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Abstract In this paper we develop and analyze a multilevel weighted reduced basis
method for solving stochastic optimal control problems constrained by Stokes equa-
tions. We prove the analytic regularity of the optimal solution in the probability space
under certain assumptions on the random input data. The finite elementmethod and the
stochastic collocation method are employed for the numerical approximation of the
problem in the deterministic space and the probability space, respectively, resulting
in many large-scale optimality systems to solve. In order to reduce the unaffordable
computational effort, we propose a reduced basis method using a multilevel greedy
algorithm in combination with isotropic and anisotropic sparse-grid techniques. A
weighted a posteriori error bound highlights the contribution stemming from each
method. Numerical tests on stochastic dimensions ranging from 10 to 100 demon-
strate that our method is very efficient, especially for solving high-dimensional and
large-scale optimization problems.
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1 Introduction

In computational science and engineering, often it is common practice to control
selected variables of the underlying physical system modelled by partial differential
equations (PDE) in order to drive the simulation results as close as possible to some
ideal data or experimental measurement. These represent optimal control problems
for PDE, where a cost functional is minimized subject to some PDE constraint. In
practical applications, uncertainties often arise from various sources, for instance the
PDE coefficients representing physical parameters, computational geometries, exter-
nal loadings, boundary and initial conditions, etc.Quantification of uncertainties can be
crucial for the determination of meaningful optimal solutions. Deterministic optimal
control problems without taking the uncertainties into account have been studied from
both mathematical and computational perspectives [21,22,33,51]. Stochastic optimal
control problems constrained by PDE models with random inputs have been consid-
ered only recently thanks to the development of efficient stochastic computational
methods [11,23,26,31,43,50].

Several computational challenges arise from solving PDE-constrained stochastic
optimal control problems. Firstly, design of efficient and accurate numerical schemes
for the approximation of the optimal solution in the stochastic space has been a diffi-
cult task for most PDE models. The Monte Carlo method can be regarded as one of
the most effective and simple schemes, however it is to be blamed for its low conver-
gence rate, thus leading to heavy computational cost when a full deterministic optimal
control problem has to be solved for every sample. Galerkin projection of the opti-
mal solution onto suitable (e.g. global polynomial) subspace of the stochastic space
has been proven to converge exponentially fast for smooth problems [3,26]. Unfortu-
nately, the tensor-product projection scheme produces a large-scale tensor system to
be solved, bringing further computational difficulties. Another scheme, the stochastic
collocation method based on multidimensional interpolation [2,53], takes advantage
of the fast convergence of the Galerkin projection and the non-intrusivity (thus easy
implementability) of the Monte Carlo sampling.

Secondly, it is commonly recognized as a computational challenge to deal with
high-dimensional stochastic problemsdue to the “curse-of-dimensionality”. In order to
harness the computational burden, sparse and adaptive algorithms have been employed
by making good use of sparse structure of numerical approximation and the different
importance of each dimension, for instance the (anisotropic) sparse-grid stochastic
collocation method [2,39,53].

An additional computational challenge in solving PDE-constrained stochastic opti-
mal control problems comes from the ill-conditioning and the coupled structure of the
optimality system obtained by a Lagrangian approach [51]. Efficient precondition-
ing techniques have been developed to solve the optimality system by one “shot”
approach [42,48]; sequential quadratic programming [50] and trust-region iterative
algorithms [31] have been applied too. However, when solving the full optimality sys-
tem becomes very expensive, it is only affordable for tens or hundreds of full solves
in practice. This makes the approaches introduced above unaffordable since the num-
ber of samples needed can easily become unbearable, especially for high-dimensional
problems.
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On the other hand, since quantities of interest usually live in a low-dimensional
manifold, model order reduction techniques may be applied using proper orthogonal
decomposition or reduced basis methods for parametrized optimal control problems,
see for example [29,30,32,34,37]. Reduced basis methods for deterministic parame-
trized Stokes flow control problems have been treated in [35,36,46].

In this paper, we study a stochastic optimal control problem constrained by
Stokes equations with random input data and a distributed control function, which
features all the aforementioned computational challenges, besides the additional dif-
ficulty due to the saddle point structure of the underlying Stokes model [6]. We
develop and analyze a multilevel and weighted reduced basis method in combina-
tion with the stochastic collocation method to solve the stochastic optimal control
problem. More in detail, the (anisotropic) sparse grid stochastic collocation method
is applied for the stochastic approximation of the optimal solution in the probabil-
ity space, while the finite element method is used for deterministic approximation
in the physical space, leading to a large number of finite element optimality sys-
tems to solve. To reduce the computational cost, the latter are projected onto an
adaptively constructed reduced basis space, leading to a much cheaper reduced opti-
mality system [35,36]. For the construction of the reduced basis space, we design
a multilevel greedy algorithm and propose a weighted a posteriori error bound,
which together produce a quasi-optimal “snapshots” space that well approximate
the low-dimensional manifold of the quantities of interest. A global error analysis
is carried out for the complete numerical approximation based on the regularity of
the optimal solution, in particular the stochastic regularity obtained for the specific
Stokes control problem. Numerical experiments with stochastic dimensions ranging
from 10 to 100 are performed to verify the theoretically predicted error convergence
results and demonstrate the efficiency and accuracy of our computational method
for large-scale and high-dimensional PDE-constrained optimization problems. The
main contribution of this work is the development of efficient model order reduction
techniques to solve stochastic optimal control problems with PDE (Stokes equa-
tions) constraints. We also carry out an analysis of the stochastic regularity of the
optimal solution with respect to the input random variables, as well as the con-
vergence of the associated error. Moreover, we obtain a global error estimate for
the proposed method. Numerical experiments demonstrate that our method achieves
considerable computational saving, particularly for high-dimensional and large-scale
problems.

The paper is organized as follows: the stochastic optimal control problem with
Stokes constraint is presented in Sect. 2 with certain assumptions on the random input
data; Sect. 3 is devoted to the study of the stochastic regularity of the optimal solution
with respect to the random variables; detailed numerical approximation of the problem
is presented in Sect. 4, which provides the basis for the development of the multilevel
and weighted reduced basis method in Sect. 5; in Sect. 6, global error estimates are
carried out and verified by numerical experiments in Sect. 7; concluding remarks are
provided in the last Sect. 8.

123



70 P. Chen et al.

2 Problem statement

Let (�,F, P) denote a complete probability space, where � is a set of outcomes
ω ∈ �, F is a σ -algebra of events and P : F → [0, 1] with P(�) = 1 is a probability
measure. A real-valued random variable is defined as a measurable function Y :
(�,F) → (R,B), being B the Borel σ -algebra on R. The distribution function
of a random variable Y : � → � ⊂ R, being � the image of Y , is defined as
FY : � → [0, 1] such that with FY (y) = P(ω ∈ � : Y (ω) ≤ y) and its probability
density function ρ : � → R is given by ρ(y)dy = dFY (y) if the random variable
is continuous [15]. We define the probability Hilbert spaces L2(�) := {v : � →
R : ∫

�
v2(ω)dP(ω) < ∞} and L2

ρ(�) := {w : � → R| ∫
�

w2(y)ρ(y)dy < ∞},
equipped with the equivalent norms (by noting v(ω) = w(y(ω)))

||v||L2(�) :=
(∫

�

v2(ω)dP(ω)

)1/2

=
(∫

�

w2(y)ρ(y)dy

)1/2

=: || · ||L2
ρ(�). (2.1)

Let D be an open and bounded physical domain in R
d (d = 2, 3) with Lipschitz

continuous boundary ∂D. Let v : D × � → R represent a real-valued random field,
which is a real-valued random variable defined in � for each x ∈ D. We define the
Hilbert space X s(D) := L2(�) ⊗ Hs(D), s ∈ N0, equipped with the inner product

(w, v) =
∫

�

∫

D

∑

|α|≤s

∂αw∂αvdxdP(ω) ∀w, v ∈ X s(D), (2.2)

where the partial derivative is defined as ∂αw = ∂ |α|w
∂
x
α1
1

···∂
x
αd
d

with the multi-index

α = (α1, . . . , αd) ∈ N
d
0 and |α| = α1 + · · · + αd . The associated norm is defined as

||v||X s(D) = √
(v, v). When s = 0, we denote H0(D) ≡ L2(D), and thus X 0(D) ≡

L2(D) by convention. For a random vector field v = (v1, . . . , vd) : D × � → R
d ,

we define the Hilbert space X s,d(D) := (
L2(�) ⊗ Hs(D)

)d
(= L2,d(D) for s = 0).

2.1 Stochastic Stokes equations

We consider the following stochastic Stokes equations: given random variable ν :
� → R+, random vector fields f : D × � → R

d and h : ∂DN × � → R
d , find a

solution {u, p} : D × � → R
d × R such that the following equations hold almost

surely (for almost every ω ∈ �)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−ν(ω)�u(·, ω) + ∇ p(·, ω) = f(·, ω) in D,

∇ · u(·, ω) = 0 in D,

u(·, ω) = 0 on ∂DD,

ν(ω)∇u(·, ω) · n − p(·, ω)n = h(·, ω) on ∂DN ,

(2.3)
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where ∂DD and ∂DN represent the Dirichlet and Neumann boundaries such that
∂DD ∪ ∂DN = ∂D and ∂DD ∩ ∂DN = ∅. In particular, we consider a homogeneous
Dirichlet boundary condition and a nonhomogeneous Neumann boundary condition.

At any realization ω ∈ �, the Stokes Eq. (2.3) is commonly used to quantify the
velocity u and pressure p of fluid flow where advective inertial forces are negligible
compared to viscous forces measured via the kinematic viscosity parameter ν. This
occurs, e.g., for low speed channel flows, the flow of viscous polymers or micro-
organisms [1]. In practice, the viscosity ν may vary in a large extent rather than stay
as a fixed constant for many fluids depending on the temperature, the multicomponent
property of the fluid and some other factors [18]. Quantification of the body force f and
boundary condition h, for instance by experimental measurement, may also be faced
with various noises or uncertainties. Incorporation of these different uncertainties leads
to the study of stochastic Stokes equations.

We consider the weak formulation of (2.3): find {u, p} ∈ V × Q such that

{
a(u, v) + b(v, p) = (f, v) + (h, v)∂DN ∀v ∈ V,

b(u, q) = 0 ∀q ∈ Q,
(2.4)

where V := {
v ∈ X 1,d(D) : v = 0 on ∂DD

}
equipped with the norm || · ||V = || ·

||X 1,d , Q := L2(�) ⊗ Q(D) equipped with the norm || · ||Q := || · ||L2(D), and

Q(D) :=
{

q ∈ L2(D) :
∫

D
qdx = 0

}

. (2.5)

The bilinear form a(·, ·) : V × V → R is defined as

a(w, v) :=
∫

�

∫

D
ν∇w ⊗ ∇vdxdP(ω) =

d∑

i, j=1

∫

�

∫

D
ν
∂wi

∂x j

∂vi

∂x j
dxd P(�) (2.6)

and the bilinear form b(·, ·) : V × Q → R reads

b(v, q) = −
∫

�

∫

D
∇ · vqdxdP(ω) = −

d∑

i=1

∫

�

∫

D

∂vi

∂xi
qdxdP(ω). (2.7)

The stochastic inner product (f, v) and (h, v)∂DN are defined by the formula (2.2)
on the domain D and Neumann boundary ∂DN , respectively. We make the following
assumptions on the random variable ν and random vector fields f and h.

Assumption 1 The random viscosity ν is positive and uniformly bounded from below
and from above, i.e. there exist two constants 0 < νmin ≤ νmax < ∞ such that

P(ω : νmin ≤ ν(ω) ≤ νmax ) = 1. (2.8)
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The random force field f and Neumann boundary field h satisfy

||f ||L < ∞ and ||h||H < ∞, (2.9)

where we denote L = L2,d(D) and H = L2,d(∂DN ) for simplicity.

Assumption 2 The random data ν, f and h depend only on a finite number of random
variables Y (ω) = (Y1(ω), . . . ,YN (ω)) : � → � = �1 × · · · × �N ⊂ R

N with
probability density function ρ = (ρ1, . . . , ρN ) : � → R

N , i.e., with slight abuse of
notation, ν(ω) = ν(Y (ω)) ∈ R+, f(·, ω) = f(·,Y (ω)) : D → R

d and h(·, ω) =
h(·,Y (ω)) : ∂DN → R

d almost surely.

Remark 2.1 The random variable ν and random vector fields f and h may not depend
on the same random vector Y but on different ones Yν,Y f ,Yh . For ease of notation,
we still use a single random vector Y = (Yν,Y f ,Yh) with dimension N .

Example 1 For a multicomponent fluid flow, the viscosity is propositional to the con-
tribution of each component [28], which can be described by

ν(Y (ω)) =
N∑

n=1

νnYn(ω) + ν0

(

1 −
N∑

n=1

Yn(ω)

)

= ν0 +
N∑

n=1

(νn − ν0)Yn(ω), (2.10)

where Yn, 1 ≤ n ≤ N are uniformly distributed in [0, 1/N ] and νn > 0, 0 ≤ n ≤ N .

Example 2 Another example for the random vector field h is given by the truncated
Karhunen-Loève expansion with N + 1 terms as [49]

h(x,Y (ω)) = E[h](x) +
N∑

n=1

√
λnhn(x)Yn(ω) x ∈ ∂DN , (2.11)

where (λn,hn) are the eigenpairs of the continuous and bounded covariance function
C(x, x ′) = E[(h(x, Y ) − E[h](x)])(h(x ′,Y ) − E[h](x ′)])] and the random variables
Yn, 1 ≤ n ≤ N are uncorrelated with zero mean and unit variance, given by [49]

Yn(ω) = 1√
λn

∫

D
(h(x,Y (ω)) − E[h](x)) · hn(x)dx . (2.12)

Under Assumption 2, the stochastic Stokes Eq. (2.3) can be viewed as a set of
parameterized equations defined in a tensor product of the spatial domain and the
parameter space D × �. We remark that the Hilbert space L2(�) is equivalent to
L2

ρ(�) and we use the same notation L,H,V,Q for the stochastic Hilbert spaces.

2.2 Constrained optimal control problem

We study a distributed optimal control problem constrained by the stochastic Stokes
equations. Let us define a cost functional as follows
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J (u, p, f) = 1

2
||u − ud ||2L + 1

2
||p − pd ||2L2(D)

+ κ

2
||f ||2G

= E

[
1

2

∫

D
(u − ud)2dx + 1

2

∫

D
(p − pd)

2dx + κ

2

∫

D
f2dx

]

,

(2.13)

where the first two termsmeasure the discrepancy between the solution {u, p} ∈ V×Q
of the stochastic Stokes problem (2.4) and the observational data {ud , pd} ∈ L2,d(D)×
Q(D) that represent the mean of measurement. In the last term, we take the space for
the control function as G = L2,d(D) in this work. The last term is used to regularize
in mathematical sense the control function f with a regularization parameter κ > 0,
which can also be viewed as a penalization of the control energy. The optimal control
problem constrained by the stochastic Stokes problem (2.4) can be formulated as: find
an optimal solution {u∗, p∗, f∗} such that

J (u∗, p∗, f∗) = min {J (u, p, f) : {u, p, f} ∈ V × Q × G and solve (2.4)} . (2.14)

Remark 2.2 In the cost functional, we have used the L2,d(D) norm for measuring the
discrepancy between the velocity field and its mean value of measurement. Extension
to the case with V norm is straightforward by requiring that the data {ud , pd} possess
higher regularity in the spatial domain. Another extension to stochastic data {ud , pd}
can be handled in the same way as in this work provided they depend explicitly on a
finite dimensional random vector, i.e. {ud , pd}(·, ω) = {ud , pd}(·,Y (ω)).

Remark 2.3 When thehighermoments of the observational data {ud , pd}or the control
function f , e.g. variance, skewness, etc., or the probability distribution of {ud , pd} are
incorporated into the cost functional in more general settings [50], we face essentially
nonlinear and fully coupled problems, which will be addressed in future.

Let the tensor-productHilbert spacesV×Q andV×Q×G be equippedwith the norm
||{v, q}||V×Q := ||v||V+||q||Q and ||{v, q, g}||V×Q×G := ||v||V+||q||Q+√

κ||g||G
for any v ∈ V, q ∈ Q, g ∈ G; let the tensor-product Hilbert space L×Q be equipped
with the norm ||{v, q}||L×Q := ||v||L + ||q||Q for any v ∈ L, q ∈ Q.

LetA : (V ×Q×G)× (V ×Q×G) → R be a compound bilinear form defined as

A({u, p, f}, {v, q, g}) = (u, v) + (p, q) + κ(f, g), (2.15)

and B : (V × Q × G) × (V × Q) → R be a compound bilinear form defined as

B({u, p, f}, {v, q}) = a(u, v) + b(v, p) + b(u, q) − (f, v). (2.16)

Following the same procedure in the deterministic setting in [7,35], it can be proven
that the constrainedoptimal control problem (2.14) is equivalent to the following saddle
point problem in the stochastic setting: find {u, p, f} ∈ V × Q × G and {ua, pa} ∈
V × Q such that
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74 P. Chen et al.

⎧
⎨

⎩

A({u, p, f}, {va, qa, g}) + B({va, qa, g}, {ua, pa})
= ({ud , pd , 0}, {va, qa, g}) ∀{va, qa, g} ∈ V × Q × G,

B({u, p, f}, {v, q}) = (h, v)∂DN ∀{v, q} ∈ V × Q.

(2.17)

Thanks to this equivalence and well-posenedness of the saddle point problem 2.17,
there exists a unique optimal solution to the constrained optimal control problem
(2.14). Moreover, the following stability estimates hold by the Brezzi’s theorem [41]

||{u, p, f}||V×Q×G ≤ α1||{ud , pd}||L×Q + β1||h||H (2.18)

and
||{ua, pa}||V×Q ≤ α2||{ud , pd}||L×Q + β2||h||H (2.19)

where the constants α1, β1, α2, β2 are positive and depend on the continuity and inf-
sup constants of the bilinear forms A and B, see the appendix.

3 Stochastic regularity

In this section, we show that under suitable assumptions for the regularity of the
viscosity ν : � → R+ and boundary data h : � → H in the stochastic space �, the
solution {u, p, f,ua, pa} : � → V × Q × G × V × Q can be analytically extended
to a complex region that covers the stochastic space �. Here and in the following,
we denote L , V, Q,G, H as the deterministic Hilbert space corresponding to their
stochastic counterparts L,V,Q,G,H, e.g. H = L2,d(∂DN ). The norms of these
Hilbert spaces are defined as in the last section except for V , which is defined as
|| · ||V := (ν(ȳ)∇v,∇v) + (ν(ȳ)v, v) ∀v ∈ V at a reference value ȳ ∈ �, e.g., the
center of �.

Let k = (k1, . . . , kN ) ∈ N
N
0 be a N -dimensional multi-index of non-negative

integers, with k! = ∏k1
i1=1 i1 · · ·∏kN

iN=1 iN , |k| = ∑N
n=1 kn , |k|! = ∏|k|

i=1 i , and rk :=
∏N

n=1 r
kn
n for any r = (r1, . . . , rN ) ∈ R

N+ ; let ∂ky {·} = ∂
k1
y1 ∂

k2
y2 · · · ∂kNyN {·} represent the

k-th order partial derivative with respect to the parameter y = (y1, . . . , yN ). Let us
also define the following constants for ease of notation

Cα = α1 + α2,Cβ = β1 + β2,Cα,β = max{α1 + α2, β1 + β2}, (3.1)

where α1, α2, β1, β2 are the stability constants in (2.18) and (2.19).
We make the following assumption of stochastic regularity on the input data:

Assumption 3 For every y ∈ �, there exists a N-dimensional positive rate vector
r = (r1, . . . , rN ) ∈ R

N+ such that, for any k ∈ N
N
0 , the k-th order derivative of the

viscosity ν ∈ C∞(�) and the boundary condition h ∈ C∞(�, H), which satisfy

Cα,β

|∂ky ν(y)|
ν(ȳ)

≤ |k|!rk and
Cβ ||∂ky h(y)||H

Cα||{ud , pd}||L×Q + Cβ ||h(y)||H ≤ |k|!rk. (3.2)
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Remark 3.1 Assumption 3 provides a bound for the growth of the derivatives of the
stochastic data, where r is closely related to the complex region of analytic extension
of the solution, see more details in the following theorems.

Theorem 3.1 Under assumption 3, for any y ∈ �, the solution {u, p, f,ua, pa} ∈
C∞(�, V × Q × G × V × Q), whose k-th order derivative satisfies

||∂ky {u(y), p(y), f(y)}||V×Q×G + ||∂ky {ua(y), pa(y)}||V×Q

≤ C(Cα||{ud , pd}||L×Q + Cβ ||h(y)||H )|k|!(r̂r)k, (3.3)

where r̂r = (r̂r1, r̂r2, . . . , r̂rN ) with r̂ > 1/ log(2), and C = max(2, 1/(2 − e1/r̂ )).

Proof The semi-weak formulation of the saddle point problem (2.17) reads: find
{u(y), p(y), f(y)} ∈ V × Q × G and {ua(y), pa(y)} ∈ V × Q such that

⎧
⎨

⎩

A ({u(y), p(y), f(y)}, {va, qa, g}) + B({va, qa, g}, {ua(y), pa(y)}; y)
= ({ud , pd , 0}, {va, qa, g}) ∀{va, qa, g} ∈ V × Q × G,

B({u(y), p(y), g(y)}, {v, q}; y) = (h(y), v)∂DN ∀{v, q} ∈ V × Q.

(3.4)

With a slight abuse of notation, we have used the same bilinear forms A and B in the
semi-weak formulation. Note now the bilinear form B depends on the parameter y,
B({va, qa, g}, {ua(y), pa(y)}; y) = a(u, v; y)+b(v, p)+b(u, q)−(f, v) correspond-
ing to (2.16), where the semi-weak bilinear form a(u, v; y) = ∫

D ν(y)∇u ⊗ ∇vdx
corresponding to the full-weak bilinear form (2.6). To prove the estimate (3.3) for a
general k ∈ N

N
0 , we adopt an induction argument.

Step 1. To start, we consider the case when |k| = 0. Application of the Brezzi
theorem to the semi-weak problem (3.4) leads to the existence of a unique solution
{u(y), p(y), f(y)} ∈ V×Q×G and {ua(y), pa(y)} ∈ V×Q that satisfy the following
estimates corresponding to (2.18) and (2.19) for the weak problem (2.17)

{
||{u(y), p(y), f(y)}||V×Q×G ≤ α1||{ud , pd}||L×Q + β1||h(y)||H ,

||{ua(y), pa(y)}||V×Q ≤ α2||{ud , pd}||L×Q + β2||h(y)||H .
(3.5)

Adding the second inequality of (3.5) to the first one, we find

||{u(y), p(y), f(y)}||V×Q×G + ||{ua(y), pa(y)}||V×Q

≤ Cα||{ud , pd}||L×Q + Cβ ||h(y)||H , (3.6)

which verifies the estimate (3.3) by noting that |k|! = 1,(r̂r)k = 1, and 1 < C .
Moreover, {u, p, f,ua, pa} ∈ C0(�, V × Q ×G × V × Q) as a consequence of (3.6)
and Assumption 3, where h ∈ C∞(�, H).

Step 2. When |k| = 1, i.e., there exists n, 1 ≤ n ≤ N such that kn = 1 and kn∗ = 0
for all n∗ �= n, 1 ≤ n∗ ≤ N , we take the partial derivative ∂yn on both sides of (3.4),
yielding
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⎧
⎪⎪⎨

⎪⎪⎩

A
(
∂yn {u(y), p(y), f(y)}, {va, qa, g})+ B({va, qa, g}, ∂yn {ua(y), pa(y)}; y)

= −(∂ynν(y)∇ua(y),∇va) ∀{va, qa, g} ∈ V × Q × G,

B(∂yn {u(y), p(y), g(y)}, {v, q}; y)
= (∂ynh(y), v)∂DN − (∂ynν(y)∇u(y),∇v) ∀{v, q} ∈ V × Q,

(3.7)
In order to prove the existence of ∂yn {u(y), p(y), f(y),ua(y), pa(y)} as a solution to
the problem (3.7), we adopt the difference quotient approach [17]. Let us consider the
semi-weak problem (3.4) at y + τen , where en is a N -dimensional vector with the
n-th argument being one and all the other arguments being zero, and τ is a positive
parameter such that the Assumption 1 holds with νmin and νmax replaced by νmin/2
and 2νmax , respectively. By Brezzi’s theorem, this problem has a unique solution
{u(y+τen), p(y+τen), f(y+τen),ua(y+τen), pa(y+τen)} ∈ V×Q×G×V×Q.
By subtracting (3.4) at y from (3.4) at y+τen , dividing by τ on both sides, and suitably
rearranging terms, we obtain

⎧
⎪⎪⎨

⎪⎪⎩

A
({uτ (y), pτ (y), fτ (y)}, {va, qa, g}

)+ B({va, qa, g}, {uaτ (y), paτ (y)}; y)
= −(ντ (y)∇ua(y),∇va) ∀{va, qa, g} ∈ V × Q × G,

B({uτ (y), pτ (y), g(y)}, {v, q}; y)
= (hτ (y), v)∂DN − (ντ (y)∇u(y),∇v) ∀{v, q} ∈ V × Q,

(3.8)
where uτ (y) := (u(y + τen) − u(y))/τ , and pτ (y), fτ (y), uaτ (y), and paτ (y) are
defined in the same way. Note that since the test function on the right hand side are
∇va and∇v, the Brezzi’s theorem can not be directly applied to problem (3.8). Instead,
a variation of Brezzi’s theorem can be employed to guarantee the existence of a unique
solution that satisfies the following estimates

||{uτ (y), pτ (y), fτ (y)}||V×Q×G + ||{uaτ (y), paτ (y)}||V×Q

≤ Cα

|ντ (y)|
ν(ȳ)

||ua(y)||V + Cβ

(

||hτ (y)||H + |ντ (y)|
ν(ȳ)

||u(y)||V
)

≤ Cβ ||hτ (y)||H + Cα,β

|ντ (y)|
ν(ȳ)

(
Cα||{ud , pd}||L×Q + Cβ ||h(y)||H

)
, (3.9)

where Cα , Cβ , and Cα,β are defined in (3.1), and we have used (3.6) for the second
inequality.We defer the proof of this result to the Appendix. Thanks to the Assumption
3, by Taylor expansion of ν(y + τen), we find

Cα,β

|ντ (y)|
ν(ȳ)

≤
∞∑

k=2

τ k−1 1

k!

⎛

⎝Cα,β

∣
∣
∣∂kynν(y)

∣
∣
∣

ν(ȳ)

⎞

⎠ ≤ rn

∞∑

k=3

(τrn)
k, (3.10)

when τ is small enough such that τrn < 1, (3.10) is bounded. Similarly, we have

Cβ ||hτ (y)||H ≤ (Cα||{ud , pd}||L×Q + Cβ ||h(y)||H )rn

∞∑

k=3

(τrn)
k, (3.11)
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which is bounded when τrn < 1. Note that h ∈ C∞(�, H), which is differentiable. By
taking τ → 0 in (3.8), we recover the same right hand side as in (3.7) and the existence
of a solution {u0(y), p0(y), f0(y)} ∈ V × Q × G and {ua0(y), pa0 (y)} ∈ V × Q due
to the compactness of V × Q × G and V × Q. Moreover,

||{u0(y), p0(y), f0(y)}||V×Q×G + ||{ua0(y), pa0 (y)}||V×Q

≤ Cβ ||∂ynh(y)||H + Cα,β

|∂ynν(y)|
ν(ȳ)

(
Cα||{ud , pd}||L×Q + Cβ ||h(y)||H

)

≤ 2(Cα||{ud , pd}||L×Q + Cβ ||h(y)||H )rn . (3.12)

Since the solution of (3.7) (or (3.8) when τ → 0) is unique, we find the equivalence
∂ky {u(y), p(y), f(y),ua(y), pa(y)} = {u0(y), p0(y), f0(y),ua0(y), pa0 (y)}. There-
fore, the estimate (3.3) holds by noting that |k|! = 1, rn ≤ r̂rn = (r̂r)k and
2 ≤ C . Analogously, the continuity h ∈ C∞(�, H) implies {u, p, f,ua, pa} ∈
C1(�, V × Q × G × V × Q).

Step 3. As for more general k with |k| > 1, by induction we assume that there
exists ∂k

′
y {u(y), p(y), f(y)} ∈ V × Q ×G and ∂k

′
y {ua(y), pa(y)} ∈ V × Q such that

the estimate (3.3) holds for every k′ ∈ �(k) and k′ �= k, where the multivariate index
set �(k) is defined as �(k) := {

k′ ∈ N
N
0 : k′

n ≤ kn,∀1 ≤ n ≤ N
}
. Let us associate

the multi-index k with a set of indicesK, e.g., if k = (2, 1, 0), then K = {11, 12, 21},
i.e. there are two indices for the first dimension (represented by 11 and 12) and one
index for the second dimension (represented by 21). Let P(K) denote the power set
of K. We define a map M : P(K) → �(k) such that M(S) = s, being S the set of
indices associated with the multi-index s. Let us take k-th order partial derivative of
problem (3.4) with respect to the parameter y, which leads to the following problem
thanks to the general Leibniz rule: find ∂ky {u(y), p(y), f(y)} ∈ V × Q × G and

∂ky {ua(y), pa(y)} ∈ V × Q such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

A
(
∂ky {u(y), p(y), f(y)}, {va, qa, g}

)
+ B({va, qa, g}, ∂ky {ua(y), pa(y)}; y)

=−
∑

S∈P(K)\K,k′=M(S)

(∂k−k′
y ν(y)∇∂k

′
y ua(y),∇va) ∀{va, qa, g} ∈ V × Q×G,

B(∂ky {u(y), p(y), g(y)}, {v, q}; y) = (∂ky h(y), v)∂DN

−
∑

S∈P(K)\K,k′=M(S)

(∂k−k′
y ν(y)∇∂k

′
y u(y),∇v) ∀{v, q} ∈ V × Q,

(3.13)
By applying the variation of Brezzi theorem in the appendix to (3.13), we have

||∂ky {u(y), p(y), f(y)}||V×Q×G+||∂ky {ua(y), pa(y)}||V×Q ≤ Cβ ||∂ky h(y)||H +Cα,β

∑

S∈P(K)\K
k′=M(S)

|∂k−k′
y ν(y)|
ν(ȳ)

(
||∂k′

y {u(y), p(y), f(y)}||V×Q×G+||∂k′
y {ua(y), pa(y)}||V×Q

)
,

(3.14)
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The existence of ∂ky {u(y), p(y), f(y)} ∈ V × Q × G, ∂ky {ua(y), pa(y)} ∈ V × Q
can be proved following the same argument (by using difference quotient) as in Step
2. As for the estimate (3.3), we first prove the following auxiliary estimate

||{∂ky {u(y), p(y), f(y)}||V×Q×G + ||∂ky {ua(y), pa(y)}||V×Q

≤ (
Cα||{ud , pd}||L×Q + Cβ ||h(y)||H

)
s(k)rk, (3.15)

where k := |k| = k1 + · · · + kN , and s(k) depends on k according to the following
recursive formula,

s(0) = 1, s(1) = 2, s(k) = k! +
k−1∑

k′=0

(
k
k′
)

s(k′). (3.16)

In fact, (3.15) holds for |k| = 0 and |k| = 1 due to (3.6) and (3.12). By induction,
we assume that the estimate (3.15) holds for every k′ ∈ �(k) and k′ �= k, so that
(3.14) implies

||∂ky {u(y), p(y), f(y)}||V×Q×G + ||∂ky {ua(y), pa(y)}||V×Q ≤ Cβ ||∂ky h(y)||H

+ Cα,β

∑

S∈P(K)\K,k′=M(S)

|∂k−k′
y ν(y)|
ν(ȳ)

(
Cα||{ud , pd }||L×Q + Cβ ||h(y)||H

)
s(k′)rk′

≤ (
Cα||{ud , pd }||L×Q + Cβ ||h(y)||H

)
⎛

⎝k!rk +
∑

S∈P(K)\K,k′=M(S)

rk−k′
s(k′)rk′

⎞

⎠

= (
Cα||{ud , pd }||L×Q + Cβ ||h(y)||H

)
(

k! +
k−1∑

k′=0

(
k
k′
)

s(k′)
)

rk

= (
Cα||{ud , pd }||L×Q + Cβ ||h(y)||H

)
s(k)rk, (3.17)

where we have used the Assumption 3 for the second inequality, the fact that rk =
rk−k′

rk
′
for any k′ ∈ �(k), and the following relation

∑

S∈P(K)\K,k′=M(S)

s(k′) =
k−1∑

k′=0

(
k
k′
)

s(k′). (3.18)

To this end, it is left to establish a suitable bound for s(k) in order to prove the estimate
(3.3) from the estimate (3.15). Let us define t (k) = s(k)/k!, so that from (3.16) we
have

t (k) = 1

k!

(

k! +
k−1∑

k′=0

k!
(k − k′)!

s(k′)
k′!

)

= 1 +
k−1∑

k′=0

t (k′)
(k − k′)! . (3.19)
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We showby induction thatwhen r̂ > 1/ log(2) and cr ≥ 1/(2−e1/r̂ ), then t (k) ≤ cr r̂ k

for all k = 0, 1, . . . . In fact, when k = 0, t (0) = s(0)/0! = 1 < cr ; given any k > 0,
suppose it holds for all k′ < k, then (3.19) yields

t (k) − 1 =
k−1∑

k′=0

t (k′)
(k − k′)! =

k∑

k′=1

t (k − k′)
k′! ≤ cr r̂

k
k∑

k′=1

r̂−k′

k′! ≤ cr r̂
k
(
e
1
r̂ − 1

)
.

(3.20)

As cr r̂ k
(
e1/r̂ − 1

)
+ 1 ≤ cr r̂ k when r̂ > 1/ log(2) and cr ≥ 1/(2 − e1/r̂ ) so that

t (k) ≤ cr r̂ k for any k = 0, 1, . . .. Therefore, s(k) = t (k)k! ≤ cr r̂ kk!, implying that

s(k) ≤ cr r̂
kk! = crrkr̂ k!, (3.21)

where the N -dimensional constant rate vector rr̂ = (r̂ , . . . , r̂). The proof is concluded
by substituting (3.21) into (3.15), noting rkr̂ r

k = (r̂r)k, and cr ≤ C in (3.3). Note that
the continuity of the k-th derivative of the solution follows from that of the input data,
as in Step 1 and Step 2. ��

Let us define a complex region associated with the stability estimate (3.3) as

� :=
{

z ∈ C
N : ∃y ∈ � such that

N∑

n=1

r̂rn|zn − yn| < 1

}

. (3.22)

Then we have that the solution does not only have bounded partial derivative but can
be analytically extended to the complex region �, as stated in the following theorem:

Theorem 3.2 Under assumption 3, the solution of the semi-weak saddle point problem
(3.4) admits an analytical extension to the region � defined in (3.22).

Proof Given any y ∈ �, the Taylor expansion of the solution of problem (3.4)
{u, p, f} : � → V × Q × G and {ua, pa} : � → V × Q about y reads

{u(z), p(z), f(z)} =
∑

k∈NN
0

∂ky {u(y), p(y), f(y)}
k! (z − y)k (3.23)

and

{ua(z), pa(z)} =
∑

k∈NN
0

∂ky {ua(y), pa(y)}
k! (z − y)k, (3.24)
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where (z − y)k = ∏N
n=1(zn − yn)kn . By Theorem 3.1, we have

||{u(z), p(z), f(z)}||V×Q×G + ||{ua(z), pa(z)}||V×Q

≤
∑

k∈NN
0

(
||∂ky {u(y), p(y), f(y)}||V×Q×G + ||∂ky {ua(y), pa(y)}||V×Q

) |z − y|k
k!

≤ C(Cα||{ud , pd}||L×Q + Cβ ||h(y)||H )
∑

k∈NN
0

|k|!(r̂r)k |z − y|k
k! . (3.25)

Upon reordering, we have

∑

k∈NN
0

|k|!(r̂r)k |z − y|k
k! =

∞∑

k=0

∑

|k|=k

k!
k!

N∏

n=1

(r̂rn|zn − yn|)kn . (3.26)

By multinomial theorem, we have

∞∑

k=0

∑

|k|=k

k!
k!

N∏

n=1

(r̂rn|zn − yn|)kn =
∞∑

k=0

(
N∑

n=1

r̂rn|zn − yn|
)k

, (3.27)

which converges in the disk D(y) = {z ∈ C
N : ∑N

n=1 r̂rn|zn − yn| < 1}.
Therefore, the Taylor expansion of {u(z), p(z), f(z)} and {ua(z), pa(z)} converges
to {u(z), p(z), f(z)} and {ua(z), pa(z)}, respectively, in D(y). As it holds for any
y ∈ �, we conclude that the solution of the problem (3.4) can be analytically extended
to �. ��

4 Numerical approximation

In order to solve the constrained optimization problem (2.14),we introduce a numerical
approximation of the equivalent saddle point problem (2.17) in the probability domain
� by a stochastic collocation method and in the physical domain D by a finite element
method.

4.1 Stochastic collocation method

For stochastic problems with smooth solution in the probability space, the stochastic
collocation method based on sparse grid techniques [2,38,39,53] features both fast
convergence of stochastic Galerkin method and the non-intrusive structure of Monte
Carlo method. This makes it an efficient method in solving stochastic optimal control
problems [11,31,50].

Let X denote a general Hilbert space defined in the physical domain D, e.g. H1(D).
Let C(�; X) be the space of continuous functions with values in X , i.e.
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C(�; X) :=
{

v : � → X |v is continuously measurable and max
y∈�

||v(y)||X < ∞
}

.

(4.1)
Let Pm(�) be a space of polynomials with degree less than or equal to m in each
coordinate yn, 1 ≤ n ≤ N . Let U in : C(�; X) → Pm(in)−1(�n) ⊗ X denote a one-
dimensional Lagrangian interpolation operator based on the set of collocation nodes
�

in
n = {y1n , . . . , ym(in)

n }, 1 ≤ n ≤ N , defined as

U inv(yn) =
m(in)∑

jn=1

v(y jn
n )l jnn (yn), with l jnn (yn) =

∏

1≤k≤m(in):k �= jn

yn − ykn
y jn
n − ykn

, (4.2)

where m(k) is a function of k depending on the choice of collocation nodes, e.g.
m(k) = 1 when k = 1 and m(k) = 2k−1 + 1, 1 ≤ n ≤ N when k > 1 [39]. We define
the sparse grid Smolyak formula Sq : C(�; X) → Pm(q−N+1)−1(�) ⊗ X as [39]

Sqv(y) =
∑

q−N+1≤|i|≤q

(−1)q−|i|
(
N − 1
q − |i|

)

Iiv(y), q = N , N + 1, . . . (4.3)

where i = (i1, . . . , iN ) ∈ N
N+ with |i| = i1 + · · · + iN is a multi-index. The tensor-

product interpolation operator Ii : C(�; X) → Pm(i)−1(�) ⊗ X is defined on the set

of collocation nodes �i = �
i1
1 × · · · × �

iN
N as

Iiv(y) = (U i1 ⊗ · · · ⊗U iN )v(y) =
m(i1)∑

j1=1

· · ·
m(iN )∑

jN=1

v(y j1
1 , . . . , y jN

N )

N⊗

n=1

l jnn (yn). (4.4)

With the definition ofLagrangian interpolation operator (4.3) and (4.4),we can approx-
imate statistics of interest, e.g. expectation, by

E[Sqv] =
∑

q−N+1≤|i|≤q

(−1)q−|i|
(
N − 1
q − |i|

)

E[Iiv], (4.5)

being E[Iiv] defined as

E[Iiv] =
m(i1)∑

j1=1

· · ·
m(iN )∑

jN=1

v(y j1
1 , . . . , y jN

N )

N∏

n=1

w
jn
n , (4.6)

where the quadrature weights are given by

w
jn
n =

∫

�n

l jnn (yn)ρ(yn)dyn 0 ≤ jn ≤ m(in), 1 ≤ n ≤ N . (4.7)
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Remark 4.1 The accuracy of stochastic collocation approximation depends on the
choice of the collocation nodes. Among the most popular, we mention Clenshaw-
Curtis abscissas, Gauss abscissas of certain orthogonal polynomials corresponding to
the joint probability density function ρ, e.g. Gauss-Jacobi abscissas for beta density
function, Gauss-Hermite abscissas for normal density function, see [9,39].

By using the difference operator �in = U in − U in−1, with U0 = 0, we have an
alternative representation of the sparse grid Smolyak formula (4.3) as follows

Sqv(y) =
∑

i∈X (q,N )

(�i1 ⊗ · · · ⊗ �iN )v(y) (4.8)

with the multivariate index set defined as

X (q, N ) :=
{

i ∈ N
N+ :

N∑

n=1

in ≤ q

}

, q = N , N + 1, . . . . (4.9)

Let H(q, N ) := {�i, i ∈ X (q, N )} denote the set of collocation nodes associated to
the index set X (q, N ), we have H(q, N ) ⊂ H(q + 1, N ) ⊂ · · · . The cardinality of
H(q, N ) grows exponentially with respect to the dimension of the problem [39,53].
In tackling high-dimensional problems, each dimension may be given appropriate
relevance by applying anisotropic sparse grid interpolation formula written as [38]

Sα
q v(y) =

∑

i∈Xα(q,N )

(�i1 ⊗ · · · ⊗ �iN )v(y), (4.10)

where the anisotropic multivariate index set Xα(q, N ) is defined as

Xα(q, N ) :=
{

i ∈ N
N+ :

N∑

n=1

αnin ≤ min
1≤n≤N

αnq

}

, q = N , N + 1, . . . . (4.11)

Here, α = (α1, . . . , αN ) is a positive multivariate weight, which can be obtained by a
priori or a posteriori estimate [38], or by a suitable dimension adaptive algorithm [20].
Similarly, we define the set of collocation nodes Hα(q, N ) := {�i, i ∈ Xα(q, N )}.
Note that the isotropic sparse grid interpolation (4.8) is a special case corresponding
to α = 1. Evaluation of statistics based on the anisotropic sparse grid stochastic col-
location method, e.g. expectation, is straightforward by the following approximation

E[Sα
q v] =

∑

i∈Xα(q,N )

E

[
(�i1 ⊗ · · · ⊗ �iN )v

]
. (4.12)

4.2 Finite element method

Given a regular triangulation Th of the physical domain D̄ ⊂ R
d with mesh size h,

we define the finite element space [41]
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Xk
h := {vh ∈ C0(D̄) : vh |K ∈ Pk ∀K ∈ Th}, k ≥ 1, (4.13)

where C0(D̄) is the space of continuous functions in D̄, Pk, k ≥ 1, is the space of
polynomials of degree less than or equal to k in the variables x1, . . . , xd . In particular,
we define V k

h := (Xk
h)

d ∩ V , Qm
h := Xm

h ∩ Q, and Gl
h := (Xl

h)
d ∩G with k,m, l ≥ 1

as finite element approximation spaces corresponding to the Hilbert spaces V , Q and
G, respectively, defined in Sect. 3. The semi-weak finite element approximation of
the saddle point problem (2.17) reads: for any y ∈ �, find {uh(y), ph(y), fh(y)} ∈
V k
h × Qm

h × Gl
h and {uah(y), pah(y)} ∈ V k

h × Qm
h such that

⎧
⎨

⎩

A
({uh(y), ph(y), fh(y)}, {vah, qah , gh}

)+ B({vah, qah , gh}, {uah(y), pah(y)}; y)= (ud , vah) + (pd , qah ) ∀{vah, qah , gh} ∈ V k
h × Qm

h × Gl
h,

B({uh(y), ph(y), gh(y)}, {vh, qh}; y) = (h(y), vh)∂DN ∀{vh, qh} ∈ V k
h × Qm

h .

(4.14)

We use the Taylor-Hood elements (m = k − 1, k ≥ 2), among many feasible
choices [41], which leads to stable finite element approximation featuring optimal
convergence rate. We set l = k for the control function space Gl

h , so that V
k
h = Gl

h .
Let the finite element solution of the saddle point problem (4.14) be written as

uh(y) =
Nv∑

n=1

un(y)ψn, ph(y) =
Np∑

n=1

pn(y)ϕn, fh(y) =
Nv∑

n=1

fn(y)ψn, (4.15)

and

uah(y) =
Nv∑

n=1

uan(y)ψn, pah(y) =
Np∑

n=1

pan (y)ϕn, (4.16)

where ψn, 1 ≤ n ≤ Nv and ϕn, 1 ≤ n ≤ Np are the bases of the finite element
spaces V k

h and Qk
h , respectively. The finite element mass matrices Mv,h and Mp,h are

obtained as

(Mv,h)mn = (ψn,ψm), 1 ≤ m, n ≤ Nv; (Mp,h)mn = (ϕn, ϕm), 1 ≤ m, n ≤ Np.

(4.17)

We set Mg,h = Mc,h = Mv,h as k = l. The mass matrix for Neumann boundary
condition is given by

(Mn,h)mn = (ψm,ψn)∂DN , 1 ≤ m, n ≤ Nv. (4.18)

The stiffness matrix Ay
h is obtained as

(Ay
h)mn = a(ψn,ψm; y), 1 ≤ m, n ≤ Nv, (4.19)
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and the matrix Bh corresponding to the compatibility condition is written as

(Bh)mn = b(ψm, ϕn), 1 ≤ m ≤ Nv, 1 ≤ n ≤ Np. (4.20)

Let Uh(y) = (u1(y), . . . , uNv (y))
T represent the coefficient vector for the finite

element function uh(y), and Ph(y), Fh(y),Ua
h (y), Pa

h (y) the coefficient vectors
for the functions ph(y), fh(y),uah(y), p

a
h (y), and Ud,h, Pd,h, Hh(y) the values of

ud , pd ,h(y) at the finite element nodes. To this end, the algebraic formulation of
problem (4.14) reads

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Mv,h 0 0 Ay
h BT

h
0 Mp,h 0 Bh 0
0 0 κMg,h −MT

c,h 0

Ay
h BT

h −Mc,h 0 0
Bh 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

Uh(y)
Ph(y)
Fh(y)
Ua
h (y)

Pa
h (y)

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

Mv,hUd,h

Mp,h Pd,h

0
Mn,hHh(y)

0

⎞

⎟
⎟
⎟
⎟
⎠

. (4.21)

Remark 4.2 The matrix of the linear system (4.21) becomes ill-conditioned with large
condition number when h orα is very small, whichmakes it unsuitable for direct solve.
Alternatively, we may solve it by MINRES iteration with the help of suitable block
diagonal preconditioners, see e.g. [42,48] for more details.

5 Multilevel and weighted reduced basis method

To solve a full system (4.21) at one sample y ∈ � is very expensive when the number
of degrees of freedom of the finite element approximation is large. The task becomes
prohibitive when the dimension of the probability space � is so high that a large
number of samples are necessary to be used in order to obtain accurate statistics of
interest. To circumvent this computational obstacle, a reduced basis method has been
employed to solve the optimality system in [35,36,46]. In this work, we adopt the same
approach and propose however to use a multilevel greedy algorithm and a weighted a
posteriori error bound [10,12,16].

5.1 Reduced basis approximation

The idea behind reduced basis approximation is to take “snapshots” - that is high
fidelity solutions of the underlying PDE model - as bases and then approximate the
solution at a new sample by Galerkin projection on the pre-selected snapshots [8,
25,40,45,52]. Specific to the finite element problem (4.21), the associated reduced
basis problem can be formulated as: for any y ∈ �, find {ur (y), pr (y), fr (y)} ∈
VNr × QNr × GNr and {uar (y), par (y)} ∈ VNr × QNr such that

⎧
⎨

⎩

A
({ur (y), pr (y), fr (y)}, {var , qar , gr }

)+ B({var , qar , gr }, {uar (y), par (y)}; y)
= (ud , var ) + (pd , qar ) ∀{var , qar , gr } ∈ VNr × QNr × GNr ,

B({ur (y), pr (y), gr (y)}, {vr , qr }; y) = (h(y), vr )∂DN ∀{vr , qr } ∈ VNr × QNr ,

(5.1)
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where VNr , QNr ,GNr are reduced basis spaces constructed as [35,36]

GNr = span{fh(yn), 1 ≤ n ≤ Nr }; (5.2)

QNr = span{ph(yn), pah(yn), 1 ≤ n ≤ Nr }; (5.3)

and
VNr = span{uh(yn), T ph(yn),uah(yn), T pah(yn), 1 ≤ n ≤ Nr }. (5.4)

where T : Qm
h → V k

h is the supremizer operator given by [19,44,47]

(Tqh, vh)A = b(vh, qh) ∀v ∈ V k
h , (5.5)

being the A-scale product defined at a reference value ȳ, e.g. center of �,

(u, v)A = a(u, v; ȳ) ∀u, v ∈ V . (5.6)

Under such construction of the reduced basis spaces, it can be shown that there exists
a unique reduced basis solution to problem (5.1), see e.g. [35,36].

For the sake of algebraic stability, we perform Gram–Schmidt orthonormaliza-
tion [47] to the reduced basis spaces VNr , QNr and GNr , obtaining the orthonormal
bases such that VNr = span{ζ v

n, 1 ≤ n ≤ 4Nr }, QNr = span{ζ p
n , 1 ≤ n ≤ 2Nr }

and GNr = span{ζ g
n, 1 ≤ n ≤ Nr }. Finally, at any y ∈ �, we project the finite ele-

ment solution {uh(y), ph(y), fh(y)} ∈ V k
h × Qm

h × Gl
h into the reduced basis space

VNr × QNr × GNr as

uh(y) =
4Nr∑

n=1

un(y)ζ
v
n, ph(y) =

2Nr∑

n=1

pn(y)ζ
p
n , fh(y) =

Nr∑

n=1

fn(y)ζ
g
n, (5.7)

and the adjoint variables {uah(y), pah(y)} ∈ V k
h × Qm

h into VNr × QNr as

uah(y) =
4Nr∑

n=1

uan(y)ζ
v
n, pah(y) =

2Nr∑

n=1

pan (y)ζ
p
n . (5.8)

Let Ur (y) = (u1(y), . . . , u4Nr (y)) denote the coefficient vector of the reduced
basis approximation, and define Pr (y), Fr (y),Ua

r (y) and Pa
r (y) similarly, corre-

sponding to those of the finite element approximation. Let Zv
Nr

= (ζ v
1, . . . , ζ

v
4Nr

),

Z p
Nr

= (ζ
p
1 , . . . , ζ

p
2Nr

) and Zg
Nr

= (ζ
g
1, . . . , ζ

g
Nr

), by which we define the reduced

basis mass matrices as follows: Mv,r = (Zv
Nr

)T Mv,hZv
Nr
, Mp,r = (Z p

Nr
)T Mp,hZ p

Nr
,

Mg,r = (Zg
Nr

)T Mg,hZg
Nr
, Mc,r = (Zv

Nr
)T Mc,hZg

Nr
, Mn,r = (Zv

Nr
)T Mn,hZv

Nr
, and

the Stokes matrices Ay
r and Br as A

y
r = (Zv

Nr
)T Ay

hZv
Nr
, and Br = (Z p

Nr
)T BhZv

Nr
. The

reduced basis data vectorUd,r , Pd,r , Hr (y) are defined asUd,r = (Zv
Nr

)TUd,h, Pd,r =
(Z p

Nr
)T Pd,h, Hr (y) = (Zv

Nr
)T Hh(y). By projecting the finite element system (4.21)

into the reduced basis spaces, we obtain the algebraic formulation of the reduced basis
problem corresponding to the finite element algebraic system (4.21) as
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⎛

⎜
⎜
⎜
⎜
⎝

Mv,r 0 0 Ay
r BT

r
0 Mp,r 0 Br 0
0 0 κMg,r −MT

c,r 0
Ay
r BT

r −Mc,r 0 0
Br 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

Ur (y)
Pr (y)
Fr (y)
Ua
r (y)

Pa
r (y)

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

Mv,rUd,r

Mp,r Pd,r

0
Mn,r Hr (y)

0

⎞

⎟
⎟
⎟
⎟
⎠

, (5.9)

which is a 13Nr × 13Nr linear system with dense blocks, whose numerical solution
costs far less computational effort than solving the finite element system (4.21) thanks
to the fact that Nr is much smaller than the number of degrees of freedom of the finite
element discretization.

5.2 A multilevel greedy algorithm

The efficiency of the reduced basis approximation depends critically on the choice
of reduced bases, and thus on the samples y1, . . . , yNr selected in the construction
of the reduced basis spaces VNr , QNr ,GNr . In order to choose the most represen-
tative samples, we propose a multilevel greedy algorithm based on the sparse grid
construction for stochastic collocation method and reduce the computational cost of
the construction of the reduced basis spaces.

To begin, we choose the first sample from the zeroth level of the sparse grid, i.e.
y1 ∈ H(q, N ) (or Hα(q, N ) for anisotropic sparse grid) with q − N = 0, where only
one collocation node is available. We solve the finite element problem (4.21) at y1 and
construct the reduced basis space V1, Q1,G1 according to (5.2), (5.3) and (5.4).

Let Er denote the reduced basis approximation error defined as

Er (y) := ||uh − ur ||X, (5.10)

where we denote the Hilbert space X = V × Q×G×V × Q equipped with the norm
||{v, q, g, va, qa}||X = ||v||V + ||q||Q + √

κ||g||G + ||va ||V + ||qa ||Q , the solution
u(y) := {u(y), p(y), f(y),ua(y), pa(y)} with finite element approximation uh and
reduced basis approximation ur . At each of the level q − N = l, l = 1, 2, . . . , L with
prescribed L ∈ N+, we first construct the set of collocation nodes H(q, N ) of the
sparse grid and then choose the “most representative” sample yNr+1 as the one where
the solution is worst approximated over the new nodes in the current level of the sparse
grid, i.e.

yNr+1 = arg max
y∈H(q,N )\H(q−1,N )

�r (y), (5.11)

where �r (y) represents a cheap, sharp and reliable error bound at y ∈ � such that

c�r (y) ≤ Er (y) ≤ �r (y) (5.12)

with the constant c as close to 1 as possible. We present the construction of �r (y) in
the next section. Note that in the hierarchical sparse gridwith nested collocation nodes,
we have H(q − 1, N ) ⊂ H(q, N ), q ≥ N + 1, which provides further computational
efficiency since there is no need to evaluate the error at the collocation nodes in the
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previous level. After updating the reduced basis spaces VNr , QNr andGNr by the finite
element solution of problem (4.21) at yNr+1, we set Nr + 1 → Nr and proceed to
choose the next sample until the error Er (yNr+1) is smaller than a prescribed tolerance
εtol . Then we move to the next level q − N = l + 1. The multilevel greedy algorithm
for construction of the reduced basis space is summarized in Algorithm 1.

Algorithm 1 A multilevel greedy algorithm
1: procedure Initialization
2: Set maximum sparse grid level L , tolerance εtol , q = N , take y1 ∈ H(q, N );
3: Solve (4.21), construct the initial reduced basis spaces V1, Q1, G1, set Nr = 1.
4: end procedure

5: procedure Construction
6: for q = N + 1, . . . , N + L do
7: Construct the set of collocation nodes H(q, N ), take H(q, N ) \ H(q − 1, N );
8: Solve (5.9) to obtain yNr+1 = argmaxy∈H(q,N )\H(q−1,N ) �r (y);

9: while �r (yNr+1) ≥ εtol do
10: Set Nr ← Nr + 1;
11: Solve (4.21) at yNr , update the reduced basis spaces VNr , QNr ,GNr ;
12: Solve (5.9) to obtain yNr+1 = argmaxy∈H(q,N )\H(q−1,N ) �r (y).
13: end while
14: end for
15: end procedure

5.3 A weighted a posteriori error bound

In order to efficiently evaluate a sharp and reliable bound for the reduced basis approx-
imation error, we present a residual-based a posteriori error estimate by following
[35,36] and propose using a weighted version of this a posteriori error estimate. At
first, the semi-weak saddle point problem (3.4) is recast as an elliptic problem: for any
y ∈ �, find u(y) ∈ X

B(u(y), v; y) = F(v; y) ∀v ∈ X, (5.13)

where the bilinear form B(·, ·; y) : X × X → R is given by

B(u(y), v; y) = A
({u(y), p(y), f(y)}, {va, qa, g})

+ B({va, qa, g}, {ua(y), pa(y)}; y) + B({u(y), p(y), g(y)}, {v, q}; y), (5.14)

and the linear functional

F(v; y) = (ud , va) + (pd , q
a) + (h(y), v)∂DN . (5.15)

Let the reduced basis approximation error be defined as e(y) = uh(y) − ur (y). To
seek an error bound for e(y), we consider the residual

R(vh; y) := F(vh; y) − B(ur (y), vh; y) vh ∈ Xh . (5.16)
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By the stability property of the bilinear form B with inf-sup constant βh
c (y) in Xh =

Vh × Qh × Gh × Vh × Qh and Babuška theorem [54], we obtain

||e(y)||Xh ≤ ||R(·; y)||X′
h

βh
c (y)

=: �r (y). (5.17)

Taking the probability density function ρ : � → R+ into account, we replace Er (y)
in (5.11) by a weighted a posteriori error bound [12] �ρ

r (y) = √
ρ(y)�r (y), which

provides a bound for
√

ρ(y)||e(y)||Xh . The error bound�ρ
r (y) assigns high importance

at the sample with big probability density, leading to more efficient (using less bases
to achieve the same accuracy) evaluation of statistical moments of interest, see [12]
for proof and illustrative examples. In order to evaluate the error bound (5.17), we
need to compute both the constant βh

c (y) and the dual-norm of the residual ||R(y)||X′
h
.

For the former, we may apply successive constraint method [27] to compute a lower
boundβLB

c (y) ≤ βh
c (y)with cheap online computational cost, or simply use a uniform

lower bound βLB
c ≤ βh

c (y) evaluated at the minimum random viscosity νmin . As for
the latter, we turn to an offline-online decomposition procedure in order to reduce
computational effort in the many-query context.

5.4 Offline-online decomposition

The offline-online decomposition takes advantage of the affine structure of the data, as
given in examples (2.10) and (2.11). If the data are provided in a non-affine structure,
e.g. log-normal Karhunen-Loève expansion [39], we may apply a weighted empir-
ical interpolation method to obtain an affine decomposition of the data function at
first, see [14] for details and error analysis. Let us assume that the random viscosity
and the Neumann boundary condition undergoes, after possibly performing empirical
interpolation [4,14], the following affine structure

ν(y) =
Nν∑

n=1

νnθ
ν
n (y) and h(x, y) =

Nh∑

n=1

hn(x)θhn (y) ∀(x, y) ∈ ∂DN × �, (5.18)

where θν
n , 1 ≤ n ≤ Nν and θhn , 1 ≤ n ≤ Nh are functions of the random vector y ∈ �.

Let the matrix Ay
r and vector Hr (y) in (5.9) be assembled as

Ay
r =

Nν∑

n=1

An
r θ

ν
n (y) and Hr (y) =

Nh∑

n=1

Hn
r θhn (y), (5.19)

where the deterministic reduced basis matrices An
r , 1 ≤ n ≤ Nν are defined as

An
r = (Zv

Nr
)T An

hZv
Nr

with (An
h)i j = (νn∇ψ i ,∇ψ j ), 1 ≤ i, j ≤ Nv, (5.20)

123



Multilevel and weighted reduced... 89

and the deterministic reduced basis vectors Hn
r , 1 ≤ n ≤ Nh are defined as

Hn
r = (Zv

Nr
)T Hn

h with (Hn
h )i = (hn,ψ i )∂DN , 1 ≤ i ≤ Nv. (5.21)

Accordingly, we decompose the global matrix of the linear system (5.9) as

B0
r =

⎛

⎜
⎜
⎜
⎜
⎝

Mv,r 0 0 0 BT
r

0 Mp,r 0 Br 0
0 0 κMg,r −MT

c,r 0
0 BT

r −Mc,r 0 0
Br 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

(5.22)

and Bn
r , 1 ≤ n ≤ Nν with only the blocks (4, 1), (1, 4) as An

r the other blocks zero.
Similarly, we decompose the vector on the right hand side of the linear system (5.9) as
F0r = (Mv,rUd,r , Mp,r Pd,r , 0, 0, 0)T and Fnr = (0, 0, 0, Mn,r Hn

r , 0)T , 1 ≤ n ≤ Nh .
Thus, the algebraic formulation of the problem (5.13) can be written as: for any y ∈ �,
find Ur (y) := (Ur (y), Pr (y), Fr (y),Ua

r (y), Pa
r (y))T ∈ R

13Nr such that

( Nν∑

n=0

θν
n (y)Bn

r

)

Ur (y) =
Nh∑

n=0

θhn (y)Fnr , (5.23)

where θν
0 (y) = 1 and θh0 (y) = 1. Since Bn

r , 1 ≤ n ≤ Nν and Fnr , 1 ≤ n ≤ Nh

are independent of y, we can assemble them in offline stage. Given any y ∈ �, the
reduced basis solution can be obtained by solving the linear system (5.23) with at most
O((Nν + Nh)Nr ) operations for assembling and O((13Nr )

3) operations for solve.
As for the evaluation of the residual norm ||R(y)||X′

h
, we first seek the Riesz rep-

resentation [41] of R(·; y) as ê(y) ∈ Xh such that

(ê(y), vh)Xh = R(vh; y) ∀vh ∈ Xh, (5.24)

so that we have ||R(·; y)||X′
h

= ||ê(y)||Xh . Let Bn : Xh ×Xh → R denote the bilinear
form defined in the finite element space corresponding to the matrix Bn

r , 0 ≤ n ≤ Nν

and Fn : Xh → R the linear functional corresponding to the vector Fnr , 0 ≤ n ≤ Nh ,
then the residual defined in (5.16) can be decomposed as

R(vh; y) =
Nh∑

n=0

θhn (y)Fn(vh) −
Nν∑

n=0

θν
n (y)Bn(ur , vh) ∀vh ∈ Xh . (5.25)

By Riesz representation theorem, we have that there exist fn ∈ Xh, 0 ≤ n ≤ Nh and
bkn ∈ Xh, 0 ≤ n ≤ Nν, 1 ≤ k ≤ 13Nr such that

(fn, vh)Xh = Fn(vh) and (bkn, vh)Xh = −Bn(u
k
h, vh) ∀vh ∈ Xh, (5.26)

where we have set the reduced basis solution as ukh = (ψv
k , 0, 0, 0, 0), 1 ≤ k ≤ 4Nr ,

ukh = (0, ϕ p
k−4Nr

, 0, 0, 0), 4Nr < k ≤ 6Nr , ukh = (0, 0,ψg
k−6Nr

, 0, 0), 6Nr < k ≤
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7Nr , ukh = (0, 0, 0,ψv
k−7Nr

, 0), 7Nr < k ≤ 11Nr , ukh = (0, 0, 0, 0, ϕ p
k−11Nr

), 11Nr <

k ≤ 13Nr , being 0 the vector with length Nv, Np, Nv, Nv, Np at the first to fifth argu-
ment. Finally, we obtain the norm ||ê(y)||Xh as

||ê(y)||2Xh
=

Nh∑

n=1

Nh∑

n′=1

θhn (y)(fn, fn′)Xhθ
h
n′(y)

+ 2
Nh∑

n=1

Nν∑

n′=1

13Nr∑

k=1

θhn (y)(fn, b
k
n′)Xh (ur )kθ

ν
n′(y)

+
Nν∑

n=1

Nν∑

n′=1

13Nr∑

k=1

13Nr∑

k′=1

θν
n (y)(ur )k(b

k
n, b

k′
n′)Xh (ur )k′θν

n′(y), (5.27)

where (fn, fn′)Xh , 1 ≤ n, n′ ≤ Nh , (fn, bkn′)Xh , 1 ≤ n ≤ Nh, 1 ≤ n′ ≤ Nν, 1 ≤
k ≤ 13Nr and (bkn, b

k′
n′)Xh , 1 ≤ n, n′ ≤ Nν, 1 ≤ k, k′ ≤ 13Nr are independent

of y and can be computed and stored in the offline stage, while in the online stage,
we only need to assemble the formula (5.27) by O(N 2

h + 13Nr NνNh + (13Nr Nν)
2)

operations. Recall that Nh and Nν are the number of affine terms of the random
Neumann boundary condition and the viscosity, and Nr is the number of selected
samples in the construction of reduced basis space, leading to fast evaluation of the
error bound as they are small.

6 Error estimates

The global error of the numerical approximation presented in sections 4 and 5 com-
prises three components: the stochastic collocation approximation error [2,38,39], the
finite element approximation error [41,41], and the weighted reduced basis approxi-
mation error [5,12,13], which have been analyzed individually in different contexts.
In the following, we provide individual error estimate as well as a global error estimate
in the context of the constrained optimization problem (2.14). We remark that as a
result of the truncation in the Karhunen-Loève expansion (2.11) of the Neumann data,
there exists an additional truncation error contributing linearly to the global error in
our particular case (thanks to that the solution is linear with respect to this data, see
(2.17) or (4.21)). Due to Assumption 2 on finite dimension of the noise, we will not
explicitly consider the truncation error anymore.

6.1 Stochastic collocation approximation error

The error of stochastic collocation approximation of the optimal solution depends on
the stochastic regularity of the latter.

We consider the case that � is bounded, however similar results can be obtained in
the same way for unbounded � as in [2]. Let the complex region �(�; τ) be defined
as
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�(�; τ) := {z ∈ � : ∃ y ∈ � such that |zn − yn| ≤ τn, 1 ≤ n ≤ N }, (6.1)

where � has been defined in (3.22); τ = (τ1, . . . , τN ) with each element taking the
largest possible value (τn = 1/(rrn), 1 ≤ n ≤ N ). Thanks to the analytic regularity
obtained in Theorem 3.2, we have the following a priori error estimate for tensor-
product stochastic collocation approximation of the optimal solution u : � → X
(recall that u = {u, p, f,ua, pa} and X = V × Q × G × V × Q)

Es := ||u − us ||C(�;X) ≤
N∑

n=1

C i
n exp(−(m(in) − 1)rn), (6.2)

where we denote us = Iiu; the constants C i
n, 1 ≤ n ≤ N are bounded by [2,13]

C i
n ≤ (1 + �(m(in)))Cn, being Cn := 2

ern − 1

(

max
z∈�(�;τ)

||u(z)||X
)

(6.3)

with Lebesgue constant �(m) ≤ 1 + (2/π) log(m + 1), and convergence rate

rn = log

⎛

⎝ 2τn
|�n| +

√

1 + 4τ 2n
|�n|2

⎞

⎠ > 1, 1 ≤ n ≤ N , (6.4)

where �n is the image of the random variable yn .

Remark 6.1 In the case of unbounded �, the convergence rate has been obtained as
rn = τn/δn, 1 ≤ n ≤ N with δn depending on the decay of the probability density
function at infinity, e.g. δn = 1 for normal density function, see details in [2].

As for the error of isotropic sparse grid Smolyak interpolation (4.3) with Gauss-
abscissas, the following error estimate can be proved via (6.2) [39] (denote us = Squ)

Es := ||u − us ||C(�;X) ≤ CsN
−r
q , (6.5)

where Nq represents the number of collocation nodes, Cs depends on Lebesgue con-
stant but not on Nq (see [13,39] for more explicit expression), r is such that (see
[13])

r ≥ e log(2)min{rn, 1 ≤ n ≤ N }
3 + log(N )

. (6.6)

As for the error of anisotropic sparse grid Smolyak interpolation (4.10) based on
Gauss-abscissas, we have the following estimate [38] (denote us = Sα

q u)

Eα
s := ||u − us ||C(�;X) ≤ Cα

s N
−r(α)
q , (6.7)

whereCα
s depends on Lebesgue constant but not on Nq and the algebraic convergence

rate r(α) is defined as

r(α) = e log(2)αmin

2 log(2) +∑N
n=1

αmin
αn

, (6.8)
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being αmin = min1≤n≤N αn with the choice αn = rn/2, 1 ≤ n ≤ N , with rn defined in
(6.4).Moreover, the error of the expectationof the stochastic optimal solution evaluated
by isotropic or anisotropic sparse grid Smolyak formula is bounded by [13,39]

Ee
s := ||E[u] − E[us]||X ≤ ||u − us ||L2

ρ(�;X) ≤ Ce
s N

−r(α)
q , (6.9)

where Ce
s is a constant independent of both Lebesgue constant and Nq , see [13].

6.2 Finite element approximation error

By γh and εh we denote the continuity and coercivity constants of the bilinear form
A and by δh and βh the continuity and inf-sup constants of the bilinear form B in the
finite element space V k

h , Qm
h ,Gl

h with the choice of Taylor-Hood elements. By Brezzi
theorem [41], we have the following estimate for the error Eh of the finite element
approximation to solution of the semi-weak saddle point problem (3.4):

Eh(y) := ||u(y) − uh(y)||X
≤ Ch

1 inf
{vh ,qh ,gh}∈V k

h ×Qm
h ×Gl

h

||{u(y), p(y), f(y)} − {vh, qh, gh}||V×Q×G

+ Ch
2 inf

{vah ,qah }∈V k
h ×Qm

h

||{ua(y), pa(y)} − {vah, qah }||V×Q

= O(hk)
(
Ch
1 (||u(y)||k+1 + ||p(y)||k + √

κ||f(y)||k+1)
)

+ O(hk)
(
Ch
2 (||ua(y)||k+1 + ||pa(y)||k)

)
, (6.10)

where we have chosen m = k − 1 and l = k; the constants Ch
1 and Ch

2 are given by

Ch
1 =

(

1 + γh

εh

)(

1 + γh

βh

)(

1 + δh

βh

)

and Ch
2 = 1 + δh

εh
+ δh

βh
+ γhδh

εhβh
. (6.11)

Remark 6.2 Equivalently,wemay formulate the semi-weak saddle point finite element
problem (4.14) as a weakly coercive elliptic problem and apply Babuška theorem to
obtain similar finite element error estimate.

6.3 Reduced basis approximation error

In addition to the a posteriori error bound �r obtained in section 5.3, we present some
results about a priori error estimate for reduced basis approximation following those
obtained in [5,12].

Thanks to the analytic regularity in Theorem 3.2, we have a priori error estimate
for reduced basis solution of (5.1) when � ⊂ R [12]

Er (y) := ||uh(y) − ur (y)||X ≤ Cr exp(−r Nr ), (6.12)
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where r is defined as in (6.4) for a single dimension, the constant Cr is bounded by

Cr ≤ max
z∈�(�;τ)

||u(z)||X. (6.13)

As in multidimensional case, the error estimate has been obtained via Kolmogorov
N -width defined in an abstract Hilbert space X as [5]

dN (�; X) := inf
XN⊂X

sup
y∈�

inf
wN∈XN

||v(y) − wN ||X , (6.14)

where XN is a N -dimensional subspace of X . We have the following result for Er [5]:
suppose that there exists M > 0 such that d0(�) ≤ M ; moreover, suppose that there
exist two positive constants c1 > 0, c2 > 0, such that

if dNr (�;Xh) ≤ M exp(−c1N
c2
r ) then Er ≤ c5M exp(−c3N

c4
r ), (6.15)

where c4 = c2/(c2 + 1), c3 > 0, c5 > 0 depend only on c1, c2 and c6 > 0, which
measures the sharpness of the reduced basis error bound in (5.17), i.e.

c6�r (y) ≤ ||uh(y) − ur (y)||X, (6.16)

where c6 is the same constant appearing in (5.12).

Remark 6.3 The result (6.15) implies that whenever the error of the best possible
approximation decays exponentially, the reduced basis error also enjoys an exponential
decay with rate depending on the sharpness of the greedy algorithm (6.16).

6.4 Global error estimate

With the individual error estimate presented above, we obtain the global error estimate
in the following theorem.

Theorem 6.1 Under Assumption 1, 2 and 3, for any given y ∈ �, by finite element
approximation and reduced basis approximation we have

||u(y) − ur (y)||X ≤ Eh(y) + Er (y). (6.17)

Moreover, the error for evaluation of the expectation using stochastic collocation
method, finite element method and weighted reduced basis method can be bounded by

||E[u] − E[ur ]||X ≤ Ee
s + max

y∈Hα(q,N )
Eh(y) + max

y∈Hα(q,N )
Er (y), (6.18)

where α = 1 when using the isotropic sparse grid stochastic collocation method.
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Proof The proof is straightforward by applying triangular inequality as follows:

||u(y)−ur (y)||X ≤ ||u(y)−uh(y)||X +||uh(y)−ur (y)||X ≤ Eh(y)+Er (y). (6.19)

Similarly, we have the error estimate for the expectation of the optimal solution as

||E[u] − E[ur ]||X ≤ ||E[u] − E[us]||X + ||E[us] − E[uh]||X + ||E[uh] − E[ur ]||X
≤ Ee

s + ||us − uh ||L2
ρ(�;X) + ||uh − ur ||L2

ρ(�;X)

≤ Ee
s + max

y∈Hα(q,N )
Eh(y) + max

y∈Hα(q,N )
Er (y). (6.20)

��
We remark that Er (y) is bounded by �r (y), explicitly computed at y ∈ Hα(q, N ).

7 Numerical experiments

In this section, we perform two numerical experiments in testing reduced basis
approximation error and stochastic collocation approximation error with sparse grid
techniques in isotropic and anisotropic settings. The aim is to demonstrate the effi-
ciency of the proposed reduced basis method in solving constrained optimization
problem (2.14). Numerical examples for verifying finite element approximation error
in a similar context can be found in [11].

We consider a two dimensional physical domain D = (0, 1)2. The observation data
is set as in [24], ud = (ud1, ud2) and pd = 0, where ud1(x) = ∂x2(φ(x1)φ(x2))/10
and ud2(x) = −∂x1(φ(x1)φ(x2))/10 with φ(ξ) = (1 − cos(0.8πξ))(1 − ξ)2, ξ ∈
[0, 1]. The random viscosity ν is given as in (2.10) which can be transformed as

ν(yν) = 1

2

Nν∑

n=0

νn + 1

2Nν

Nν∑

n=1

(νn − ν0)y
ν
n , (7.1)

where yν ∈ �ν = [−1, 1]Nν corresponding to Nν uniformly distributed random
variables. We set ν0 = 0.01, νn = ν0/2n and use Nν = 3 for both the isotropic
and anisotropic tests without loss of generality. Homogeneous Dirichlet boundary
condition is imposed on the upper, lower and left edge. Random Neumann boundary
condition is imposed on the right edge as given in (2.11) on the Neumann boundary,
more explicitly, we set h(x, yh) = (h1(x2, yh), 0) with

h1(x2, y
h) = 1

10

⎛

⎝
(√

πL

2

)1/2

yh1 +
Nh∑

n=1

√
λn

(
sin(nπx2)y

h
2n + cos(nπx2)y

h
2n+1

)
⎞

⎠,

(7.2)
which comes from truncation of Karhunen-Loève expansion of a Gauss covariance
field with correlation length L = 1/16 [39]; the eigenvalues λn, 1 ≤ n ≤ Nh are
given by
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Table 1 The number of samples selected by multilevel greedy Algorithm 1 with different tolerance εtol
in each of the sparse grid level; the value in (·) reports the number of potential/candidate samples

Tolerance\level q − N = 0 q − N = 1 q − N = 2 q − N = 3 In total

# Nodes 1 21 221 1581 1581

εtol = 10−1 1 (1) 6 (14) 1 (21) 0 (0) 8 (36)

εtol = 10−2 1 (1) 8 (20) 7 (80) 4 (28) 20 (129)

εtol = 10−3 1 (1) 9 (20) 13 (86) 5 (62) 28 (169)

εtol = 10−4 1 (1) 9 (20) 18 (90) 9 (67) 37 (178)

εtol = 10−5 1 (1) 10 (20) 22 (90) 14 (105) 47 (216)

λn = √
πL exp

(
−(nπL)2/4

)
; (7.3)

yhn , 1 ≤ n ≤ 2Nh +1 are uncorrelated random variables with zero mean and unit vari-
ance (which will be specified in the following subsections), which are independent
of yν . Therefore, the random input are y = (yν, yh), living in N = Nν + 2Nh + 1
dimensional probability space. As for the specification of the finite element approxi-
mation, we use P1 element for pressure space and P2 element for velocity and control
space with 1342 elements in total. We set the regularization parameter α = 0.01.

7.1 Isotropic case

In the first experiment, we set yhn , 1 ≤ n ≤ 2Nh +1 with Nh = 3 as independent stan-
dard normal random variables (thus the total stochastic dimension N = 10), and apply
isotropic sparse grid stochastic collocation method with Gauss-Legendre abscissa for
the collocation of yν and Gauss-Hermite abscissa for the collocation of yh . In the mul-
tilevel greedy algorithm 1, we set the tolerance εtol = 10−1, 10−2, 10−3, 10−4, 10−5,
and the interpolation level q−N = 0, 1, 2, 3 in the isotropic sparse grid Smolyak for-
mula (4.3). A uniformly lower bound of the inf-sup constantβLB

c = 0.1436 (computed
at the minimum νmin) is used. The results for reduced basis construction is reported
in Table 1. The number of collocation nodes in each level is shown in the second row;
the number of new bases in each level and the samples whose weighted error bound
�ρ

r is larger than the tolerance εtol , which may be selected to construct new bases
(potential samples), are shown in the brackets; from this result we can see that the
number of reduced bases is much less than that of collocation nodes. For example,
with the smallest tolerance εtol = 10−5, we only need 1, 10, 22, 14 new bases in each
level, respectively, resulting in 47 bases in total out of 1581 collocation nodes.

Figure 1 (left) displays theweighted error bound�ρ
r and the true error of the reduced

basis approximation in each level of the construction with tolerance εtol = 10−5, from
which we can see that the error bound is accurate and relatively sharp, providing good
estimate of the true error with cheap computation. Note that the error bound and the
true error monotonically decrease in one sparse grid level and jump (at Nr = 11, 33)
to a higher value when go to the next sparse grid level due to that new training samples
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Fig. 1 Left, weighted error bound �ρ
r and true error of the reduced basis approximation at the selected

samples; right expectation error at different levels with different tolerance εtol

are tested. On the right of Fig. 1 we plot the expectation error (in L2
ρ(�;X) norm)

due to the reduced basis approximation using quadrature formula based on sparse grid
of different levels, where the expectation error is defined as (with the reference value
computed from the 4th level of the sparse grid)

exp. error = |||us||L2
ρ(�;X) − ||ur ||L2

ρ(�;X)| = |(E[||us||2X])1/2 − (E[||ur ||2X])1/2|.
(7.4)

Note that the “true” value of ||u||L2
ρ(�;X) is approximated by the finite element solution

uh computed at the deepest level q − N = 3. From this figure, different accuracy with
different εtol can be observed, implying that decreasing tolerance for the construction
of the reduced basis space results in more accurate evaluation of statistics of the
solution. How to balance the reduced basis approximation error (by choice of εtol ) and
the sparse grid quadrature error (by choice of q−N ) is subject to further investigation.

7.2 Anisotropic case

In the second experiment, we solve the constrained optimization problem (2.14) in
high-dimensional probability space by combination of the anisotropic sparse grid
techniques and the multilevel weighted reduced basis method. We set yhn , 1 ≤ n ≤
Nh in (7.2) with Nh = 3, 8, 13, 18, 48 as uniformly distributed random variables,
thus leading to N = 10, 20, 30, 40, 100 stochastic dimensions in total. The weight
parameter α is chosen a priori according to [38] in the following conservative way

αn = 1

2
log

(

1 + 2τn
|�n|

)

, with τn = 1

4
√

λn
, 1 ≤ n ≤ Nh . (7.5)

We remark that for amore general randomfield where α is difficult to be obtained from
a priori estimate, we may use a posteriori estimate by fitting a empirical convergence
rate in each dimension [38], or use dimension-adaptive approachwhich determines the
weight automatically [20]. The sparse grid level is chosen as q − N = 0, 1, 2, 3, 4. As
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Table 2 The number of samples selected by multilevel greedy Algorithm 1 in each of the sparse grid level
with different dimensions; the value in (·) reports the number of samples potential as new bases

Dimension\level q − N = 1 q − N = 2 q − N = 3 q − N = 4 In total

N = 10 5 (10) 13 (40) 19 (85) 10 (100) 48 (236)

# Nodes 11 71 401 2141 2141

N = 20 5 (10) 21 (60) 36 (205) 15 (204) 78 (480)

# Nodes 11 91 1021 12121 12121

N = 40 5 (10) 25 (92) 47 (397) 19 (432) 97 (932)

# Nodes 11 123 2381 40769 40769

N = 100 5 (10) 25 (92) 47 (397) 19 (436) 97 (936)

# nodes 11 123 2393 41349 41349
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Fig. 2 Left plot of the weighted error bound �ρ
r and true error of the reduced basis approximation at the

selected samples with N = 100; right expectation error of different dimensions

for the tolerance for the construction of the reduced basis space, we use εtol = 10−5.
The results for the construction of the reduced basis space with different dimension N
and different sparse grid level q − N (results for q − N = 0 are the same as in Table
1, thus omitted here) are presented in Table 2. Similar conclusion as for results in the
isotropic case in Table 1 can be drawn for those in the anisotropic case in Table 2. For
example, when N = 40, only 97 samples out of 40479 are used for the construction of
the reduced basis space, thus resulting in only 97 full solve the finite element problem
(4.21) instead of 40479, which considerably reduces the total computational cost. This
observation holds even in the 100 dimensional case. Moreover, the number of nodes
of sparse grid and the number of reduced bases increase as the dimension increase
when N is small, see the change from 10 to 40. However, they stay almost the same
when N becomes large, see the change from 40 to 100, which indicates that out of
100 random variables, the first 40 play the most important role on the impact of the
stochastic optimal solution when we set sparse grid level at q − N = 4.

On the left of Fig. 2, we plot the weighted a posteriori error bound �ρ
r and the

true error of the reduced basis approximation at each sparse grid level with stochastic
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dimension N = 100. We can observe that the error bound is indeed accurate and
sharp for the high-dimensional case, especially when the reduced basis space become
large. The right of Fig. 2 depicts the expectation error at different sparse grid level. We
show the expectation error with the “true” expectation for each stochastic dimension
computed the same as in the isotropic sparse grid case, from which we can see that
the expectation error converges with an algebraic rate that verifies the error estimate
in Sect. 6. Moreover, the error becomes very small at around 4 × 104 nodes for the
100 dimensional problem by anisotropic sparse grid technique, which would need
around 7× 107 nodes for isotropic sparse grid technique at the same sparse grid level
q − N = 4. Furthermore, we can observe that no “plateau” (flattening) of expectation
error appears as in Fig. 1, demonstrating that the multilevel reduced basis method is
very efficient in producing the accurate statistics of the stochastic optimal solution
even when the number of the reduced bases shown in Table 2 remains critically small
(around 97 for high dimensions).

We remark that we did not take the finite element error into consideration in our
numerical experiments. In order to balance the contribution of different errors in
the global error estimate (6.17), further efficient adaptive algorithms, not only in
stochastic/parameter space but also in physical space, need to be developed.

8 Concluding remarks

This paper addressed several computational challenges by developing new algorithms
for the solution of stochastic optimal control problems, in particular constrained by
Stokes equations. These include curse-of-dimensionality, ill-conditioned and cou-
pled optimality system, and heavy computational cost. We proved that under suitable
assumptions on the regularity of the random input data, the optimality solution of an
optimal control problem is smooth with respect to the parameters and can be ana-
lytically extended to a complex region. This result, though obtained only for Stokes
equations, can be proven by following the same arguments to hold formore general lin-
ear systems that satisfy the necessary inf-sup condition. Based on the smoothness of the
optimality solution, we developed a computational strategy using adaptive sparse grid
andmodel order reduction techniques for the solution of the stochastic optimal control
problems. In particular we proposed a multilevel and weighted reduced basis method,
which was proven to be very efficient by two numerical experiments, especially for
high-dimensional and large-scale problems requiring a large number of samples and
heavy computational cost for a full solve of the optimization problem at each sample.
Further study on more general statistical cost functional, adaptive scheme to balance
various computational errors and applications to practical flow control problems are
ongoing.
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Appendix

We follow the analysis of a general saddle point problem in Ch. 16.3.2 of [41] to prove
a variation of the Brezzi theorem that has been used to prove (3.9) and (3.14). Let us
introduce the affine manifold

Xσ = {v ∈ X : B(v, μ) = (σ, μ) ∀μ ∈ M}, (8.1)

and the kernal of B as

X0 = {v ∈ X : B(v, μ) = 0 ∀μ ∈ M}, (8.2)

where we specify X = V × Q × G with element v = {v, q, g}, and M = V × Q
with element μ = {v, q} in our particular case. Moreover, we specify σ and l such
that < σ,μ > = r.h.s.(3.8)2 and < l, v > = r.h.s.(3.8)1. We can therefore associate
(3.8) with the following reduced problem

find u ∈ Xσ such that A(u, v) = < l, v > ∀v ∈ X0. (8.3)

Thanks to the inf-sup condition of B, we can infer that there exists a unique function
uσ ∈ (X0)⊥ such that B(uσ , μ) =< σ,μ > ∀μ ∈ M . Moreover, since

| < σ,μ > | = |(hτ , v)∂DN − (ντ (y)∇u,∇v)| ≤
(

||hτ ||H + |ντ (y)|
ν(ȳ)

||u||V
)

||v||V ,

(8.4)
we obtain (by denoting the inf-sup constant of B as β∗)

||uσ ||X ≤ 1

β∗

(

||hτ ||H + ντ (y)

ν(ȳ)
||u||V

)

. (8.5)

The reduced problem (8.3) can therefore be restated as

find ũ ∈ X0 such that A(ũ, v) =< l, v > −A(uσ , v) ∀v ∈ X0. (8.6)

Thanks to the coercivity and continuity ofA, existence and uniqueness of the solution
ũ follow by the Lax-Milgram theorem. Moreover, since

| < l, v > | = | − (ντ (y)∇ua,∇va)| ≤ |ντ (y)|
ν(ȳ)

||ua ||V ||va ||V , (8.7)

we obtain (by denoting the coercivity and continuity constants of A as α and γ )

||ũ||X ≤ 1

α

( |ντ (y)|
ν(ȳ)

||ua ||V + γ ||uσ ||X
)

(8.8)
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Therefore, the solution u can be bounded by

||u||X ≤ ||uσ ||X + ||ũ||X ≤ 1

α

|ντ (y)|
ν(ȳ)

||ua ||V + α + γ

αβ∗

(

||hτ ||H + ντ (y)

ν(ȳ)
||u||V

)

.

(8.9)
Let A be such that < Au, v > = A(u, v)∀u ∈ Xσ , v ∈ X0; we can restate (8.3) as
< Au − l, v > = 0 ∀v ∈ X0. It follows that (Au − l) ∈ X0

polar , where X0
polar is the

polar set of X0 defined as X0
polar = {g ∈ X ′ :< g, v > = 0 ∀v ∈ X0}. Therefore,

there exists a unique η ∈ M such that−B(v, η) = < Au− l, v > ∀v ∈ X . Moreover,

||η||M ≤ 1

β∗

(

γ ||u||X + |ντ (y)|
ν(ȳ)

||ua ||V
)

≤ α + γ

αβ∗
|ντ (y)|
ν(ȳ)

||ua ||V + γ (α + γ )

α(β∗)2

(

||hτ ||H + ντ (y)

ν(ȳ)
||u||V

)

. (8.10)

We can identify the constants in (3.1) as

α1 = 1

α
; α2 = α + γ

αβ∗ ; β1 = α + γ

αβ∗ ; β2 = γ (α + γ )

α(β∗)2
. (8.11)
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