,f}11 = 1
2

b{f} T (
∑M

λ=1 A{f,s,λ}11) = M
2

3 b{f} T diag(A{f,f}11)A{f,f}11 = 1
3

b{f} T (diag(A{f,f}11)∑M
λ=1 A{f,s,λ} + ∑M

λ=1(λ − 1)A{f,s,λ})11 = M2

3

b{f} T ∑M
λ=1 diag(A

{f,s,λ}11)(A{f,f} + (λ − 1)A{f,s,λ})11 = M2

3

b{f} T ∑M
λ=1 diag(A

{f,s,λ}11)A{f,s,λ}11 = M
3

b{f} T A{f,f}A{f,f}11 = 1
6

b{f} T (A{f,f} ∑M
λ=1 A{f,s,λ} + ∑M−1

μ=1
∑μ

λ=1 A{f,s,λ})11 = M2

6

b{f} T (
∑M

λ=1 A{f,s,λ}{∑M
μ=1 A{s,f,μ}})11 = M2

6

b{f} T (
∑M

λ=1 A{f,s,λ})A{s,s}11 = M
6

or, in equivalent form

1

M
A{f,f}11 + λ − 1

M
11 = A{f,s,λ}11 = c{f,λ}, λ = 1, . . . , M, (16a)

1

M

M∑

λ=1

A{s,f,λ}11 = A{s,s}11 = c{s}. (16b)

If (16a, 16b) hold then all order two conditions and most of the order three conditions
are automatically fulfilled. The only remaining order three conditions are

(b{s})T A{s,f}c{f} = 1

6
and (b{f})T A{f,s}c{s} = 1

6
,
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or, in equivalent form,

b{s} T
M∑

λ=1

A{s,f,λ}(A{f,f} + (λ − 1)I )11 = M2

6
, (17a)

b{f} T
(

M∑

λ=1

A{f,s,λ}
)
A{s,s}11 = M

6
. (17b)

When only the first fast microstep is coupled to the slow part (10) the second
simplifying condition (16b) becomes

1

M
A{s,f,1}11 = c{s}; A{s,f,λ} = 0, λ = 2, . . . , M. (18a)

The first simplifying condition (16a) can be fulfilled by setting

A{f,s,λ} = A{f,s,1} + F(λ), λ = 1, . . . , M (18b)

with

A{f,s,1}11 = 1

M
A{f,f}11 and F(λ)11 = λ − 1

M
11, (18c)

which transforms the last order three coupling condition (17b) into

b{f} T
(
MA{f,s,1} +

M∑

λ=1

F(λ)

)
A{s,s}11 = M

6
. (19)

2.4.2 Additive partitioning

We now consider the case of additive partitioning. If the base methods (A{s,s}, b{s})
and (A{f,f}, b{f}) are algebraically stable then (13) ensures the nonlinear stability of
the overall method. However, the stability conditions (13) cannot be fulfilled when the
simplifying conditions (16a, 16b) hold.

Theorem 3 (Internally consistent multirate GARK schemes are not stability decou-
pled) When only the first fast microstep is coupled to the slow part (10), the stability
conditions (13) are not compatible with the first simplifying condition (16a) for mul-
tirate GARK schemes with M > 1.

Proof Assume that themultirateGARKscheme fulfills the first simplifying conditions
(16a, 16b) and the stability decoupling condition (13) for all 1 ≤ λ ≤ M :

1

M
A{f,f}11 + λ − 1

M
11 = A{f,s,λ}11, (20a)

11b{s} T − B{f} −1A{s,f,λ} T B{s} = A{f,s,λ}. (20b)
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Eliminating A{f,s,λ} leads to

1

M
A{f,f}11 + λ − 1

M
11 = (I − B{f} −1A{s,f,λ} T B{s})11. (21a)

When only the first fast microstep is coupled to the slow part (10)

1

M
A{f,f}11 + λ − 1

M
11 = 11 ∀λ ≥ 2,

yielding a contradiction for M > 1. �

Consider the case where the base schemes are of order three or higher and the stabil-

ity decoupling conditions (13) hold. The coefficients of a stability decoupled multirate
GARK scheme have to fulfill the following nine independent order conditions:

b{f} T
(

M∑

λ=1

diag(Dλ11)A{f,f} +
M∑

λ=1

(λ − 1)Dλ

)
11 = M2

6
, (22a)

b{f} T
⎛

⎝
M∑

λ=1

A{f,f}Dλ +
M−1∑

μ=1

μ∑

λ=1

Dλ

⎞

⎠ 11 = M2

3
, (22b)

b{s} T
(

M∑

λ=1

A{s,f,λ}
)
11 = M

2
, (22c)

b{s} T diag(A{s,s}11)
(

M∑

λ=1

A{s,f,λ}
)
11 = M

3
, (22d)

b{s} T diag
(

M∑

λ=1

A{s,f,λ}11
)
A{s,s}11 = M

3
, (22e)

b{s} T diag(
M∑

λ=1

A{s,f,λ}11)
(

M∑

λ=1

A{s,f,λ}
)
11 = M2

3
, (22f)

b{s} T A{s,s}
(

M∑

λ=1

A{s,f,λ}
)
11 = M

6
, (22g)

b{s} T
(

M∑

λ=1

A{s,f,λ}Dλ

)
11 = M

3
, (22h)

b{s} T
(

M∑

λ=1

A{s,f,λ}(A{f,f} + (λ − 1)I )

)
11 = M2

6
, (22i)

where
Dλ := B{f} −1 A{s,f,λ} T B{s}. (23)
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Example 3 Consider the case (8) where the same order three scheme (A, b) is used
for both the fast and the slow components. To easily construct schemes with an order
higher than one we set A{s,f,λ} = 0 for λ = 2, . . . , M . For s = 2 the only second
order condition (22c) leads to

A{s,f,1} =
[
0 0
M
2b2

0

]
, D1 =

[
0 M

2b1
0 0

]
= b2

b1
A{s,f} T ,

assuming b1 �= 0 and since b2 �= 0 for a method of order two. This choice preserves
the explicit structure of the scheme, if the underlying scheme is explicit. Note that the
basic method does not depend on M—only the coefficients of the coupling matrices
A{s,f} and D depend on M .

2.4.3 Component partitioning

For component partitioning the stability of the fast and slow base schemes ensures
the overall stability, and no coupling conditions are needed. Consequently, there are
additional degrees of freedom for choosing A{f,s}. The general order conditions for
this case have been given in Tables 1 and 2.

Example 4 (First fast step coupling) We construct a multirate scheme from two arbi-
trary order three basis schemes (b{f}, A{f,f}) and (b{s}, A{s,s}) by coupling only the first
active microstep to the slow part and keeping the flexibility in the coupling matrices
A{f,s,λ} The order two coupling conditions are

b{s} T A{s,f,1}11 = M

2
, (24a)

b{f} T
(

M∑

λ=1

A{f,s,λ}11
)

= M

2
. (24b)

The order three conditions read

b{s} T diag(A{s,s}11)A{s,f,1}11 = M

3
, (24c)

b{s} T diag(A{s,f,1}11)A{s,s}11 = M

3
, (24d)

b{s} T diag(A{s,f,1}11)A{s,f,1}11 = M2

3
, (24e)

b{s} T A{s,s}A{s,f,1}11 = M

6
, (24f)

b{s} T A{s,f,1}A{f,s,1}11 = M

6
, (24g)

b{s} T A{s,f,1}A{f,f}11 = M2

6
, (24h)
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b{f} T
(
diag(A{f,f}11)

M∑

λ=1

A{f,s,λ} +
M∑

λ=1

(λ − 1)A{f,s,λ}
)
11 = M2

3
, (24i)

b{f} T
(

M∑

λ=1

diag(A{f,s,λ}11){A{f,f} + (λ − 1)A{f,s,λ}}
)
11 = M2

3
, (24j)

b{f} T
(

M∑

λ=1

diag(A{f,s,λ}11)A{f,s,λ}
)
11 = M

3
, (24k)

b{f} T
⎛

⎝A{f,f}
M∑

λ=1

A{f,s,λ} +
M−1∑

μ=1

μ∑

λ=1

A{f,s,λ}
⎞

⎠ 11 = M2

6
, (24l)

b{f} T
(

M∑

λ=1

A{f,s,λ}
)
A{s,f,1}11 = M2

6
, (24m)

b{f} T
(

M∑

λ=1

A{f,s,λ}
)
A{s,s}11 = M

6
. (24n)

The only degrees of freedom to fulfill these conditions are the parameters of the
coupling coefficient matrices A{s,f,1} and A{f,s,λ} (λ = 1, . . . , M).

3 Traditional multirate Runge Kutta methods formulated in the GARK
framework

In this section we discuss several important multirate Runge Kutta methods proposed
in the literature, and show how they can be represented and analyzed in the GARK
framework.

3.1 Kvaerno–Rentrop methods

The mRK class of multirate Runke–Kutta methods proposed by Kvaerno and Ren-
trop [10] can be formulated in the GARK framework. Kvaerno and Rentrop obtain
order conditions that are nearly independent of M by making the following choices
of coefficients.

(a) The mRK schemes are based on coupling only the first fast microstep to the slow
part, which, in this paper’s notation, reads

A{s,f} := A{s,f,1}, A{s,f,λ} = 0, λ = 2, . . . , M.

(b) The slow to fast coupling is

A{f,s,λ+1} := A{f,s} + F(λ)

F(λ) = 11{f,s} [
η1(λ) . . . ηs{f,s}(λ)

]
, λ = 0, . . . , M − 1,
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Table 3 Order conditions for the mRK [10] multirate GARK scheme with F(λ)11 = λ11

Order Fast order condition Slow order condition

1 b{f} T 11 = 1 b{s} T 11 = 1

2 b{f} T cf = 1
2 b{s} T cs = 1

2

3 b{f} T diag(cf)cf = 1
3 b{s} T diag(cs)cs = 1

3

b{f} T A{f,f}cf = 1
6 b{s} T A{s,s}cs = 1

6

b{f} T (A{f,s} + 1
M

∑M−1
λ=0 F(λ))cs = M

6 b{s} T A{s,f}cf = M
6

i.e., Fi, j (λ) = η j (λ). The scalar functions η j (λ) fulfill the condition

s{f,s}∑

j=1

η j (λ) = λ ⇔ F(λ) 11 = λ 11. (25)

(c) In [10] the matrix A{s,f} is scaled by M , and the matrix A{f,s} is scaled by 1/M ,
i.e., the function evaluations of the active part are always done in the microstep
size, and the ones in the slow part in the macrostep size.

Note that this choice corresponds to the simplifying conditions (16a, 16b) with the
special choice (18b). With the notation

cf := A{f,f}11f and cs := A{s,s}11s

the corresponding GARK order conditions are given in Table 3.
Choose twoorder three schemes (b{f}, A{f,f}) and (b{s}, A{s,s}). To obtain amultirate

method of order three the free parameters A{f,s}, A{s,f}, and F(λ) have to fulfill the
two remaining order three coupling conditions, together with the three simplifying
conditions,

b{s} T A{s,f}cf = M

6
, (26a)

b{f} T
(
A{f,s} + 1

M

M−1∑

λ=0

F(λ)

)
cs = M

6
, (26b)

A{f,s}11 = cf, (26c)

A{s,f}11 = cs, (26d)

F(λ)11 = λ, λ = 0, . . . , M − 1. (26e)

Note that the additional condition

b{f} T F(λ) cs = λ(λ + 1)

2M
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imposed by Kvaerno and Rentrop [10], which transforms the second condition (26b)
into

b{f} T A{f,s}cs = 1

6M
,

ensures that the active solution has order three at all microsteps.

Example 5 (A multirate GARK schemes of order 3 with only two stages) We are
now interested in constructing schemes of order 3 with only 2 stages. Note that the
overall scheme will be stable, if the basic schemes are stable due to componentwise
partitioning. We use the simplifying conditions (26c) and (26d) together with

b := b{f} = b{s}, A := A{f} = A{s}, c := c{f} = c{s}, Ã := A{f,s} = A{s,f}.

If we use an order three basis scheme (b, A) , the remaining order conditions (26a,
26b, 26c, 26d) for the free parameters Ã and F(λ) read

bT Ã c = M

6
, (27a)

bT
(
Ã + 1

M

M−1∑

λ=0

F(λ)

)
c = M

6
, (27b)

Ã 11 = c, (27c)

F(λ) 11 = λ. (27d)

The first two conditions coincide if we set

bT
M−1∑

λ=0

F(λ) c = 0.

When c2 �= c1 the choice

η1(λ) = c2
c2 − c1

λ, η2(λ) = − c1
c2 − c1

λ,

fulfills this additional condition and condition (27d) at the same time. The remaining
conditions (27a) and (27c) can be fulfilled, for example, by setting

Ã =
[

c1 0
c2 − p p

]
with p =

M
6 − b1c21 − b2c1c2

b2(c2 − c1)
.
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For the RADAU-IA scheme (p = 3, s = 2) we obtain

c A

bT
:=

0 1
4 − 1

4

2
3

1
4

5
12

1
4

3
4

; F(λ) =
⎡

⎢⎣
λ 0

λ 0

⎤

⎥⎦ , Ã =
⎡

⎢⎣
0 0

2
3 − M

3
M
3

⎤

⎥⎦ ,

and for RADAU-IIA (p = 3, s = 2)

c A
bT

:=
0 1

4 − 1
4

2
3

1
4

5
12

1
4

3
4

; F(λ) =
[ 3
2λ − 1

2λ
3
2λ − 1

2λ

]
, Ã =

[ 1
3 0

1 − (M − 1) M − 1

]
.

3.2 Dense output coupling

The use of dense output interpolation for coupling the slow and fast components was
developed by Savcenco, Hundsdorfer, and co-workers in the context of Rosenbrock
methods [12–16]. This approach can be immediately extended to Runge Kutta meth-
ods, and the overall scheme can be formulated in the mutirate GARK framework.

For a traditional Runge Kutta method the dense output provides highly accurate
approximations of the solution at intermediate points

y(tn + θh) ≈ yn + H
s∑

j=1

b j (θ) f
(
Y j

)
, 0 ≤ θ ≤ 1, (28)

or highly accurate approximations of the function values at intermediate points

f (y(tn + θh)) ≈
s∑

j=1

d j (θ) f (Y j ), 0 ≤ θ ≤ 1. (29)

The slow terms in the micro-steps (5b) can be viewed as approximations of the
function value at the micro steps

H f {s}(y(tn + (λ − 1 + c{f,f}
i )h)) ≈ H

s{s}∑

j=1

a{f,s,λ}
i, j f {s}(Y {s}

j ).

Consequently, using dense output of function values (29) leads to the standardmultirate
GARK approach with the coupling given by the dense output coefficients

a{f,s,λ}
i, j = d j

(
λ − 1 + c{f,f}

i

M

)
.
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Alternatively, one can use the dense solution values (28) in the micro-steps (5b)

Y {f,λ}
i = ỹn+(λ−1)/M + H f {s}(Y {s,λ}

i ) (30)

+ h
s{f}∑

j=1

a{f,f}
i, j f {f}(Y {f,λ}

j ), i = 1, . . . , s{f}

where

Y {s,λ}
i = yn + h

M∑

λ=1

s{f}∑

i=1

b{f}
i (λ) f {f}(Y {f,λ}

i ) + H
s{s}∑

i=1

b{s}
i (λ) f {s}(Y {s}

i ).

The dense output of the fast variable can be applied only for the current micro-step

Y {s,λ}
i = yn + H

s{f}∑

i=1

b{f}
i (λ) f {f}(Y {f,λ}

i ) + H
s{s}∑

i=1

b{s}
i (λ) f {s}(Y {s}

i ),

or for the previous micro-step, i.e., in extrapolation mode

Y {s,λ}
i = yn + H

s{f}∑

i=1

b{f}
i (λ) f {f}(Y {f,λ−1}

i ) + H
s{s}∑

i=1

b{s}
i (λ) f {s}(Y {s}

i ),

where the dense output coefficients b{s}(λ), b{f}(λ) are appropriately redefined.
The solution interpolation approach (30) can be cast in the GARK framework by

adding the additional slow stage values Y {s,λ}
i , with no contribution to the output

(b{s,λ}
i = 0). This is less convenient for analysis, however, as the number of slow

stages becomes equal to the number of fast stages.

3.3 Multirate infinitesimal step methods

Multirate infinitesimal step (MIS) methods [21] discretize the slow component with
an explicit Runge Kutta method. The fast component is advanced between consecutive
stages of this method as the exact solution of a fast ODE system. The fast ODE has
a right hand side composed of the original fast component of the function, plus a
piecewise constant “tendency” term representing the discretized slow component of
the function. The order conditions of the overall method assume that the fast ODE can
be solved exactly, which justifies the “infinitesimal step” name. We show here that
a multirate infinitesimal step method can be cast in the GARK framework when the
inner fast ODEs are solved by a Runge Kutta method with small steps.

We focus on the particular method of Knoth and Wolke [8], which was the first
MIS approach, and which has the best practical potential. This approach has been
named recursive flux splitting multirate (RFSMR) in [18–20], and has been cast as
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a traditional partitioned Runge Kutta method in [20]. Applications to the solution of
atmospheric flows are discussed in [17–19]. The approach below can be applied to
any MIS scheme where the internal ODEs are solved by Runge Kutta methods.

Consider an outer (slow) explicit Runge Kutta scheme with the abscissae co1 = 0,
coi < coj for i < j , and cos < 1. The inner (fast) scheme can be explicit or implicit. If
the same explicit scheme is used in both the inner and the outer loops then the method
can be applied in a telescopic fashion, where an even faster method is obtained by
sub-stepping recursively.

The scheme proceeds, in principle, by solving an ODE between each pair of con-
secutive stages of the slow explicit method:

Y {s}
1 = yn

for i = 2, . . . , so

v′
i =

i−1∑

j=1

(aoi, j − aoi−1, j ) f {s}(Y {s}
j ) + (coi − coi−1) f {f}(vi ),

for θ ∈ [0, H ], starting with vi (0) = Y {s}
i−1

Y {s}
i := vi (H),

end for i

v′ =
so∑

j=1

(boj − aoso, j ) f {s}(Y {s}
j ) + (1 − coso) f {f}(v)

for θ ∈ [0, H ], starting with v(0) = Y {s}
s

yn+1 := v(H).

The numerical scheme solves the inner ODEs using several steps of an inner Runge
Kutta method [18]. For the present analysis we consider the case when only one step
of the internal Runge Kutta method (Ai, bi) is taken to solve the ODE for vi for each
subinterval i = 2, . . . , so. This is no restriction of generality as any sequence of M
sub steps can be written as a single step method.

We interpret this scheme as a GARK method—note that we formally solve the
ODEs for the active part with one step of the inner fast method (Ai, bi)with ci = Ai11.

Theorem 4 (The MIS scheme is a particular instance of a GARK method)

(i) The MIS scheme defined above can be written as a GARK method with the corre-
sponding Butcher tableau (7) given by A{s,s} = Ao, b{s} = bo,

A{f,f} =

⎡

⎢⎢⎢⎣

co2 Ai 0 · · · 0
co2 1bi T (co3 − co2 ) A

i · · · 0
...

. . .

co2 1bi T (co3 − co2 ) 1bi T . . . (1 − coso) A
i

⎤

⎥⎥⎥⎦ ∈ R
sosi×sosi ,
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b{f} T = [
co2 b

i T (co3 − co2 ) b
i T . . . (1 − coso) b

i T
] ∈ R

sosi ,

A{f,s} =

⎡

⎢⎢⎢⎢⎢⎢⎣

ci eT2 Ao

...

11 eTi−1 A
o + ci (eTi − eTi−1) A

o

...

11 eTso Ao + ci (bo T − eTso Ao)

⎤

⎥⎥⎥⎥⎥⎥⎦
∈ R

sosi×so ,

A{s,f} = [
co2 g2bi T . . . (coso − coso−1) gsobi T 0

] ∈ R
so×sosi

where

ei = [
0 . . . 1 . . . 0

]T ∈ R
so , gi = [

0 . . . 1 . . . 1
]T ∈ R

so

(ii) The coefficients fulfill the simplifying “internal consistency” conditions (16a,
16b) given in matrix form by

c{s,s} = c{s,f} = c{s} = co,

and

c{f,s} = c{f,f} = c{f} =
⎡

⎢⎣
(co2 ) c

i

...

coso 11 + (bo T co − coso) c
i

⎤

⎥⎦ ∈ R
sosi .

(iii) Assuming that both the fast and the slow methods have order at least two, the
simplifying assumptions imply that the overall scheme is second order.

(iv) Assuming that both the fast and the slow methods have order at least three, the
third order coupling conditions reduce to the single condition

1

3
=

so∑

i=2

(coi − coi−1) (ei + ei−1)
T Aoco + (1 − coso)

(
1

2
+ eTso Aoco

)
. (31)

Proof The proof is an application of the multirate GARK order conditions. Details
are given in [2]. �


Remark 2 The condition (31) corresponds to the additional order three condition
derived in the original MIS paper [8].
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4 Multirate (traditional) additive Runge–Kutta methods

A special case of multirate GARK schemes (6a, 6b, 6c) are the multirate additive
Runge–Kutta schemes. They are obtained in the GARK framework by setting

A{s} := A{s,s} = A{f,s,1},
A{f} := A{f,f} = A{s,f,1},
A{s,f,λ} := 0 and A{f,s,λ} := A{s,λ} for λ = 2, . . . , M.

The scheme proceeds as follows

Y λ
i = yn + h

λ−1∑

l=1

s∑

j=1

b{f}
j f {f}(Y l

j ) + H
s∑

j=1

a{s,λ}
i, j f {s}(Y 1

j )

+ h
s∑

j=1

a{f}
i, j f

{f}(Y λ
j ), λ = 1, . . . , M, (32a)

yn+1 = yn + h
M∑

λ=1

s∑

j=1

b{f}
i f {f}(Y λ

i ) + H
s∑

j=1

b{s}
i f {s}(Y 1

i ), (32b)

and has the following extended Butcher tableau

1
M A{f} 0 · · · 0 A{s} 0 · · · 0

1
M 11b{f} T 1

M A{f} · · · 0 A{s,2} 0 · · · 0
...

. . .
...

...
1
M 11b{f} T 1

M 11b{f} T · · · 1
M A{f} A{s,M} 0 · · · 0

1
M b{f} T 1

M b{f} T · · · 1
M b{f} T b{s} T 0 · · · 0

4.1 Additive partitioning

The coupling condition (13) for nonlinear stability yields

A{s} = 11b{s} T − B{f} −1(A{f})T B{s},
A{s,λ} = 11b{s} T , λ = 2, . . . , M,

and only b{s}, b{f} and A{f} remain as free parameters. As a consequence, the algebraic
stability of the basic method (b{s}, A{s}) is equivalent to the algebraic stability of
(b{s}, D), where D = B{f} −1(A{f})T B{s}.

Example 6 (A nonlinearly stable additive Runge–Kutta scheme of order two) Besides
the algebraic stability of (b{s}, A{s}) and (b{s}, D), the following conditions have to
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Table 4 Order conditions for multirate GARK scheme (32a, 32b) when (33a, 33b) hold

Order Slow order conditions Fast order conditions

1 b{s} T 11 = 1 b{f} T 11 = 1

2 b{s} T c = 1
2 b{f} T c = 1

2

3 b{s} T diag(c)c = 1
3 b{f} T diag(c)c = 1

3

b{s} T A{s}c = 1
6 b{f} T A{f}c = 1

6

b{s} T A{s}c = 1
6 b{f} T A{f}c = 1

6

b{s} T A{f}c = M
6 b{f} T (A{s} + 1

M
∑M−1

λ=0 F(λ))c = M
6

be fulfilled for a method of order two:

b{f} T 11 = 1, b{f} T A{f}11 = 1

2
,

b{s} T 11 = 1, b{s} T D11 = 1

2
, b{s} T A{f}11 = M

2
.

A simple choice of parameters is

b{f} =
[ 1
2
1
2

]
, b{s} =

[
3

4M+2
4M−1
4M+2

]
, A{f} =

[ 1
4 −M

2
M+1
2

1
4

]
,

and

A{s} = 1

4M + 2

[ 3
2 −M(4M − 1)

3(M + 1) 4M−1
2

]

In this case both base methods are not only algebraically stable but also symplectic.

4.2 Componentwise partitioning

For component partitioning there are no additional nonlinear stability conditions. Fol-
lowing again the lines of [10], we set

A{s,λ+1} = A{s} + F(λ) with F(λ)11 = λ11, λ = 0, . . . , M − 1. (33a)

We also consider the simplifying assumption

c := A{f}11 = A{s}11. (33b)

The corresponding order conditions are given in Table 4.
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If, in addition to (33a, 33b) a second simplifying condition is given by the following
relation

b{f} T
M−1∑

λ=0

F(λ) c = 0, (34)

any pair (b{f}, A{f}) and (b{s}, A{s}) of algebraically stable order three schemes lead to
an order three multirate scheme, provided that the compatibility conditions are true:

b{s} T A{f} c = M

6
, b{f} T A{s} c = M

6
.

These compatibility conditions are fulfilled by a scheme with s stages if

η1(λ) = cs
∑s−1

j=2 η j − ∑s−1
j=2 c jη j − csλ

c1 − cs
, ηs(λ) = λ −

s−1∑

j=1

η j ,

with free parameters η2(λ), . . . , ηs−1(λ), provided that c1 �= cs .
It is easy to see that the scheme must have at least four stages, as s = 3 would yield

b{f} = b{s} and consequently M = 1.

Example 7 (An algebraically stable additive Runge–Kutta scheme of order three) To
construct an algebraically stable scheme of order p = 3, we first choose a pair of
algebraically stable schemes (A, b{f}) and (A, b{s}) with c := A11 and then define
A{f} := A + (M − 1) Ã{f} and A{s} := A + (M − 1) Ã{s}. It is straightforward to
show that this yields a stable multirate additive Runge–Kutta scheme, if the following
conditions hold:

Ã{f}11 = Ã{s}11 = 0, (35a)

b{f} Ã{f}c = b{s} Ã{s}c = 0, (35b)

b{s} Ã{f}c = b{f} Ã{s}c = 1

6
, (35c)

Ã{f} T B{f} + B{f}A{f} = Ã{s} T B{s} + B{s}A{s} = 0. (35d)

Such a pair can be constructed by extending (doubling) any algebraically stable
scheme. For the RADAU-IA method, for example, the extension to the pair (A, b{f})
and (A, b{s}) is given by:
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0 1
4 − 1

4 0 0
2
3

1
4

5
12 0 0

0 0 0 1
4 − 1

4
2
3 0 0 1

4
5
12

b{f} 1
4

3
4 0 0

b{s} 0 0 1
4

3
4

.

A possible choice for Ã{f} and Ã{s} fulfilling all conditions above is

Ã{f} =

⎡

⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 0 0

0 0 − 1
3

1
3

⎤

⎥⎥⎥⎥⎦
, Ã{s} =

⎡

⎢⎢⎢⎢⎣

0 0 0 0

− 1
3

1
3 0 0

0 0 0 0

0 0 0 0

⎤

⎥⎥⎥⎥⎦
.

Finally, we set

η1(λ) = c4
∑3

j=2 η j − ∑3
j=2 c jη j − c4λ

c1 − c4
, η4(λ) = λ −

3∑

j=1

ηi ,

with η2 and η3 arbitrary. For η2 := η3 := 0 we get η1 = c4
c4−c1

λ and η4 = − c1
c4−c1

λ.
For the extended RADAU-IA scheme we have η1 = λ, η2 = η3 = η4 = 0.

5 Monotonicity properties

Consider the method (6a, 6b, 6c) in the general form, represented by the Butcher
tableau (7) and let

Ã =

⎡

⎢⎢⎢⎢⎢⎣

1
M A{f,f} · · · 0 A{f,s,1} 0

...
. . .

... 0
1
M 1b{f} T . . . 1

M A{f,f} A{f,s,M} 0
1
M A{s,f,1} · · · 1

M A{s,f,M} A{s,s} 0
1
M b{f} T . . . 1

M b{f} T b{s} T 0

⎤

⎥⎥⎥⎥⎥⎦
.

We are concerned with partitioned systems (1) where there exist ρ > 0 such that
for a semi-norm ‖ · ‖ and for any y

∥∥∥y + ρ f {s}(y)
∥∥∥ ≤ ‖y‖ ,

∥∥∥y + ρ

M
f {f}(y)

∥∥∥ ≤ ‖y‖ . (36)

This implies that condition (36) holds for any 0 ≤ τ ≤ ρ, i.e., the solutions of forward
Euler steps with the slow and fast subsystems, respectively, are monotone under this
step size restriction. The condition (36) also implies that the system (1) has a solution
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of non increasing norm. To see this consider α, β > 0 with α + β = 1 and write an
Euler step with the full system as a convex combination

‖y + θ ( f {s}(y) + f {f}(y))‖ =
∥∥∥∥α

(
y + θ

α
f {s}(y)

)
+ β

(
y + θ

β
f {f}(y)

)∥∥∥∥
≤ α ‖y‖ + β ‖y‖ = ‖y‖ ,

if θ ≤ min{α, β/M} ρ. For β → 1 the aggregate Euler step is monotonic for time
steps 0 < θ < ρ/M , and therefore the solution of (1) has non increasing norm,
(d/dt)‖y‖ ≤ 0 [5].

We seek multirate schemes which guarantee a monotone numerical solution
‖yn+1‖ ≤ ‖yn‖ for (36) under suitable step size restrictions. Specifically, we seek
schemes where the macro step is not subject to the above θ < ρ/M bound.

The following definition and results follow from the general ones for GARK
schemes in [11].

Definition 2 (Absolutely monotonic multirate GARK) Let r > 0 and

R̃ = diag{M r IMs{f}×Ms{f} , r Is{s}×s{s} , 1}. (37)

A multirate GARK scheme (3a, 3b) defined by Ã ≥ 0 is called absolutely monotonic
(a.m.) at r ∈ R if

α(r) = (Iŝ×ŝ + ÃR̃)−1 · 1ŝ×1 ≥ 0, and (38a)

β(r) = (Iŝ×ŝ + ÃR̃)−1 · ÃR̃ = Iŝ×ŝ − (Iŝ×ŝ + ÃR̃)−1 ≥ 0, (38b)

where ŝ = Ms{f} + s{s} + 1. Here all the inequalities are taken component-wise.

Let
Â = Ã · diag{M IMs{f}×Ms{f} , Is{s}×s{s} , 1}. (39)

We note that conditions (38a, 38b) are equivalent to

α(r) = (Iŝ×ŝ + r Â)−1 · 1ŝ×1 ≥ 0, and (40a)

β(r) = (Iŝ×ŝ + r Â)−1 · Â ≥ 0. (40b)

These are precisely themonotonicity relations for a simpleRungeKuttamatrix. Conse-
quently, the machinery developed for assessing the monotonicity of single rate Runge
Kutta schemes [3,9] can be directly applied to the multirate GARK case as well.

Definition 3 (Radius of absolute monotonicity) The radius of absolute monotonicity
of the multirate GARK scheme (3a, 3b) is the largest number R ≥ 0 such that the
scheme is absolutely monotonic (40a, 40b) for any r ∈ [0,R].
Theorem 5 (Monotonicity of solutions) Consider the GARK scheme (3a,3b) applied
to a partitioned system with the property (36). For any macro-step size obeying the
restriction

H ≤ R ρ (41)
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the stage values and the solution are monotonic

‖Y {q}
i ‖ ≤ ‖yn‖, q = 1, . . . , N , i = 1, . . . , s{q}, q ∈ {f, s} (42a)

‖yn+1‖ ≤ ‖yn‖. (42b)

In practice we are interested in the largest upper bound for the time step that ensures
monotonicity.

We next consider the particular case of telescopic multirate GARKmethods, where
both the fast and the slow components use the same irreduciblemonotonic base scheme
(A, b). The classical Runge Kutta monotonicity theory [3,9] states that an irreducible
base scheme has a nonzero radius of absolute monotonicity if and only if

I nc

([
A 0
bT 0

]2)
≤ I nc

([
A 0
bT 0

])
, (43)

where I nc denotes the incidence matrix (i.e., a matrix with entries equal to one or zero
for the non-zero and zero entries of the original matrix, respectively).

The matrix (39) of the resulting multirate scheme is

Â =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A 0 · · · 0 0 A{f,s,1} 0
1b T A · · · 0 0 A{f,s,2} 0

...
. . .

...

1b T 1b T . . . A 0 A{f,s,M} 0
b T b T . . . b T 0 0 0

A{s,f,1} A{s,f,2} . . . A{s,f,M} 0 A 0
b T b T . . . b T 0 bT 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (44)

The extra stages added to obtain (44) from (39) do not impact the final solution,
therefore the underlying numerical solution is not changed. Denote the upper left block
of (44) by AM . Note that (43) implies that I nc(A2

M ) ≤ I nc(AM ) as AM represents
M concatenated steps of the base method.

By similar arguments as in the classical theory [3,9], the multirate scheme is
absolutely monotonic if the incidence of the extended matrix satisfies

I nc(Â2) ≤ I nc(Â). (45)

Theorem 6 (Conditions for absolutely monotonic telescopic multirate GARK
schemes) The multirate GARK schemes with the same basic scheme for fast and slow

123



Multirate generalized additive Runge Kutta methods 521

components is absolutely monotonic, if the following conditions hold:

I nc(A2
M + (A{f,s,i}A{s,f, j})i, j=1,...,M ) ≤ I nc(AM ), (46a)

I nc

([
A 0
bT 0

]2
+

[∑M
λ=1 A

{s,f,λ}A{f,s,λ} 0∑M
λ=1 b

T A{f,s,λ} 0

])
≤ I nc

([
A 0
bT 0

])
, (46b)

I nc

(
i−1∑

λ=1

11bT A{f,s,λ} + A A{f,s,i} + A{f,s,i} A
)

≤ I nc(A{f,s,i}), (46c)

I nc

⎛

⎝
M∑

λ= j+1

A{s,f,λ}11bT + A{s,f, j} A + A A{s,f, j}
⎞

⎠ ≤ I nc(A{s,f, j}), (46d)

I nc((M − j)bT + bT A + bT A{s,f, j}) ≤ I nc(bT ), (46e)

for all i, j = 1, . . . , M.

Proof The square of matrix (44) is

Â2 =
[

Â2
1,1 Â2

1,2
Â2
2,1 Â2

2,2

]
,

with the following blocks:

Â2
1,1 = A2

M + (A{f,s,i}A{s,f, j})i, j=1,...,M ,

Â2
2,2 =

[
A 0
bT 0

]2
+

[∑M
λ=1 A

{s,f,λ}A{f,s,λ} 0∑M
λ=1 b

T A{f,s,λ} 0

]
,

Â2
1,2 = ([∑i−1

λ=1 11b
T A{f,s,λ} + A A{f,s,i} + A{f,s,i} A, 0

])
i=1,...,M

,

Â2
2,1 =

([∑M
λ= j+1 A

{s,f,λ}11bT + A{s,f, j} A + A A{s,f, j}
(M − j)bT + bT A + bT A{s,f, j}

])

j=1,...,M

.

Writing the incidence inequality (45) by blocks yields (46a, 46b, 46c, 46d, 46e). �

Remark 3 1. A comparison of (46b) with (43) reveals that the monotonicity of

the base scheme is a necessary, but not sufficient condition for the absolute
monotonicity of the multirate version. The coupling coefficients have to be chosen
appropriately in order to preserve this property. For example, since AM and A2

M are
block lower triangular, a necessary condition for (46a) is that A{f,s,i}A{s,f, j} = 0
for i > j .

2. If all weights of the base method are nonzero then condition (46e) is automatically
satisfied.

3. An interesting choice of coupling coefficients is to use only the first micro-step
solution in the slow calculation

A{s,f,λ} = 0, λ = 2, . . . , M,
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and to include the slow term contribution only in the last micro-step

A{f,s,λ} = 0, λ = 1, . . . , M − 1.

In this case the incidence conditions (46a)–(46d) take the much simpler form:

I nc(A2 + A{f,s,M}A{s,f,1}) ≤ I nc(A), (47a)

I nc(bT A + bT A{f,s,M}) ≤ I nc(bT ), (47b)

I nc( A A{f,s,M} + A{f,s,M} A) ≤ I nc(A{f,s,M}), (47c)

I nc(A{s,f,1} A + A A{s,f,1}) ≤ I nc(A{s,f,1}). (47d)

Condition (47b) is automatically satisfied if b > 0. Moreover, if the couplings
are multiples of the base scheme, A{s,f,1} = c1 A and A{f,s,M} = c2 A, then (43)
implies that all conditions (47a, 47b, 47c, 47d) are satisfied.

Example 8 (Monotonicity of an explicit multirate GARK scheme of order two) The
base for both the fast and the slow schemes is the following explicit, order two, strong
stability preserving method, with an absolute stability radius R = 1

A =
[
0 0
1 0

]
, b =

[
1
2
1
2

]
, c =

[
0
1

]
. (48)

The general coupling conditions for a second order multirate scheme read:

M

2
= M b{s} T As,a11 =

M∑

λ=1

bT A{s,f,λ} 11,

1

2
= b{f} T A{f,s}11 = 1

M

M∑

λ=1

bT A{f,s,λ} 11.

We consider three different couplings.

– The coupling coefficients that respect the nonlinear stability decoupling condition
have negative values and the resulting GARK method is not absolutely stable.

– Coupling the slow step with only the first fast step is achieved by

A{s,f,1} =
[
0 0
M 0

]
, A{s,f,λ} = 0, λ ≥ 2. (49)

The second order condition can be fulfilled by taking

A{f,s,λ} = A, ∀ λ.

For M ≥ 2 we haveR = 0, since (39) corresponds to an irreducible Runge Kutta
scheme, and (46c) is not satisfied.
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– A scheme with (49) which includes the slow terms only in the last micro-step is

A{f,s,λ} = 0, λ = 1, . . . , M − 1, A{f,s,M} = M A.

With this coupling the multirate scheme maintains the absolute stability radius of
the base method for any M , as all conditions (47a, 47b, 47c, 47d) are satisfied.

We note that monotonicity conditions for several multirate and partitioned explicit
Runge-Kutta schemes are discussed by Hundsdorfer, Mozartova, and Savcenco in a
recent report [6].

6 Conclusions and future work

Thiswork developsmultirate generalized additiveRungeKutta schemes,which exploit
the different levels of activity within the partitions of the right-hand sides and/or com-
ponents by using appropriate time steps for each of them. Multirate GARK schemes
inherit the high level of flexibility fromGARK schemes [11], which allow for different
stage values as arguments of different components of the right hand side. Many well-
known multirate Runge–Kutta schemes, such as the Kvaerno–Rentrop methods [10],
the multirate infinitesimal step methods [8], and methods based on dense output cou-
pling, are particular members of the new family of methods.

The paper develops the order conditions (up to order three) for the generalized
additivemultirate schemes.We extend the GARK algebraic stability andmonotonicity
analysis [11] to the new multirate family, and show that these properties are inherited
from the base schemes provided that some coupling conditions hold.

Futureworkwill constructmultirateGARKmethods tailored to special applications
in, for example, circuit design, vehicle system dynamics, or air quality modeling,
and will extend the new family of schemes to differential-algebraic equations. First
numerical results obtained forMultirate GARK schemes applied to an electro-thermal
coupled problem from network analysis can be found in [1].
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