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Abstract We consider an interpolatory quadrature formula having as nodes the zeros
of the nth degreeChebyshev polynomial of the second kind, onwhich the Fejér formula
of the second kind is based, and the additional points ±τc = ± cos π

2(n+1) . The new

formula is shown to have positive weights given by explicit formulae. Furthermore, we
determine the precise degree of exactness, and we obtain optimal error bounds for this
formula either by Peano kernel methods or by Hilbert space techniques for analytic
functions and 1 ≤ n ≤ 40. In addition, the convergence of the quadrature formula is
shown not only for Riemann integrable functions on [−1, 1], but also for functions
havingmonotonic singularities at±1. The new formula has essentially the same rate of
convergence as, and it is therefore an alternative to, the well-known Clenshaw-Curtis
formula.

Mathematics Subject Classification 65D32

1 Introduction

One of the most widely used quadrature formulae is the Clenshaw-Curtis formula

∫ 1

−1
f (t)dt = w∗

0 f (1) +
n∑

ν=1

w∗
ν f (τν) + w∗

n+1 f (−1) + R∗
n( f ), (1.1)
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where
τν = cos θν, θν = ν

n + 1
π, ν = 1, 2, . . . , n, (1.2)

are the zeros of the nth degree Chebyshev polynomialUn of the second kind. Formula
(1.1) has all weights positive and expressed by explicit formulae, while its precise
degree of exactness is d∗ = n + 1 if n is even and d∗ = n + 2 if n is odd, i.e.,
R∗
n( f ) = 0 for all f ∈ Pd∗ (the space of polynomials with real coefficients and degree

at most d∗). Moreover, in view of its performance in practice, the Clenshaw-Curtis
formula is sometimes compared favorably to thewell-knownGauss formula (see [17]).

All of the above made Hasegawa and Sugiura to try improving the error behavior
of the Clenshaw-Curtis formula, by adding to (1.1) the nodes

± τc = ± cos θc, θc = π

2(n + 1)
, (1.3)

which lie in the intervals (τ1, 1) and (−1, τn), respectively. That way, they obtained
the so-called corrected Clenshaw-Curtis formula

∫ 1

−1
f (t)dt = w̄∗

0 f (1)+w̄∗
c f (τc)+

n∑
ν=1

w̄∗
ν f (τν)+w̄∗

c f (−τc)+w̄∗
n+1 f (−1)+R̄∗

n( f ).

(1.4)
The new formula has all weights, except for w̄∗

c when n ≥ 2, positive and explicitly
expressed, while its degree of exactness is n + 3 if n is even and n + 4 if n is odd. In
addition, the convergence rate of formula (1.4) is better than that of any formula in the
Clenshaw-Curtis family (see [9], in particular, Theorem 2 and Remark 1; a detailed
description of all interpolatory quadrature formulae with Chebyshev abscissae of any
of the four kinds is given in [13]).

The corresponding open-type Clenshaw-Curtis formula is the so-called Fejér for-
mula of the second kind or Filippi formula

∫ 1

−1
f (t)dt =

n∑
ν=1

wν f (τν) + Rn( f ), (1.5)

having all weights positive and explicitly expressed and degree of exactness n − 1 if
n is even and n if n is odd. This formula is known to share common properties with
the Clenshaw-Curtis formula. An important such property is that formula (1.5) forms
a nested set of quadrature formulae, i.e., the nodes of the n-point formula are among
those of the (2n + 1)-point formula, and the same property is enjoyed by formulae
(1.1) and (1.4). This makes all these formulae appropriate for adaptive or cubature
integration schemes.

Motivated by the work of Hasegawa and Sugiura in [9], we introduce a corrected
Fejér formula of the second kind, by adding to formula (1.5) the nodes ±τc in (1.3),
thus obtaining

∫ 1

−1
f (t)dt = w̄(+)

c f (τc) +
n∑

ν=1

w̄ν f (τν) + w̄(−)
c f (−τc) + R̄n( f ). (1.6)
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The new formula is shown to have all weights positive and given by explicit formulae,
and precise degree of exactness n + 1 if n is even and n + 2 if n is odd. This, together
with the convergence of the formula for Riemann integrable functions on [−1, 1], is
the subject of Sect. 2. Section 3 is devoted to the error term of the formula. First, we
obtain optimal error bounds by Peano kernel methods, thus concluding that formula
(1.6) has essentially the same rate of convergence as the Clenshaw-Curtis formula.
Then, using Hilbert space techniques, we compute the norm of the error functional,
which leads to error bounds for analytic functions when 1 ≤ n ≤ 40. In Sect. 4, we
prove the convergence of formula (1.6) for functions having a monotonic singularity
at one or both endpoints of [−1, 1]. This property, also satisfied by the Fejér formula
of the second kind (cf. [5]), is an advantage of formula (1.6) over the Clenshaw-
Curtis formula and its corrected version (1.4), both of which cannot even be applied
on functions with singularities at ±1. In addition, as expected, formula (1.6) retains
the nested quadrature formulae property satisfied by formulae (1.1), (1.4) and (1.5).
All this together with its rate of convergence make formula (1.6) an alternative to
the Clenshaw-Curtis formula. The paper concludes in Sect. 5, with some numerical
examples.

2 The quadrature formula

We begin by recalling explicit formulae for the weights of formula (1.5),

wν = 2

n + 1

⎧⎨
⎩1 − 2

[(n−1)/2]∑
k=1

cos 2kθν

4k2 − 1
− cos 2[(n + 1)/2]θν

2[(n + 1)/2] − 1

⎫⎬
⎭

= 2

n+1

⎧⎨
⎩1 − 2

[(n+1)/2]∑
k=1

cos 2kθν

4k2 − 1
− cos 2[(n + 1)/2]θν

2[(n+1)/2] + 1

⎫⎬
⎭ , ν = 1, 2, . . . , n,

(2.1)
or

wν = 4 sin θν

n + 1

[(n+1)/2]∑
k=1

sin(2k − 1)θν

2k − 1
, ν = 1, 2, . . . , n,

where [ · ] denotes the integer part of a real number (cf. [13, Eqs. (2.8)–(2.10) with
i = 2]).

We now turn to the study of formula (1.6). Let I ( f ) = ∫ 1
−1 f (t)dt and Q̄n( f ) =

w̄
(+)
c f (τc) + ∑n

ν=1 w̄ν f (τν)+w̄
(−)
c f (−τc).

Theorem 2.1 Consider the quadrature formula (1.6).

(a) The weights w̄ν and w̄
(+)
c , w̄

(−)
c are given by

w̄ν =wν + 2 sin2 θν cos 2[(n+1)/2]θν

(2[n/2]+1)(2[(n+1)/2]+1) sin(θν +θc) sin(θν − θc)
, ν =1, 2, . . . , n,

(2.2)
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w̄(+)
c = w̄(−)

c =

⎧⎪⎪⎨
⎪⎪⎩

sin θc

n + 1
, n even,

(n + 1) tan θc

n(n + 2)
, n odd.

(2.3)

In addition, the w̄ν, ν = 1, 2, . . . , n, are all positive.
(b) The quadrature formula has precise degree of exactness d̄ = n + 1 if n is even

and d̄ = n + 2 if n is odd.
(c) There holds limn→∞ Q̄n( f ) = I ( f ) for all functions f that are Riemann inte-

grable on [−1, 1].

Proof (a) As formula (1.6) is precise for polynomials of degree n + 1, setting f (t) =
(t2 − τ 2c )Un(t)/(t − τν), we have

w̄ν = 1

(τ 2ν − τ 2c )U ′
n(τν)

∫ 1

−1

(t2 − τ 2c )Un(t)

t − τν

dt

= 1

(τ 2ν − τ 2c )U ′
n(τν)

∫ 1

−1

(t2 − τ 2ν + τ 2ν − τ 2c )Un(t)

t − τν

dt

= 1

U ′
n(τν)

∫ 1

−1

Un(t)

t − τν

dt +
∫ 1
−1(t + τν)Un(t)dt

(τ 2ν − τ 2c )U ′
n(τν)

,

that is,

w̄ν = wν +
∫ 1
−1(t + τν)Un(t)dt

(τ 2ν − τ 2c )U ′
n(τν)

, ν = 1, 2, . . . , n. (2.4)

The nth degree Chebyshev polynomial of the second kind Un can be represented by

Un(cos θ) = sin(n + 1)θ

sin θ
, (2.5)

and satisfies the three-term recurrence relation

Uk+1(t) = 2tUk(t) −Uk−1(t), k = 1, 2, . . . ,
U0(t) = 1, U1(t) = 2t.

(2.6)

Then, by means of (2.6) and

∫ 1

−1
Um(t)dt =

⎧⎨
⎩

2

m + 1
, m even,

0, m odd
(2.7)
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On a corrected Fejér quadrature formula 283

(cf. [11, Eq. (2.46)]), we compute

∫ 1

−1
(t + τν)Un(t)dt =

⎧⎪⎪⎨
⎪⎪⎩

2τν

n + 1
, n even,

2(n + 1)

n(n + 2)
, n odd.

(2.8)

Also, using (2.5), we calculate U ′
n(cos θ), and setting θ = θν , we get

U ′
n(τν) = (−1)ν+1(n + 1)

1 − τ 2ν
. (2.9)

Finally, from (1.2)–(1.3), by the double-angle formula and the formula for the differ-
ence of cosines, we get

τ 2ν − τ 2c = − sin(θν + θc) sin(θν − θc). (2.10)

Now, inserting (2.8)–(2.10) into (2.4), we obtain, after an elementary computation,
(2.2).

Furthermore, by symmetry, w̄(+)
c = w̄

(−)
c , hence, setting f (t) = (t + τc)Un(t) in

formula (1.6), we have

w̄(+)
c = w̄(−)

c =
∫ 1
−1(t + τc)Un(t)dt

2τcUn(τc)
, (2.11)

where, as in (2.8),

∫ 1

−1
(t + τc)Un(t)dt =

⎧⎪⎪⎨
⎪⎪⎩

2τc
n + 1

, n even,

2(n + 1)

n(n + 2)
, n odd,

(2.12)

and, by (1.3) and (2.5),

Un(τc) = 1

sin θc
,

which inserted, together with (2.12), into (2.11), yields (2.3).
We now turn into proving the positivity of w̄ν, ν = 1, 2, . . . , n. First of all, by

symmetry,
τn−ν+1 = −τν, ν = 1, 2, . . . , n,

w̄n−ν+1 = w̄ν, ν = 1, 2, . . . , n,
(2.13)
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284 S. E. Notaris

hence, we only need to prove the positivity of w̄ν for ν = 1, 2, . . . , [(n + 1)/2].
Furthermore, as wν > 0 (cf. [13, Sect. 2.1]) and

cos 2[(n + 1)/2]θν =
{

(−1)ν cos θν, n even,
(−1)ν, n odd,

(2.14)

by (2.2), w̄ν > 0 for ν even. It therefore remains to prove the positivity of w̄ν for ν

odd. Let first n be even. Then, by the second equation in (2.1), in view of (2.14),

w̄ν >
2

n + 1

⎧⎨
⎩1 − 2

n/2∑
k=1

1

4k2 − 1
+ cos θν

n + 1

⎫⎬
⎭ − 2 sin2 θν cos θν

(n + 1)2 sin(θν + θc) sin(θν − θc)
,

and, by virtue of

n/2∑
k=1

1

4k2 − 1
= n

2(n + 1)

(proved by a partial fraction decomposition of the left-hand side), the formula for the
product of sines and the fact that 2θc = θ1 (cf. (1.2)–(1.3)), we get, after a simple
computation,

w̄ν >
2

(n + 1)2
+ 2 cos θν

(n + 1)2
− 2 sin2 θν cos θν

(n + 1)2 sin(θν + θc) sin(θν − θc)

= 2{(1 + cos θν) sin(θν + θc) sin(θν − θc) − (1 − cos2 θν) cos θν}
(n + 1)2 sin(θν + θc) sin(θν − θc)

= (1 + cos θν)(1 + cos θ1 − 2 cos θν)

(n + 1)2 sin(θν + θc) sin(θν − θc)
> 0.

If, on the other hand, n is odd, starting from the first equation in (2.1) and proceeding
in a like manner, we obtain

w̄ν >
2{1 − cos2 θν + (n + 2)(cos θ1 − cos2 θν)}
n(n + 1)(n + 2) sin(θν + θc) sin(θν − θc)

> 0,

thus concluding the proof.
(b) Let n be even. First of all, formula (1.6) has degree of exactness at least n + 1.

Furthermore, by a repeated application of (2.6), and in view of (2.7), we compute

R̄n((t
2 − τ 2c )Un(t)) =

∫ 1

−1
(t2 − τ 2c )Un(t)dt

= 4

(n − 1)(n + 1)(n + 3)
+ 2 sin2 π

2(n+1)

n + 1
, (2.15e)

proving that formula (1.6) has precise degree of exactness n + 1.
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Similarly, for n odd, the degree of exactness is at least n + 2, and as

R̄n(t (t
2 − τ 2c )Un(t)) = 4(n + 1)

(n − 2)n(n + 2)(n + 4)
+ 2(n + 1) sin2 π

2(n+1)

n(n + 2)
, (2.15o)

it is precisely n + 2.
(c) This, by a well-known result of Fejér (cf. [4, Satz 1]), is an immediate conse-

quence of the positivity of the weights w̄
(+)
c , w̄ν, ν = 1, 2, . . . , n, and w̄

(−)
c . 	


3 The error term of the quadrature formula

Our error estimates for formula (1.6) are of two different types. Optimal error bounds,
by Peano kernel methods, for functions that are sufficiently smooth; and error bounds,
by Hilbert space techniques, for analytic functions.

3.1 Peano kernel error bounds

Given that formula (1.6) has degree of exactness d̄ , for f ∈ Cd̄+1[−1, 1], we have

R̄n( f ) =
∫ 1

−1
K̄d̄(t) f

(d̄+1)(t)dt, (3.1)

where K̄d̄ is the d̄th Peano kernel. From (3.1), we immediately derive

|R̄n( f )| ≤ cd̄+1 max−1≤t≤1
| f (d̄+1)(t)|, cd̄+1 =

∫ 1

−1
|K̄d̄(t)|dt.

If, in addition, K̄d̄ does not change sign on [−1, 1], formula (1.6) is called definite; in
particular, positive definite if K̄d̄ ≥ 0, and negative definite if K̄d̄ ≤ 0. In this case,
(3.1), by the Mean Value Theorem for integrals, gives

R̄n( f ) = c̄d̄+1 f
(d̄+1)(ξ), c̄d̄+1 =

∫ 1

−1
K̄d̄(t)dt, −1 < ξ < 1 (3.2)

(cf. [3, Sect. 4.3]).
The derivation of the error bounds will be based on the following lemma, which

precedes our results.

Lemma 3.1 ([10, Lemma B]) Let g ∈ Cm+s[a, b], m ≥ 1, s ≥ 0, have the zeros
tν, 1 ≤ ν ≤ m+s. For a k, 1 ≤ k ≤ m, assume that the polynomial qk(t) = �k

i=1(t−
ti ) has only simple zeros. Then there exist functions ri ∈ Ck+s−1[a, b], 1 ≤ i ≤ k,
such that

g(t) =
k∑

i=1

ri (t)

q ′
k(ti )

m∏
ν=1

(t − tν). (3.3)
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Each ri has k + s − 1 zeros, especially, the tν, m + 1 ≤ ν ≤ m + s, are zeros of ri .
In addition, there exist ξi = ξi (t) ∈ [a, b], 1 ≤ i ≤ k, such that

r (k+s−1)
i (t)

(k + s − 1)! = g(m+s)(ξi )

(m + s)! . (3.4)

Theorem 3.2 Consider the quadrature formula (1.6). There holds, for n even and
f ∈ Cn+2[−1, 1],

|R̄n( f )| ≤ 3

2n−2

{
5n2 + 10n − 3

(n − 1)2n(n + 2)(n + 3)
+ 8 sin2 π

4(n+1)

n − 1

}

× max−1≤t≤1 | f (n+2)(t)|
(n + 2)! , (3.5e)

and, for n(odd) ≥ 3 and f ∈ Cn+3[−1, 1],

|R̄n( f )| ≤ 3

2n−4

{
16n4 + 65n3 − 97n2 − 329n + 330

(n − 2)(n − 1)2n(n + 2)(n + 3)(n + 4)
+ 16 sin2 π

4(n+1)

n − 1

}

× max−1≤t≤1 | f (n+3)(t)|
(n + 3)! . (3.5o)

On the other hand, if n = 1, the quadrature formula is positive definite, and

R̄1( f ) = 1

360
f (4)(ξ), −1 < ξ < 1. (3.51)

Proof Let first n be even. As formula (1.6) is interpolatory, having degree of exactness
n + 1, there holds

R̄n( f ) =
∫ 1

−1
r̄n( f ; t)dt, (3.6)

where r̄n( f ; ·) is the error of the interpolation based on the n + 2 points τν, ν =
1, 2, . . . , n, and ±τc. Assuming that f ∈ Cn+2[−1, 1], the same is true for r̄n( f ; ·).
Since, in addition, r̄n( f ; τν) = 0, ν = 1, 2, . . . , n, and r̄n( f ;±τc) = 0, we can apply
Lemma 3.1 with g(·) = r̄n( f ; ·), m = n, s = 2 and [a, b] = [−1, 1]. Setting k = 2
and q2(t) = (t − τ1)(t − τn) = (t − τ1)(t + τ1) = t2 − τ 21 (cf. (2.13)), (3.3) gives

r̄n( f ; t) = 1

2n+1τ1
{r1(t)Un(t) − r2(t)Un(t)}, (3.7)

where ri ∈ C3[−1, 1], i = 1, 2, each ri has three zeros, in particular, ri (±τc) = 0,
and there exist ξi = ξi (t) ∈ [−1, 1], i = 1, 2, such that

r ′′′
i (t) = 6

(n + 2)! f
(n+2)(ξi ), i = 1, 2 (3.8)
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(cf. (3.4)). Now, let the functions hi , i = 1, 2, 3, be defined by

h′
1 = Un, (3.9)

and

hi (t) =
∫ t

−1
hi−1(x)dx, i = 2, 3, (3.10)

whence
h′
i = hi−1, i = 2, 3, (3.11)

hi (−1) = 0, i = 2, 3. (3.12)

Then, inserting (3.7) into (3.6), and applying, in view of (3.9) and (3.11)–(3.12),
integration by parts, we get

R̄n( f ) = 1

2n+1τ1

2∑
i=1

⎧⎨
⎩(−1)i ri (−1)h1(−1) +

3∑
j=1

(−1)i+ j−2r ( j−1)
i (1)h j (1)

+(−1)i
∫ 1

−1
r ′′′
i (t)h3(t)dt

⎫⎬
⎭ ,

from which, there follows

|R̄n( f )| ≤ 1

2n+1τ1

2∑
i=1

⎧⎨
⎩|ri (−1)||h1(−1)| +

3∑
j=1

|r ( j−1)
i (1)||h j (1)|

+
∫ 1

−1
|r ′′′
i (t)||h3(t)|dt

⎫⎬
⎭ .

(3.13)

Now, from (3.9) and (3.10), using T ′
n+1 = (n + 1)Un , where Tn+1 is the (n + 1)th

degree Chebyshev polynomial of the first kind (cf. [11, Eq. (2.48)]) and

∫ t

−1
Tm(x)dx = 1

2

{
Tm+1(t)

m + 1
− Tm−1(t)

m − 1

}
+ (−1)m−1

(m − 1)(m + 1)
, m ≥ 2 (3.14)

(cf. [11, Eq. (2.43)]), we compute

h1(t) = Tn+1(t)

n + 1
,

h2(t) = Tn+2(t)

2(n + 1)(n + 2)
− Tn(t)

2n(n + 1)
+ (−1)n

n(n + 1)(n + 2)
,
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h3(t) = Tn+3(t)

4(n + 1)(n + 2)(n + 3)
− Tn+1(t)

2n(n + 1)(n + 2)
+ Tn−1(t)

4(n − 1)n(n + 1)

+ (−1)n(t + 1)

n(n + 1)(n + 2)
+ (−1)n3

(n − 1)n(n + 1)(n + 2)(n + 3)
, n ≥ 2,

hence, we find

h1(−1) = (−1)n+1

n + 1
, (3.15)

h1(1) = 1

n + 1
, (3.16)

h2(1) =
⎧⎨
⎩
0, n even,

− 2

n(n + 1)(n + 2)
, n odd,

(3.17)

h3(1) =

⎧⎪⎪⎨
⎪⎪⎩

2

(n − 1)(n + 1)(n + 3)
, n even,

− 2

n(n + 1)(n + 2)
, n odd,

(3.18)

|h3(t)| ≤ 3(n2 + 2n − 1)

(n − 1)n(n + 1)(n + 2)(n + 3)
, n ≥ 2. (3.19)

Furthermore, as ri , i = 1, 2, has three zeros, among them ±τc, by Rolle’s Theorem,
r ′
i and r ′′

i , i = 1, 2, have two and one zeros, respectively, and let t ′i , i = 1, 2, be
one of the zeros of r ′

i and t ′′i , i = 1, 2, be the zero of r ′′
i . Then, by the Mean Value

Theorem, applied first to ri , i = 1, 2, on [τc, 1],

|ri (1)| = |r ′
i (ζi )|(1 − τc), i = 1, 2,

then to r ′
i , i = 1, 2, between t ′i and ζi ,

|r ′
i (ζi )| = |r ′′

i (ζ ′
i )||ζi − t ′i | ≤ 2|r ′′

i (ζ ′
i )|, i = 1, 2,

and finally to r ′′
i , i = 1, 2, between t ′′i and ζ ′

i ,

|r ′′
i (ζ ′

i )| = |r ′′′
i (ζ ′′

i )||ζ ′
i − t ′′i | ≤ 2|r ′′′

i (ζ ′′
i )|, i = 1, 2,

which combined, together with (1.3) and (3.8), give, in view of the double-angle
formula for cosines,

|ri (±1)| ≤ 24(1 − τc)

(n + 2)! max−1≤t≤1
| f (n+2)(t)|

= 48 sin2 π
4(n+1)

(n + 2)! max−1≤t≤1
| f (n+2)(t)|, i = 1, 2, (3.20)
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where the estimate for ri (−1) is derived by the same steps. In a like manner,

|r ′′
i (1)| ≤ 12

(n + 2)! max−1≤t≤1
| f (n+2)(t)|, i = 1, 2. (3.21)

Finally, from (1.2), by virtue of cos θ ≥ 1 − 2θ/π, 0 ≤ θ ≤ π/2, we get

1

τ1
≤ n + 1

n − 1
. (3.22)

Now, inserting (3.8) and (3.15)–(3.22) into (3.13), taking into account that n is even,
we obtain, after an elementary computation, (3.5e).

We next turn to the case of n(odd) ≥ 3. As in this case formula (1.6) has degree of
exactness n + 2, we consider the even part of the interpolation error r̄n( f ; ·) defined
by

r̄n,e( f ; t) = 1

2
{r̄n( f ; t) + r̄n( f ;−t)}.

First of all, a simple change of variables shows that

∫ 1

−1
r̄n,e( f ; t)dt =

∫ 1

−1
r̄n( f ; t)dt,

hence,

R̄n( f ) =
∫ 1

−1
r̄n,e( f ; t)dt

(cf. (3.6)). As r̄n( f ; 0) = r̄n( f ; τ(n+1)/2) = 0, we have r̄n,e( f ; 0) = 0; and as
r̄n,e( f ; ·) is an even function, there holds r̄ ′

n,e( f ; 0) = 0. Consequently, r̄n,e( f ; ·) has
n + 3 zeros, the τν, ν = 1, 2, . . . , n, and the ±τc, where τ(n+1)/2 = 0 is a double
zero. Therefore, assuming that f ∈ Cn+3[−1, 1], the same is true for r̄n,e( f ; ·), and
we can apply Lemma 3.1 with g(·) = r̄n,e( f ; ·), m = n, s = 3 and [a, b] = [−1, 1].
Choosing the same k and qk as in the case of n even, r̄n,e( f ; ·) has the representation
(3.7), except that here each ri ∈ C4[−1, 1], it has four zeros, among which ±τc, and
there exist ξi = ξi (t) ∈ [−1, 1] such that

r (4)
i (t) = 24

(n + 3)! f
(n+3)(ξi ), i = 1, 2. (3.23)

Then, we proceed as in the case of n even, by defining the hi , i = 1, 2, 3, in (3.9)–
(3.12) and

h4(t) =
∫ t

−1
h3(x)dx . (3.24)
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We get

|R̄n( f )| ≤ 1

2n+1τ1

2∑
i=1

⎧⎨
⎩|ri (−1)||h1(−1)| +

4∑
j=1

|r ( j−1)
i (1)||h j (1)|

+
∫ 1

−1
|r (4)
i (t)||h4(t)|dt

⎫⎬
⎭ . (3.25)

Now, from (3.24), in view of (3.14), an elaborate computation gives

h4(t) = Tn+4(t)

8(n + 1)(n + 2)(n + 3)(n + 4)
− 3Tn+2(t)

8n(n + 1)(n + 2)(n + 3)

+ 3Tn(t)

8(n − 1)n(n + 1)(n + 2)
− Tn−2(t)

8(n − 2)(n − 1)n(n + 1)

− (t + 1)2

2n(n + 1)(n + 2)
− 3(t + 1)

(n − 1)n(n + 1)(n + 2)(n + 3)

− 15

(n − 2)(n − 1)n(n + 1)(n + 2)(n + 3)(n + 4)
,

hence,

h4(1) = − 2(n2 + 2n − 5)

(n − 2)n(n + 1)(n + 2)(n + 4)
, (3.26)

|h4(t)| ≤ 2n3 + n2 − 9n + 3

(n − 2)(n − 1)n(n + 1)(n + 2)(n + 3)
. (3.27)

Furthermore, as in the case of n even,

|ri (±1)| ≤ 384 sin2 π
4(n+1)

(n + 3)! max−1≤t≤1
| f (n+3)(t)|, i = 1, 2, (3.28)

|r ( j−1)
i (1)| ≤ 25− j24

(n + 3)! max−1≤t≤1
| f (n+3)(t)|, i = 1, 2, j = 2, 3, 4. (3.29)

Now, inserting (3.15)–(3.18), (3.22), (3.23) and (3.26)–(3.29) into (3.25), taking into
account that n is odd, we obtain, after an elementary computation, (3.5o).

For n = 1, formula (1.6) has the form

∫ 1

−1
f (t)dt = 2

3
f
(√

2/2
)

+ 2

3
f (0) + 2

3
f
(
−√

2/2
)

+ R̄1( f ), (3.30)
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with degree of exactness 3 and 3rd Peano kernel

K̄3(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1 − t)4

24
,

√
2/2 < t ≤ 1,

3t4 − 4t3 + 6(3 − 2
√
2)t2 + 3 − 2

√
2

72
, 0 < t ≤ √

2/2,

K̄3(−t), −1 ≤ t ≤ 0.

As K̄3(t) ≥ 0, −1 ≤ t ≤ 1, the formula is positive definite, hence,

R̄1( f ) = c̄4 f
(4)(ξ), −1 < ξ < 1 (3.31)

(cf. (3.2)), where, from (3.31), in view of (3.30), we get

c̄4 = R̄1(t4)

4! = 1

360
,

thus obtaining (3.51). 	

Remark 3.1 We have, in view of (2.15e)–(2.15o), for n even,

R̄n(t
n+2) = 1

2n
R̄n((t

2−τ 2c )Un(t))= 1

2n−1

{
2

(n − 1)(n + 1)(n + 3)
+ sin2 π

2(n+1)

n + 1

}
,

(3.32e)

and for n odd,

R̄n(t
n+3) = 1

2n
R̄n(t (t

2 − τ 2c )Un(t))

= 1

2n−1

{
2(n + 1)

(n − 2)n(n + 2)(n + 4)
+ (n + 1) sin2 π

2(n+1)

n(n + 2)

}
, (3.32o)

which, compared to (3.5e) and (3.5o), respectively, show that our bounds are optimal.
Furthermore, as in both (3.5e) and (3.5o), the quantity in the braces is of order

O(n−3), the rate of convergence of formula (1.6) is the same as that of the Clenshaw-
Curtis formula (cf. [2, Theorem 2]), which is also confirmed numerically in Example
5.1.

Remark 3.2 Given that formula (1.5) is definite (cf. [1]), one could ask the same
question for formula (1.6), in which case we could obtain results analogous to (3.51).
A few calculations, for small values of n, indicate that the answer to this question could
be affirmative, although further investigations would be needed. Note, however, that,
even though proving the definiteness of formula (1.6) would be quite cumbersome,
requiring a substantial effort (cf. [1]), it will not essentially improve the results of
Theorem 3.2.
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3.2 Hilbert space error bounds

Another estimate for the error term of formula (1.6) can be obtained by a Hilbert
space technique proposed by Hämmerlin (cf. [8]). Assuming that f is a single-valued
holomorphic function in the disk Cr = {z ∈ C : |z| < r}, r > 1, then it can be
written as

f (z) =
∞∑
k=0

akz
k, z ∈ Cr .

Define

| f |r = sup{|ak |rk : k ∈ N0 and R̄n(t
k) �= 0},

which is a seminorm in the space

Xr = { f : f holomorphic in Cr and | f |r < ∞}.

Then, it can easily be shown that R̄n(·) is a continuous linear functional in (Xr , | · |r ),
and its norm is given by

‖R̄n‖ =
∞∑
k=0

|R̄n(tk)|
rk

,

while, in case that
R̄n(t

k) ≥ 0, k ≥ 0, (3.33)

one can derive the representation

‖R̄n‖ = r

(r2 − τ 2c )Un(r)

∫ 1

−1

(t2 − τ 2c )Un(t)

r − t
dt (3.34)

(cf. [15, Sect. 2]). Consequently, for f ∈ XR ,

|R̄n( f )| ≤ ‖R̄n‖| f |r , 1 < r ≤ R, (3.35)

and optimizing the right-hand side of (3.35) as a function of r , we get

|R̄n( f )| ≤ inf
1<r≤R

(‖R̄n‖| f |r ). (3.36)

Another estimate can be obtained if | f |r is estimated by max|z|=r | f (z)|, which exists
at least for r < R (cf. [15, Eq. (2.9)]), giving

|R̄n( f )| ≤ inf
1<r<R

(‖R̄n‖max|z|=r
| f (z)|). (3.37)
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The latter can also be derived by a contour integration technique on circular contours
(cf. [6]).

Therefore, in order to compute the norm of R̄n by (3.34), we first need to examine
the validity of (3.33). First of all, by Theorem 2.1(b),

R̄n(t
k) = 0, k = 0, 1, . . . , 2[(n + 1)/2] + 1. (3.38)

Then, we can prove

Lemma 3.3 The error term of the quadrature formula (1.6) satisfies

R̄n(t
2l) > 0, l ≥ k̄n,

where k̄n ≥ [(n + 1)/2] + 1 is a constant.

Proof Setting f (t) = t2l in formula (1.6), we have

R̄n(t
2l) =

∫ 1

−1
t2ldt − w̄(+)

c τ 2lc −
n∑

ν=1

w̄ντ
2l
ν − w̄(−)

c (−τc)
2l

>
2

2l + 1
− τ 2lc

(
w̄(+)
c +

n∑
ν=1

w̄ν + w̄(−)
c

)

= 2

2l + 1
− 2τ 2lc = 2

2l + 1
{1 − (2l + 1)τ 2lc }, (3.39)

and, as liml→∞(2l + 1)τ 2lc = 0, our assertion follows. 	

From the last part in (3.39), we can find the constant k̄n . This was done for 1 ≤

n ≤ 40, and the values are given in Table 1. We have also examined numerically and

Table 1 Values of
k̄n , 1 ≤ n ≤ 40

n k̄n n k̄n n k̄n n k̄n

1 3 11 388 21 1580 31 3696

2 11 12 468 22 1749 32 3961

3 25 13 557 23 1927 33 4236

4 45 14 654 24 2114 34 4522

5 72 15 759 25 2311 35 4817

6 106 16 874 26 2518 36 5123

7 147 17 997 27 2734 37 5438

8 195 18 1129 28 2960 38 5764

9 252 19 1270 29 3195 39 6100

10 316 20 1420 30 3441 40 6447
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found that R̄n(t2l) > 0 for all [(n + 1)/2] + 1 ≤ l ≤ k̄n − 1 and 1 ≤ n ≤ 40. Putting
everything together, we conclude

R̄n(t
2l) > 0, l ≥ [(n + 1)/2] + 1, 1 ≤ n ≤ 40. (3.40)

Furthermore, from (1.6), there follows, by symmetry, that

R̄n(t
2l+1) = 0, l ≥ [(n + 1)/2] + 1,

which, combined with (3.38) and (3.40), gives

R̄n(t
k) ≥ 0, k ≥ 0, 1 ≤ n ≤ 40. (3.41)

Interestingly enough, by (3.32e)–(3.32o),

R̄n

(
t2[(n+1)/2]+2

)
> 0,

i.e., R̄n(t2l) > 0 is theoretically confirmed when l = [(n + 1)/2] + 1 for all n ≥ 1.
This together with our numerical findings suggest the following

Conjecture 3.4 The error term of the quadrature formula (1.6) satisfies

R̄n(t
k) ≥ 0, k ≥ 0.

We are now in a position to compute ‖R̄n‖.
Theorem 3.5 Consider the quadrature formula (1.6). For 1 ≤ n ≤ 40, we have

‖R̄n‖ = r ln

(
r + 1

r − 1

)
− 4r

Un(r)

[(n+1)/2]∑
k=1

Un−2k+1(r)

2k − 1
−

⎧⎨
⎩

2r2

(n+1)(r2−τ 2c )Un(r)
, n even,

2(n+1)r
n(n+2)(r2−τ 2c )Un(r)

, n odd.

(3.42)

Proof Let 1 ≤ n ≤ 40. Then, in view of (3.41) (cf. (3.33)), ‖R̄n‖ is given by (3.34).
Writing

∫ 1

−1

(t2 − τ 2c )Un(t)

r − t
dt =

∫ 1

−1

(t2 − r2 + r2 − τ 2c )Un(t)

r − t
dt,

splitting the integral on the right-hand side in two, and using (2.6), we get

∫ 1

−1

(t2 − τ 2c )Un(t)

r − t
dt = (r2 − τ 2c )

∫ 1

−1

Un(t)

r − t
dt

−1

2

∫ 1

−1
Un+1(t)dt − r

∫ 1

−1
Un(t)dt − 1

2

∫ 1

−1
Un−1(t)dt.
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By

∫ 1

−1

Un(t)

r − t
dt = Un(r) ln

(
r + 1

r − 1

)
− 4

[(n+1)/2]∑
k=1

Un−2k+1(r)

2k − 1

(cf. [14, Proposition 2.2(i), Eq. (2.9)]), and (2.7), we find

∫ 1

−1

(t2 − τ 2c )Un(t)

r − t
dt = (r2 − τ 2c )Un(r) ln

(
r + 1

r − 1

)
− 4(r2 − τ 2c )

[(n+1)/2]∑
k=1

Un−2k+1(r)

2k − 1

−

⎧⎪⎪⎨
⎪⎪⎩

2r

(n + 1)
, n even,

2(n + 1)

n(n + 2)
, n odd,

which, inserted into (3.34), yields (3.42). 	


4 Convergence of the quadrature formula for functions with singularities

We show that formula (1.6) converges, not only for Riemann integrable functions on
[−1, 1], but also for functions having monotonic singularities at ±1.

Following the notation in [5], we denote by M[−1, 1) the class of functions f that
are continuous on the half-open interval [−1, 1), monotonic in some neighborhood of
1, and such that limx→1−

∫ x
−1 f (t)dt exists. The classes M(−1, 1] and M(−1, 1) are

defined analogously, while M stands for the union of all three classes.
Let, in the quadrature formula (1.6), τ 1 = τc, τ ν = τν−1, ν = 2, 3, . . . , n +

1, τ n+2 = −τc, and, accordingly, w1 = w̄
(+)
c , wν = w̄ν−1, ν = 2, 3, . . . , n +

1, wn+2 = w̄
(−)
c . Furthermore, as in Sect. 2, I ( f ) = ∫ 1

−1 f (t)dt and Q̄n( f ) =
w̄

(+)
c f (τc) + ∑n

ν=1 w̄ν f (τν)+w̄
(−)
c f (−τc) = ∑n+2

ν=1 wν f (τ ν), while τ 0 = 1. For
f ∈ M[−1, 1), we have

lim
n→∞ Q̄n( f ) = I ( f ) (4.1)

if the following two conditions are satisfied:

(i) limn→∞ Q̄n(g) = I (g) for all g ∈ C[−1, 1].
(ii) There exist constants c > 0, δ > 0 such that |wν | ≤ c (τ ν−1 − τ ν) for all

sufficiently large n and for all ν ≥ 1 such that 1 − δ ≤ τ ν ≤ 1.

As formula (1.6) is symmetric (cf. (2.3) and (2.13)), conditions (i) and (ii) also imply
(4.1) for all f ∈ M(−1, 1] or f ∈ M(−1, 1), thus, for all f ∈ M (see [16, Sect. 4,
Lemma 4.1] ).

Our results are summarized in the following

Theorem 4.1 Consider the quadrature formula (1.6). Then (4.1) holds for all f ∈ M.

Proof By what was said previously, it suffices to satisfy conditions (i) and (ii).
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The first has already been proved in Theorem 2.1(c).
Regarding condition (ii), we shall show that

wν <

(
5

6
π2 + 6

)
(τ ν−1 − τ ν) (4.2)

for all n ≥ 1 and ν = 1, 2, . . . , [(n + 2)/2].
Let first n be even and ν = 2, 3, . . . , n/2 + 1. Then wν = w̄ν−1, with w̄ν−1 given

by (2.1) and (2.2). Setting ν − 1 in place of ν in (2.1), we have, in view of the cosine
series (cf. [7, Eq. 1.444.7]), a partial fraction decomposition in 2

∑∞
k=n/2 1/(4k

2−1) =
1/(n − 1) and sin θ ≤ θ, 0 ≤ θ ≤ π/2,

wν−1 = 2

n + 1

⎧⎨
⎩1 − 2

∞∑
k=1

cos 2kθν−1

4k2 − 1
+ 2

∞∑
k=(n−2)/2+1

cos 2kθν−1

4k2 − 1
− cos nθν−1

n − 1

⎫⎬
⎭

<
2

n + 1

⎧⎨
⎩

π

2
sin θν−1 + 2

∞∑
k=n/2

1

4k2 − 1
+ 1

n − 1

⎫⎬
⎭

<
2

n + 1

{
π

2
θν−1 + 2

n − 1

}
,

hence,

wν−1 <
ν − 1

(n + 1)2
π2 + 4

(n − 1)(n + 1)
, ν = 2, 3, . . . , n/2 + 1. (4.3)

Also, using 2θ/π ≤ sin θ ≤ θ, 0 ≤ θ ≤ π/2, we get

2 sin2 θν−1 cos nθν−1

(n + 1)2 sin(θν−1 + θc) sin(θν−1 − θc)
<

2θ2ν−1

(n + 1)2 sin (2ν−1)π
2(n+1) sin (2ν−3)π

2(n+1)

<
2

(n + 1)2
(ν − 1)2

(2ν − 3)(2ν − 1)
π2,

ν = 2, 3, . . . , n/2 + 1,

which inserted, together with (4.3), into (2.2) with ν − 1 in place of ν, gives

wν = w̄ν−1 <
ν − 1

(n + 1)2
π2 + 4

(n − 1)(n + 1)
+ 2

(n + 1)2
(ν − 1)2

(2ν − 3)(2ν − 1)
π2,

ν = 2, 3, . . . , n/2 + 1.
(4.4)
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Moreover,

τ ν−1 − τ ν = τν−2 − τν−1 = cos
(ν − 2)π

n + 1
− cos

(ν − 1)π

n + 1

= 2 sin
(2ν − 3)π

2(n + 1)
sin

π

2(n + 1)
>

2(2ν − 3)

(n + 1)2
, ν = 2, 3, . . . , n/2 + 1.

(4.5)
Now, combining (4.4) and (4.5), we get

wν

τν−1 − τ ν

<
ν − 1

2(2ν − 3)
π2 + 2(n + 1)

n − 1

1

2ν − 3
+ (ν − 1)2

(2ν − 3)2(2ν − 1)
π2,

ν = 2, 3, . . . , n/2 + 1,

hence,
wν

τν−1 − τ ν

<
5

6
π2 + 6, ν = 2, 3, . . . , n/2 + 1. (4.6)

On the other hand, for n even and ν = 1, we have, in view of 2θ/π ≤ sin θ ≤
θ, 0 ≤ θ ≤ π/2, from (2.3),

w1 = w̄(+)
c = sin θc

n + 1
<

θc

n + 1
= π

2(n + 1)2
,

and

τ 0 − τ 1 = 1 − τc = 1 − cos
π

2(n + 1)
= 2 sin2

π

4(n + 1)
>

1

2(n + 1)2
,

which, combined together, yield

w1

τ 0 − τ 1
< π. (4.61)

Now, from (4.6) and (4.61), we finally obtain

wν <

(
5

6
π2 + 6

)
(τ ν−1 − τ ν) (4.7e)

for all n even and ν = 1, 2, . . . , n/2 + 1.
In a like manner, we show

wν <

(
17

18
π2 + 4

)
(τ ν−1 − τ ν) (4.7o)

for all n odd and ν = 1, 2, . . . , (n + 1)/2.
Putting (4.7e) and (4.7o) together, we conclude (4.2). 	
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5 Numerical examples

Our examples focus on comparing formula (1.6) with the Clenshaw-Curtis formula,
on showing the efficiency of bounds (3.36)–(3.37), and on demonstrating the ability
of formula (1.6) to integrate functions with monotonic singularities at one or both
endpoints of [−1, 1].
Example 5.1 We approximate the integral

∫ 1
−1 f (t)dt by means of formula (1.6)

or the Clenshaw-Curtis formula (1.1), when f (t) is any one of the four functions
e−t2 , 1/(1 + 16t2), e−1/t2 or |t |3, borrowed from [17], where they were used for
comparing the Clenshaw-Curtis formula with the Gauss formula. The first function is
entire, the second analytic, the third C∞ and the fourth C2. The modulus of the actual
error is given in Table 2. (Numbers in parentheses indicate decimal exponents.) All
computations were performed on a SUNUltra 5 computer in quad precision (machine
precision 1.93× 10−34). Whenever the actual error is close to machine precision, we
enter instead “m.p.” (for machine precision).

Our numerical results confirm what was theoretically proved in Theorem 3.2
(cf. Remark 3.1), namely, that formulae (1.6) and (1.1) have the same rate of con-
vergence. Indeed, the actual errors of both formulae for each of our test functions are
very close or almost identical to each other.

Example 5.2 We want to approximate the integral

∫ 1

−1

t2

4 + t2
dt = 2 − 4 arctan (1/2), (5.1)

by means of formula (1.6).

The function f (z) = z2

4+z2
= ∑∞

k=0(−1)k z2k+2

22k+2 is holomorphic in C2 = {z ∈
C : |z| < 2}, hence, taking into account that formula (1.6) has degree of exactness
2[(n + 1)/2] + 1, we find

| f |r = r2[(n+1)/2]+2

22[(n+1)/2]+2
,

thus, f ∈ X2. Then, from (3.36),

|R̄n( f )| ≤ inf
1<r≤2

(‖R̄n‖| f |r ), (5.2)

with ‖R̄n‖ given by (3.42). As, in addition,

max|z|=r
| f (z)| = r2

4 − r2
, (5.3)

we have, from (3.37),

|R̄n( f )| ≤ inf
1<r<2

(
‖R̄n‖ r2

4 − r2

)
. (5.4)
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Table 3 Error bounds (5.2), (5.4) and actual error in computing the integral (5.1)

n ropt Bound (5.2) ropt Bound (5.4) Error

5 2.000 1.486(−5) 1.799 1.858(−4) 2.463(−6)

10 2.000 5.433(−9) 1.865 1.035(−7) 6.120(−10)

15 2.000 1.216(−12) 1.907 3.422(−11) 7.368(−14)

20 2.000 1.458(−15) 1.924 5.047(−14) 4.714(−17)

25 2.000 5.319(−19) 1.939 2.330(−17) 9.145(−21)

30 2.000 8.615(−22) 1.947 4.332(−20) 7.871(−24)

35 2.000 3.806(−25) 1.955 2.264(−23) 1.847(−27)

40 2.000 7.096(−28) 1.959 4.681(−26) 1.828(−30)

Our results are summarized in Table 3. The value of r , at which the infimum in each
of bounds (5.2) and (5.4) was attained, is given in the column headed ropt and placed
immediately before the column of the corresponding bound. In the last column, we
give the modulus of the actual error.

Bound (5.2) is quite reasonable, overestimating the actual error by no more than
two orders of magnitude. Bound (5.4) is inferior to (5.2), particularly as n increases,
because then ropt approaches 2 and that way increases the value of max|z|=r | f (z)| in
(5.3). Using bound (5.4) in order to estimate not the error, but the appropriate value
of n to be used, yields an overestimation of n by just a few units.

Example 5.3 We want to approximate the integral

∫ 1

0
ta ln (e/t)dt = a + 2

(a + 1)2
, a > −1, (5.5)

whose integrand has a monotonic singularity at 0. Previously, this example has been
employed in [5, Sect. 4], [12, Sect. 5], and [16, Sect. 5], where the integral has been
approximated, for various values of a, by means of interpolatory and product type
formulae for Chebyshev weights based on the Chebyshev abscissae of any one of the
four kinds. Here, we use formula (1.6), appropriately transformed onto the interval
[0,1],

∫ 1

0
f (t)dt

.= 1

2
w̄(+)
c f

(
t (+)
c

)
+ 1

2

n∑
ν=1

w̄ν f (tν) + 1

2
w̄(−)
c f

(
t (−)
c

)
, (5.6)

where

t (+)
c = 1

2
(1 + τc), tν = 1

2
(1 + τν), ν = 1, 2, . . . , n, t (−)

c = 1

2
(1 − τc),
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Table 4 Moduli of the actual errors in computing the integral (5.5)

a n Formula (5.6) Formula (5.7) Formula (5.8)

− 1
2 32 329183 425817 512813

64 180670 241027 293023

128 98792 134126 164315

256 53743 73726 90897

512 29078 40152 49768

1024 15652 21708 27030

0 32 656 1115 4555

64 159 287 1306

128 39 73 365

256 10 18 101

512 2 5 27
1
2 32 33 64 391

64 5 10 99

128 0.6 1.4 25

1 32 0.4 0.9 377

64 0.02 0.06 97

andwherewe setn−2 in place ofn in order to have ann-point formula. For comparison,
we also compute integral (5.5) by means of the Fejér formula of the second kind (1.5),

∫ 1

0
f (t)dt

.= 1

2

n∑
ν=1

wν f (tν), (5.7)

or the Gauss formula for the Chebyshev weight function of the second kind (cf. [16,
Sect. 5]), ∫ 1

0
f (t)dt

.= π

n + 1

n∑
ν=1

[tν(1 − tν)]1/2 f (tν). (5.8)

The moduli of the actual errors, in units of 10−6, are shown in Table 4.
Our numerical results indicate that formula (5.6) is more accurate than formulae

(5.7) and, particularly, (5.8) for all values ofa, probably because the nodes of the former
are distributed closer to the point of singularity. For a < 0, all quadrature formulae
converge extremely slowly, apparently due to the combined effect of two singularities
in the integrand of (5.5), while things improve dramatically as a increases from 0 to 1.
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