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Abstract Gradient schemes is a framework that enables the unified convergence
analysis ofmany numerical methods for elliptic and parabolic partial differential equa-
tions: conforming and non-conforming finite element, mixed finite element and finite
volume methods. We show here that this framework can be applied to a family of
degenerate non-linear parabolic equations (which contain in particular the Richards’,
Stefan’s and Leray–Lions’ models), and we prove a uniform-in-time strong-in-space
convergence result for the gradient scheme approximations of these equations. In
order to establish this convergence, we develop several discrete compactness tools
for numerical approximations of parabolic models, including a discontinuous Ascoli–
Arzelà theorem and a uniform-in-time weak-in-space discrete Aubin–Simon theorem.
The model’s degeneracies, which occur both in the time and space derivatives, also
requires us to develop a discrete compensated compactness result.
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1 Introduction

1.1 Motivation

The following generic nonlinear parabolic model

∂tβ(u) − div (a(x, ν(u),∇ζ(u))) = f in � × (0, T ),

β(u)(x, 0) = β(uini)(x) in �,

ζ(u) = 0 on ∂� × (0, T ),

(1)

where β and ζ are non-decreasing, ν is such that ν′ = β ′ζ ′ and a is a Leray–Lions
operator, arises in various frameworks (see next section for precise hypotheses on the
data). This model includes

1. TheRichardsmodel, setting ζ(s) = s, ν =β and a(x, ν(u),∇ζ(u)) = K (x, β(u))

∇u, which describes the flow of water in a heterogeneous anisotropic underground
medium,

2. The Stefan model [8], setting β(s) = s, ν = ζ , a(x, ν(u),∇ζ(u)) = K (x, ζ(u))

∇ζ(u), which arises in the study of a simplified heat diffusion process in a melting
medium,

3. The p-Laplaceproblem, settingβ(s) = ζ(s) = ν(s) = s and a(x, ν(u),∇ζ(u)) =
|∇u|p−2∇u, which is involved in the motion of glaciers [37] or flows of incom-
pressible turbulent fluids through porous media [16].
General Leray–Lions operators a(x, s, ξ) have growth, monotony and coerciv-
ity properties [see (2f)–(2h) below] which ensure that −div(a(x, w,∇·)) maps
W 1,p

0 (�) intoW−1,p′
(�), and thanks to which this differential operator is viewed

as a generalisation of the p-Laplace operator.

The numerical approximation of these models has been extensively studied in the
literature—see the fundamental work on the Stefan’s problem [48] and [30,51] for
some of its numerical approximations, [33,46] for the Richards’ problem, and [19,23]
and references therein for some studies of convergence of numerical methods for the
Leray–Lions’ problem. In [52], fully discrete implicit schemes are considered in 2D
domains for the problem ∂t e − �u = f , e ∈ β(u) with β a maximal monotone
operator; error estimates are obtained and the results are relevant, e.g., for the Stefan
problem and the porous medium equation.

More generally, studies have been carried out on numerical time-stepping approx-
imations of non-linear abstract parabolic equations. In [43] the authors study the
stability and convergence properties of linearised implicit methods for the time dis-
cretization of nonlinear parabolic equations in the general framework ofHilbert spaces.
The time discretisation of nonlinear evolution equations in an abstract Banach space
setting of analytic semigroups is studied in [38]; this setting covers fully nonlinear
parabolic initial-boundary value problems with smooth coefficients. [3] deals with a
general formulation for semi-discretisations of linear parabolic evolution problems
in Hilbert spaces; this time-stepping formulation encompasses continuous and dis-
continuous Galerkin methods, as well as Runge Kutta methods. The study in [3] has
been extended in [2] to semi-linear equations, i.e. with the addition of a right-hand
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Uniform-in-time convergence of numerical… 723

side which is locally Lipschitz-continuous with respect to the unknown. In the same
directions, we also quote [39,42,44,45,49] for Runge-Kutta time discretizations of lin-
ear and quasilinear parabolic equations (reaction-diffusion, Navier–Stokes equations,
etc.). Multisteps methods have also been considered, see e.g. [50].

However, most of these studies are only applicable under regularity assumptions on
the solution or data, and to semi-linear equations or semi-discretised schemes. None
deals with as many non-linearities and degeneracies as in (1). Moreover, the results in
these works mostly yield space-time averaged convergences, e.g. in L2(� × (0, T )).
Yet, the quantity of interest is often not u on � × (0, T ) but u at a given time, for
example t = T . Current numerical analyses therefore do not ensure that this quantity
of interest is properly approximated by numerical methods.

The usual way to obtain pointwise-in-time approximation results for numerical
schemes is to prove estimates in L∞(0, T ; L2(�)) on u − u, where u is the approx-
imated solution. Establishing such error estimates is however only feasible when
uniqueness of the solution u to (1) can be proved, which is the case for Richards’
and Stefan’s problems (with K only depending on x), but not for more complex non-
linear parabolic problems as (1) or even p-Laplace problems. It moreover requires
some regularity assumptions on u, which clearly fail to hold for (1) (and simpler p-
Laplace problems); indeed, because of the possible plateaux of β and ζ , the solution’s
gradient can develop jumps.

The purpose of this article is to prove that, using Discrete Functional Analysis tech-
niques (i.e. the translation to numerical analysis of nonlinear analysis techniques),
an L∞(0, T ; L2(�)) convergence result can be established for numerical approx-
imations of (1), without having to assume non-physical regularity assumptions on
the data. Note that, although Richards’ and Stefan’s models are formally equiva-
lent when β and ζ are strictly increasing (consider β = ζ−1 to pass from one
model to the other), they change nature when these functions are allowed to have
plateaux. Stefan’s model can degenerate to an ODE (if ζ is constant on the range of
the solution) and Richards’ model can become a non-transient elliptic equation (if β is
constant on this range). The innovative technique we develop in this paper is nonethe-
less generic enough to work directly on (1) and with a vast number of numerical
methods.

That being said, a particular numerical framework must be selected to write precise
equations and estimates. The framework we choose is that of gradient schemes, which
has the double benefit of covering a vast number of numerical methods, and of hav-
ing already been studied for many models—elliptic, parabolic, linear or non-linear,
possibly degenerate, etc.—with various boundary conditions. The schemes or family
of schemes included in the gradient schemes framework, and to which our results
therefore directly apply, currently are:

• Galerkin methods, including conforming finite element schemes,
• finite element with mass lumping [12],
• the Crouzeix–Raviart non-conforming finite element, with or without mass lump-
ing [14,27],

• the Raviart–Thomas mixed finite elements [9],
• the vertex approximate gradient scheme [31],
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724 J. Droniou, R. Eymard

• the hybrid mimetic mixed family [22], which includes mimetic finite differences
[10], mixed finite volume [20] and the SUSHI scheme [29],

• the discrete duality finite volume scheme in dimension 2 [5,40], and the CeVeFE-
discrete duality finite volume scheme in dimension 3 [13],

• the multi-point flux approximation O-method [1,25].

We refer the reader to [21,23,28,32,34] for more details. Let us finally emphasize that
the unified convergence study of numerical schemes for Problem (1), which combines
a general Leray–Lions operator and nonlinear functions β or ζ , seems to be new even
without the uniform-in-time convergence result.

The paper is organised as follows. In Sect. 1.2, we present the assumptions and the
notion of weak solution for (1) and, in Sect. 1.3, we give an overview of the ideas
involved in the proof of uniform-in-time convergence. This overview is given not in
a numerical analysis context but in the context of a pure stability analysis of (1) with
very little regularity on the data, for which the uniform-in-time convergence result also
seems to be new. Section 2 presents the gradient schemes for our generic model (1).
We give in Sect. 3 some preliminaries to the convergence study, in particular a crucial
uniform-in-time weak-in-space discrete Aubin–Simon compactness result. Section 4
contains the complete convergence proof of gradient schemes for (1), including the
uniform-in-time convergence result. This proof is initially conducted under a simpli-
fying assumption on β and ζ . We demonstrate in Sect. 5 that, in the case p ≥ 2, this
assumption can be removed thanks to a discrete compensated compactness result. We
also remark in this section that our results apply to the model considered in [52]. An
appendix concludes the article with technical results, in particular a generalisation of
the Ascoli–Arzelà compactness result to discontinuous functions and a characterisa-
tion of the uniform convergence of a sequence of functions; these results are critical
to establishing our uniform-in-time convergence result. We believe that the discrete
functional analysis results we establish in order to study the approximations of (1)—in
particular the discrete compensated compactness theorem (Theorem 5.4)—could be
critical to the numerical analysis of other degenerate or coupled models of physical
importance.

Note that the main results and their proofs have been sketched and illustrated by
some numerical examples in [24], for a(x, ν(u),∇ζ(u)) = ∇ζ(u) and β = Id or
ζ = Id.

1.2 Hypotheses and weak sense for the continuous problem

We consider the evolution problem (1) under the following hypotheses.

� is an open bounded subset of Rd(d ∈ N
�) and T > 0, (2a)

ζ ∈ C0(R) is non-decreasing, Lipschitz continuous with Lipschitz constant Lζ > 0,
ζ(0) = 0 and, for some M0, M1 > 0, |ζ(s)| ≥ M0|s| − M1 for all s ∈ R. (2b)

β ∈ C0(R) is non-decreasing, Lipschitz continuous with Lipschitz constant Lβ > 0,
and β(0) = 0. (2c)
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∀s ∈ R, ν(s) =
∫ s

0
ζ ′(q)β ′(q)dq. (2d)

a : � × R × R
d → R

d is a Carathéodory function (2e)

[i.e. a function such that, for a.e. x ∈ �, (s, ξ) 	→ a(x, s, ξ ) is continuous and, for
any (s, ξ) ∈ R × R

d , x 	→ a(x, s, ξ) is measurable] and, for some p ∈ (1,+∞),

∃a ∈ (0,+∞) : a(x, s, ξ) · ξ ≥ a|ξ |p, for a.e. x ∈ �, ∀s ∈ R, ∀ξ ∈ R
d , (2f)

(a(x, s, ξ) − a(x, s,χ)) · (ξ − χ) ≥ 0, for a.e. x ∈ �, ∀s ∈ R, ∀ξ ,χ ∈ R
d ,

(2g)

∃a ∈ L p′
(�), ∃μ ∈ (0,+∞) : |a(x, s, ξ)| ≤ a(x) + μ|ξ |p−1,

for a.e. x ∈ �, ∀s ∈ R, ∀ξ ∈ R
d . (2h)

We also assume, setting p′ = p
p−1 the dual exponent of the p previously introduced,

uini ∈ L2(�), f ∈ L p′
(� × (0, T )). (2i)

We denote by Rβ the range of β and define the pseudo-inverse function βr : Rβ → R

of β by

∀s ∈ Rβ, βr (s) =
⎧⎨
⎩
inf{t ∈ R | β(t) = s} if s > 0,
0 if s = 0,
sup{t ∈ R | β(t) = s} if s < 0,

= closest t to 0 such that β(t) = s.

(3)

Since β(t) has the same sign as t , we have βr ≥ 0 on Rβ ∩R
+ and βr ≤ 0 on Rβ ∩R

−.
We then define B : Rβ → [0,∞] by

B(z) =
∫ z

0
ζ(βr (s)) ds.

Since βr is non-decreasing, this expression is always well-defined in [0,∞). The
signs of βr and ζ ensure that B is non-decreasing on Rβ ∩R

+ and non-increasing on
Rβ ∩R

−, and therefore has limits (possibly +∞) at the endpoints of Rβ . We can thus
extend B as a function defined on Rβ with values in [0,+∞].

The precise notion of solution to (1) that we consider is the following:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u ∈ L p(0, T ; L p(�)), ζ(u) ∈ L p(0, T ;W 1,p
0 (�)),

B(β(u)) ∈ L∞(0, T ; L1(�)), β(u) ∈ C([0, T ];
L2(�)−w), ∂tβ(u)∈ L p′

(0, T ;W−1,p′
(�)),

β(u)(·, 0) = β(uini) in L2(�),∫ T

0
〈∂tβ(u)(·, t), v(·, t)〉

W−1,p′ ,W 1,p
0

dt

+
∫ T

0

∫
�

a(x, ν(u(x, t)),∇ζ(u)(x, t)) · ∇v(x, t)dxdt

= ∫ T0
∫
�

f (x, t)v(x, t)dxdt, ∀v ∈ L p(0; T ;W 1,p
0 (�)).

(4)
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726 J. Droniou, R. Eymard

where C([0, T ]; L2(�)−w) denotes the space of continuous functions [0, T ] 	→
L2(�) for the weak-∗ topology of L2(�). Here and in the following, we remove
the mention of � in the duality bracket 〈·, ·〉

W−1,p′ ,W 1,p
0

= 〈·, ·〉
W−1,p′ (�),W 1,p

0 (�)
.

Remark 1.1 The derivative ∂tβ(u) is to be understood in the usual sense of dis-
tributions on � × (0, T ). Since the set T = {∑q

i=1 ϕi (t)γi (x) : q ∈ N, ϕi ∈
C∞
c (0, T ), γi ∈ C∞

c (�)} of tensorial functions in C∞
c (� × (0, T )) is dense in

L p(0, T ;W 1,p
0 (�)), one can ensure that this distribution derivative ∂tβ(u) belongs to

L p′
(0, T ;W−1,p′

(�)) = (L p(0, T ;W 1,p
0 (�)))′ by checking that the linear form

ϕ ∈ T 	→ 〈∂tβ(u), ϕ〉D′,D = −
∫ T

0

∫
�

β(u)(x, t)∂tϕ(x, t)dxdt

is continuous for the norm of L p(0, T ;W 1,p
0 (�)).

Note that the continuity property of β(u) in (4) is natural. Indeed, since β(u) ∈
L∞(0, T ; L2(�)) [this comes from B(β(u)) ∈ L∞(0, T ; L1(�)) and (26)], the PDE
in the sense of distributions shows that for any ϕ ∈ C∞

c (�) the mapping Tϕ : t 	→
〈β(u)(t), ϕ〉L2 belongs to W 1,1(0, T ) ⊂ C([0, T ]). By density of C∞

c (�) in L2(�)

and the integrability properties of β(u), we deduce that Tϕ ∈ C([0, T ]) for any ϕ ∈
L2(�), which precisely establishes the continuity of β(u) : [0, T ] → L2(�)−w.

This notion of β(u) as a function continuous in time is nevertheless a subtle one.
It is to be understood in the sense that the function (x, t) 	→ β(u(x, t)) has an
a.e. representative which is continuous [0, T ] 	→ L2(�)−w. In other words, there
is a function Z ∈ C([0, T ]; L2(�)−w) such that Z(t)(x) = β(u(x, t)) for a.e.
(x, t) ∈ � × (0, T ). We must however make sure, when dealing with pointwise
values in time, to separate Z from β(u(·, ·)) as β(u(·, t1)) may not make sense for a
particular t1 ∈ [0, T ]. That being said, in order to adopt a simple notation, we will
denote by β(u)(·, ·) the function Z , and by β(u(·, ·)) the a.e.-defined composition of
β and u. Hence, it will make sense to talk about β(u)(·, t) for a particular t1 ∈ [0, T ],
and we will only write β(u)(x, t) = β(u(x, t)) for a.e. (x, t) ∈ �× (0, T ). Note that
from this a.e. equality we can ensure that β(u)(·, ·) takes its values in the closure Rβ

of the range of β.

1.3 General ideas for the uniform-in-time convergence result

As explained in the introduction, the main innovative result of this article is the
uniform-in-time convergence result (Theorem 2.16 below). Although it’s stated and
proved in the context of numerical approximations of (1), we emphasize that the
ideas underlying its proof are also applicable to theoretical analysis of PDEs. Let us
informally present these ideas on the following continuous approximation of (1):

∂tβ(uε) − div (aε(x, ν(uε),∇ζ(uε))) = f in � × (0, T ),

β(uε)(x, 0) = β(uini)(x) in �,

ζ(uε) = 0 on ∂� × (0, T )

(5)
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Uniform-in-time convergence of numerical… 727

where aε satisfies Assumptions (2e)–(2h) with constants not depending on ε and, as
ε → 0, aε → a locally uniformly with respect to (s, ξ).

Wewant to show here how to deduce from averaged convergences a strong uniform-
in-time convergence result. We therefore assume the following convergences (up to a
subsequence as ε → 0), which are compatible with basic compactness results that can
be obtained on (uε)ε and also correspond to the initial convergences (18) on numerical
approximations of (1):

β(uε)→β(u) in C([0, T ]; L2(�)−w), ν(uε)→ν(u) strongly in L1(� × (0, T )),

ζ(uε) → ζ(u) weakly in L p(0, T ;W 1,p
0 (�)),

aε(·, ν(uε),∇ζ(uε)) → a(·, ν(u),∇ζ(u)) weakly in L p′
(� × (0, T ))d .

(6)
We will prove from these convergences that, along the same subsequence, ν(uε) →
ν(u) strongly in C([0, T ]; L2(�)), which is our uniform-in-time convergence result.

We start by noticing that the weak-in-space uniform-in-time convergence of β(uε)

gives, for any T0 ∈ [0, T ] and any family (Tε)ε>0 converging to T0 as ε → 0,
β(uε)(Tε, ·) → β(u)(T0, ·) weakly in L2(�). Classical strong-weak semi-continuity
properties of convex functions (see Lemma 3.4) and the convexity of B (see Lemma
3.3) then ensure that

∫
�

B(β(u)(x, T0))dx ≤ lim inf
ε→0

∫
�

B(β(uε)(x, Tε))dx. (7)

The second step is to notice that, by (2g) for aε,

∫ Tε

0

∫
�

[aε(·, ν(uε),∇ζ(uε)) − aε(·, ν(uε),∇ζ(u))] · [∇ζ(uε) − ∇ζ(u)] dxdt ≥ 0.

Developing this expression and using the convergences (6), we find that

lim inf
ε→0

∫ Tε

0

∫
�

aε(·, ν(uε),∇ζ(uε)) · ∇ζ(uε)(x, t)dxdt

≥
∫ T0

0

∫
�

a(·, ν(u),∇ζ(u)) · ∇ζ(u)dxdt. (8)

We then establish the following formula:

∫
�

B(β(uε(x, Tε)))dx +
∫ Tε

0

∫
�

aε(x, ν(uε(x, t)),∇ζ(uε)(x, t)) · ∇ζ(uε)(x, t)dxdt

=
∫

�

B(β(uini(x)))dx +
∫ Tε

0

∫
�

f (x, t)ζ(uε)(x, t)dxdt. (9)

This energy equation is formally obtained by multiplying (5) by ζ(uε) and integrating
by parts, using (B ◦ β)′ = ζβ ′ (see Lemma 3.3); the rigorous justification of (9) is
however quite technical – see Lemma 3.6 and Corollary 3.8. Thanks to (8), we can
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728 J. Droniou, R. Eymard

pass to the lim sup in (9) and we find, using the same energy equality with (u, a, T0)
instead of (uε, aε, Tε),

lim sup
ε→0

∫
�

B(β(uε(x, Tε)))dx ≤
∫

�

B(β(u(x, T0)))dx. (10)

Combined with (7), this shows that
∫
�
B(β(uε(x, Tε)))dx → ∫

�
B(β(u(x, T0)))dx.

A uniform convexity property of B [see (28)] then allows us to deduce that
ν(uε(·, Tε)) → ν(u(·, T0)) strongly in L2(�) and thus that ν(uε) → ν(u) strongly in
C([0, T ]; L2(�)) (see Lemma 6.4).

Remark 1.2 A close examination of this proof indicates that equality in the energy
relation (9) is not required for uε. An inequality ≤ would be sufficient. This is partic-
ularly important in the context of numerical methods which may introduce additional
numerical diffusion (for example due to an implicit-in-time discretisation) and there-
fore only provide an upper bound in this energy estimate, see (42). It is however
essential that the limit solution u satisfies the equivalent of (9) with an equal sign
(or ≥).

2 Gradient discretisations and gradient schemes

2.1 Definitions

We give here a minimal presentation of gradient discretisations and gradient schemes,
limiting ourselves to what is necessary to study the discretisation of (1). We refer the
reader to [21,23,31] for more details.

A gradient scheme can be viewed as a general formulation of several discretisations
of (1), that are based on a nonconforming approximation of the weak formulation of
the problem. This approximation is constructed by using discrete space and mappings,
the set of which are called a gradient discretisation.

Definition 2.1 (Space-time gradient discretisation for homogeneousDirichlet bound-
ary conditions) We say thatD = (XD,0,�D,∇D, ID, (t (n))n=0,...,N ) is a space-time
gradient discretisation for homogeneous Dirichlet boundary conditions if

1. the set of discrete unknowns XD,0 is a finite dimensional real vector space,
2. the linear mapping �D : XD,0 → L∞(�) is a piecewise constant reconstruction

operator in the following sense: there exists a set I of degrees of freedom and a
family (�i )i∈I of disjoint subsets of � such that XD,0 = R

I , � = ⋃i∈I �i and,
for all u = (ui )i∈I ∈ XD,0 and all i ∈ I , �Du = ui on �i ,

3. the linear mapping∇D : XD,0 → L p(�)d gives a reconstructed discrete gradient.
It must be chosen such that ‖∇D · ‖L p(�)d is a norm on XD,0,

4. ID : L2(�) → XD,0 is a linear interpolation operator,
5. t (0) = 0 < t (1) < t (2) < · · · < t (N ) = T .

We then set δt (n+ 1
2 ) = t (n+1) − t (n) for n = 0, . . . , N − 1, and δtD =

maxn=0,...,N−1 δt (n+ 1
2 ). We define the dual semi-norm |w|�,D of w ∈ XD,0 by
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Uniform-in-time convergence of numerical… 729

|w|�,D = sup

{∫
�

�Dw(x)�Dz(x)dx : z ∈ XD,0, ||∇Dz||L p(�)d = 1

}
. (11)

Remark 2.2 (Boundary conditions)Other boundary conditions can be seamlessly han-
dled by gradient schemes, see [21].

Remark 2.3 (Nonlinear function of the elements of XD,0) LetD be a gradient discreti-
sation in the sense of Definition 2.1. For any χ : R 	→ R and any u = (ui )i∈I ∈ XD,0,
we define χI (u) ∈ XD,0 by χI (u) = (χ(ui ))i∈I . As indicated by the subscript I , this
definition depends on the choice of the degrees of freedom in XD,0. That said, these
degrees of freedom are usually canonical and the index I can be dropped. An impor-
tant consequence of the fact that �D is a piecewise constant reconstruction is the
following:

∀χ : R 	→ R, ∀u ∈ XD,0, �Dχ(u) = χ(�Du). (12)

It is customary to use the notations �D and ∇D also for space-time dependent
functions.Moreover,wewill need anotation for the jump-in-timeof piecewise constant
functions in time. Hence, if (v(n))n=0,...,N ⊂ XD,0, we set

for a.e. x ∈ �, �Dv(x, 0) = �Dv(0)(x) and, ∀n = 0, . . . , N − 1, ∀t ∈ (t (n), t (n+1)],
�Dv(x, t) = �Dv(n+1)(x), ∇Dv(x, t) = ∇Dv(n+1)(x)

and δDv(t) = δ
(n+ 1

2 )

D v := v(n+1) − v(n)

δt (n+ 1
2 )

∈ XD,0.

(13)
IfD = (XD,0,�D,∇D, ID, (t (n))n=0,...,N ) is a space-time gradient discretisation

in the sense of Definition 2.1, the associated gradient scheme for Problem (1) is
obtained by replacing in this problem the continuous space and mappings with their
discrete ones. Using the notations in Remark 2.3, the implicit-in-time gradient scheme
therefore consists in considering a sequence (u(n))n=0,...,N ⊂ XD,0 such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(0) = IDuini and, for all v = (v(n))n=1,...,N ⊂ XD,0,∫ T

0

∫
�

[�DδDβ(u)(x, t)�Dv(x, t)+a(x,�Dν(u)(x, t),

∇Dζ(u)(x, t)) · ∇Dv(x, t)] dxdt

=
∫ T

0

∫
�

f (x, t)�Dv(x, t)dxdt.

(14)

Remark 2.4 (Time-stepping) Scheme (14) is implicit-in-time because of the choice,
in the definitions of �D and ∇D in (13), of v(n+1) when t ∈ (t (n), t (n+1)]. As a
consequence, u(n+1) appears in a(x, ·, ·) in (14) for t ∈ (t (n), t (n+1)]. Instead of a
fully implicit method, we could as well consider a Crank–Nicolson scheme or any
scheme between those two (θ -scheme). This would consist in choosing θ ∈ [ 12 , 1]
and in replacing these terms u(n+1) with u(n+θ) = θu(n+1) + (1 − θ)u(n). All results
established here for (14) would hold for such a scheme. We refer the reader to the
treatment done in [23] for the details.
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2.2 Properties of gradient discretisations

In order to establish the convergence of the associated gradient schemes, sequences of
space-time gradient discretisations are required to satisfy four properties: coercivity,
consistency, limit-conformity and compactness.

Definition 2.5 (Coercivity) IfD is a space-time gradient discretisation in the sense of
Definition 2.1, the norm of �D is denoted by

CD = max
v∈XD,0\{0}

||�Dv||L p(�)

||∇Dv||L p(�)d
.

A sequence (Dm)m∈N of space-time gradient discretisations in the sense of Definition
2.1 is said to be coercive if there exists CP ≥ 0 such that, for any m ∈ N, CDm ≤ CP .

Definition 2.6 (Consistency) If D is a space-time gradient discretisation in the sense
of Definition 2.1, we define

∀ϕ ∈ L2(�) ∩ W 1,p
0 (�), ŜD(ϕ) = min

w∈XD,0

(||�Dw − ϕ||Lmax(p,2)(�)

+ ||∇Dw − ∇ϕ||L p(�)d
)
. (15)

A sequence (Dm)m∈N of space-time gradient discretisations in the sense of Definition
2.1 is said to be consistent if

• for all ϕ ∈ L2(�) ∩ W 1,p
0 (�), ŜDm (ϕ) → 0 as m → ∞,

• for all ϕ ∈ L2(�), �DmIDmϕ → ϕ in L2(�) as m → ∞, and
• δtDm → 0 as m → ∞.

Definition 2.7 (Limit-conformity) If D is a space-time gradient discretisation in the
sense of Definition 2.1 and W div,p′

(�) = {ϕ ∈ L p′
(�)d : divϕ ∈ L p′

(�)}, we
define

∀ϕ∈W div,p′
(�), WD(ϕ)= max

u∈XD,0\{0}

∣∣∣∣
∫

�

(∇Du(x) · ϕ(x)+�Du(x)divϕ(x)) dx

∣∣∣∣
‖∇Du‖L p(�)d

.

(16)
A sequence (Dm)m∈N of space-time gradient discretisations in the sense of Definition
2.1 is said to be limit-conforming if, for allϕ ∈ W div,p′

(�),WDm (ϕ) → 0 asm → ∞.

Remark 2.8 The convergences ŜDm → 0 on L2(�) ∩ W 1,p
0 (�) and WDm → 0 on

W div,p′
(�) only need to be checked on dense subsets of these spaces [21,31].

Definition 2.9 (Compactness) IfD is a space-time gradient discretisation in the sense
of Definition 2.1, we define

∀ξ ∈ R
d , TD(ξ) = max

v∈XD,0\{0}
||�Dv(· + ξ) − �Dv||L p(Rd )

||∇Dv||L p(�)d
,

where �Dv has been extended by 0 outside �.

123



Uniform-in-time convergence of numerical… 731

A sequence (Dm)m∈N of space-time gradient discretisations is said to be compact
if

lim
ξ→0

sup
m∈N

TDm (ξ) = 0.

We refer the reader to [21,23] for a proof of the following lemma.

Lemma 2.10 (Regularity of the limit) Let (Dm)m∈N be a sequence of space-time
gradient discretisations, in the sense of Definition 2.1, that is coercive and limit-
conforming in the sense of Definitions 2.5 and 2.7. Let, for any m ∈ N, vm =
(v

(n)
m )n=0,...,Nm ⊂ XDm ,0 be such that, with the notations in (13), (∇Dmvm)m∈N is

bounded in L p(� × (0, T ))d .
Then there exists v ∈ L p(0, T ;W 1,p

0 (�)) such that, up to a subsequence as m →
∞, �Dmvm → v weakly in L p(� × (0, T )) and ∇Dmvm → ∇v weakly in L p(� ×
(0, T ))d .

2.3 Main results

Uniform-in-time convergence of numerical solutions to schemes for parabolic equa-
tions starts with a weak convergence with respect to the space variable. This weak
convergence is then used to prove a stronger convergence. We therefore first recall a
standard definition related to the weak topology of L2(�) (we also refer the reader to
Proposition 6.5 in the appendix for a classical characterisation of the weak topology
of bounded sets in L2(�)).

Definition 2.11 (Uniform-in-time L2(�)-weak convergence) Let 〈·, ·〉L2(�) denote
the inner product in L2(�), let (um)m∈N be a sequence of functions [0, T ] → L2(�)

and let u : [0, T ] 	→ L2(�).
We say that (um)m∈N converges weakly in L2(�) uniformly on [0, T ] to u if, for

all ϕ ∈ L2(�), as m → ∞ the sequence of functions t ∈ [0, T ] → 〈um(t), ϕ〉L2(�)

converges uniformly on [0, T ] to the function t ∈ [0, T ] → 〈u(t), ϕ〉L2(�).

Our first theorem states weak or space-time averaged convergence properties of
gradient schemes for (1). These results have already been established for Leray-Lions’,
Richards’ and Stefan’s models, see [23,28,32]. The convergence proof we provide
afterwards however covers more non-linear model, and is more compact than the
previous proofs.

Theorem 2.12 (Convergence of gradient schemes) We assume (2) and we take a
sequence (Dm)m∈N of space-time gradient discretisations, in the sense of Definition
2.1, that is coercive, consistent, limit-conforming and compact (see Sect. 2.2). Then
for any m ∈ N there exists a solution um to (14) with D = Dm.

Moreover, if we assume that

(∀s ∈ R, β(s) = s) or (∀s ∈ R, ζ(s) = s), (17)
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then there exists a solution u to (4) such that, up to a subsequence, the following
convergences hold as m → ∞:

�Dmβ(um) → β(u) weakly in L2(�) uniformly on [0, T ] (see Definition 2.11),
�Dmν(um) → ν(u) strongly in L1(� × (0, T )),

�Dm ζ(um) → ζ(u) weakly in L p(� × (0, T )),

∇Dm ζ(um) → ∇ζ(u) weakly in L p(� × (0, T ))d .

(18)

Remark 2.13 Since |ν| ≤ Lζ |β| and |ν| ≤ Lβ |ζ |, the L∞(0, T ; L2(�)) bound on
�Dmβ(um) and the L p(� × (0, T )) bound on �Dm ζ(um) (see Lemma 4.1 and
Definition 2.5) shows that the strong convergence of �Dmν(um) is also valid in
Lq(0, T ; Lr (�)) for any (q, r) ∈ [1,∞)×[1, 2), any (q, r) ∈ [1, p)2 and, of course,
any space interpolated between these two cases.

Remark 2.14 We do not assume the existence of a solution u to the continuous prob-
lem, our convergence analysis will establish this existence.

Remark 2.15 Assumption (17) covers Richards’ and Stefan’s models, as well as many
other non-linear parabolic equations.Aswe prove in Sect. 5, this assumption is actually
not required if p ≥ 2. However, we first state and prove Theorem 2.12 under (17) in
order to simplify the presentation. See also Remark 2.19.

The main innovation of this paper is the following theorem, which states the
uniform-in-time strong-in-space convergence of numerical methods for fully non-
linear degenerate parabolic equations with no regularity assumptions on the data.

Theorem 2.16 (Uniform-in-time convergence) Under Assumptions (2), let (Dm)m∈N
be a sequence of space-time gradient discretisations, in the sense of Definition 2.1,
that is coercive, consistent, limit-conforming and compact (see Sect. 2.2). We assume
that um is a solution to (14) with D = Dm that converges as m → ∞ to a solution u
of (4) in the sense (18).

Then, as m → ∞, �Dmν(um) → ν(u) strongly in L∞(0, T ; L2(�)).

Remark 2.17 Since the functions�Dmν(um) are piecewise constant in time, their con-
vergence in L∞(0, T ; L2(�)) is actually a uniform-in-time convergence (not “uniform
a.e. in time”).

The last theorem completes our convergence result by stating the strong space-time
averaged convergence of the discrete gradients. Its proof is inspired by the study of
gradient schemes for Leray–Lions operators made in [23].

Theorem 2.18 (Strong convergence of gradients) Under Assumptions (2), let
(Dm)m∈N be a sequence of space-time gradient discretisations, in the sense of Defi-
nition 2.1, that is coercive, consistent, limit-conforming and compact (see Sect. 2.2).
We assume that um is a solution to (14) with D = Dm that converges as m → ∞ to a
solution u of (4) in the sense (18). We also assume that a is strictly monotone in the
sense:

(a(x, s, ξ)−a(x, s,χ))·(ξ −χ) > 0, for a.e. x ∈ �, ∀s ∈ R, ∀ξ �= χ ∈ R
d . (19)
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Then, as m → ∞,�Dm ζ(um) → ζ(u) strongly in L p(�×(0, T )) and∇Dm ζ(um) →
∇ζ(u) strongly in L p(� × (0, T ))d .

Remark 2.19 Theorems 2.16 and 2.18 do not require the structural assumption (17);
they only require that the convergences (18) hold.

3 Preliminaries

We establish here a few results which will be used in the analysis of the gradient
scheme (14).

3.1 Uniform-in-time compactness for space-time gradient discretisations

Aubin–Simon compactness results roughly consist in establishing the compactness of
a sequence of space-time functions from some strong bounds on the functions with
respect to the space variable (typically, bounds in a Sobolev space with positive expo-
nent) and someweaker bounds on their time derivatives (typically, bounds in a Sobolev
spacewith a negative exponent, i.e. the dual of a Sobolev spacewith positive exponent).
Several variants exist, including for piecewise constant-in-time functions appearing
in the numerical approximation of parabolic equations [4,11,17,36]. Although quite
strong in space, the convergence results provided by these discrete versions of Aubin–
Simon theorems are only averaged-in-time—i.e. in an L p(0, T ; E) space where E is
a normed space.

Theorem 3.1 can be considered as a discrete form of an Aubin–Simon theorem, that
establishes a uniform-in-time but weak-in-space compactness result. The correspond-
ing convergence is therefore weaker than in Theorem 2.16, but it is a critical initial
step for establishing the uniform-in-time strong-in-space convergence result. Given
that the functions considered here are piecewise constant in time, it might be surpris-
ing to obtain a uniform-in-time convergence result; everything hinges on the fact that
the jumps in time tend to vanish as the time step goes to zero. The proof of Theorem
3.1 is based on the results in the appendix, and in particular on the discontinuous
Ascoli–Arzelà theorem stated and proved there.

Theorem 3.1 (Uniform-in-time weak-in-space discrete Aubin–Simon theorem) Let
T >0 and take a sequence (Dm)m∈N=(XDm ,0,�Dm ,∇Dm , IDm , (t (n)

m )n=0,...,Nm )m∈N
of space-time gradient discretisations, in the sense of Definition 2.1, that is consistent
in the sense of Definition 2.6.

For any m ∈ N, let vm = (v
(n)
m )n=0,...,Nm ⊂ XDm ,0. If there exists q > 1 and C > 0

such that, for any m ∈ N,

||�Dmvm ||L∞(0,T ;L2(�)) ≤ C and
∫ T

0
|δmvm(t)|q

�,Dm
dt ≤ C, (20)

then the sequence (�Dmvm)m∈N is relatively compact uniformly-in-time and weakly
in L2(�), i.e. it has a subsequence that converges in the sense of Definition 2.11.
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Moreover, any limit of such a subsequence is continuous [0, T ] → L2(�) for the
weak topology of L2(�).

Remark 3.2 The bound on |δmvm |�,Dm is often a consequence of a numerical scheme
satisfied by vm and of a bound on ||∇Dmvm ||L p(�×(0,T ))d , see the proof of Lemma 4.3
for example.

Proof This result is a consequence of the discontinuous Ascoli–Arzelà theorem (The-
orem 6.2) with K = [0, T ] and E the ball of radius C in L2(�) endowed with the
weak topology. We let (ϕl)l∈N ⊂ C∞

c (�) be a dense sequence in L2(�) and equipp E
with the metric (82) from these ϕl (see Proposition 6.5). The set E is metric compact
and therefore complete, and the functions �Dmvm take their values in E . It remains to
estimate dE (vm(s), vm(s′)). In what follows, we drop the index m in Dm for the sake
of legibility.

Let us define the interpolant PDϕl ∈ XD,0 by

PDϕl = argmin
w∈XD,0

(||�Dw − ϕl ||Lmax(p,2)(�) + ||∇Dw − ∇ϕl ||L p(�)d
)
. (21)

For 0 ≤ s ≤ s′ ≤ T , by writing �Dvm(s′) − �Dvm(s) as the sum of its jumps

δt (n+ 1
2 )�Dδ

(n+ 1
2 )

D vm at the points (t (n))n=n1,...,n2 between s and s′, the definition of
| · |�,D, Hölder’s inequality and Estimate (20) give

∣∣∣∣
∫

�

(
�Dvm(x, s′) − �Dvm(x, s)

)
�DPDϕl(x)dx

∣∣∣∣
=
∣∣∣∣∣
∫ t (n2+1)

t (n1)

∫
�

�DδDv(t)(x)�DPDϕl(x)dxdt

∣∣∣∣∣
≤ C1/q(t (n2+1) − t (n1))1/q

′ ||∇DPDϕl ||L p(�)d . (22)

By definition of PD, we have

||�DPDϕl − ϕl ||L2(�) ≤ ŜD(ϕl)

and

||∇DPDϕl ||L p(�)d ≤ ŜD(ϕl) + ||∇ϕl ||L p(�)d ≤ Cϕl

withCϕl not depending onD (and therefore onm). Since t (n2+1) − t (n1) ≤ |s′ −s|+δt
and (�Dvm)m∈N is bounded in L∞(0, T ; L2(�)), we deduce from (22) that

∣∣∣∣
∫

�

(
�Dvm(x, s′) − �Dvm(x, s)

)
ϕl(x)dx

∣∣∣∣
≤
∣∣∣∣
∫

�

(
�Dvm(x, s′) − �Dvm(x, s)

)
�DPDϕl(x)dx

∣∣∣∣
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+2||�Dvm ||L∞(0,T ;L2(�))||�DPDϕl − ϕl ||L2(�)

≤ 2CŜD(ϕl) + C1/qCϕl |s′ − s|1/q ′ + C1/qCϕl δt
1/q ′

.

Plugged into the definition (82) of the distance in E , this shows that

dE
(
�Dvm(s′),�Dvm(s)

)
≤
∑
l∈N

min(1,C1/q ′
Cϕl |s′ − s|1/q ′

)

2l

+
∑
l∈N

min(1, 2CŜDm (ϕl) + C1/q ′
Cϕl δt

1/q ′
m )

2l

=: ω(s, s′) + δm .

Using the dominated convergence theorem for series, we see that ω(s, s′) → 0 as
s − s′ → 0 and that δm → 0 as m → ∞ (we invoke the consistency to establish
that limm→∞ ŜDm (ϕl) → 0 for any l). Hence, the assumptions of Theorem 6.2 are
satisfied and the proof is complete. ��

3.2 Technical results

We state here a family of technical lemmas, starting with a few properties on ν and B.

Lemma 3.3 Under Assumptions (2) there holds

|ν(a) − ν(b)| ≤ Lβ |ζ(a) − ζ(b)|, (23)

(ν(a) − ν(b))2 ≤ LβLζ (ζ(a) − ζ(b))(β(a) − β(b)). (24)

The function B is convex continuous on Rβ , the function B ◦ β : R → [0,∞) is
continuous,

∀s ∈ R, B(β(s)) =
∫ s

0
ζ(q)β ′(q)dq, (25)

∃K0, K1, K2 > 0 such that, ∀s ∈ R, K0β(s)2 − K1 ≤ B(β(s)) ≤ K2s
2, (26)

∀a ∈ R, ∀S ∈ Rβ, ζ(a)(S − β(a)) ≤ B(S) − B(β(a)), (27)

and

∀s, s′ ∈ R, (ν(s)−ν(s′))2 ≤ 4LβLζ

[
B(β(s)) + B(β(s′)) − 2B

(
β(s) + β(s′)

2

)]
.

(28)

Proof Inequality (23) is a straightforward consequence of the estimate ν′ = ζ ′β ′ ≤
Lβζ ′. Note that the same inequality also holdswithβ and ζ swapped. Since these func-
tions are non-decreasing, Inequality (24) follows from (23) and the similar inequality
with β and ζ swapped.
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Since β is non-decreasing, βr is also non-decreasing on Rβ and therefore locally
bounded on Rβ . Hence, B is locally Lipschitz-continuous on Rβ , with an a.e. derivative
B ′ = ζ(βr ). B ′ is therefore non-decreasing and B is convex continuous on Rβ , and
thus also on Rβ by choice of its values at the endpoints of Rβ .

To prove (25), we denote by P ⊂ Rβ the countable set of plateaux values of
β, i.e. the y ∈ R such that β−1({y}) is not reduced to a singleton. If s /∈ β−1(P)

then β−1({β(s)}) is the singleton {s} and therefore βr (β(s)) = s. Moreover, βr is
continuous at β(s) and thus B is differentiable at β(s)with B ′(β(s)) = ζ(βr (β(s))) =
ζ(s). Since β is differentiable a.e., we deduce that, for a.e. s /∈ β−1(P), (B(β))′(s) =
B ′(β(s))β ′(s) = ζ(s)β ′(s). The setβ−1(P) is a union of intervals onwhichβ and thus
B(β) are locally constant; hence, for a.e. s in this set, (B(β))′(s) = 0 and ζ(s)β ′(s) =
0. Hence, the locally Lipschitz-continuous functions B(β) and s → ∫ s

0 ζ(q)β ′(q)dq
have identical derivatives a.e. on R and take the same value at s = 0. They are thus
equal on R and the proof of (25) is complete.

The continuity of B ◦ β is an obvious consequence of (25). The second inequality
in (26) can also be easily deduced from (25) by noticing that |ζ(s)β ′(s)| ≤ Lζ Lβ |s|
(we can take K2 = Lζ Lβ

2 ). To prove the first inequality in (26), we start by inferring

from (2b) the existence of S > 0 such that |ζ(q)| ≥ M0
2 |q| ≥ M0

2Lβ
|β(q)| whenever

|q| ≥ S. We then write, for s ≥ S,

B(β(s)) =
∫ S

0
ζ(q)β ′(q)dq +

∫ s

S
ζ(q)β ′(q)dq ≥ M0

2Lβ

∫ s

S
β(q)β ′(q)dq

= M0

4Lβ

(
β(s)2 − β(S)2

)
.

A similar inequality holds for s ≤ −S (with β(−S) instead of β(S)) and the first
inequality in (26) therefore holds with K0 = M0

4Lβ
and K1 = M0

4Lβ
max[−S,S] β2.

We now prove (27), which states that ζ(a) belongs to the convex sub-differential of
B at β(a). We first start with the case S ∈ Rβ , that is S = β(b) for some b ∈ R. If βr
is continuous at β(a) then this inequality is an obvious consequence of the convexity
of B since B is then differentiable at β(a) with B ′(β(a)) = ζ(βr (β(a))) = ζ(a).
Otherwise, a plain reasoning also does the job:

B(S) − B(β(a)) = B(β(b)) − B(β(a))

=
∫ b

a
ζ(q)β ′(q)dq

=
∫ b

a
(ζ(q) − ζ(a))β ′(q)dq + ζ(a)(β(b) − β(a))

≥ ζ(a)(S − β(a)),

the inequality coming from the fact that β ′ ≥ 0 and that ζ(q) − ζ(a) has the same
sign as b − a when q is between a and b. The general case S ∈ Rβ is obtained by
passing to the limit on bn such that β(bn) → S and by using the fact that B has limits
(possibly +∞) at the endpoints of Rβ .
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Let us now take s, s′ ∈ R. Let s̄ ∈ R be such that β(s̄) = β(s)+β(s′)
2 . We notice that

B(β(s))+B(β(s′))−2B(β(s̄))=
∫ s

s̄
(ζ(q)−ζ(s̄))β ′(q)dq+

∫ s′

s̄
(ζ(q)−ζ(s̄))β ′(q)dq.

(29)
We then notice that |ζ(q) − ζ(s̄)| ≥ 1

Lβ
|ν(q) − ν(s̄)| and β ′(q) ≥ β ′(q)

ζ ′(q)
Lζ

= ν′(q)
Lζ

.

If s̃ = s or s′, since ζ(q) − ζ(s̄) has the same sign as s̃ − s̄ for all q between s̄ and s̃,
we can write

∫ s̃

s̄
(ζ(q)−ζ(s̄))β ′(q)dq ≥ 1

LβLζ

∫ s̃

s̄
ν′(q)(ν(q)−ν(s̄))dq= 1

2LβLζ

(ν(̃s)−ν(s̄))2.

(30)
Estimate (28) follows from (29), (30) and the inequality (ν(s) − ν(s′))2 ≤ 2(ν(s) −
ν(s̄))2 + 2(ν(s′) − ν(s̄))2. ��

The next lemma is an easy consequence of Fatou’s lemma and the fact that strongly
lower semi-continuous convex functions are also weakly lower semi-continuous. We
all the same provide its short proof.

Lemma 3.4 Let I be a closed interval of R and let H : I → (−∞,∞] be a convex
continuous function (continuity for possible infinite values, at the endpoints of I ,
corresponding to H having limits at these endpoints). We denote by L2(�; I ) the
convex set of functions in L2(�) with values in I . Let v ∈ L2(�; I ) and let (vm)m∈N
be a sequence of functions in L2(�; I ) that converges weakly to v in L2(�). Then

∫
�

H(v(x))dx ≤ lim inf
m→∞

∫
�

H(vm(x))dx.

Proof For w ∈ L2(�; I ) we set �(w) = ∫
�
H(w(x))dx. Since H is convex, it is

greater than a linear functional and�(w) is thus well defined in (−∞,∞]. Moreover,
if wk → w strongly in L2(�; I ) then, up to a subsequence, wk → w a.e. on � and
therefore H(wk) → H(w) a.e. on �. Thanks to the linear lower bound of H , we can
apply Fatou’s lemma to see that �(w) ≤ lim infk→∞ �(wk).

Hence, � is lower semi-continuous for the strong topology of L2(�; I ). Since �

(like H ) is convex, we deduce that this lower semi-continuity property is also valid for
the weak topology of L2(�; I ), see [26]. The result of the lemma is just the translation
of this weak lower semi-continuity of �. ��

The last technical result is a consequence of the Minty trick. It has been proved and
used in the L2 case in [21,28], but we need here an extension to the non-Hilbertian
case.

Lemma 3.5 (Minty’s trick) Let H ∈ C0(R) be a nondecreasing function. Let (X, μ)

be a measurable set with finite measure and let (un)n∈N ⊂ L p(X), with p > 1, satisfy

1. there exists u ∈ L p(X) such that (un)n∈N converges weakly to u in L p(X);
2. (H(un))n∈N ⊂ L1(X) and there exists w ∈ L1(X) such that (H(un))n∈N con-

verges strongly to w in L1(X);
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Then w = H(u) a.e. on X.

Proof For k, l > 0 we define the truncation at levels −l and k by Tk,l(s) =
max(−l,min(s, k)) and we let Tk = Tk,k . Since H is non-decreasing, there exists
sequences (hk)k∈N and (mk)k∈N that tend to +∞ as k → ∞ and such that
H(Tk(s)) = Thk ,mk (H(s)). Thus, H(Tk(un)) → Thk ,mk (w) in L1(X) as n → ∞.
Given that (H(Tk(un)))n∈N remains bounded in L∞(X), its convergence to Thk ,mk (w)

also holds in L p′
(X).

Using fact that H ◦ Tk is non-decreasing, we write for any g ∈ L p(X)

∫
X
(H(Tk(un)) − H(Tk(g)))(un − g)dμ ≥ 0.

By strong convergence of H(Tk(un)) in L p′
(X) andweak convergence of un in L p(X),

as well as the fact that H ◦ Tk is bounded, we can take the limit of this expression as
n → ∞ and we find

∫
X
(Thk ,mk (w) − H(Tk(g)))(u − g)dμ ≥ 0. (31)

We then use Minty’s trick. We pick a generic ϕ ∈ L p(X), apply (31) to g = u − tϕ,
divide by t and let t → ±0 (using the dominated convergence theorem and the fact
that H ◦ Tk is continuous and bounded) to find

∫
X
(Thk ,mk (w) − H(Tk(u)))ϕdμ = 0.

Selecting ϕ = sign(Thk ,mk (w) − H(Tk(u))), we deduce that Thk ,mk (w) = H(Tk(u))

a.e. on X . Letting k → ∞, we conclude that w = H(u) a.e. on X . ��

3.3 Integration-by-parts for the continuous solution

The last series of preliminary results are properties on the solution to (4), all based
on the following integration-by-parts property. This property, used in the proof of
Theorems 2.12 and 2.16, enables us to compute the value of the linear form ∂tβ(u) ∈
L p′

(0, T ;W−1,p′
(�))on the function ζ(u) ∈ L p(0, T ;W 1,p

0 (�)). Because of the lack
of regularity on u and the double non-linearity (β and ζ ), justifying this integration-
by-parts is however not straightforward at all.

Lemma 3.6 Let us assume (2b) and (2c). Let v : � × (0, T ) 	→ R be measur-
able such that ζ(v) ∈ L p(0, T ;W 1,p

0 (�)), B(β(v)) ∈ L∞(0, T ; L1(�)), β(v) ∈
C([0, T ]; L2(�)−w) and ∂tβ(v) ∈ L p′

(0, T ;W−1,p′
(�)). Then t ∈ [0, T ] →∫

�
B(β(v)(x, t))dx ∈ [0,∞) is continuous and, for all t1, t2 ∈ [0, T ],
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∫ t2

t1
〈∂tβ(v)(t), ζ(v(·, t))〉

W−1,p′ ,W 1,p
0

dt =
∫

�

B(β(v)(x, t2))dx

−
∫

�

B(β(v)(x, t1))dx. (32)

Remark 3.7 Similarly to the discussion at the end of Sect. 1.2, we notice that it is
important to keep in mind the separation between β(v(·, ·)) and its continuous repre-
sentative β(v)(·, ·).
Proof Without loss of generality, we assume that 0 ≤ t1 < t2 ≤ T .

Step 1 truncation, extension and approximation of β(v).
We define β(v) : R → L2(�) by setting

β(v)(t) =
⎧⎨
⎩

β(v)(t) if t ∈ [t1, t2],
β(v)(t1) if t ≤ t1,
β(v)(t2) if t ≥ t2.

By the continuity property of β(v), this definition makes sense and gives β(v) ∈
C(R; L2(�)−w) such that ∂tβ(v) = 1(t1,t2)∂tβ(v) ∈ L p′

(R;W−1,p′
(�)) where 1 is

the characteristic function (no Dirac masses have been introduced at t = t1 or t = t2).
This regularity of ∂tβ(v) ensures that the function Dhβ(v) : R 	→ W−1,p′

(�) defined
by

∀t ∈ R, Dhβ(v)(t) = 1

h

∫ t+h

t
∂tβ(v)(s)ds = β(v)(t + h) − β(v)(t)

h
(33)

tends to ∂tβ(v) in L p′
(R;W−1,p′

(�)) as h → 0.

Step 2we prove that ||B(β(v)(t))||L1(�) ≤ ||B(β(v))||L∞(0,T ;L1(�)) for all t ∈ R (not
only for a.e. t).

Let t ∈ [t1, t2]. Since β(v)(·, ·) = β(v(·, ·)) a.e. on � × (t1, t2), there
exists a sequence tn → t such that β(v)(·, tn) = β(v(·, tn)) in L2(�) and
||B(β(v)(·, tn))||L1(�) ≤ ||B(β(v))||L∞(0,T ;L1(�)) for all n. As β(v) ∈ C([0, T ];
L2(�)−w), we have β(v)(·, tn) → β(v)(·, t) weakly in L2(�). We then use the
convexity of B and Lemma 3.4 to write, thanks to our choice of tn ,

∫
�

B(β(v)(x, t))dx ≤ lim inf
n→∞

∫
�

B(β(v)(x, tn))dx ≤ ||B(β(v))||L∞(0,T ;L1(�))

and the proof is complete for t ∈ [t1, t2]. The result for t ≤ t1 or t ≥ t2 is obvious
since β(v)(t) is then either β(v)(t1) or β(v)(t2).

Step 3 We prove that for all τ ∈ R and a.e. t ∈ (t1, t2),

〈β(v)(τ ) − β(v)(t), ζ(v(·, t))〉
W−1,p′ ,W 1,p

0
≤
∫

�

B(β(v)(x, τ )) − B(β(v)(x, t))dx.

(34)
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If we could just replace the duality product W−1,p′
–W 1,p

0 with an L2 inner product,
this formula would be a straightforward consequence of (27). The problem is that
nothing ensures that ζ(v)(t) ∈ L2(�) for a.e. t .

We first notice that β(v)(τ ) − β(v)(t) = ∫ τ

t ∂tβ(v)(s)ds belongs to W−1,p′
(�)

so the left-hand side of (34) makes sense provided that t is chosen such that
ζ(v(·, t)) ∈ W 1,p

0 (�) (which we do from here on). To deal with the fact that ζ(v(·, t))
does not necessarily belong to L2(�), we replace it with a truncation. As in the proof
of Lemma 3.5, we introduce Tk,l(s) = max(−l,min(s, k)) and we let Tk = Tk,k . By
the monotony assumption (2b) on ζ we see that there exists sequences (rk)k∈N and
(lk)k∈N that tend to+∞ as k → +∞ and such that ζ(Tk(v(·, t))) = Trk ,lk (ζ(v(·, t))).
Hence, ζ(Tk(v(·, t))) ∈ W 1,p

0 (�) and converges, as k → ∞, to ζ(v(·, t)) inW 1,p
0 (�).

We can therefore write

〈β(v)(τ ) − β(v)(t), ζ(v(·, t))〉
W−1,p′ ,W 1,p

0

= lim
k→∞〈β(v)(τ ) − β(v)(t), ζ(Tk(v(·, t)))〉

W−1,p′ ,W 1,p
0

= lim
k→∞

∫
�

[
β(v)(x, τ ) − β(v(x, t))

]
ζ(Tk(v(x, t)))dx, (35)

the replacement of the duality product by an L2(�) inner product being justified since
β(v)(τ )−β(v)(t) and ζ(Tk(v(·, t))) both belong to L2(�). We also used that, for a.e.
t ∈ (t1, t2), β(v)(·, t) = β(v(·, t)) a.e. on �; hence (35) is valid for a.e. t ∈ (t1, t2).

We then write β(v(x, t)) = β(Tk(v(x, t))) + [β(v(x, t)) − β(Tk(v(x, t)))] and
apply (27) with S = β(v)(x, τ ) and a = Tk(v(x, t)) to find

∫
�

[
β(v)(x, τ ) − β(v(x, t))

]
ζ(Tk(v(x, t)))dx

=
∫

�

[
β(v)(x, τ ) − β(Tk(v(x, t)))

]
ζ(Tk(v(x, t)))dx

−
∫

�

[β(v(x, t)) − β(Tk(v(x, t)))] ζ(Tk(v(x, t)))dx

≤
∫

�

B(β(v)(x, τ )) − B(β(Tk(v(x, t))))dx

−
∫

�

[β(v(x, t)) − β(Tk(v(x, t)))] ζ(Tk(v(x, t)))dx.

By the monotony of β, the sign of ζ and by studying the cases v(x, t) ≥ k, −k ≤
v(x, t) ≤ k and v(x, t) ≤ −k, we notice that the last integrand is everywhere non-
negative. We can therefore write

∫
�

[
β(v)(x, τ ) − β(v(x, t))

]
ζ(Tk(v(x, t)))dx

≤
∫

�

B(β(v)(x, τ )) − B(β(Tk(v(x, t))))dx.
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We then use the continuity of B ◦ β and Fatou’s lemma to deduce

lim sup
k→∞

∫
�

[
β(v)(x, τ ) − β(v(x, t))

]
ζ(Tk(v(x, t)))dx

≤
∫

�

B(β(v)(x, τ ))dx − lim inf
k→∞

∫
�

B(β(Tk(v(x, t))))dx

≤
∫

�

B(β(v)(x, τ ))dx −
∫

�

B(β(v(x, t)))dx

which, combined with (35), concludes the proof of (34) (recall that t has been chosen
such that β(v(·, t)) = β(v)(·, t) a.e. on �).
Step 4: proof of the formula

Since 1(t1,t2)ζ(v)∈ L p(R;W 1,p
0 (�)) and Dhβ(v) → ∂tβ(v) in L p′

(R;W−1,p′
(�))

as h → 0, we have

∫ t2

t1
〈∂tβ(v)(t), ζ(v(·, t))〉

W−1,p′ ,W 1,p
0

dt

=
∫
R

〈∂tβ(v)(t), 1(t1,t2)(t)ζ(v(·, t))〉
W−1,p′ ,W 1,p

0
dt

= lim
h→0

∫
R

〈Dhβ(v)(t), 1(t1,t2)(t)ζ(v(·, t))〉
W−1,p′ ,W 1,p

0
dt

= lim
h→0

1

h

∫ t2

t1
〈β(v)(t + h) − β(v)(t), ζ(v(·, t)〉

W−1,p′ ,W 1,p
0

dt. (36)

We then use (34) for a.e. t ∈ (t1, t2) to obtain, for h small enough such that t1+h < t2,

1

h

∫ t2

t1
〈β(v)(t + h) − β(v)(t), ζ(v(·, t))〉

W−1,p′ ,W 1,p
0

dt

≤ 1

h

∫ t2

t1

∫
�

B(β(v)(x, t + h)) − B(β(v)(x, t))dxdt

= 1

h

∫ t2+h

t2

∫
�

B(β(v)(x, t))dxdt − 1

h

∫ t1+h

t1

∫
�

B(β(v)(x, t))dxdt (37)

=
∫

�

B(β(v)(x, t2))dx − 1

h

∫ t1+h

t1

∫
�

B(β(v)(x, t))dxdt.

We used the estimate in Step 2 to justify the separation of the integrals in (37). We
now take the lim sup as h → 0 of this inequality, using again Step 2 to see that
B(β(v)(·, t2)) is integrable and therefore take its integral out of the lim sup. Coming
back to (36) we obtain
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∫ t2

t1
〈∂tβ(v)(t), ζ(v(·, t))〉

W−1,p′ ,W 1,p
0

dt

≤
∫

�

B(β(v)(x, t2))dx − lim inf
h→0

1

h

∫ t1+h

t1

∫
�

B(β(v)(x, t))dxdt. (38)

Sinceβ(v) ∈ C([0, T ]; L2(�)−w), as h → 0we have 1
h

∫ t1+h
t1

β(v)(t)dt → β(v)(t1)

weakly in L2(�). Hence, the convexity of B, Lemma 3.4 and Jensen’s inequality give

∫
�

B(β(v)(x, t1))dx ≤ lim inf
h→0

∫
�

B

(
1

h

∫ t1+h

t1
β(v)(x, t)dt

)
dx

≤ lim inf
h→0

∫
�

1

h

∫ t1+h

t1
B(β(v)(x, t))dtdx.

Plugged into (38), this inequality shows that (32) holds with ≤ instead of =. The
reverse inequality is obtained by reversing the time.We consider ṽ(t) = v(t1+ t2− t).
Then ζ (̃v), B(β(̃v)) and β(̃v) have the same properties as ζ(v), B(β(v)) and β(v),
and β(̃v) takes values β(v)(t1) at t = t2 and β(v)(t2) at t = t1. Applying (32) with
“≤” instead of “=” to ṽ and using the fact that ∂tβ(̃v)(t) = −∂tβ(v)(t1 + t2 − t), we
obtain (32) with “≥” instead of “=” and the proof of (32) is complete.

The continuity of t ∈ [0, T ] 	→ ∫
�
B(β(v)(x, t))dx is straightforward from (32)

as the left-hand side of this relation is continuous with respect to t1 and t2. ��
The following corollary states continuity properties and an essential formula on the

solution to (4).

Corollary 3.8 Under Assumptions (2a)–(2i), if u is a solution of (4) then:

1. the function t ∈ [0, T ] 	→ ∫
�
B(β(u)(x, t))dx ∈ [0,∞) is continuous and

bounded,
2. for any T0 ∈ [0, T ],

∫
�

B(β(u)(x, T0))dx+
∫ T0

0

∫
�

a(x, ν(u(x, t)),∇ζ(u)(x, t)) · ∇ζ(u)(x, t)dxdt

=
∫

�

B(β(uini(x)))dx +
∫ T0

0

∫
�

f (x, t)ζ(u)(x, t)dxdt, (39)

3. ν(u) is continuous [0, T ] → L2(�).

Remark 3.9 The continuity of ν(u) has to be understood in the same sense as the
continuity of β(u), that is ν(u) is a.e. on � × (0, T ) equal to a continuous function
[0, T ] → L2(�). We use in particular the notation ν(u)(·, ·) for the continuous-in-
time representative of ν(u(·, ·)), similarly to the waywe denote the continuous-in-time
representative of β(u(·, ·)).
Proof The continuity of t ∈ [0, T ] 	→ ∫

�
B(β(u)(x, t))dx ∈ [0,∞) and Formula

(39) are straightforward consequences of Lemma 3.6 with v = u and using (4) with
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v = ζ(u). Note that the bound on
∫
�
B(β(u)(x, t))dx can be seen as a consequence

of (39), or from Step 2 in the proof of Lemma 3.6.
Let us prove the strong continuity of ν(u) : [0, T ] 	→ L2(�). Let T be the set of

τ ∈ [0, T ] such that β(u(·, τ )) = β(u)(·, τ ) a.e. on �, and let (sl)l∈N and (tk)k∈N be
two sequences in T that converge to the same value s. Invoking (28) we can write

∫
�

(ν(u(x, sl)) − ν(u(x, tk)))
2dx

≤ 4LβLζ

(∫
�

B(β(u)(x, sl))dx +
∫

�

B(β(u)(x, tk))dx
)

−8LβLζ

∫
�

B

(
β(u)(x, sl) + β(u)(x, tk)

2

)
dx. (40)

Since β(u)(·,sl )+β(u)(·,tk)
2 → β(u)(·, s) weakly in L2(�) as l, k → ∞, Lemma 3.4

gives

∫
�

B (β(u)(x, s)) dx ≤ lim inf
l,k→∞

∫
�

B

(
β(u)(x, sl) + β(u)(x, tk)

2

)
dx.

Taking the lim sup as l, k → ∞ of (40) and using the continuity of t 	→∫
�
B(β(u)(x, t))dx thus shows that

||ν(u(·, sl)) − ν(u(·, tk))||L2(�) → 0 as l, k → ∞. (41)

The existence of an a.e. representative of ν(u(·, ·)) which is continuous [0, T ] 	→
L2(�) is a direct consequence of this convergence. Let s ∈ [0, T ] and (sl)l∈N ⊂ T
that converges to s. Applied with tk = sk , (41) shows that (ν(u(·, sl)))l∈N is a Cauchy
sequence in L2(�) and therefore that liml→∞ ν(u(·, sl)) exists in L2(�). Moreover,
(41) shows that this limit, thatwe denote by ν(u)(·, s), does not depend on the sequence
in T that converges to s. Whenever s ∈ T , the choice tk = s in (41) shows that
ν(u)(·, s) = ν(u(·, s)) a.e. on �, and ν(u)(·, ·) is therefore equal to ν(u(·, ·)) a.e. on
� × (0, T ).

It remains to establish that ν(u) thus defined is continuous [0, T ] 	→ L2(�). For any
(τr )r∈N ⊂ [0, T ] that converges to τ ∈ [0, T ], we can pick sr ∈ T ∩ (τr − 1

r , τr + 1
r )

and tr ∈ T ∩ (τ − 1
r , τ + 1

r ) such that

||ν(u)(·, τr ) − ν(u(·, sr ))||L2(�) ≤ 1

r
, ||ν(u)(·, τ ) − ν(u(·, tr ))||L2(�) ≤ 1

r
.

We therefore have

||ν(u)(·, τr ) − ν(u)(·, τ )||L2(�) ≤ 2

r
+ ||ν(u(·, sr )) − ν(u(·, tr ))||L2(�).

This proves by (41) with l = k = r that ν(u)(·, τr ) → ν(u)(·, τ ) in L2(�) as r → ∞,
and the proof is complete. ��
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4 Proof of the convergence theorems

4.1 Estimates on the approximate solution

As usual in the study of numerical methods for PDE with strong non-linearities or
without regularity assumptions on the data, everything starts with a priori estimates.

Lemma 4.1 (L∞(0, T ; L2(�)) estimate and discrete L p(0, T ;W 1,p
0 (�)) estimate)

Under Assumptions (2), let D be a space-time gradient discretisation in the sense of
Definition 2.1. Let u be a solution to Scheme (14).

Then, for any T0 ∈ (0, T ], denoting by k = 1, . . . , N the index such that T0 ∈
(t (k−1), t (k)] we have

∫
�

B(�Dβ(u)(x, T0))dx

+
∫ T0

0

∫
�

a(x,�Dν(u)(x, t),∇Dζ(u)(x, t)) · ∇Dζ(u)(x, t)dxdt

≤
∫

�

B(�Dβ(IDuini)(x))dx +
∫ t (k)

0

∫
�

f (x, t)�Dζ(u)(x, t)dxdt. (42)

Consequently, there exists C1 > 0 only depending on p, Lβ , CP ≥ CD (see Definition
2.5), Cini ≥ ‖�DIDuini‖L2(�), f , a and the constants K0, K1 and K2 in (26) such
that

‖�DB(β(u))‖L∞(0,T ;L1(�)) ≤ C1, ‖∇Dζ(u)‖L p(�×(0,T ))d ≤ C1

and ‖�Dβ(u)‖L∞(0,T ;L2(�)) ≤ C1. (43)

Proof By using (12) and (27) we notice that for any n = 0, . . . , N − 1 and any
t ∈ (t (n), t (n+1)]

�DδDβ(u)(t)�Dζ(u(n+1)) = 1

δt (n+ 1
2 )

(
β(�Du(n+1)) − β(u(n))

)
ζ(�Du(n+1))

≥ 1

δt (n+ 1
2 )

(
B(�Dβ(u(n+1))) − B(�Dβ(u(n)))

)
.

Hence, with v = (ζ(u(1)), . . . , ζ(u(k)), 0, . . . , 0) ⊂ XD,0 in (14) we find
∫

�

B(�Dβ(u)(x, t (k)))dx

+
∫ t (k)

0

∫
�

a(x,�Dν(u)(x, t),∇Dζ(u)(x, t)) · ∇Dζ(u)(x, t)dxdt

≤
∫

�

B(�Dβ(u(0))(x))dx +
∫ t (k)

0
f (x, t)�Dζ(u)(x, t)dxdt. (44)
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Equation (42) is a straightforward consequence of this estimate, of the relation
β(u)(·, T0) = β(u)(·, t (k)) [see (13)] and of the fact that the integrand involving
a is nonnegative on [T0, t (k)].

By using Young’s inequality ab ≤ 1
p a

p + 1
p′ bp′

, we can write

∫ t (k)

0

∫
�

f (x, t)�Dζ(u)(x, t)dxdt ≤ 21/(p−1)C p′
D

(pa)1/(p−1) p′ ‖ f ‖p′
L p′ (�×(0,t (k)))

+ a

2C p
D

‖�Dζ(u)‖p
L p(�×(0,t (k)))

and the first two estimates in (43) therefore follow from (44), (26), the coercivity
assumption (2f) on a and the Definition 2.5 of CD. The estimate on �Dβ(u) =
β(�Du) in L∞(0, T ; L2(�)) is a consequence of the estimate on B(β(�Du)) in
L∞(0, T ; L1(�)) and of (26). ��
Corollary 4.2 (Existence of a solution to the gradient scheme) Under Assumptions
(2), if D is a gradient discretisation in the sense of Definition 2.1 then there exists at
least a solution to the gradient scheme (14).

Proof We endow E = {(u(n))n=1,...,N : u(n) ∈ XD,0 for all n} with the dot product
“·” coming from the degrees of freedom I (see Remark 2.3), and we denote by | · | the
corresponding norm. Let T : E 	→ E be such that, for all u, v ∈ E ,

T (u) · v =
∫ T

0

∫
�

[�DδDβ(u)(x, t)�Dv(x, t)

+ a(x,�Dν(u)(x, t),∇Dζ(u)(x, t)) · ∇Dv(x, t)] dxdt,

where δ
( 12 )

D β(u) is defined by setting u(0) = IDuini. Set fE ∈ E such that, for all

v ∈ E , fE · v = ∫ T
0

∫
�

f (x, t)�Dv(x, t)dxdt . A solution to (14) is an element
u ∈ E such that T (u) = fE . The continuity and growth properties of β, ζ and a
clearly show that T is continuous E 	→ E , so we can prove that T (u) = fE has has a
solution by establishing that, for R large enough, d(T, B(R), fE ) �= 0 where d is the
Brouwer topological degree [15] and B(R) is the open ball of radius R in E .

Following the reasoning used to prove (42), the coercivity property (2f) on a and
the equivalence of all norms on E give C2 and C3 not depending on u ∈ E such that

T (u) · ζ(u) ≥ a||∇Dζ(u)||p
L p(�)d

− ||B(�Dβ(IDuini))||L1(�) ≥ C2|u|p − C3.

From the choice of the dot product on E and Assumption (2b) on ζ , we have |ζ(v)| ≤
Lζ |v| and ζ(v) · v ≥ C4|v|2 − C5, with C4 > 0 and C5 not depending on v ∈ E .
Let us consider the homotopy h(ρ, u) = ρT (u) + (1 − ρ)u between T and Id, and
assume that u is a solution to h(ρ, u) = fE for some ρ ∈ [0, 1]. We have if |u| ≥ 1

| fE |Lζ |u| ≥ fE · ζ(u) = ρT (u) · ζ(u) + (1 − ρ)u · ζ(u)

≥ ρC2|u|p − ρC3 + (1 − ρ)C4|u|2 − (1 − ρ)C5

≥ min(C2,C4)|u|min(p,2) − C3 − C5.
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Hence, if we select R > 1 such that | fE |Lζ R < min(C2,C4)Rmin(p,2) − C3 − C5,
which is possible since min(p, 2) > 1, no solution to h(ρ, u) = fE can lie on ∂B(R).
The invariance by homotopy of the topological degree then gives d(T, B(R), fE ) =
d(Id, B(R), fE ), and this last degree is equal to 1 if we select R such that fE ∈ B(R).
The proof is complete. ��
Lemma 4.3 (Estimate on the dual semi-norm of the discrete time derivative) Under
Assumptions (2), letD be a space-time gradient discretisation in the sense ofDefinition
2.1. Let u be a solution to Scheme (14). Then there exists C6 only depending on p, Lβ ,
CP ≥ CD, Cini ≥ ‖�D IDuini‖L2(�), f , a, μ, a, T and the constants K0, K1 and K2
in (26) such that ∫ T

0
|δDβ(u)(t)|p′

�,Ddt ≤ C6. (45)

Proof Let us take a generic v = (v(n))n=1,...,N ⊂ XD,0 as a test function in Scheme
(14). We have, thanks to Assumption (2h) on a,∫ T

0

∫
�

�DδDβ(u)(x, t)�Dv(x, t)dxdt

≤
∫ T

0

∫
�

(a(x) + μ|∇Dζ(u)(x, t)|p−1)|∇Dv(x, t)|dxdt

+
∫ T

0

∫
�

f (x, t)�Dv(x, t)dxdt.

Using Hölder’s inequality, Definition 2.5 and estimates (43), this leads to the existence
ofC7 > 0 only depending on p, Lβ ,CP ,Cini, f , a, a,μ and K0, K1 and K2 such that

∫ T

0

∫
�

�DδDβ(u)(x, t)�Dv(x, t)dxdt ≤ C7‖∇Dv‖L p(0,T ;L p(�))d .

The proof of (45) is completed by selecting v = (|δ(n+ 1
2 )

D β(u)|p′−1
�,D z(n))n=1,...,N with

(z(n))n=1,...,N ⊂ XD,0 such that, for any n = 1, . . . , N , z(n) realises the supremum in

(11) with w = δ
(n+ 1

2 )

D β(u). ��
Lemma 4.4 (Estimate on the time translates of ν(u)) Under Assumptions (2), let
D be a space-time gradient discretisation in the sense of Definition 2.1. Let u be a
solution to Scheme (14). Then there exists C8 only depending on p, Lβ , Lζ , CP ≥ CD,
Cini ≥ ‖�D IDuini‖L2(�), f , a, μ, a, T and K0, K1 and K2 in (26) such that

‖�Dν(u)(·, · + τ) − �Dν(u)(·, ·)‖2L2(�×(0,T−τ))
≤ C8(τ + δt), ∀τ ∈ (0, T ). (46)

Proof Let τ ∈ (0, T ). Thanks to (24), we can write

∫
�×(0,T−τ)

(
�Dν(u)(x, t + τ) − �Dν(u)(x, t)

)2
dxdt ≤ LβLζ

∫ T−τ

0
A(t)dt,

(47)
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where

A(t) =
∫

�

(
�Dζ(u)(x, t + τ) − �Dζ(u)(x, t)

)(
�Dβ(u)(x, t + τ) − �Dβ(u)(x, t)

)
dx.

For s ∈ (0, T ), we define n(s) ∈ {0, . . . , N − 1} such that t (n(s)) < s ≤ t (n(s)+1).
Taking t ∈ (0, T − τ), we may write

A(t) =
∫

�

(
�Dζ(u(n(t+τ)+1))(x) − �Dζ(u(n(t)+1))(x)

)( n(t+τ)∑
n=n(t)+1

δt (n+ 1
2 )�Dδ

(n+ 1
2 )

D β(u)(x)
)
dx.

We then use the definition (11) of the discrete dual semi-norm to infer

A(t)≤
n(t+τ)∑

n=n(t)+1

δt (n+ 1
2 )
∣∣∣
∣∣∣∇D

[
ζ(u(n(t+τ)+1))−ζ(u(n(t)+1))

]∣∣∣
∣∣∣
L p(�)d

|δ(n+ 1
2 )

D β(u)|�,D.

(48)
We apply the triangular inequality on the first norm in this right-hand side, Young’s
inequality and we integrate over t ∈ (0, T − τ) to get

∫ T−τ

0
A(t)dt ≤ Aτ + A0 + B (49)

with, for s = 0 or s = τ ,

As = 1

p

∫ T−τ

0

n(t+τ)∑
n=n(t)+1

δt (n+ 1
2 )||∇Dζ(u(n(t+s)+1))||p

L p(�)d
dt ≤ C p

1

p
(τ + δt) (50)

and

B = 2

p′

∫ T−τ

0

n(t+τ)∑
n=n(t)+1

δt (n+ 1
2 )|δ(n+ 1

2 )

D β(u)|p′
�,Ddt ≤ 2C6

p′ τ. (51)

In (50), the quantity As has been estimated by using (84) in Lemma 6.6 and the
estimate on∇Dζ(u) in (43). In (51), B has been estimated by applying (83) in Lemma

6.6 and by using the bound (45) on
∫ T
0 |δDβ(u)(t)|p′

�,Ddt . The proof is completed by
gathering (47), (49), (50) and (51). ��

4.2 Proof of Theorem 2.12

Step 1 Application of compactness results.

Thanks to Theorem 3.1 and Estimates (43) and (45), we first extract a subsequence
such that (�Dmβ(um))m∈N converges weakly in L2(�) uniformly on [0, T ] (in the
sense of Definition 2.11) to some function β ∈ C([0, T ]; L2(�)−w) which satis-
fies β(·, 0) = β(uini) in L2(�). Using again Estimates (43) and applying Lemma
2.10, we extract a further subsequence such that, for some ζ ∈ L p(0, T ;W 1,p

0 (�)),
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748 J. Droniou, R. Eymard

�Dm ζ(um) → ζ weakly in L p(� × (0, T )) and ∇Dm ζ(um) → ∇ζ weakly in
L p(� × (0, T ))d . Estimates (43), Definition 2.5 and the growth assumption (2b)
on ζ show that (�Dmum)m∈N is bounded in L p(� × (0, T )) and we can therefore
assume, up to a subsequence, that it converges weakly to some u in this space.

We then prove, by means of the Kolmogorov theorem, that (�Dmν(um))m∈N is
relatively compact in L1(�× (0, T )). We first remark that |ν(a)−ν(b)| ≤ Lβ |ζ(a)−
ζ(b)|, which implies, using Estimate (43) and Definition 2.9 with v = ζ(um),

||�Dmν(um)(· + ξ , ·) − �Dmν(um)(·, ·)||L p(Rd×(0,T )) ≤ LβC1TDm (ξ) (52)

where�Dmν(um) has been extended by 0 outside�, and limξ→0 supm∈N TDm (ξ) = 0.
This takes care of the space translates. Let us now turn to the time translates. Invoking
Lemma 4.4 and, to control the time translates at both ends of [0, T ], the fact that
�Dmβ(um) – and therefore also �Dmν(um) since |ν| ≤ Lζ |β| – remains bounded in
L∞(0, T ; L2(�)), we can write for any M ∈ N

sup
m∈N

||�Dmν(um)(·, · + τ) − �Dmν(um)(·, ·)||2L2(�×(0,T ))

≤ max

(
max
m≤M

||�Dmν(um)(·, · + τ) − �Dmν(um)(·, ·)||2L2(�×(0,T ))
;

C9

(
τ + sup

m>M
δtm

))
, (53)

where C9 does not depend on m or τ , and the functions have been extended by 0
outside (0, T ). Since each ||�Dmν(um)(·, · + τ) − �Dmν(um)||2

L2(�×(0,T ))
tends to 0

as τ → 0 and since δtm → 0 as m → ∞, taking in that order the limsup as τ → 0
and the limit as M → ∞ of (53) shows that the left-hand side of this inequality tends
to 0 as τ → 0, as required. Hence, Kolmogorov’s theorem shows that, up to extraction
of another subsequence, �Dmν(um) → ν in L1(� × (0, T )).

Let us now identify these limits β, ζ and ν. Under the first case in the structural
hypothesis (17), we have β = Id, and therefore β = u = β(u) and ν = ζ . The strong
convergence of �Dmν(um) = �Dm ζ(um) to ν = ζ allows us to apply Lemma 3.5
to see that ζ = ζ(u) and ν = ν(u). Exchanging the roles of β and ζ , we see that
β = β(u), ζ = ζ(u) and ν = ν(u) still hold in the second case of (17). We notice
that this is the only place where we use this structural assumption (17) on β, ζ .

Using the growth assumption (2h) on a and Estimates (43), upon extraction of
another subsequence we can also assume that a

(·,�Dmν(um),∇Dm ζ(um)
)
has a

weak limit in L p′
(� × (0, T ))d , which we denote by A.

Finally, for any T0 ∈ [0, T ], since �Dmβ(um(·, T0)) → β(u)(·, T0) weakly in
L2(�), Lemma 3.4 gives

∫
�

B(β(u)(x, T0))dx ≤ lim inf
m→∞

∫
�

B(β(�Dmum)(x, T0))dx. (54)

With (43), this shows that B(β(u)) ∈ L∞(0, T ; L1(�)).
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Step 2 Passing to the limit in the scheme.

We drop the indices m for legibility reasons. Let ϕ ∈ C1
c (−∞, T ) and let w ∈

W 1,p
0 (�) ∩ L2(�). We introduce v = (ϕ(t (n−1))PDw)n=1,...,N as a test function in

(14), with PD defined by (21). We get T (m)
1 + T (m)

2 = T (m)
3 with

T (m)
1 =

N−1∑
n=0

ϕ(t (n))δt (n+ 1
2 )

∫
�

�Dδ
(n+ 1

2 )

D β(u)(x)�DPDw(x)dx,

T (m)
2 =

N−1∑
n=0

ϕ(t (n))δt (n+ 1
2 )

∫
�

a
(
x,�Dν(u(n+1)),∇Dζ(u(n+1))(x)

)
· ∇DPDw(x)dx,

and

T (m)
3 =

N−1∑
n=0

ϕ(t (n))

∫ t (n+1)

t (n)

∫
�

f (x, t)�DPDw(x)dxdt.

Using discrete integrate-by-parts to transform the terms ϕ(t (n))(�Dβ(u(n+1)) −
�Dβ(u(n))) appearing in T (m)

1 into (ϕ(t (n)) − ϕ(t (n+1)))�Dβ(u(n+1)), we have

T (m)
1 = −

∫ T

0
ϕ′(t)

∫
�

�Dβ(u)(x, t)�DPDw(x)dxdt

−ϕ(0)
∫

�

�Dβ(u(0))(x)�DPDw(x)dx.

Setting ϕD(t) = ϕ(t (n)) for t ∈ (t (n), t (n+1)), we have

T (m)
2 =

∫ T

0
ϕD(t)

∫
�

a (x,�Dν(u)(x, t),∇Dζ(u)(x, t)) · ∇DPDw(x)dxdt

T (m)
3 =

∫ T

0
ϕD(t)

∫
�

f (x, t)�DPDw(x)dxdt.

Since ϕD → ϕ uniformly on [0, T ], �DPDw → w in L p(�) ∩ L2(�) and
∇DPDw → ∇w in L p(�)d , we may let m → ∞ in T (m)

1 + T (m)
2 = T (m)

3 to see
that u satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u ∈ L p(� × (0, T )), ζ(u) ∈ L p(0, T ;W 1,p
0 (�)), B(β(u))∈ L∞(0, T ; L1(�)),

β(u) ∈ C([0, T ]; L2(�)−w), β(u)(·, 0) = β(uini),

−
∫ T

0
ϕ′(t)

∫
�

β(u(x, t))w(x)dxdt − ϕ(0)
∫

�

β(uini(x))w(x)dx

+
∫ T

0
ϕ(t)

∫
�

A(x, t) · ∇w(x)dxdt =
∫ T

0
ϕ(t)

∫
�

f (x, t)w(x)dxdt,

∀w ∈ W 1,p
0 (�) ∩ L2(�), ∀ϕ ∈ C∞

c (−∞, T ).

(55)
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Note that the regularity properties on u, ζ(u), β(u) and B(β(u)) have been established
in Step 1. Linear combinations of this relation show that (55) also holds with ϕ(t)w(x)

replaced by a tensorial functions in C∞
c (� × (0, T )). This proves that ∂tβ(u) ∈

L p′
(0, T ;W−1,p′

(�)) (see Remark 1.1). Using the density of tensorial functions in
L p(0, T ;W 1,p

0 (�)) [18], we then see that u satisfies

∫ T

0
〈∂tβ(u)(·, t), v(·, t)〉

W−1,p′ ,W 1,p
0

dt

+
∫ T

0

∫
�

A(x, t) · ∇v(x, t)dxdt

=
∫ T

0

∫
�

f (x, t)v(x, t)dxdt, ∀v ∈ L p(0, T ;W 1,p
0 (�)).

(56)

Step 3 Proof that u is a solution to (4).

It only remains to show that

A(x, t) = a(x, ν(u)(x, t),∇ζ(u)(x, t)) for a.e. (x, t) ∈ � × (0, T ). (57)

We take T0 ∈ [0, T ], write (42) with D = Dm and take the lim sup as m → ∞. We
notice that the t (k) =: Tm from Lemma 4.1 converges to T0 as m → ∞. Hence, by
using the convergence �DmIDmuini → uini in L2(�) [consistency of (Dm)m∈N], and
the continuity and quadratic growth of B ◦ β [upper bound in (26)], we obtain

lim sup
m→∞

∫ T0

0

∫
�

a(x,�Dmν(um)(x, t),∇Dm ζ(um)(x, t)) · ∇Dm ζ(um)(x, t)dxdt

≤
∫

�

B(β(uini)(x))dx +
∫ T0

0

∫
�

f (x, t)ζ(u)(x, t)dxdt

− lim inf
m→∞

∫
�

B(β(�Dmum)(x, T0))dx. (58)

We take v = ζ(u)1[0,T0] in (56) and apply Lemma 3.6 to get

∫
�

B(β(u)(x, T0))dx −
∫

�

B(β(u)(x, 0))dx

+
∫ T0

0

∫
�

A(x, t) · ∇ζ(u)(x, t)dxdt =
∫ T0

0

∫
�

f (x, t)ζ(u)(x, t)dxdt.

This relation, combined with (58) and using (54), shows that

lim sup
m→∞

∫ T0

0

∫
�

a(x,�Dmν(um)(x, t),∇Dm ζ(um)(x, t)) · ∇Dm ζ(um)(x, t)dxdt

≤
∫ T0

0

∫
�

A(x, t) · ∇ζ(u)(x, t)dxdt. (59)
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It is now possible to apply Minty’s trick. Consider for G ∈ L p(� × (0, T ))d the
following relation, stemming from the monotony (2g) of a:

∫ T0

0

∫
�

[
a(·,�Dmν(um),∇Dm ζ(um)) − a(·,�Dmν(um), G)

]

· [∇Dm ζ(um) − G
]
dxdt ≥ 0. (60)

By strong convergence of �Dmν(um) to ν(u) in L1(� × (0, T )) and Assumptions
(2e), (2h) on a, we see that a(·,�Dmν(um), G) → a(·, ν(u), G) strongly in L p′

(�×
(0, T ))d . The development of (60) gives a sum of four terms, the first one being the
integral in the left-hand side of (59) and the other three being integrals of products of
weakly and strongly converging sequences. We can thus take the lim sup of (60) with
T0 = T to find

∫ T

0

∫
�

[A(x, t) − a(x, ν(u)(x, t), G(x, t))] · [∇ζ(u)(x, t) − G(x, t)] dxdt ≥ 0.

Application of Minty’s method [47] (i.e. taking G = ∇ζ(u) + rϕ for ϕ ∈ L p(� ×
(0, T ))d and letting r → 0) then shows that (57) holds and concludes the proof that
u satisfies (4).

4.3 Proof of Theorem 2.16

Let T0 ∈ [0, T ] and (Tm)m≥1 be a sequence in [0, T ] that converges to T0. By setting
T0 = Tm and G = ∇ζ(u) in the developed form of (60), by taking the infimum limit
(thanks to the strong convergence of a(·,�Dmν(um),∇ζ(u))) and by using (57), we
find

lim inf
m→∞

∫ Tm

0

∫
�

a(x,�Dmν(um)(x, t),∇Dm ζ(um)(x, t)) · ∇Dm ζ(um)(x, t)dxdt

≥
∫ T0

0

∫
�

a(x, ν(u)(x, t),∇ζ(u)(x, t)) · ∇ζ(u)(x, t)dxdt. (61)

We then write (42) with Tm instead of T0 and we take the lim sup as m → ∞. We
notice that the t (k) such that Tm ∈ (t (k−1), t (k)] converges to T0 as m → ∞. Thanks
to (61) and (39) we obtain

lim sup
m→∞

∫
�

B(β(�Dmum(x, Tm)))dx ≤
∫

�

B(β(u)(x, T0))dx. (62)

By Lemma 6.4, the uniform-in-time weak convergence of β(�Dmum) to β(ū) and the
continuity of β(ū) : [0, T ] → L2(�)−w, we have β(�Dmum)(Tm) → β(ū)(T0)
weakly in L2(�) as m → ∞. Therefore, for any (sm)m∈N converging to T0,
1
2 (β(�Dmum(Tm)) + β(u)(sm)) → β(u)(T0) weakly in L2(�) as m → ∞ and
Lemma 3.4 gives, by convexity of B,
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∫
�

B(β(u)(x, T0))dx ≤ lim inf
m→∞

∫
�

B

(
β(�Dmum(x, Tm)) + β(u)(x, sm)

2

)
dx.

(63)

Property (28) of B and the two inequalities (62) and (63) allow us to conclude the
proof. Let (sm)m∈N be a sequence in T (see proof of Corollary 3.8) that converges to
T0. Then ν(u(·, sm)) → ν(u)(·, T0) in L2(�) as m → ∞. Using (28), we get

‖ν(�Dmum(·, Tm)) − ν(u)(·, T0)‖2L2(�)

≤ 2‖ν(�Dmum(·, Tm)) − ν(u(·, sm))‖2L2(�)

+2‖ν(u(·, sm)) − ν(u)(·, T0)‖2L2(�)

≤ 8LβLζ

∫
�

[
B(β(�Dmum(x, Tm))) + B(β(u(x, sm)))

]
dx

− 16LβLζ

∫
�

B

(
β(�Dmum(x, Tm)) + β(u(x, sm))

2

)
dx

+ 2‖ν(u(·, sm)) − ν(u)(·, T0)‖2L2(�)
.

We then take the lim sup as m → ∞ of this expression. Thanks to (62) and
the continuity of t ∈ [0, T ] 	→ ∫

�
B(β(u)(x, t))dx ∈ [0,∞) (see Corollary

3.8), the first term in the right-hand side has a finite lim sup, bounded above by
16LβLζ

∫
�
B(β(u)(x, T0))dx. We can therefore split the lim sup of this right-hand

side without risking writing ∞ − ∞ and we get, thanks to (63),

lim sup
m→∞

‖ν(�Dmum(·, Tm)) − ν(u)(·, T0)‖2L2(�)
≤ 0.

Thus, ν(�Dmum(·, Tm)) → ν(u)(T0) strongly in L2(�). By Lemma 6.4 and the
continuity of ν(u) : [0, T ] 	→ L2(�) stated in Corollary 3.8, this concludes the proof
of the convergence of ν(�Dmum) to ν(u) in L∞(0, T ; L2(�)).

Remark 4.5 Since β(�Dmum)(Tm) → β(ū)(T0) weakly in L2(�) as m → ∞,
Lemma 3.4 shows that

∫
�
B(β(u)(x, T0))dx ≤ lim infm→∞

∫
�
B(β(�Dmum)(x,

Tm))dx. Combined with (62), this gives

lim
m→∞

∫
�

B(β(�Dmum(x, Tm)))dx =
∫

�

B(β(u)(x, T0))dx. (64)

Item 1 in Corollary 3.8 and Lemma 6.4 therefore show that the functions
∫
�
B(β(�Dm

um(x, ·)))dx converges uniformly on [0, T ] to ∫
�
B(β(u)(x, ·))dx.
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4.4 Proof of Theorem 2.18

By taking the lim sup asm → ∞ of (42) for um with T0 = T , and by using (64) (with
Tm ≡ T ) and the continuous integration-by-parts formula (39), we find

lim sup
m→∞

∫ T

0

∫
�

a(x,�Dmν(um)(x, t),∇Dm ζ(um)(x, t)) · ∇Dm ζ(um)(x, t)dxdt

≤
∫ T0

0

∫
�

a(x, ν(u)(x, t),∇ζ(u)(x, t)) · ∇ζ(u)(x, t)dxdt.

Combined with (61), this shows that

lim
m→∞

∫ T

0

∫
�

a(x,�Dmν(um)(x, t),∇Dm ζ(um)(x, t)) · ∇Dm ζ(um)(x, t)dxdt

=
∫ T0

0

∫
�

a(x, ν(u)(x, t),∇ζ(u)(x, t)) · ∇ζ(u)(x, t)dxdt. (65)

Let us define

fm = [a(x,�Dmν(um),∇Dm ζ(um)) − a(x,�Dmν(um)(·, t),∇ζ(u))
]

· [∇Dm ζ(um) − ∇ζ(u)
] ≥ 0.

Bydeveloping this expression and using (65), (57) and (18),we see that
∫ T
0

∫
�

fm(x, t)
dxdt → 0 asm → ∞. This shows that fm → 0 in L1(�×(0, T )) and therefore a.e. up
to a subsequence.We can then reason as in [23], using the strictmonotony (19) of a, the
coercivity assumption (2f) and Vitali’s theorem, to deduce that ∇Dm ζ(um) → ∇ζ(u)

strongly in L p(� × (0, T ))d as m → ∞.

5 Removal of the assumption “β = Id or ζ = Id”

We show here that all previous results are actually true without the structural assump-
tion (17)—i.e. without assuming that β = Id or ζ = Id—provided that the range of
p is slightly restricted. The main theorem in this section is the following convergence
result.

Theorem 5.1 Under Assumptions (2), let (Dm)m∈N be a sequence of space-time
gradient discretisations, in the sense of Definition 2.1, that is coercive, consistent,
limit-conforming and compact (see Sect. 2.2). Let, for any m ∈ N, um be a solution
to (14) with D = Dm, provided by Theorem 2.12.

If p ≥ 2 then there exists a solution u to (4) such that, up to a subsequence,

• the convergences in (18) hold,
• �Dmν(um) → ν(u) strongly in L∞(0, T ; L2(�)) as m → ∞,
• under the strict monotony assumption on a (i.e. (19)), as m → ∞ we have

�Dm ζ(um) → ζ(u) strongly in L p(�×(0, T ))and∇Dm ζ(um) → ∇ζ(u) strongly
in L p(� × (0, T ))d .
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Proof We only need to prove the first conclusion of the theorem, i.e. that the con-
vergences (18) hold. Theorems 2.16 and 2.18 then provide the last two conclusions.
The difference with respect to Theorem 2.12 is the removal, here, of the structural
assumption (17). The only place in the proof of Theorem 2.12 where this assumption
was used is in Step 1, to identify the limits β, ζ and ν of �Dmβ(um), �Dm ζ(um) and
�Dmν(um). We will show that these limits can still be identified without assuming
(17).

Setμ = β +ζ , letμ = β +ζ and fix a measurable u such that (μ+ν)(u) = μ+ν.
The existence of such a u is ensured by Assumptions (2b) and (2c). Indeed, these
assumptions show that the range ofμ+ν isR and therefore that the pseudo-reciprocal
(μ + ν)r of μ + ν [defined as in (3)] has domain R; this allows us to set, for example,
u = (μ+ν)r (μ+ν). Let us now prove that, for such a function u, we have β = β(u),
ζ = ζ(u) and ν = ν(u).

By using estimates (52) and (53), Kolmogorov’s compactness theorem shows that
the convergence of �Dmν(um) towards ν is actually strong in L2(�× (0, T )) (we use
p ≥ 2 here). Since μ(�Dmum) = β(�Dmum) + ζ(�Dmum) → β + ζ = μ weakly
in L2(� × (0, T )), we can apply Lemma 5.6 with ϕ ≡ 1, wm = �Dmum , w = u and
(μ, ν) instead of (β, ζ ) to deduce that ν = ν(u) and μ = μ(u). The second of these
relations translates into β + ζ = (β + ζ )(u).

We now turn to identifying β and ζ . Lemmas 4.1 and 4.3 show that βm = β(um)

and ζm = ζ(um) satisfy the assumptions of the discrete compensated compactness
Theorem 5.4 below (we use p ≥ 2 here). Hence,�Dmβ(um)�Dm ζ(um) → β ζ in the
sense ofmeasures on�×(0, T ). Sincewe already established that (β+ζ )(u) = β+ζ ,
we can therefore apply Lemma 5.6 with ϕ ≡ 1, wm = �Dmum and w = u. This gives
β = β(u) and ζ = ζ(u) a.e. on � × (0, T ), as required.

To summarise, the limits of �Dmβ(um), �Dm ζ(um) and �Dmν(um) have been
identified as β(u), ζ(u) and ν(u) for some u. Since ζ(u) = ζ ∈ L p(� × (0, T )), the
growth assumptions (2b) on ζ ensure that u ∈ L p(�× (0, T )). We can then take over
the proof of Theorem 2.12 from after the usage of (17), using the u we just found
instead of the one defined as the weak limit of �Dmum . This allows us to conclude
that u is a solution to (4), and that the convergences in (18) hold. ��
Remark 5.2 It is not proved that u is a weak limit of�Dmum . Such a limit is not stated
in (18) and is not necessarily expected for the model (1), in which the quantities of
interest (physically relevant when this PDE models a natural phenomenon) are β(u),
ζ(u) and ν(u).

Remark 5.3 (Maximal monotone operator) Hypotheses (2b) and (2c) imply that the
operator T defined by the graph G(T ) = {(ζ(s), β(s)), s ∈ R} is a maximal monotone
operator with domain R, such that 0 ∈ T (0). Indeed, assume that x, y satisfy (ζ(s) −
x)(β(s) − y) ≥ 0 for all s ∈ R. Then, letting w ∈ R be such that

β(w) + ζ(w)

2
= x + y

2
, (66)

123



Uniform-in-time convergence of numerical… 755

wehave (ζ(w)−x)(β(w)−y) = −(
ζ(w)−β(w)

2 − x−y
2 )2 ≥ 0. This implies ζ(w)−β(w)

2 =
x−y
2 which, combined with (66), gives x = ζ(w) and y = β(w) and hence (x, y) ∈

G(T ).
Reciprocally, for anymaximalmonotoneoperatorT fromR toR such that 0 ∈ T (0),

one can find ζ and β satisfying (2b) and (2c), and such that G(T ) = {(ζ(s), β(s)), s ∈
R}. Indeed, for all (x, y) ∈ G(T ) and (x ′, y′) ∈ G(T ) satisfying x+ y = x ′ + y′, since
(x − x ′)(y− y′) ≥ 0 we have x = x ′ and y = y′. We can therefore define ζ and β by:
for all (x, y) ∈ G(T ), x = ζ(

x+y
2 ) and y = β(

x+y
2 ). We observe that these functions

are nondecreasing and Lipschitz-continuous with constant 2, and that ζ + β = 2Id.
Hence, Theorem 5.1 applies to the model considered in [52], but provides conver-

gence results for much more general equations and various numerical methods in any
space dimension.

We now state the two key results that allowed us to remove Assumption (17) if
p ≥ 2. The first one is a discrete version of a compensated compactness result in [41].
The second is a Minty-like result, useful to identify weak non-linear limits.

We note that Theorem 5.4 states a more general convergence result than needed
for the proof of Theorem 5.1 (which only requires ϕ ≡ 1). We nevertheless state the
general form in order to obtain the genuine discrete equivalent of the result in [41]. We
also believe that this discrete compensated compactness theorem will find many more
applications in the numerical analysis of degenerate or coupled parabolic models. We
also refer to [6] for another transposition to the discrete setting of a compensated
compactness result.

Theorem 5.4 (Discrete compensated compactness) We take T > 0, p ≥ 2 and a
sequence (Dm)m∈N = (XDm ,0,�Dm ,∇Dm , IDm , (t (n)

m )n=0,...,Nm )m∈N of space-time
gradient discretisations, in the sense of Definition 2.1, that is consistent and compact
in the sense of Definitions 2.6 and 2.9.

For any m ∈ N, let βm = (β
(n)
m )n=0,...,Nm ⊂ XDm ,0 and ζm = (ζ

(n)
m )n=0,...,Nm ⊂

XDm ,0 be such that

• the sequences (
∫ T
0 |δmβm(t)|�,Dm )m∈N and (||∇Dm ζm ||L2(0,T ;L p(�)d ))m∈N are

bounded,
• as m → ∞, �Dmβm → β and �Dm ζm → ζ weakly in L2(� × (0, T )).

Then (�Dmβm)(�Dm ζm) → β ζ in the sense of measures on � × (0, T ), that is,
for all ϕ ∈ C(� × [0, T ]),

lim
m→∞

∫ T

0

∫
�

�Dmβm(x, t)�Dm ζm(x, t)ϕ(x, t)dxdt

=
∫ T

0

∫
�

β(x, t) ζ (x, t)ϕ(x, t)dxdt. (67)

Proof The idea is to reduce to the casewhere�Dm ζm is a tensorial function, in order to
separate the space and time variables and make use of the compactness of�Dm ζm and
�Dmβm with respect to each of these variables. Note that the technique we use here
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apparently provides a new proof for the continuous equivalent of this compensated
compactness result.

Step 1: reduction of �Dm ζm to tensorial functions.

Let us take δ > 0 and let us consider a covering (Aδ
k)k=1,...,K of � in disjoint cubes

of length δ. Let Rδ : L2(�) → L2(�) be the operator defined by:

∀g ∈ L2(�), ∀k = 1, . . . , K , ∀x ∈ Aδ
k ∩ � : Rδg(x) = 1

meas(Aδ
k)

∫
Ak

δ

g( y)d y,

where g has been extended by 0 outside�. Let x ∈ Aδ
k ∩�. Using Jensen’s inequality,

the fact that meas(Aδ
k) = δd and the change of variable y ∈ Aδ

k 	→ ξ = y − x ∈
(−δ, δ)d , we can write

|Rδg(x) − g(x)|2 ≤ δ−d
∫
Aδ
k

|g( y)−g(x)|2d y ≤ δ−d
∫

(−δ,δ)d
|g(x + ξ) − g(x)|2dξ .

Integrating over x ∈ Aδ
k and summing over k = 1, . . . , K gives

||Rδg − g||2L2(�)
≤ δ−d

∫
(−δ,δ)d

∫
Rd

|g(x + ξ) − g(x)|2dxdξ

≤ 2d sup
ξ∈(−δ,δ)d

∫
Rd

|g(x + ξ) − g(x)|2dx. (68)

The compactness of (Dm)m∈N (Definition 2.9) and the fact that p ≥ 2 give ε(ξ) such
that ε(ξ) → 0 as ξ → 0 and, for all m ∈ N and all v ∈ XDm ,0,

||�Dmv(· + ξ) − �Dmv||2L2(Rd )
≤ ε(ξ)||∇Dmv||2L p(�)d

.

Combining this with (68) and using the bound on ||∇Dm ζm ||L2(0,T ;L p(�)d ) shows that

||Rδ�Dm ζm − �Dm ζm ||L2(�×(0,T )) ≤ C sup
|ξ |∞≤δ

√
ε(ξ) =: ω(δ) (69)

where C does not depend on m, and ω(δ) → 0 as δ → 0. Note that a similar estimate
holds with �Dm ζm replaced with ζ since ζ ∈ L2(� × (0, T )).

If we respectively denote by Am(�Dm ζm) and A(ζ ) the integrals in the left-hand
side and right-hand side (67), then since (�Dmβm)m∈N is bounded in L2(� × (0, T ))

we have by (69)

|Am(�Dm ζm) − A(ζ )| ≤ Cω(δ) + |Am(Rδ�Dm ζm) − A(Rδζ )|. (70)

Let us assume that we can prove that, for a fixed δ,

Am(Rδ�Dm ζm) → A(Rδζ ) as m → ∞. (71)
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Then (70) gives lim supm→∞ |Am(�Dm ζm) −A(ζ )| ≤ Cω(δ). Letting δ → 0 in this
inequality givesAm(�Dm ζm) → A(ζ ) as wanted. Hence, we only need to prove (71).

The definition of Rδ shows that

Rδg =
K∑

k=1

1

meas(Aδ
k)

1Aδ
k
[g]Aδ

k
,

where 1Aδ
k
is the characteristic function of Aδ

k and [g]A = ∫
A g(x)dx. Hence, (71)

follows if we can prove that for any measurable set A

lim
m→∞

∫ T

0

∫
�

�Dmβm(x, t)[�Dm ζm]A(t)ϕ(t, x)1A(x)dxdt

=
∫ T

0

∫
�

β(x, t)[ ζ ]A(t)ϕ(t, x)1A(x)dxdt (72)

where for g ∈ L2(� × (0, T )) we set [g]A(t) = ∫A g(t, y)d y.
Step 2: further reductions.

We now reduce ϕ to a tensorial function and 1A to a smooth function. It is well-known
that there exists tensorial functions ϕr =∑Lr

l=1 θl,r (t)γl,r (x), with θl,r ∈ C∞([0, T ])
and γl,r ∈ C∞(�), such that ϕr → ϕ uniformly on �× (0, T ) as r → ∞. Moreover,
there exists ρr ∈ C∞

c (�) such that ρr → 1A in L2(�) as r → ∞.
Hence, as r → ∞ the function (t, x) 	→ ϕr (t, x)ρr (x) converges in L∞(0, T ;

L2(�)) to the function (t, x) 	→ ϕ(t, x)1A(x). Since the sequence of functions
(t, x) 	→ �Dmβm(t, x)[�Dm ζm]A(t) is bounded in L1(0, T ; L2(�)) (notice that
([�Dm ζm]A)m∈N is bounded in L2(0, T ) since (�Dm ζm)m∈N is bounded in L2(� ×
(0, T ))), a reasoning similar to the one used in Step 1 shows that we only need to
prove (72) with ϕ(t, x)1A(x) replaced with ϕr (t, x)ρr (x) for a fixed r .

We have ϕr (t, x)ρr (x) = ∑Lr
l=1 θl,r (t)(γl,rρr )(x) and γl,rρr ∈ C∞

c (�). Hence,
(72) with ϕ(t, x)1A(x) replaced with ϕr (t, x)ρr (x) will follow if we can establish
that for any θ ∈ C∞([0, T ]), any ψ ∈ C∞

c (�) and any measurable set A

lim
m→∞

∫ T

0

∫
�

θ(t)�Dmβm(x, t)[�Dm ζm]A(t)ψ(x)dxdt

=
∫ T

0

∫
�

θ(t)β(x, t)[ ζ ]A(t)ψ(x)dxdt. (73)

Step 3: proof of (73).

We now use the estimate on δmβm to conclude. We write

∫ T

0

∫
�

θ(t)�Dmβm(x, t)[�Dm ζm]A(t)ψ(x)dxdt =
∫ T

0
θ(t)[�Dm ζm]A(t)Fm(t)

(74)
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with Fm(t) = ∫
�

�Dmβm(x, t)ψ(x)dx. It is clear from the weak convergence of
�Dm ζm that [�Dm ζm]A → [ ζ ]A weakly in L2(0, T ). Hence, if we can prove that
Fm → F := ∫

�
β(x, ·)ψ(x)dx strongly in L2(0, T ), we can pass to the limit in (74)

and obtain (73). Since Fm weakly converges to F in L2(0, T ) [thanks to the weak
convergence of �Dmβm in L2(� × (0, T ))], we only have to prove that (Fm)m∈N is
relatively compact in L2(0, T ).

We introduce the interpolant PDm defined by (21) and we define Gm as Fm with ψ

replaced with �Dm PDmψ . We then have

|Fm(t) − Gm(t)| ≤ ||�Dmβm(·, t)||L2(�)SDm (ψ).

The consistency of (Dm)m∈N thus shows that

Fm − Gm → 0 strongly in L2(0, T ) as m → ∞. (75)

We now study the strong convergence ofGm . This function is, like�Dmβm , piecewise
constant on (0, T ) and, by definition of | · |�,Dm , its discrete derivative satisfies

|δmGm(t)| ≤ |δmβm(t)|�,Dm ||∇Dm PDmψ ||L p(�)d .

Since ||∇Dm PDmψ ||L p(�)d ≤ SDm (ψ) + ||∇ψ ||L p(�)d is bounded uniformly with
respect to m, the assumption on δmβm proves that (||δmGm ||L1(0,T ))m∈N is bounded.
We have ||δmGm ||L1(0,T ) = |Gm |BV (0,T ), and (�Dmβm)m∈N is bounded in L2(� ×
(0, T )); hence, (Gm)m∈N is bounded in BV (0, T )∩ L2(0, T ) and therefore relatively
compact in L2(0, T ) (see [7, Theorem 10.1.4]). Combined with (75), this shows that
(Fm)m∈N is relatively compact in L2(0, T ) and concludes the proof. ��
Remark 5.5 If we assume that (�Dmβm)m∈N is bounded in L∞(0, T ; L2(�)) and

that, for some q > 1, (
∫ T
0 |δmβm(t)|q

�,Dm
)m∈N is bounded, then Step 3 becomes a

trivial consequence of Theorem 3.1. Indeed, this theorem shows that (�Dmβm)m∈N is
relatively compact uniformly-in-time and weakly in L2(�), which translates into the
relative compactness of (Fm)m∈N in L∞(0, T ).

Lemma 5.6 Let V beanon-emptymeasurable subset ofRN , N ≥ 1. Letβ, ζ ∈ C0(R)

be twonondecreasing functions such thatβ(0) = ζ(0) = 0.Weassume that there exists
a sequence (wm)m∈N of measurable functions on V , and two functions β, ζ ∈ L2(V )

such that:

• β(wm) → β and ζ(wm) → ζ weakly in L2(V ),
• there exists ϕ ∈ L∞(V ) such that ϕ > 0 a.e. on V and

lim
m→∞

∫
V

ϕ(z)β(wm(z))ζ(wm(z))dz =
∫
V

ϕ(z)β(z) ζ (z)dz. (76)

Then, for any measurable functionw such that (β +ζ )(w) = β +ζ a.e. in V , we have

β = β(w) and ζ = ζ(w) a.e. in V . (77)

123



Uniform-in-time convergence of numerical… 759

Proof We first notice that β(w) and ζ(w) belong to L2(V ) since they have the same
sign and therefore verify |β(w)| + |ζ(w)| = |β + ζ | ∈ L2(V ). Using the fact that β

and ζ are non-decreasing, we can write

∫
V

ϕ(z) [β(wm(z)) − β(w(z))] [ζ(wm(z)) − ζ(w(z))] dz ≥ 0.

Lettingm → ∞ in the above inequality, and using the convergences of β(wm), ζ(wm)

and (76), we obtain

∫
V

ϕ(z)
[
β(z) − β(w(z))

] [
ζ (z) − ζ(w(z))

]
dz ≥ 0. (78)

We then remark that β + ζ = β(w) + ζ(w) gives β(w) = β+ζ
2 +

(
β−ζ
2

)
(w) and

ζ(w) = β+ζ
2 −

(
β−ζ
2

)
(w). Hence, (78) leads to

−
∫
V

ϕ(z)

[
β − ζ

2
(z) −

(
β − ζ

2

)
(w(z))

]2
dz ≥ 0.

Since ϕ is almost everywhere strictly positive on V , we deduce that β−ζ
2 = β(w)−ζ(w)

2

a.e. in V , and (77) follows from β+ζ
2 = β(w)+ζ(w)

2 . ��
Acknowledgments The authors would like to thank Clément Cancès for fruitful discussions on discrete
compensated compactness theorems.

Appendix: Uniform-in-time compactness results
for time-dependent problems

We establish in this appendix some generic results, unrelated to the framework of
gradient schemes, that form the starting point for our uniform-in-time convergence
results.

Solutions of numerical schemes for parabolic equations are usually piecewise con-
stant, and therefore not continous, in time. As their jumps nevertheless tend to become
small as the time step goes to 0, it is possible to establish uniform-in-time conver-
gence properties using a generalisation to non-continuous functions of the classical
Ascoli–Arzelà theorem.

Definition 6.1 If (K , dK ) and (E, dE ) are metric spaces, we denote by F(K , E)

the space of functions K → E endowed with the uniform metric dF (v,w) =
sups∈K dE (v(s), w(s)) (note that this metric may take infinite values).

Theorem 6.2 (Discontinuous Ascoli–Arzelà’s theorem) Let (K , dK ) be a compact
metric space, (E, dE ) be a complete metric space and (F(K , E), dF ) be as in Defi-
nition 6.1.
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760 J. Droniou, R. Eymard

Let (vm)m∈N be a sequence in F(K , E) such that there exists a function ω : K ×
K → [0,∞] and a sequence (δm)m∈N ⊂ [0,∞) satisfying

lim
dK (s,s′)→0

ω(s, s′) = 0, lim
m→∞ δm = 0,

∀(s, s′) ∈ K 2, ∀m ∈ N, dE (vm(s), vm(s′)) ≤ ω(s, s′) + δm .
(79)

We also assume that, for all s ∈ K, {vm(s) : m ∈ N} is relatively compact in (E, dE ).
Then (vm)m∈N is relatively compact in (F(K , E), dF ) and any adherence value of

(vm)m∈N in this space is continuous K → E.

Proof Let us first notice that the last conclusion of the theorem, i.e. that any adherence
value v of (vm)m∈N in F(K , E) is continuous, is trivially obtained by passing to the
limit in (79), which shows that the modulus of continuity of v is bounded above by ω.

The proof of the compactness result is an easy generalisation of the proof of the
classical Ascoli–Arzelà theorem. We start by taking a countable dense subset {sl :
l ∈ N} in K (the existence of this set is ensured since K is compact metric). Since
each set {vm(sl) : m ∈ N} is relatively compact in E , by diagonal extraction we can
select a subsequence of (vm)m∈N, denoted the same way, such that, for any l ∈ N,
(vm(sl))m∈N converges in E . We then proceed to show that (vm)m∈N is a Cauchy
sequence in (F(K , E), dF ). Since this space is complete, this will prove that this
sequence converges in this space, which will complete the proof.

Let ε > 0 and, using (79), take ρ > 0 and M ∈ N such that ω(s, s′) ≤ ε whenever
dK (s, s′) ≤ ρ and δm ≤ ε whenever m ≥ M . Select a finite set {sl1, . . . , slN } such
that any s ∈ K is within distance ρ of a sli . Then for any m,m′ ≥ M

dE (vm(s), vm′(s)) ≤ dE (vm(s), vm(sli )) + dE (vm(sli ), vm′(sli )) + dE (vm′(sli ), vm′(s))

≤ ω(s, sli ) + δm + dE (vm(sli ), vm′(sli )) + ω(s, sli ) + δm′

≤ 4ε + dE (vm(sli ), vm′(sli )).

Since {(vm(sli ))m∈N : i = 1, . . . , N } forms a finite number of converging sequences
in E , we can find M ′ ≥ M such that, for all m,m′ ≥ M ′ and all i = 1, . . . , N ,
dE (vm(sli ), vm′(sli )) ≤ ε. This shows that, for all m,m′ ≥ M ′ and all s ∈ K ,
dE (vm(s), vm′(s)) ≤ 5ε and concludes the proof that (vm)m∈N is a Cauchy sequence
in (F(K , E), dF ). ��
Remark 6.3 Conditions (79) are usually the most practical when (vm)m∈N are piece-
wise constant-in-time solutions to numerical schemes (see e.g. the proof of Theorem
3.1). Here, ω is expected to measure the size of the cumulated jumps of vm between
s and s′, and δm accounts for boundary effects which may occur in the small time
intervals containing s and s′.

It is easy to see that (79) can be replaced with

dE (vm(s), vm(s′)) → 0, as m → ∞ and dK (s, s′) → 0 (80)

(under this condition, the proof can be carried out by selecting M ∈ N and ρ > 0 such
that dE (vm(s), vm(s′)) ≤ ε whenever m ≥ M and dK (s, s′) ≤ ρ). It turns out that
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(80) is actually a necessary and sufficient condition for the theorem’s conclusions to
hold true.

The following lemma states an equivalent condition for the uniform convergence
of functions, which proves extremely useful to establish uniform-in-time convergence
of numerical schemes for parabolic equations when no smoothness is assumed on the
data.

Lemma 6.4 Let (K , dK ) be a compact metric space, (E, dE ) be a metric space and
(F(K , E), dF ) as in Definition 6.1. Let (vm)m∈N be a sequence in F(K , E) and
v : K 	→ E be continuous.

Then vm → v for dF if and only if, for any s ∈ K and any sequence (sm)m∈N ⊂ K
converging to s for dK , we have vm(sm) → v(s) for dE .

Proof If vm → v for dF then for any sequence (sm)m∈N converging to s

dE (vm(sm), v(s)) ≤ dE (vm(sm), v(sm)) + dE (v(sm), v(s))

≤ dF (vm, v) + dE (v(sm), v(s)).

The right-hand side tends to 0 by definition of vm → v for dF and by continuity of v,
which shows that vm(sm) → v(s) for dE .

Let us now prove the converse by contradiction. If (vm)m∈N does not converge to v

for dF then there exists ε > 0 and a subsequence (vmk )k∈N, such that, for any k ∈ N,
sups∈K dE (vmk (s), v(s)) ≥ ε. We can then find a sequence (rk)k∈N ⊂ K such that,
for any k ∈ N,

dE (vmk (rk), v(rk)) ≥ ε/2. (81)

K being compact, up to another subsequence denoted the same way, we can assume
that rk converges as k → ∞ to some s in K . It is then trivial to construct a sequence
(sm)m∈N converging to s and such that smk = rk (just take sm = s when m is not an
mk). We then have vm(sm) → v(s) in E and, by continuity of v, v(sm) → v(s) in E .
This shows that dE (vm(sm), v(sm)) → 0, which contradicts (81) and concludes the
proof. ��

The next result is classical. Its short proof is recalled for the reader’s convenience.

Proposition 6.5 Let E be a closed bounded ball in L2(�) and let (ϕl)l∈N be a dense
sequence in L2(�). Then, on E, the weak topology of L2(�) is the topology given by
the metric

dE (v,w) =
∑
l∈N

min(1, |〈v − w, ϕl〉L2(�)|)
2l

. (82)

Moreover, a sequence of functions um : [0, T ] → E converges uniformly-in-time to
u : [0, T ] → E for the weak topology of L2(�) (see Definition 2.11) if and only if, as
m → ∞, dE (um, u) : [0, T ] → [0,∞) converges uniformly to 0.

Proof The sets Eϕ,ε = {v ∈ E : |〈v, ϕ〉L2(�)| < ε}, for ϕ ∈ L2(�) and ε > 0,
define a basis of neighborhoods of 0 for the weak L2(�) topology on E , and a basis
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of neighborhoods of any other point is obtained by translation. If R is the radius of
the ball E then for any ϕ ∈ L2(�), l ∈ N and v ∈ E we have

|〈v, ϕ〉L2(�)| ≤ R||ϕ − ϕl ||L2(�) + |〈v, ϕl〉L2(�)|.

By density of (ϕl)l∈N we can select l ∈ N such that ||ϕ − ϕl ||L2(�) < ε/(2R) and we
then see that Eϕl ,ε/2 ⊂ Eϕ,ε. Hence, a basis of neighborhoods of 0 in E for the weak
L2(�) is also given by (Eϕl ,ε)l∈N, ε>0.

From the definition of dE we see that, for any l ∈ N, min(1, |〈v, ϕl〉L2(�)|) ≤
2ldE (0, v). If dE (0, v) < 2−l this shows that |〈v, ϕl〉L2(�)| ≤ 2ldE (0, v) and therefore
that

BdE (0,min(2−l , ε2−l)) ⊂ Eϕl ,ε.

Hence, any neighborhood of 0 in E for the L2(�) weak topology is a neighborhood
of 0 for dE . Conversely, for any ε > 0, selecting N ∈ N such that

∑
l≥N+1 2

−l < ε/2
gives, from the definition (82) of dE ,

N⋂
l=1

Eϕl ,ε/4 ⊂ BdE (0, ε).

Hence, any ball for dE centered at 0 is a neighborhood of 0 for the L2(�) weak
topology. Since dE and the L2(�) weak neighborhoods are invariant by translation,
this concludes the proof that this weak topology is identical to the topology generated
by dE .

The conclusion on weak uniform convergence of sequences of functions follows
from the preceding result, and more precisely by noticing that all previous inclusions
are, when applied to um(t) − u(t), uniform with respect to t ∈ [0, T ]. ��

The following lemma has been initially established in [35, Proposition 9.3].

Lemma 6.6 Let (t (n))n∈Z be a stricly increasing sequence of real values such that

δt (n+ 1
2 ) := t (n+1) − t (n) is uniformly bounded by δt > 0, limn→−∞ t (n) = −∞ and

limn→∞ t (n) = ∞. For all t ∈ R, we denote by n(t) the element n ∈ Z such that
t ∈ (t (n), t (n+1)]. Let (a(n))n∈Z be a family of non negative real numbers with a finite
number of non zero values. Then

∫
R

n(t+τ)∑
n=n(t)+1

(δt (n+ 1
2 )a(n+1))dt = τ

∑
n∈Z

(δt (n+ 1
2 )a(n+1)), ∀τ > 0, (83)

and

∫
R

⎛
⎝ n(t+τ)∑

n=n(t)+1

δt (n+ 1
2 )

⎞
⎠ an(t+s)+1dt ≤ (τ+δt)

∑
n∈Z

δt (n+ 1
2 )a(n+1), ∀τ > 0, ∀s ∈ R.

(84)
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Proof Let us define χ by χ(t, n, τ ) = 1 if t (n) ∈ [t, t + τ), otherwise χ(t, n, τ ) = 0.
We have

∫
R

n(t+τ)∑
n=n(t)+1

(δt (n+ 1
2 )a(n+1))dt =

∫
R

∑
n∈Z

(δt (n+ 1
2 )a(n+1)χ(t, n, τ ))dt

=
∑
n∈Z

(
δt (n+ 1

2 )a(n+1)
∫
R

χ(t, n, τ )dt

)
.

Since
∫
R

χ(t, n, τ )dt = ∫ t (n)

t (n)−τ
dt = τ , Relation (83) is proved.

We now turn to the proof of (84).We define χ̃ by χ̃ (n, t) = 1 if n(t) = n, otherwise
χ̃(n, t) = 0. We have

∫
R

⎛
⎝ n(t+τ)∑

n=n(t)+1

δt (n+ 1
2 )

⎞
⎠ a(n(t+s)+1)dt

=
∫
R

⎛
⎝ n(t+τ)∑

n=n(t)+1

δt (n+ 1
2 )

⎞
⎠∑

m∈Z
a(m+1)χ̃ (m, t + s)dt,

which yields

∫
R

⎛
⎝ n(t+τ)∑

n=n(t)+1

δt (n+ 1
2 )

⎞
⎠ a(n(t+s)+1)dt=

∑
m∈Z

a(m+1)
∫ t (m+1)−s

t (m)−s

⎛
⎝ n(t+τ)∑

n=n(t)+1

δt (n+ 1
2 )

⎞
⎠ dt.

(85)
Since

n(t+τ)∑
n=n(t)+1

δt (n+ 1
2 ) =

∑
n∈Z, t≤t (n)<t+τ

(t (n+1) − t (n)) ≤ τ + δt,

we deduce from (85) that

∫
R

⎛
⎝ n(t+τ)∑

n=n(t)+1

δt (n+ 1
2 )

⎞
⎠ a(n(t+s)+1)dt ≤ (τ + δt)

∑
m∈Z

a(m+1)
∫ t (m+1)−s

t (m)−s
dt

= (τ + δt)
∑
m∈Z

a(m+1)δt (m+ 1
2 ),

which is exactly (84). ��
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