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Abstract Standard discretizations of Stokes problems lead to linear systems of equa-
tions in saddle point form, making difficult the application of algebraic multigrid
methods. In this paper, a new approach is proposed. It consists in first transforming
the system by pre- and post-multiplication with simple, algebraic, sparse block trian-
gular matrices. This is a form of pre-conditioning in the literal sense, designed to make
sure that the transformed matrix is well adapted to multigrid. In particular, after trans-
formation, all the diagonal blocks are symmetric and positive definite, and correspond
to, or resemble, a discrete Laplace operator. Then, to each of these diagonal blocks is
associated a prolongation that works well for it, using any relevant algebraic or geo-
metric multigrid method. Next, a multigrid scheme for the global system is naturally
set up by combining these partial prolongations with a Galerkin coarse grid matrix.
For this approach combined with damped Jacobi-smoothing, a uniform two-grid con-
vergence bound is derived for the global system under the assumption that the two-grid
schemes for the different diagonal blocks are themselves uniformly convergent. This
result is illustrated by a few examples, showing further that time-dependent problems
and variable viscosity can be handled in a natural way, without requiring parameter
adjustment. A numerical comparison also shows that the new approach can be more
effective than state-of-the-art block preconditioning techniques.
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52 Y. Notay

1 Introduction

Stokes equations appear in numerous applications such as incompressible fluid dynam-
ics and some structuralmechanics problems. Their discretization lead to linear systems
whose matrix has a 2 × 2 block structure, in which the lower diagonal block (the one
related to the pressure unknowns) is either a zero block or a block containing very
small matrix elements.

This makes uneasy the application of multigrid methods to solve these linear sys-
tems, since standard smoothing iterations such as damped Jacobi or Gauss–Seidel
methods may be either undefined or not convergent. Nevertheless, the tradition of
solving Stokes equations with multigrid is long, and interesting approaches have been
presented during the last 35 years, each of them characterized by the use of a specific
smoother. This includes the Vanka smoother [34], in which the primary unknowns,
pressure and the velocities in a grid cell, are updated simultaneously. Another approach
is called “distributive smoothing”, in which one first transforms the discrete system in
such a way that standard Gauss–Seidel smoothing performs well on the transformed
system [5,39]. Inexact Uzawa type procedures (e.g. [2, Sect. 8.1]) have also been
considered as smoothing iterations for multigrid schemes; see [14,18].

It is worth noting that these approaches have rarely been considered in combination
with algebraicmultigrid (AMG) schemes (see, however [20,36,37]). There are indeed
two obstacles. On the one hand, it is part of the philosophy of AMGmethods to fix the
smoother to a simple scheme such as damped Jacobi or Gauss–Seidel, and address any
peculiarity of the linear systemvia the design of the prolongation operator. On the other
hand, the lack of a proper diagonal block for the pressure unknowns does not permit
to use the “unknown-based” coarsening [9,32], in which the prolongation operator is
set up by considering separately the different type of unknowns (in the present case,
velocity components and pressure). Another possible approach is “point-based” AMG
[9, Sect. 3.4], in which a general coarsening scheme is set up for the discretization
grid, and then used separately on each type of unknown. A difficulty might be here
that the discretization of Stokes equations often uses different grids for the different
types of unknowns: staggered grids in the finite difference case [38], or different order
of accuracy for finite element discretizations [12].

In the present paper we develop the foundation of a novel approach that naturally
overcomes these difficulties. Like distributive smoothing, it is based on a transfor-
mation of the original linear system. However, distributive smoothing considers the
transformation only as a mean to obtain convergent smoothers for the original sys-
tem, whereas here we propose a transformation designed to allow the straightforward
application of multigrid schemes in their whole.

The transformation consists in pre- and post-multiplication with simple, algebraic,
sparse block triangular matrices. It provides a form of pre-conditioning in the literal
sense, the multigrid scheme being afterwards applied to the transformed system. The
transformedmatrix is “well adapted” tomultigrid firstly because all the diagonal blocks
are symmetric and positive definite (SPD), and resemble, or correspond to, a discrete
Laplace operator. Hence, it is straightforward to apply the “unknown-based” coars-
ening strategy. Secondly, we show that the approach is theoretically well founded by
proving a uniform bound on the two-grid convergence factor associated with damped
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Jacobi-smoothing for the global system, under the main assumption that the two-grid
schemes for the different diagonal blocks are themselves uniformly convergent—a
requirement easy to meet given that these blocks are discrete Laplace-like matrices.

Our results are general since they are compatiblewith virtually any type of algebraic
or even geometric coarsening scheme. The proposed approach can thus be combined
with each one’s favorite method: classical AMG [6,32], smoothed aggregation AMG
[35], or plain (unsmoothed) aggregation AMG [22,25]. On the other hand, we focus
on rigorous convergence proofs, which goes along with some limitations: only two-
grid schemes with Galerkin coarse grid matrices and a single step of damped Jacobi
smoothing are covered. Of course, to fully validate amethod, some practically oriented
questions should be further investigated, such as: which smoothing scheme performs
best in practice, whichmultigrid cycle is recommended, etc. However, a proper answer
to these questions would likely depend on the type of coarsening used and possibly
also on the class of Stokes problems under considerations. To keep the present study
general, these questions are therefore deliberately left for future research. The results
presented here are thus to be seen as a proof of concept for a class of methods, rather
than a complete study of one particular instance.

To conclude this introduction, let us stress that the above remarks on the use of
AMG schemes to solve discrete Stokes problems focus on their direct application to
the system of coupled PDEs. It goes without saying that the mentioned difficulties do
not concern the use ofAMG techniqueswithin the framework of block preconditioning
methods.These (see, e.g. [2,11,12,29]) require approximations of the inverse of certain
matrix blocks, and are in fact most effective when multigrid is used for this purpose.
Here, onemay applyAMGwithout particular difficulty because thesematrix blocks are
related to scalar Poisson-like problems.Therefore,whengeometricmultigrid cannot be
used, this combination of block preconditioning with AMG is often the most effective
option. It is also widely used in practice. Note, however, that when geometricmultigrid
can be used, the comparison developed in [16] tends to favor multigrid schemes for the
coupled system. This gives strong motivation in the development of AMG schemes
that can similarly be directly applied to the coupled system. In Sect. 6 below, we give
a limited comparison of the approach proposed here with the most popular of these
block preconditioners.

The remaining of this paper is organized as follows. In Sect. 2, we present the
class of Stokes problems that serves us as motivation, and give some properties of the
associated linear systems. The proposed approach is then described in Sect. 3, whereas
its analysis is developed in Sect. 4. In Sect. 5, we discuss two particular examples,
providing also some numerical illustrations. Some further numerical results including
a comparison with block diagonal preconditioning is provided in Sect. 6. Concluding
remarks are given in Sect. 7.

Notation

For any (possibly complex) vector v, vT is its transpose, ‖v‖ is its 2-norm and, for
arbitrary SPDmatrixG,‖v‖G is the associated energy norm: ‖v‖G = √

v∗G v. For any
square matrix C , ρ(C) is its spectral radius (i.e., its largest eigenvalue in modulus)
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and σ(C) is its spectrum. If C has only real eigenvalues (e.g., if it is similar to a
symmetric matrix), λmin(C) and λmax(C) further stand for its smallest and largest
eigenvalue, respectively. Finally, inequalities between square symmetric matrices are
to be understood in the nonnegative definite sense: C1 ≤ C2 if and only if C1 −C2 is
nonnegative definite.

2 Stokes equations and their discretization

We consider the following problem: find the velocity vector u and the pressure field
p satisfying

ξu − ν�u + ∇ p = f, in �,

∇ · u = 0, in �, (2.1)

and appropriate boundary conditions on ∂�. In (2.1), � is a bounded domain of R2 or
R3, f represents a prescribed force, and the parameters ν > 0 (viscosity) and ξ ≥ 0
are given. The latter is often a quantity proportional to the inverse of the time-step in
an implicit time integration method applied to a nonstationary Stokes problem; ξ = 0
corresponds to the classical stationary Stokes problem.

With most schemes, the discretization of (2.1) leads to a linear system of the form

A
(
u
p

)
=

(
bu
bp

)
(2.2)

where

A =
(
A BT

B −C

)
. (2.3)

In this matrix, A is the discrete representation of the operator ξ − ν�; more precisely,
A is block diagonal with one diagonal block per spatial dimension, being the discrete
operator acting on one of the velocity components. It further follows that A is SPD.
The matrix block BT is the discrete gradient and (−B) the discrete divergence; C is a
stabilization term which is needed by some discretization schemes to avoid spurious
solutions. Such spurious solutions arise when the discrete gradient admits more than
the constant vector in its null space or near null space; i.e., when the discrete gradient
is zero or near zero for some spurious pressure modes. The existence of such modes
depends on which discretization scheme is used for velocities and pressure. We refer
to, e.g. [12,38] for more details on, respectively, finite difference and finite element
discretizations. Note a required property of the stabilization operator: if B is not full
rank, C has to be positive definite on the null space of BT , which further entails that
the system matrix is nonsingular [2].

An important exception to this latter rule is when the boundary conditions are
such that the physical pressure is only determined up to a constant. In such cases
some additional condition is needed to make the problem well-posed. Often, one
imposes that the mean pressure is equal to zero. Then, the discrete system is singular
but compatible, and, regarding iterative methods, one has to care that the iteration
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is actually performed in a subspace in which the system is regular. Often this raises
no particular difficulty, and this approach is in general preferred to the alternative
that consists in fixing the discrete pressure at some point. Indeed, this latter approach
transforms the singular system in a near singular one; i.e., it introduces a form off
ill-conditioning, which may spoil the convergence iterative methods.

However, a nice features of multigrid methods lies in their ability to handle effi-
ciently near singular systems, and the approach presented here makes no exception.
For the examples considered in Sect. 5, we even numerically checked that the eigen-
value distribution of the iteration matrix was nearly identical with both the techniques
mentioned in the previous paragraph.Hencewe shall only discuss explicitly the second
one (in which the problem is regularized). This further displays the robustness of our
approach while keeping the overall presentation simpler, allowing us to develop the
theory for regular matrices only. More precisely, the results to follow are for matrices
of the form (2.3), assuming that A is SPD, that C is nonnegative definite, and that
either B is full rank or C is positive definite on the null space of BT (which, as note
above, implies that A is nonsingular).

3 The proposed approach

Let DA = diag(A) and let α be a positive parameter such that α ≈ (λmax(D
−1
A A))−1;

e.g., α = (‖D−1
A A‖∞)−1. Defining

L =
(

In
αBD−1

A −Im

)
, U =

(
In −αD−1

A BT

Im

)
, (3.1)

our approach is firstly based on a change of variable:

(
u
p

)
= U

(
û
p̂

)
.

Then, multiplying both side of (2.2) to the left by L, we obtain

Â
(
û
p̂

)
= L

(
bu
bp

)
(3.2)

with Â = LAU ; i.e.,

Â =
(

Â B̂T

−B̂ Ĉ

)
=

(
A (In − αA D−1

A )BT

−B(In − αD−1
A A) C + B(2αD−1

A − α2D−1
A AD−1

A )BT

)
.

(3.3)
Our approach consists then in solving the transformed system (3.2) with multigrid.

More precisely, we propose to use the “unknown-based” multigrid approach [9,32],
in which the coarsening for a system of discrete PDEs is obtained by considering
separately the diagonal blocks associated to the different type of unknowns. This is
consistent with the structure of the block diagonal part of Â :
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diagblock
(
Â

) =
(
A
Ĉ

)
(3.4)

is SPD.1 Further, its diagonal blocks are “well adapted” to multigrid. Indeed, as noted
in the preceding section, each diagonal block of A (one per spatial dimension) is a
discrete representation of ξ − ν�. Regarding Ĉ , there is no similar general argument,
but, in the two examples considered in Sect. 5, it turns out that Ĉ is a symmetric M-
matrix with nonnegative row-sum, and further that it corresponds to a stencil which
is a linear combination of several classical stencils for the Laplace operator. This is
likely connected to the fact that, for the suggested value of α, the dominating term in Ĉ
is 2α B D−1

A BT , where BT is the discrete gradient and (−B) the discrete divergence,
whereas DA is essentially proportional to the viscosity ν; hence, B D−1

A BT ≈ −c ∇ ·
(ν−1 ∇) for some constant c.

Thus we pursue the discussion presuming that both A and Ĉ are “well adapted”
to multigrid, and hence that it is easy to set up relevant prolongations matrices PA

and PĈ . We further assume that these prolongations work well in combination with
damped Jacobi smoothing. Note that this is a natural requirement for prolongations
obtained by applying AMGmethods to A and Ĉ , since this is part of the philosophy of
these methods that the prolongation is designed to work well with simple smoothers.

Equipped with these PA and PĈ , we define the prolongation for the global system

P =
(
PA

PĈ

)
. (3.5)

And, in fact, nothing else is needed to setup a relevant two-grid scheme for Â, com-
bining this prolongation with damped Jacobi smoothing and the Galerkin coarse grid
matrix

Âc = PT Â P.

In particular, letting

D = diag
(
Â

) =
(
diag(A)

diag
(
Ĉ

)
)

, (3.6)

we can define the iteration matrix associated with a basic scheme using only a single
step of damped Jacobi post-smoothing:

T =
(
I − ωD−1Â

) (
I − PÂ−1

c PT Â
)

. (3.7)

In the following section, we prove a bound on the spectral radius of T that necessitates
only the convergence of similar two-grid schemes for the diagonal blocks A and Ĉ
(considered separately).

1 If 0 < α < 2(λmax(D
−1
A A))−1, then 2αD−1

A −α2D−1
A AD−1

A is SPD, and hence Ĉ is SPD as well when

C is positive definite on the range of BT .
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Computational cost and implementation

Clearly, the transformed matrix (3.3) will be denser than the original matrix, with a
potential significant impact on the overall efficiency of the proposed approach. How-
ever, most of this impact can be annihilated with a clever implementation.

Indeed, at fine grid level, instead of storing explicitly the transformed matrix, one
can keep the original one (2.3) togetherwith the triangular factors (3.1), and implement
the matrix vector product with A as the product with, successively, U , A, and L.
Because B is usually very sparse, the extra cost compared with a mere multiplication
by A will be moderate.

Moreover, looking closely at the operations involved with this strategy, it turns out
that further saving is possible because the steps associatedwith B and BT (both present
in A and in either U or L) can be combined so as to perform only one multiplication
with these terms. The following algorithm computes

(
wu
wp

)
= Â

(
vu
vp

)

according this idea.

1. ŵu = BT vp

2. w̃u = vu − α D−1
A ŵu

3. wu = A w̃u + ŵu

4. w̄u = w̃u − α D−1
A wu

5. wp = −B w̄u + C vp.

The validity of this algorithm can be checked following the steps backward, which
gives

wp = B
(
α D−1

A wu − w̃u

)
+ C vp

= B
(
α D−1

A

(
A w̃u + ŵu

) − w̃u

)
+ C vp

= B
((

α D−1
A A − I

) (
vu − α D−1

A ŵu

)
+ α D−1

A ŵu

)
+ C vp

= B
(
α D−1

A A − I
)
vu + B

(
2 α D−1

A − α2D−1
A A D−1

A

)
BT vp + C vp

= −B̂ vu + Ĉ vp,

wu = A
(
vu − α D−1

A ŵu

)
+ ŵu

= A vu +
(
I − α A D−1

A

)
BT vp

= Â vu + B̂T vp.
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Exchanging steps 2 and 4 for w̃u = vu and w̄u = w̃u (i.e., setting α = 0), the
above algorithm reduces to a sensible implementation of the multiplication by the
original matrixA (up to a change sign of wp). Hence, steps 2 and 4 represent the only
extra operations involved by the transformation ofA into Â. Storing the entries of the
diagonal matrix α D−1

A in a vector, this amounts to only two multiplications and two
additions per velocity unknown.

4 Theoretical analysis

4.1 A preliminary motivating result

We first need to recall some results from the algebraic convergence theory of two-
grid methods. We start with the definition of the approximation property constant
K (G, PG , MG) associated with a triplet of matrices G, PG and MG , where G is the
matrix to which the two-grid scheme is applied, PG the prolongation matrix of the
two-grid scheme, and MG a matrix related to the smoother (see below). For a SPD
matrix G, the usage of K (G, PG , diag(G)) traces back to [4]. Here the definition is
extended to general (possibly nonsymmetric) matrices positive definite in Rn ; that is,
to matrices G such that

vT G v > 0 ∀v ∈ R
n\{0},

or, equivalently, such that
GS = 1

2 (G + GT ) (4.1)

is SPD. For the sake of completeness, we give two formulations whose equivalence is
well known (see [28] for an explicit proof).

Definition 4.1 Let G and MG be n × n matrices such that G is positive definite in
R
n and MG is SPD. Let PG be an n × nc matrix of rank nc < n. The associated

approximation property constant is

K (G, PG , MG) = max
v∈Rn\{0}

vT MG
(
I − PG

(
PT
G MG PG

)−1
PT
G MG

)
v

vT G v
. (4.2)

Equivalently, K (G, PG , MG) is the smallest constant K such that

∀u ∈ R
n ∃v ∈ R

nc such that ‖u − PG v‖2MG
≤ K ‖u‖2GS

, (4.3)

where GS is defined by (4.1).

In [4], a bound on the two grid convergence rate is obtained for G SPD, based on
K (G, PG , diag(G)) and a further smoothing property constant. The theory has been
later improved and extended in, e.g. [7,13,26,32] (see [28] for a review). In particular,
Corollary 2.1 in [26] allows to make a direct connection between the approximation
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property constant and the convergence of a mere two-grid method with a single post-
smoothing step; namely, the two-grid method with iteration matrix

TG =
(
I − M−1

G G
) (

I − PGG
−1
c PT

G G
)

, (4.4)

where
Gc = PT

G G PG (4.5)

is the Galerkin coarse grid matrix. Furthermore, Corollary 2.2 of [26] extends this
connection to nonsymmetric matrices positive definite in Rn . These results from [26]
are recalled in the following lemma.

Lemma 4.1 Let G and MG be n × n matrices such that G is positive definite in R
n

and MG is SPD. Let PG be an n × nc matrix of rank nc < n.
Letting TG be defined by (4.4), the eigenvalues of I − TG that are not equal to 1

are the inverse of the nonzero eigenvalues of

G−1MG

(
I − PG

(
PT
G MG PG

)−1
PT
G MG

)
.

Moreover, letting K (G, PG , MG) be as in Definition 4.1, the nonzero eigenvalues
λ of TG satisfy


e(λ) ≤ 1 − 1

K (G, PG , MG)
. (4.6)

If, in addition, G is symmetric (i.e., SPD), then the eigenvalues of TG are real and

max
λ∈σ(T )\{0} λ = 1 − 1

K (G, PG , MG)
(4.7)

min
λ∈σ(T )\{0} λ ≥ 1 − λmax(M

−1
G G). (4.8)

Applied to the SPD matrix A with PA and MA = ω−1diag(A), this lemma tells
us that, for properly chosen ω (i.e., such that 1 ≤ ωλmax(D

−1
A A) � 2), the two-

grid method for A with one single step of damped Jacobi smoothing converges fast
if and only if K (A, PA, DA) is reasonably bounded. Similarly, the two-grid method
for Ĉ with one single step of damped Jacobi smoothing converges fast if and only if
K (Ĉ, PĈ , DĈ ) is reasonably bounded. Hence the requirement that the prolongations
PA and PĈ work well in combination with damped Jacobi smoothing amounts to the
requirement that K (A, PA, DA) and K (Ĉ, PĈ , DĈ ) are reasonably bounded.

Now, consider the transformedmatrix (3.3). A first observation is that its symmetric
part coincides with its block diagonal part:

ÂS = 1
2

(
Â + ÂT

)
= diagblock

(
Â

) =
(
A

Ĉ

)
.

Hence Â is positive definite in R
n . Further, it is clear from Definition 4.1 that

K ( Â,P,M) = K ( ÂS,P,M) for any P,M. Therefore, for P of the form (3.5)
and D as in (3.6):
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K
(
Â,P,D) = max

(
K (A, PA, DA), K (Ĉ, PĈ , DĈ )

)
. (4.9)

Thus, in view of the preceding paragraph, the basic requirement that PA and PĈ
work well in combination with damped Jacobi smoothing suffices to guarantee that
K

(
Â,P,D) is reasonably bounded; that is, see (4.6), to guarantee that the iteration

matrix (3.7) associated with one single step of damped Jacobi smoothing for A has
no eigenvalue close to 1. This is a major step: what prevents the fast convergence of
iterative methods is classically the presence of near singular modes for the system
matrix, to which correspond eigenvalues of the iteration matrix that are very close to
1. Just with the above reasoning, we already know that the suggested approach handles
efficiently such modes.

This is, however, not yet a full convergence proof: the inequality (4.6) does not
say anything about the imaginary part of the eigenvalues, and does also not prevent
eigenvalueswith large negative real part. In the SPDcase, the result (4.8) offers a useful
complement to (4.7), but there is no such a general result for nonsymmetric matrices,
except possibly for M-matrices [26,27]. Hence a specific analysis is needed, which is
developed in the next two subsections, the first one containing technical developments
needed to prove the main results that are stated in the second one.

4.2 Technical lemmas

The first lemma extends, for saddle point matrices in the form (4.10) (i.e., nonsym-
metric but positive definite in Rn+m), the eigenvalue analysis developed in [3, Propo-
sition 2.12] and [29, Theorem 4.1] to a form (4.12) of generalized eigenvalue problem
where the right hand side matrix is an orthogonal projector. Observe that the matrices
(3.3) resulting from the transformation suggested in Sect. 3 satisfy the assumptions of
the lemma.

Lemma 4.2 Let

A =
(

A BT

−B C

)
(4.10)

be a matrix such that A and C are, respectively, n × n and m × m SPD matrices.
Let

Q =
(
QA

QC

)
(4.11)

be a matrix such that QA is n × nc and QC is m × mc with nc ≤ n, mc ≤ m and
QT

AQA = Inc , Q
T
C QC = Imc .

Letting

SA = A + BTC−1B and SC = C + B A−1BT ,

define

κA = λmax(Q
T
AA

−1QA), γA = λmax(SA),

κC = λmax(Q
T
CC

−1QC ), γC = λmax(SC ),
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κ = 2 κA κC

κA + κC
, γ = 2 γA γC

γA + γC
.

The eigenvalues λ of the generalized eigenvalue problem

A z = λQQT z, QT z �= 0 (4.12)

are such that either ⎧⎪⎨
⎪⎩

�m(λ) = 0


e(λ) ≥ (
max (κA, κC )

)−1


e(λ) ≤ max (γA, γC )

(4.13)

or ⎧⎪⎪⎨
⎪⎪⎩

�m(λ) �= 0


e(λ) ≥ κ−1∣∣∣λ − γ
2

∣∣∣ ≤ γ
2 .

(4.14)

Proof The stated results (4.13), (4.14) are straightforward corollaries of Theorem 4.1
of [29] if we can show that the eigenvalues of (4.12) are also that of a matrix

F =
(

FA FT
B−FB FC

)
(4.15)

with FA, FC SPD and such that

λmin(FA) ≥ κ−1
A , λmax

(
FA + FT

B F−1
C FB

)
≤ γA, (4.16)

λmin(FC ) ≥ κ−1
C , λmax

(
FC + FBF

−1
A FT

B

)
≤ γC . (4.17)

Now, the eigenvalues of (4.12) are the inverse of the nonzero eigenvalues of
A−1QQT , which, by virtue of Theorem 1.3.22 in [15] are also the eigenvalues of
QTA−1Q. Thus, it suffices to check the above relations for F = (

QTA−1Q
)−1.

In this view, note first that, for any matrix of the form (4.15), its inverse is given by

(
FA FT

B

−FB FC

)−1

=
(

S−1
FA

−S−1
FA

FT
B F−1

C

F−1
C FB S−1

FA
S−1
FC

)

=
(

S−1
FA

−FA
−1FT

B S−1
FC

S−1
FC

FB F−1
A S−1

FC

)
(4.18)

(see [1, p. 93]), where

SFA = FA + FT
B F−1

C FB, SFC = FC + FBF
−1
A FT

B .

123



62 Y. Notay

Applying the above identity to obtain the inverse of A then yields

F−1 = QTA−1Q =
(

QT
A S−1

A QA −QT
A A−1BT S−1

C QC

QT
C S−1

C B A−1 QA QT
C S−1

C QC

)
. (4.19)

Comparing with (4.18), we immediately obtain that

FA + FT
B F−1

C FB =
(
QT

A S−1
A QA

)−1
, FC + FBF

−1
A FT

B =
(
QT

C S−1
C QC

)−1
.

Therefore, the right inequalities (4.16), (4.17) amount to

λmin

(
QT

A S−1
A QA

)
≥ γ −1

A , λmin

(
QT

C S−1
C QC

)
≥ γ −1

C ,

which hold because (remembering the assumption QT
AQA = Inc )

λmin

(
QT

A S−1
A QA

)
= min

v∈Rnc \{0}
vT QT

A S−1
A QA v

vT v

= min
v∈Rnc \{0}

vT QT
A S−1

A QA v

vT QT
A QA v

≥ min
v∈Rn\{0}

vT S−1
A v

vT v
= λmin

(
S−1
A

)
= γ −1

A ,

and, similarly, λmin(QT
C S−1

C QC ) ≥ λmin(S
−1
C ) = γ −1

C .
We are thus left with the proof of the left inequalities (4.16), (4.17). Here we

consider the application of (4.18) to the inverse of F expressed in (4.19). This shows
that FA and FC are equal to the inverse of the Schur complements of the matrix in the
right hand side of (4.19); that is,

F−1
A = QT

A

(
S−1
A + A−1BT S−1

C QC

(
QT

C SC QC

)−1
QT

C S−1
C B A−1

)
QA,

and, similarly (permuting the roles of A and C),

F−1
C = QT

C

(
S−1
C + C−1BT S−1

A QA

(
QT

A SA QA

)−1
QT

A S−1
A B C−1

)
QC .

Now, for any positive definite RC , R1/2
C QC (QT

C RCQC )−1QT
C R

1/2
C is an orthog-

onal projector, entailing R1/2
C QC (QT

C RCQC )−1QT
C R

1/2
C ≤ I and therefore QC

(QT
C RCQC )−1QT

C ≤ R−1
C . Hence,

F−1
A ≤ QT

A

(
S−1
A + A−1BT S−1

C B A−1
)
QA = QT

AA
−1 QA,
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the last equality following from the fact that S−1
A + A−1BT S−1

C B A−1 is a Schur
complement of A−1, hence its inverse has to be equal to the corresponding principal
submatrix in A [see again (4.18)].

Similarly one finds

F−1
C ≤ QT

C

(
S−1
C + C−1BT S−1

A B C−1
)
QC = QT

CC
−1 QC .

Therefore:

λmin(FA) =
(

λmax

(
F−1
A

))−1

≥
(

λmax

(
QT

AA
−1 QA

) )−1

= κ−1
A

and

λmin(FC ) =
(

λmax

(
F−1
C

) )−1

≥
(

λmax

(
QT

CC
−1 QC

) )−1

= κ−1
C ;

i.e., the left inequalities (4.16), (4.17) that remained to be proved. ��
The second lemma states useful algebraic properties of the Schur complements of

the matrices (3.3) resulting from the transformation suggested in Sect. 3.

Lemma 4.3 Let

A =
(
A BT

B −C

)

be a matrix such that A is an n×n SPDmatrix, and C and m×m nonnegative definite
matrix. Let Z A be a nonsingular n×n matrix such that ZA + ZT

A − A is SPD, and let

L =
(

In
B Z−1

A −Im

)
, U =

(
In −Z−T

A BT

Im

)
.

The matrix

LAU =
(

A
(
In − A Z−T

A

)
BT

−B(In − Z−1
A A) C + B(Z−1

A + Z−T
A − Z−1

A A Z−T
A )BT

)

=
(

Â B̂T

−B̂ Ĉ

)

is such that its Schur complements satisfy

SÂ = Â + B̂T Ĉ−1 B̂ ≤ ZA (ZA + ZT
A − A)−1 ZT

A , (4.20)

SĈ = Ĉ + B̂ Â−1 B̂T = C + B A−1BT . (4.21)
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Proof The last result (4.21) can be checked by direct computation. To prove (4.20),
note first that, for any positive definite RC , R

1/2
C BT (C + BRC BT )−1BR1/2

C has the
same nonzero eigenvalues as BRC BT (C+BRC BT )−1. Hence, sinceC is nonnegative
definite,

λmax

(
R1/2
C BT (C + BRC B

T )−1BR1/2
C

)
= max

v �=0

vT BRC BT v
vT (C + BRC BT ) v

≤ 1,

showing that BT (C + BRC BT )−1B ≤ R−1
C . Then, letting EA = ZA + ZT

A − A,

SÂ = A+
(
In−A Z−T

A

)
BT

(
C+B

(
Z−1
A +Z−T

A −Z−1
A A Z−T

A

)
BT

)−1

B
(
In − Z−1

A A
)

≤ A +
(
In − A Z−T

A

) (
Z−1
A + Z−T

A − Z−1
A A Z−T

A

)−1 (
In − Z−1

A A
)

= A +
(
ZT
A − A

) (
ZA + ZT

A − A
)−1

(ZA − A)

= A + (EA − ZA)E−1
A

(
ZT
A − EA

)

= ZAE
−1
A ZT

A .

��

4.3 Main results

We first prove a general result for matrices of the form

Â =
(

Â B̂T

−B̂ Ĉ

)
(4.22)

with Â and Ĉ SPD. Of course, more can be said for the specific case of matrices (3.3)
resulting from the transformation of the discrete Stokes equations as suggested in this
paper. This is considered in a subsequent corollary.

Theorem 4.4 Let Â be amatrix of the form (4.22) such that Â and Ĉ are, respectively,
n × n and m × m SPD matrices.

Let MÂ, MĈ be, respectively, n × n and m × m SPD matrices, and let PÂ and PĈ
be, respectively, n × nc and m × mc matrices of rank nc < n and mc < m. Set

M =
(
MÂ

MĈ

)
, P =

(
PÂ

PĈ

)

and

T =
(
I − M−1Â

) (
I − PÂ−1

c PT Â
)

,
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where

Âc = PT Â P.

Letting

SÂ = Â + B̂T Ĉ−1 B̂ and SĈ = Ĉ + B̂ Â−1 B̂T ,

set, using Definition 4.1,

κ Â = K
(
Â, PÂ, MÂ

)
, γ Â = λmax

(
M−1

Â
SÂ

)
,

κĈ = K
(
Ĉ, PĈ , MĈ

)
, γĈ = λmax

(
M−1

Ĉ
SĈ

)
,

κ = 2 κ Â κĈ

κ Â + κĈ
, γ = 2 γ Â γĈ

γ Â + γĈ
.

The nonzero eigenvalues λ of T are such that either

⎧⎪⎨
⎪⎩

�m(λ) = 0


e(λ) ≤ 1 − (
max

(
κ Â, κĈ

))−1


e(λ) ≥ 1 − max
(
γ Â, γĈ

) (4.23)

or ⎧⎪⎪⎨
⎪⎪⎩

�m(λ) �= 0


e(λ) ≤ 1 − κ−1∣∣∣λ −
(
1 − γ

2

)∣∣∣ ≤ γ
2 .

(4.24)

Moreover,

ρ(T ) ≤ max

(
1 − 1

κ Â
, 1 − 1

κĈ
, γ Â − 1, γĈ − 1,

√
1 − 2 − γ

κ

)
. (4.25)

Proof By virtue of Lemma 4.1, the eigenvalues of I − T that are not equal to one are
the inverse of the nonzero eigenvalues of

Â−1M
(
I − P

(
PTMP

)−1
PTM

)
.

Equivalently, they are the solutions of the generalized eigenvalues problem:

M−1/2ÂM−1/2z = λ
(
I − M1/2P(PTMP)−1PTM1/2) z, z /∈ R(M1/2P).

Because the matrix in the right hand side is an orthogonal projector, this eigenvalue
problem can be formulate as a problem (4.12), whereQ has the form (4.11) with QA
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such that

QAQ
T
A = I − M1/2

Â
PÂ

(
PT
Â
MÂPÂ

)−1
PT
Â
M1/2

Â

and QC such that

QCQ
T
C = I − M1/2

Ĉ
PĈ

(
PT
Ĉ
MĈ PĈ

)−1
PT
Ĉ
M1/2

Ĉ
.

Hence, we may apply Lemma 4.2 to Q defined from the above relations and

A = M−1/2ÂM−1/2 =
(

M−1/2
Â

Â M−1/2
Â

M−1/2
Â

B̂T M−1/2
Ĉ

−M−1/2
Ĉ

B̂ M−1/2
Â

M−1/2
Ĉ

Ĉ M−1/2
Ĉ

)
.

This straightforwardly yields (4.23) and (4.24), providing that

κ Â = λmax

(
QT

AM
1/2
Â

Â−1M1/2
Â

QA

)
, κĈ = λmax

(
QT

CM
1/2
Ĉ

Ĉ−1M1/2
Ĉ

QC

)
.

(4.26)

Now, by virtue of Theorem 1.3.22 in [15],
(
QT

AM
1/2
Â

Â−1/2
)(
Â−1/2M1/2

Â
QA

)
has the

same nonzero eigenvalues as Â−1/2M1/2
Â

QAQT
AM

1/2
Â

Â−1/2, whereas

λmax

(
Â−1/2M1/2

Â
QAQ

T
AM

1/2
Â

Â−1/2
)

= max
v∈Rn\{0}

vT M1/2
Â

QAQT
AMÂ v

T

vT Â v

= max
v∈Rn\{0}

vT MÂ

(
I − PÂ

(
PT
Â
MÂ PÂ

)−1
PT
Â
MÂ

)
v

vT Â v
.

The last right hand side coincides by definition with K ( Â, PÂ, MÂ); i.e., is equal to
κ Â, proving the left equality (4.26). Reasoning similarly for the C block completes
the proof of (4.26), and thus that of (4.23) and (4.24).

We now consider (4.25). It is clear from (4.23) that the real eigenvalues of T satisfy

|λ| ≤ max

(
1 − 1

κ Â
, 1 − 1

κĈ
, γ Â − 1, γĈ − 1

)
.

The proof of (4.25) is then complete if we can show that any eigenvalue λ = x + iy
with nonzero imaginary part y satisfies

|λ|2 = x2 + y2 ≤ max

(
(γ − 1)2, 1 − 2 − γ

κ

)
.
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(this is sufficient because γ ≤ max(γ Â, γĈ )). The condition
∣∣∣λ −

(
1 − γ

2

)∣∣∣ ≤ γ
2

implies

x2 + y2 ≤ x(2 − γ ) − (1 − γ ).

For γ > 2, this is largest for x as strongly negative as possible; i.e., for x = 1 − γ ,
yielding x2 + y2 ≤ (1 − γ )2. On the other hand, for γ < 2, x2 + y2 is maximal
when x is as large as possible; i.e., when it reaches the limit imposed by the condition

e(λ) = x ≤ 1 − κ−1. Then we have:

x2 + y2 ≤ (1 − κ−1)(2 − γ ) − (1 − γ ) = 1 − 2 − γ

κ
,

concluding the proof of (4.25). ��
Corollary 4.5 Let

A =
(
A BT

B −C

)

be a matrix such that A is an n×n SPDmatrix and C is an m×m nonnegative definite
matrix. Assume that B has rank m or that C is positive definite on the null space of
BT .

Let DA = diag(A), let α a positive number such that α < 2(λmax(D
−1
A A))−1, let

L, U be defined by (3.1), and let Â = LAU be given by (3.3).
Let PA and PĈ be, respectively, n × nc and m × mc matrices of rank nc < n and

mc < m, and set, using Definition 4.1,

κ̂A = K (A, PA, DA), γ̂A = (
α (2 − α λmax(D

−1
A A))

)−1
,

κ̂Ĉ = K (Ĉ, PĈ , DĈ ), γ̂Ĉ = λmax
(
D−1
Ĉ

(C + B A−1BT )
)
,

κ̃ = 2 κ̂A κ̂Ĉ

κ̂A + κ̂Ĉ
, γ̃ = 2 γ̂A γ̂Ĉ

γ̂A + γ̂Ĉ
,

where Ĉ = C + B(2αD−1
A − α2D−1

A AD−1
A )BT and DĈ = diag(Ĉ).

Let then the matrix T be defined by (3.5), (3.6) and (3.7), where ω is a positive
parameter. Its nonzero eigenvalues λ are such that either

⎧⎪⎨
⎪⎩

�m(λ) = 0


e(λ) ≤ 1 − ω
(
max

(
κ̂A, κ̂Ĉ

))−1


e(λ) ≥ 1 − ω max
(
γ̂A, γ̂Ĉ

) (4.27)

or ⎧⎪⎪⎨
⎪⎪⎩

�m(λ) �= 0


e(λ) ≤ 1 − ω κ̃−1∣∣∣λ −
(
1 − ω γ̃

2

)∣∣∣ ≤ ω γ̃
2 .

(4.28)
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Moreover,

ρ(T ) ≤ max

(
1 − ω

κ̂A
, 1 − ω

κ̂Ĉ
, ω γ̂A − 1, ω γ̂Ĉ − 1,

√
1 − ω (2 − ω γ̃ )

κ̃

)
.

(4.29)

Proof Firstly, observe that the condition 0 < α < 2(λmax(D
−1
A A))−1 implies the

positive definiteness of 2αD−1
A −α2D−1

A AD−1
A , and hence that of Ĉ sinceC is positive

definite on the range of BT . Thus we may apply Theorem 4.4 with MÂ = ω−1DA and
MĈ = ω−1DĈ . Moreover, we may use Lemma 4.3 with ZA = α−1DA to characterize
SÂ and SĈ [noting that the condition ZA + ZT

A − A SPD amounts to 0 < α <

2(λmax(D
−1
A A))−1]. This yields

SĈ = C + B A−1BT

and

SÂ ≤ α−2DA(2α−1DA − A)−1DA ≤ (
α (2 − α λmax(D

−1
A A))

)−1
DA.

Then, for the quantities in Theorem 4.4, we obtain

κ Â = K
(
Â, PÂ, MÂ

) = ω−1κ̂A, γ Â = λmax

(
M−1

Â
SÂ

)
≤ ω γ̂A,

κĈ = K
(
Ĉ, PĈ , MĈ

) = ω−1κ̂Ĉ , γĈ = λmax

(
M−1

Ĉ
SĈ

)
= ω γ̂Ĉ .

The stated results straightforwardly follow. ��
Note that there is no explicit restriction on the positive parameterω in Corollary 4.5,

but the bound on the spectral radius becomes useless when ω ≥ 2/max
(
γ̂A, γ̂Ĉ

)
.

That said, we can pursue the discussion initiated in Sect. 4.1. If PA and PĈ work
well in combination with damped Jacobi smoothing for respectively A and Ĉ , κ̂A =
K (A, PA, DA) and κ̂Ĉ = K (Ĉ, PĈ , DĈ ) will be reasonably bounded. The related
bounds in (4.23) and (4.24) then guarantee that the iteration matrix will have no
eigenvalue close to 1. Regarding this aspect, Corollary 4.5 offers in fact only a slight
improvement over the result already discussed in Sect. 4.1, based on Lemma 4.1
applied to Â in combination with (4.9).

However, the further constraints provided by the last inequalities in (4.23) and
(4.24) allow us to complete the analysis. In particular, we now have an effective bound
on the spectral radius providing that, in addition to upper bounds on κ̂A and κ̂Ĉ , one
can show that ω γ̂A � 2 and ω γ̂Ĉ � 2.

Regarding these requirements, first note that we intend to select ω as for damped
Jacobi smoothing applied to a discrete Laplacian; that is, typically, such that 0.5 ≤
ω ≤ 0.75. This immediately ensures ω λmax(D

−1
A A) � 2, and hence

ω γ̂A =
ω λmax

(
D−1

A A
)

(
αλmax(DA

−1A)
) (
2 − α λmax(D

−1
A A)

))
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will also be away from 2 as soon as α is chosen reasonably close to (λmax(D
−1
A A))−1

(as recommended in Sect. 3).
Regarding ω γ̂Ĉ , we need some additional conditions. These, however, seem not

restrictive. At least, the results in the next section will confirm that they are satisfied
in the typical examples considered there.

Firstly, recall that the approach is consistently defined if the diagonal block Ĉ in
(3.4) is “well adapted” to multigrid, because, as will be illustrated in the next section,
it resembles a discrete Laplacian. Then one will have ω λmax(D

−1
Ĉ

Ĉ) � 2 when using
ω tailored for discrete Laplacian, and ω γ̂Ĉ � 2 will hold if

λmax

(
D−1
Ĉ

(C + B A−1BT )
)

λmax

(
D−1
Ĉ

Ĉ
) ≈ 1. (4.30)

Note that, because

(C + B A−1BT ) − Ĉ = B
(
I − αD−1

A A
)
A−1

(
I − αA D−1

A

)
BT .

is SPD, the above ratio can in fact not be smaller than 1. Now,

λmax

(
D−1
Ĉ

Ĉ
)

= max
z∈Rn\{0}

zT Ĉ z
zT DĈ z

.

Let then v be any vector such that

vT
(
C+B A−1BT − Ĉ

)
v

vT (C+B A−1BT ) v
= vT B (I − αD−1

A A)A−1(I − αA D−1
A )BT v

vT (C + B A−1BT ) v
= ε � 1.

(4.31)
There holds

λmax

(
D−1
Ĉ

(C + B A−1BT )
)

λmax

(
D−1
Ĉ

Ĉ
) ≤

λmax

(
D−1
Ĉ

(C + B A−1BT )
)

(
vT Ĉ v
vT DĈ v

)

=
λmax

(
D−1
Ĉ

(C + B A−1BT )
)

(1 − ε)
(
vT (C+B A−1BT ) v

vT DĈ v

) .

Hence (4.30) holds if there exists such a vector v satisfying in addition

vT (C + B A−1BT ) v
vT DĈ v

≈ max
z∈Rn\{0}

zT (C + B A−1BT ) z
zT DĈ z

= λmax

(
D−1
Ĉ

(C + B A−1BT )

)
. (4.32)
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Thus, the approach is well founded if, on the one hand, Ĉ resembles a discrete
Laplacian, and, on the other hand, there exist a vector v satisfying simultaneously
(4.31) and (4.32). Regarding this latter condition, we cannot supply a general algebraic
argument, but, considering the Stokes problem (2.1) with constant viscosity ν, we can
anticipate that there will be no difficulty at least in the two extreme cases of ξ = 0
and of ξ → ∞.

Indeed, if ξ = 0, it is a general property of stable discretizations thatC+B A−1BT

is well conditioned (see below for finite difference schemes and [12, Sect. 5.5] for finite
element methods); and “well conditioned” means nothing but that the minimal and
maximal values of the ratio zT (C + B A−1BT ) z/zT DĈ z are close to each other.
(Because the viscosity is assumed constant, DĈ is close to a multiple of the identity.)
Hence (4.32) holds for any vector, including those satisfying (4.31).

On the other hand, consider ξ large enough, so that A is fairly dominated by its
diagonal. It follows that, for properly chosen α,

∥∥∥I − α A1/2D−1
A A1/2

∥∥∥ = max

(
α λmax

(
D−1

A A
)

− 1, 1 − α λmin

(
D−1

A A
) )

is small. Then,

vT B
(
I − αD−1

A A
)
A−1

(
I − αA D−1

A

)
BT v

vT (C + B A−1BT ) v

≤
∥∥∥I − α A1/2D−1

A A1/2
∥∥∥2 vT B A−1BT v

vT (C + B A−1BT ) v

≤
∥∥∥I − α A1/2D−1

A A1/2
∥∥∥2

will be small as well for any v. That is (4.31) is satisfied by any vector, including
the eigenvector associated with the largest eigenvalue of D−1

Ĉ
(C + B A−1BT ) (which

obviously satisfies (4.32)).
These reasonings will be further illustrated in the next section.

5 Examples

In this section we intend, among other things, to discuss α, in order to validate the rule
α = (λmax(D

−1
A A))−1 while investigating the sensitivity with respect to variations

around this value (λmax(D
−1
A A) is in general only known approximately). Most often

the results are expressed as a function of

α̃ = α

∥∥∥D−1
A A

∥∥∥∞ .

That is, we use ‖D−1
A A‖∞ as cheap approximation to λmax(D

−1
A A), and α =

(‖D−1
A A‖∞)−1 as practical implementationof the suggested ruleα≈(λmax(D

−1
A A))−1.
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Expressing the results as a function of α̃ makes then easier their interpretation, since
the rule amounts to α̃ = 1 independently of the problem at hand.

5.1 Finite difference discretization on staggered grid

Here we consider the finite difference discretization of (2.1), in which the 2D domain
� is the unit square and the parameters ν > 0 and ξ ≥ 0 are constant. We use a
staggered grid, which ensures the natural stability of the discretization [38]. Hence
the matrix (2.3) of the resulting linear system (2.2) is such that C = 0. We consider a
uniform mesh size h in both directions, with h such that h−1 is an even integer.

For the prolongation, we select plain aggregation for both the pressure and the
velocity components; that is, PA and PĈ have exactly one nonzero entry per row,which
is further equal to one. The position of the nonzero is determined by the partitioning in
aggregates: if the i th unknown belongs to the j th aggregate, the nonzero component
in row i will be the one in column j .

To keep the discussion of aggregation algorithms outside of this work, we consider a
model geometric-based aggregation. More precisely, we assume that regularly aligned
2×2 box aggregates are always formedwhenever possible. If the number of grid points
in one of the directions is odd, this is completed with one line of aggregates of size
2. (For the boundary conditions considered below, there is always, for each type of
unknown, at least one direction with an even number of grid points).

Periodic boundary conditions

We first discuss the case of periodic boundary conditions for all velocity components
in all directions. The stencils for all matrices are then the same as for an infinite grid;
that is, as with the classical assumptions of local mode or local Fourier analysis (LFA;
see, e.g. [33, Chapter 4]). With periodic boundary conditions, however, we may apply
our theoretical results without raising the question of their extension of to infinite
dimensions. As often when using LFA, our motivation lies in a simplified setting (in
particular, free from any boundary effect) that allows to derive analytic estimates.
Note, however that this will be done without developing calculation in the Fourier
basis.

Now, with these boundary conditions, the system matrix has one singular mode
in general (the vector corresponding to constant pressure and zero velocity) and two
additional singularmodeswhen ξ = 0 (the vectors corresponding to constant velocity).
However, it is well known that, in the LFA setting, these singular modes form an
invariant subspace for all components of the iteration matrix, and what matters is the
spectral radius associated with the set of other modes. Technically, it mean that we
may apply our results in Sect. 4.3 to the matrices expressed in the Fourier basis, after
discarding the rows and columns corresponding to the singular mode(s). To avoid
making explicitly this transformation, we proceed as follows. We set C = ε I (where
ε > 0) and consider in first instance that ξ is positive. This allows to apply our
results (that are restricted to regular matrices). Next, by a continuity argument on the
eigenvalues, the limit of the bounds for ε → 0 and (possibly) for ξ → 0 provide valid
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bounds for the submatrices that one would obtain by discarding explicitly the singular
mode(s).

We now characterize the different matrices, which will allow us to derive bounds
for the quantities κ̂A, κ̂Ĉ , γ̂A, and γ̂Ĉ involved in Corollary 4.5.

The matrix A has two diagonal blocks, and each of them corresponds to the fol-
lowing constant stencil acting on the periodic grid:

ν

h2

⎡
⎢⎣

−1

−1 4
(
1 + h2 ξ

4 ν

)
−1

−1

⎤
⎥⎦ .

Hence, letting

DA0 = diag
(
A |ξ=0

) = 4 ν
h2

I

and

η = ξ h2

4 ν
,

one has DA = diag(A) = (1 + η)DA0 .
On the other hand, B D−1

A0
BT corresponds to the stencil

1

4 ν

⎡
⎣ −1

−1 4 −1
−1

⎤
⎦ ,

whereas, for B D−1
A0

(A − DA)D−1
A0

BT we obtain the following stencil:

1

16 ν

⎡
⎢⎢⎢⎢⎣

1
2 −4 2

1 −4 4 −4 1
2 −4 2

1

⎤
⎥⎥⎥⎥⎦ .

Then, for the matrix

Ĉ = C + B
(
2αD−1

A − α2D−1
A AD−1

A

)
BT

= C + (2α − α2)(1 + η)−1 B D−1
A0

BT − α2(1 + η)−2 B D−1
A0

(A − DA)D−1
A0

BT ,
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and using α̃ = α ‖D−1
A A‖∞ = α λmax(D

−1
A A) = α (2 + η)/(1 + η), we obtain the

following stencil:

1

16 ν (2 + η)2

×

⎡
⎢⎢⎢⎢⎣

−α̃2

−2 α̃2 −4(2 + η) α̃(2 − α̃) −2 α̃2

−α̃2 −4(2 + η) α̃(2 − α̃) s −4(2 + η) α̃(2 − α̃) −α̃2

−2 α̃2 −4(2 + η) α̃(2 − α̃) −2 α̃2

−α̃2

⎤
⎥⎥⎥⎥⎦ ,

where s = 4
(
4(2 + η) α̃(2 − α̃) + 3 α̃2

) + 16 ν (2 + η)2 ε; i.e., the row-sum is equal
to ε.

This stencil is that of an M-matrix as long as the condition 0 < α̃ < 2 holds, which
is also the condition 0 < α < 2(λmax(D

−1
A A))−1 needed to apply Corollary 4.5. One

may also observe that this stencil is in fact a linear combination of the application
to three different grids of the classical five point stencil for the Laplace operator: the
standard grid of mesh size h, the grid of mesh size 2 h, and the skew grid of mesh size√
2 h.
For the parameters in Corollary 4.5, we first obtain

γ̂A =
∥∥∥D−1

A A
∥∥∥∞

α̃ (2 − α̃)
= 2 + η

(1 + η) α̃(2 − α̃)
≤ 2

α̃(2 − α̃)
. (5.1)

Next, it is well known that, letting A0 = A |ξ=0,

λmax

(
B A−1

0 BT
)

= ν−1,

which further implies that, since A = A0 + ξ I ≥
(
1 + ξ

λmax(A0)

)
A0 = (

1 + η
2

)
A0,

λmax

(
B A−1BT

)
≤ 2 ν−1

2 + η
.

Hence, since DĈ = 4(2+η) α̃(2−α̃)+3 α̃2+ν (2+η)2 ε

4 ν (2+η)2
I :

lim |ε→0 γ̂Ĉ ≤ 8 (2 + η)

4(2 + η) α̃(2 − α̃) + 3 α̃2 ≤ 2

α̃(2 − α̃)
. (5.2)

This result is in fact in agreement with the discussion at the end of Sect. 4.3.
This is more easily seen for α̃ = 1, because then the eigenvector of Ĉ associated
with its largest eigenvalue is the vector that, using a red black partitioning, takes the
value +1 at red nodes and the value −1 at black nodes. The corresponding eigenvalue
is 2 ν−1/(2 + η); i.e., it is equal to the above upper bound on λmax(B A−1BT ). This
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means that λmax(B A−1BT ) and λmax(Ĉ) are both equal to this value, since the former
cannot be smaller than the latter. Thus (4.30) holds as an equality. Going to the details,
we may associate this with the fact that B A−1BT amounts to the identity for η = 0.
Hence, it suffices to have one vector v satisfying (I − α A D−1

A )BT v = 0 to enforce
the equality between the largest eigenvalues of Ĉ and B A−1BT . On the other hand,
with α = (λmax(D

−1
A A))−1,

∥∥∥(
I − α D−1

A A
)
A−1

(
I − α A D−1

A

)∥∥∥ =
(
1 − λmin(D

−1
A A)

λmax(D
−1
A A)

)2

λmin(A)−1

≤
(

2
2+η

)2
h2
4 ν η

,

showing that ‖B A−1BT − Ĉ‖ → 0 for η → ∞.
Let us now return to (5.1) and (5.2). We deduce an upper bound on γ̃ using the left

inequalities for greater accuracy:

lim |ε→0 γ̃ −1 = γ̂ −1
A + lim |ε→0 γ̂ −1

Ĉ

2
≥ α̃ (32 − 13 α̃) + η α̃ (24 − 12 α̃)

32 + 16 η
.

Auniform boundw.r.t. η can then be derived by taking theworse of the values obtained
for η = 0 and η = ∞, which gives

lim |ε→0 γ̃ ≤ max

(
32

α̃ (32 − 13 α̃)
,

4

3 α̃ (2 − α̃)

)
. (5.3)

Regarding κ̂A and κ̂Ĉ , we may apply the results in [21] to obtain bounds on the
approximation property constant for aggregation-based prolongations. We first con-
sider κ̂A. A key ingredient is a splitting A = Ab + Ar of the matrix A such that
both Ab and Ar are nonnegative definite whereas Ab is block diagonal with respect to
the partitioning in aggregates. Then, particularized to the present context, and using
Definition 4.1, Theorem 3.2 of [21] essentially says that

K (A, PA, DA) = max
over all aggregates i

K
(
A(i)
b , 1i , D

(i)
A

)
,

where A(i)
b is the diagonal block of Ab related to the unknowns in aggregate i , where

1i is the constant vector of size equal to the number of unknowns in aggregate i , and
where D(i)

A is the diagonal of A restricted to aggregate i .
For the model example under consideration, the application of this result is facil-

itated by the fact that the coefficients are constant and that all the aggregates are
similarly made of 2 × 2 grid points. (With periodic boundary conditions and h−1

equal to an even integer, the number of grid points in x and y directions is even for
both velocity components.) For each aggregate i , we take the corresponding diagonal

123



A new algebraic multigrid approach 75

block in Ab as2

A(i)
b = ν

h2

⎛
⎜⎜⎝
2 + 4 η −1 −1 0

−1 2 + 4 η 0 −1
−1 0 2 + 4 η −1
0 −1 −1 2 + 4 η

⎞
⎟⎟⎠ .

One may check that Ar = A − Ab is then an M-matrix with zero row-sum, hence
nonnegative definite. On the other hand, D(i)

A = 4 ν (1+η)

h2
I . It follows that the constant

vector is the eigenvector of D(i)
A

−1
A(i)
b associated with its smallest eigenvalue. Then,

Theorem 3.4 of [21] further tells us that K (A(i)
b , 1i , D

(i)
A ) is in fact equal to the inverse

of the second smallest eigenvalues. The related eigenvectors being (1 1 −1 −1)T

and (1 −1 1 −1)T , this yields

K
(
A(i)
b , 1i , D

(i)
A

)
= 2 (1 + η)

1 + 2 η
.

Thus:

κ̂A ≤ 2 (1 + η)

1 + 2 η
≤ 2. (5.4)

We proceed similarly for κ̂Ĉ . Using

Ĉ (i)
b = α̃

8 (2+η)2

×
⎛
⎜⎝
4(2 + η)(2 − α̃) + α̃ −2(2 + η)(2 − α̃) −2(2 + η)(2 − α̃) −α̃

−2(2 + η)(2 − α̃) 4(2 + η)(2 − α̃) + α̃ −α̃ −2(2 + η)(2 − α̃)

−2(2 + η)(2 − α̃) −α̃ 4(2 + η)(2 − α̃) + α̃ −2(2 + η)(2 − α̃)

−α̃ −2(2 + η)(2 − α̃) −2(2 + η)(2 − α̃) 4(2 + η)(2 − α̃) + α̃

⎞
⎟⎠

ensures that Ĉr = Ĉ − Ĉb is an M-matrix with positive row-sum (equal to ε). With

D(i)
Ĉ

= 4
(
4(2+η) α̃(2−α̃)+3 α̃2

)
+16 ν (2+η)2 ε

16 ν (2+η)2
I,

the constant vector is again the eigenvector of D(i)
Ĉ

−1
Ĉ (i)
b associated with the smallest

eigenvalue. Further, the vectors (1 1 −1 −1)T and (1 −1 1 −1)T are also eigenvectors
associated with the second smallest eigenvalue, and computing its inverse yields

lim |ε→0 K (Ĉ (i)
b , 1i , D

(i)
Ĉ

) = 4(2 + η) (2 − α̃) + 3 α̃

2(2 + η)(2 − α̃) + α̃
,

2 The offdiagonal entries of A(i)
b correspond to the two offdiagonal entries of A that connect each node

to other nodes belonging to the same aggregate (one on the same horizontal grid line and one on the same
vertical grid line). In addition, each nodes has two connections that points outside the aggregate; altogether,
these connections form the offdiagonal entries of Ar .
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Fig. 1 Staggered grid: analytical uniform (w.r.t. ν, h and ξ ) bound (5.7) on ρ(T ) as a function of user
parameters α̃, ω

and, therefore,

lim |ε→0 κ̂Ĉ ≤ 4(2 + η) (2 − α̃) + 3 α̃

2(2 + η)(2 − α̃) + α̃
≤ 16 − 5 α̃

8 − 3 α̃
. (5.5)

Finally, combining the right inequalities (5.4) and (5.5), we get

lim |ε→0 κ̃−1 = κ̂−1
A + κ̂−1

Ĉ

2
≥ 32 − 11 α̃

4 (16 − 5 α̃)
. (5.6)

In view of (5.1–5.6), the upper bound (4.29) of Corollary 4.5 implies thus, for any
ξ ≥ 0 [using the right inequalities to get uniform bounds w.r.t. η, and noting that 2 in
(5.4) cannot be larger than the right hand side of (5.5)],

ρ(T ) ≤ max(δ1, δ2, δ3), (5.7)

where

δ1 = 1 − ω (8 − 3 α̃)

16 − 5 α̃
,

δ2 = 2ω

α̃(2 − α̃)
− 1,

δ3 =
⎛
⎝1 −

4ω (16 − 5 α̃)
(
2 − ω max

(
32

α̃ (32−13 α̃)
, 4

3 α̃ (2−α̃)

))
32 − 11 α̃

⎞
⎠

1/2

.

This result is illustrated in Fig. 1. One sees that (5.7) guarantees that the spectral radius
is below 0.85 when α̃ is around 1 and ω around 0.6. It is worth noting that this holds
uniformly with respect to ν, h and ξ without using any form of parameter adjustment.
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Table 1 Staggered grid: results for h = 1/32, ν = 1, α̃ = 1, and ω = 0.6

κ̂A κ̂Ĉ γ̂A γ̂Ĉ (4.29) ρ(T )

ξ = 0

Estimates (5.1), (5.2), (5.4) and (5.5) 2.00 2.20 2.00 1.45 0.85

Actual values for Dir. B.C. 2.09 1.60 2.00 1.93 0.85 0.71

ξ = 10 h−2

Estimates (5.1), (5.2), (5.4) and (5.5) 1.17 2.10 1.29 1.71 0.74

Actual values for Dir. B.C. 1.16 1.76 1.29 1.78 0.73 0.60

The bound (4.29) on the spectral radius is computed using the quantities in the four columns to the left
on the same line; for the estimates (5.1), (5.2), (5.4) and (5.5), we use in each case the left inequalities
(ξ = 10 h−2 and ν = 1 imply η = 2.5)

Dirichlet boundary conditions

We use Dirichlet boundary conditions on all boundaries for both velocity components.
Then, away from the boundaries, the stencils of the different matrices are as with
periodic boundary conditions. However, perturbations are introduced near boundaries.
In addition, the staggered arrangement of the unknowns on the grid implies that, for
each velocity component, the number of grid points is odd in either the x or the
y direction. Hence, box aggregation cannot be used everywhere. Finally, according
what is written at the end of Sect. 2, the problem is regularized by removing the last
pressure component from the unknown set, fixing its value to zero.

Altogether these departures from the ideal situation of the preceding case make
untractable the derivation of analytic bounds. We therefore illustrate the application
of Corollary 4.5 resorting to numerical computation for the assessment of the needed
quantities κ̂A, κ̂Ĉ , γ̂A, and γ̂Ĉ . The obtained values are reported in Table 1, in regard
of the analytic bounds derived for the case of periodic boundary conditions (using in
all cases the left inequalities to get the most accurate estimate). One sees that these
analytic estimates remain realistic despite the boundary effects.

In Fig. 2, we plot the eigenvalue distribution of the iteration matrix in regards of
the inequalities provided in Corollary 4.5. One sees that the analysis reflects well the
actual distribution, which is much more clustered than indicated by the sole analysis
of the spectral radius. This suggests that it might be more effective to use the two-
grid method as a preconditioner for a Krylov subspace method (whose convergence
is favored by a good clustering of the eigenvalues).

Finally, it is worth checking the relevance of the transformation proposed in Sect. 3
independently of the theoretical results. In this view we depict in Fig. 3, left, the
actual value of the spectral radius as a function of α̃. One sees that α̃ ≈ 1 is indeed
near optimal as suggested by the analysis, whereas the results only weakly depend
on α̃ when chosen around this value. Thus, one may rely in practice on the rule
α = (‖D−1

A A‖∞)−1, and a more accurate estimation of λmax(D
−1
A A) is not needed in

practice.
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Fig. 2 Staggered grid. +, eigenvalues of T for h = 1/32, ν = 1, α̃ = 1, and ω = 0.6; −, limit of the
region of defined by the inequalities in Corollary 4.5 (horizontal lines close to the real axis indicate regions
where in fact only real eigenvalues are permitted); - - -, bound (4.29) on the spectral radius
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Fig. 3 ρ(T ) as a function of α̃ for h = 1/32 and ω = 0.6

5.2 Finite difference discretization on collocated grid

Here we consider again the finite difference discretization of (2.1) in which the 2D
domain � is the unit square. However, we use a collocated grid, whereas we restrict
ourselves to ξ = 0, but consider two situations for the viscosity: constant viscosity,
where ν is uniformly equal to 1, and variable viscosity, where ν is equal to 103 in the
central part of the domain [i.e., in the square (0.25, 0.75) × (0.25, 0.75)] and ν = 1
elsewhere. Here also, we use a uniform mesh size h in both directions, with h such
that h−1 is an even integer. We consider only Dirichlet boundary conditions on all
boundaries for all velocity components.

With collocated grids, all unknowns are located at the vertices of grid cells, which
makes the discretization somewhat easier but induces the presence of spurious pressure
modeswith zero discrete divergence [38].Hence a formof stabilization is required and,
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according to the discussion in [17], we take hereC equal to the five point discretization
of (16 ν)−1h2� (with Neumann boundary conditions).

On the other hand, as in the preceding section, the pressure is only determined up
to a constant, and we regularize the problem by removing the last pressure component
from the unknown set, fixing its value to zero.

Oncollocated grids, the classical prolongation basedonbilinear interpolation iswell
defined for all three types of unknowns. Hence we select this prolongation, noting that
classical AMG schemes aim at reproducing it for simple discretizations of the Laplace
operator.

A first remark here is that a simple transformation of (2.2) into

(
A BT

−B C

) (
u
p

)
=

(
bu

−bp

)
(5.8)

suffices to make the unknown-based coarsening well defined, since C is SPD (after
regularization) and further corresponds to a discrete Laplace matrix. Observing that
the above system corresponds to the limit case of our approach for α → 0, it is thus
worth here to start with the experiment that concluded the preceding section, and
check the evolution of the spectral radius with respect to α̃ = α ‖D−1

A A‖∞. This is
done in Fig. 3, right. One sees that the method is indeed still convergent for α̃ = 0,
but significantly slower than for α̃ between 0.5 and 2. Observe also that our approach
performs equally well in the presence of jumping viscosity.

We then focus on α̃ = 1, according the recommendation in Sect. 3. Computation
reveal that, away from internal and external boundaries, Ĉ corresponds to the stencil

ν−1

256

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
−1 −12 −1

−1 0 −13 0 −1
−1 −12 −13 112 −13 −12 −1

−1 0 −13 0 −1
−1 −12 −1

−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Again, this stencil is that of an M-matrix with zero row-sum. Moreover, one sees
that the strong couplings correspond to a linear combination of the application to two
different grids of the classical five point stencil for the Laplace operator: the standard
grid of mesh size h, and the grid of mesh size 2 h.

Hence, Corollary 4.5 can be consistently applied. The numerically computed quan-
tities κ̂A, κ̂Ĉ , γ̂A, and γ̂Ĉ are reported in Table 2, as well as the related bound (4.29)
and the actual value of the spectral radius. Here again, one sees that the jump of the
viscosity has nearly no influence.

Finally, in Fig. 4, right, we plot the eigenvalue distribution of the iteration matrix in
regards of the inequalities provided in Corollary 4.5 with the parameters as in Table 2.
This eigenvalue distribution can be compare with that plotted in Fig. 4, left, which
corresponds to α̃ = 0; that is, to the case where one applies the multigrid scheme
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Table 2 Collocated grid: results for h = 1/32, α̃ = 1, and ω = 0.6

κ̂A κ̂Ĉ γ̂A γ̂Ĉ (4.29) ρ(T )

Constant viscosity 1.99 1.73 2.00 2.47 0.88 0.70

Variable viscosity 2.00 1.97 2.00 2.43 0.89 0.70
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Fig. 4 Collocated grid. +, eigenvalues of T for h = 1/32 and ω = 0.6 (constant viscosity); −, limit of
the region of defined by the inequalities in Corollary 4.5 (̃α > 0 only; horizontal lines close to the real axis
indicate regions where in fact only real eigenvalues are permitted); - - -, bound (4.29) on the spectral radius

directly to the system (5.8). This provides another illustration of the improvement
brought by the transformation proposed in this paper.

6 Comparison with block diagonal preconditioning

Wementioned in the introduction the family of block preconditioners for saddle points
matrices in their original form (2.3). Among these, the most popular is perhaps the
mere block diagonal preconditioner

(
Ã
S̃

)

where Ã is an approximation of A, and S̃ is an approximation of the Schur comple-
ment C + B A−1BT . Indeed, this preconditioner is symmetric and positive definite,
whereas Â is symmetric; thus, the convergence can be accelerated withMINRES [31],
which minimizes the residual norm with a short recurrence algorithm. Of course, rel-
evant approximations Ã can be setup by applying any sensible AMG method, which
should raise no difficulty since A is made up with diagonal blocks that are discrete
representations of ξ − ν�.
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Schur complement approximations require more care, but, in fact, a fairly com-
plete convergence analysis is available for Stokes type problems (e.g. [12,19,30]).
Considering the formulation (2.1), when ξ = 0, S̃ can be taken as ν−1 times (an
approximation of) the pressure mass matrix, which further reduces to the identity in
the finite difference case. In the case of positive ξ , the Cahouet–Chabard precondi-
tioner can be used [8], which approximates the Schur complement with a Poisson-like
operator; this latter can itself be further replaced by, say, one application of an AMG
preconditioner.

Now, a complete comparison of the approach suggested here with block diagonal
preconditioning lies outside the scope of the present work. This would require a ded-
icated study like the one undertaken in [16] for geometric multigrid methods. More
importantly, we would need to address practically oriented questions such as which
smoothing scheme performs best in practice, which multigrid cycle is recommended,
etc. As stated in the introduction, these are deliberately left for future research because
their answer likely depends on the type of coarsening and possibly also on the class
of Stokes problems under consideration.

Nevertheless, we want to complete the proof of concept presented here by illustrat-
ing that the proposed approach can be competitive evenwhen used in a straightforward
(and perhaps naive) way. By “straightforward”, we mean just passing the transformed
matrix Â (3.3) to an AMG code, without any form of tuning or adaptation, besides
the fact that one requires “unknown-based” coarsening (i.e., the prolongation is setup
separately for the different type of unknowns, based on the corresponding diagonal
block in Â).

We selected the aggregation-based algebraic multigrid methods (AGMG) from
[22,25,27]. Indeed, a black box code is available [24], in which “unknown-based”
coarsening is available as an option. The package, although written in FORTRAN,
has also a MATLAB interface, which allowed us to use this environment to define the
problem and also to perform the matrix transformations described in Sect. 3. We set
all parameters to default, which, in particular, implies that the system is solved using
the AMG method as preconditioner for GCR [10] (restarted each 10 iterations).

Regarding the block diagonal preconditioner, the same AGMG code with default
parameters was used to generate the needed approximation Ã; more precisely, the
action of Ã−1 was implemented as one call to the package, requesting one application
of the (previously setup) AMG preconditioner. Note that here the main iteration was
performed in MATLAB, using the provided implementation of MINRES.

As test problem, we consider those of Sects. 5.1 and 5.2 (with Dirichlet boundary
conditions) in their simplest form; i.e., with ξ = 0 and constant viscosity ν = 1, which
simplifies a bit the discussion of the Schur complement approximation: S̃ = I is then
a standard choice (for the staggered grid, it would give the exact Schur complement on
an infinite grid). The right hand side was a vector with random velocity components
and zero pressure components, the initial approximation was the zero vector, and
iteration were stopped when the relative residual was below 10−6.

The results are given in Table 3. As observed in [29], the numbers of iterations for
the block diagonal preconditioner can bemade smaller by using amore involvedAMG
method than the plain aggregationmethod of AGMG, but this is overall not necessarily
cost effective. Regarding AMG for the transformed matrix, the number of iterations is
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Table 3 Number of iterations and total elapsed time (including setup) in seconds needed to solve the linear
system

h−1 Staggered grid Collocated grid

Block prec. AMG for Â Block prec. AMG for Â

#it Time #it Time #it Time #it Time

64 51 0.16 14 0.12 73 0.23 15 0.15

256 57 3.13 14 2.34 79 4.46 15 2.82

1024 64 58.97 17 44.35 87 81.23 17 55.50

roughly 50% larger than that reported in [23] for the solution of pure Poisson problems
with the same software.3 This extra cost can be considered as moderate: typically,
geometric multigrid method for Stokes problems will achieve similar convergence
rate as for pure Poisson, but at the price of a much more costly smoothing procedure.

On the other hand, the timing results should be considered with care. The codes are
not really comparable, and one may think that the block preconditioner would benefit
from a pure FORTRAN implementation, although only matrix and vector operations
are performed in theMATLABenvironment, andmost of the time is spent in the calls to
AGMG.On the other hand,wementioned above that the straightforward use ofAGMG
for Âwas perhaps naive, and this is certainly the case with respect to implementation:
in this way, we do not use the trick indicated at the end of Sect. 3; hence the timing
results can certainly be significantly improved with a dedicated implementation.

7 Conclusions

We developed the foundations of a new approach to solve discrete Stokes equation
with multigrid. It consist in pre-conditioning the original linear system in such a way
that an “unknown-based” multigrid approach can be straightforwardly applied to the
transformed system, allowing in particular the use of algebraic multigrid methods.

The approach has been validated via a detailed theoretical analysis of the itera-
tion matrix associated with a single step for damped Jacobi smoothing. It turns out
that a uniform bound on the spectral radius holds, under the main assumption that
the “unknown-based” multigrid approach is applied in a sensible way. Besides, some
technical conditions are to be checked, which seem however not restrictive regarding
standard discretizations of Stokes equations. At least, two examples of such discretiza-
tions were successfully investigated.

The analysis of the examples further reveals that the approach can be applied indif-
ferently to stationary and time-dependent Stokes problems, and can also be robust
in presence of variable viscosity. Finally, a numerical comparison displays that the

3 Other algebraic multigrid methods often require less iterations while being overall slower because this
result is achieved thanks to larger complexities; see [23] for a comparative discussion.
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new approach can indeed be a relevant alternative to the nowadays commonly used
strategies based on the combination of AMG with block preconditioning methods.

Acknowledgments I thank Artem Napov for useful comments and suggestions.
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