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Abstract We develop a constructive piecewise polynomial approximation theory in
weighted Sobolev spaces with Muckenhoupt weights for any polynomial degree. The
main ingredients to derive optimal error estimates for an averaged Taylor polynomial
are a suitable weighted Poincaré inequality, a cancellation property and a simple
induction argument. We also construct a quasi-interpolation operator, built on local
averages over stars, which is well defined for functions in L1. We derive optimal
error estimates for any polynomial degree on simplicial shape regular meshes. On
rectangular meshes, these estimates are valid under the condition that neighboring
elements have comparable size, which yields optimal anisotropic error estimates over

R. H. Nochetto has been partially supported by NSF Grants DMS-1109325 and DMS-1411808.

E. Otárola has been partially supported by the Conicyt-Fulbright Fellowship Beca Igualdad de
Oportunidades and NSF Grants DMS-1109325 and DMS-1411808.

A. J. Salgado has been partially supported by NSF Grant DMS-1418784.

R. H. Nochetto
Department of Mathematics, Institute for Physical Science and Technology, University of Maryland,
College Park, MD 20742, USA
e-mail: rhn@math.umd.edu

E. Otárola
Department of Mathematics, University of Maryland, College Park, MD 20742, USA

E. Otárola
Department of Mathematical Sciences, George Mason University, Fairfax, VA 22030, USA
e-mail: kike@math.umd.edu

A. J. Salgado (B)
Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA
e-mail: asalgad1@utk.edu

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00211-015-0709-6&domain=pdf


86 R. H. Nochetto et al.

n-rectangular domains. The interpolation theory extends to cases when the error and
function regularity require different weights. We conclude with three applications:
nonuniform elliptic boundary value problems, elliptic problems with singular sources,
and fractional powers of elliptic operators.

Mathematics Subject Classification 35J70 · 35J75 · 65D05 · 65N30 · 65N12

1 Introduction

A fundamental tool in analysis, with both practical and theoretical relevance, is the
approximation of a function by a simpler one. For continuous functions a foundational
result in this direction was given by K. Weierstrass in 1885: continuous functions
defined on a compact interval can be uniformly approximated as closely as desired
by polynomials. Mollifiers, interpolants, splines and even Nevanlinna–Pick theory
can be regarded as instances of this program; see, for instance, [2,54]. For weakly
differentiable functions, the approximation by polynomials is very useful when trying
to understand their behavior. In fact, this idea goes back to Sobolev [68], who used a
sort of averaged Taylor polynomial to discuss equivalent norms in Sobolev spaces.

The role of polynomial approximation and error estimation is crucial in numerical
analysis: it is the basis of discretization techniques for partial differential equations
(PDE), particularly the finite element method. For the latter, several constructions for
standard Sobolev spaces W 1

p , with 1 ≤ p ≤ ∞, and their properties are well studied;
see [24,28,29,31,65].

On the other hand, many applications lead to boundary value problems for
nonuniformly elliptic equations. The ellipticity distortion can be caused by degen-
erate/singular behavior of the coefficients of the differential operator or by singular-
ities in the domain. For such equations it is natural to look for solutions in weighted
Sobolev spaces [3,10,14,15,25,33,36,37,51,70] and to study the regularity proper-
ties of the solution in weighted spaces as well [53]. Of particular importance are
weighted Sobolev spaces with a weight belonging to the so-called Muckenhoupt
class Ap [58]; see also [36,49,70]. However, the literature focusing on polynomial
approximation in this type of Sobolev spaces is rather scarce; we refer the reader to
[3,4,6,10,25,39,42,56] for some partial results.Most of these results focus on a partic-
ular nonuniformly elliptic equation and exploit the special structure of the coefficient
to derive polynomial interpolation results.

To fix ideas, consider the following nonuniformly elliptic boundary value problem:
let � be an open and bounded subset of Rn (n ≥ 1) with boundary ∂�. Given a
function f , find u that solves

{
−div(A(x)∇u) = f, in �,

u = 0, on ∂�,
(1.1)

whereA : � → R
n×n is symmetric and satisfies the following nonuniform ellipticity

condition
ω(x)|ξ |2 � ξᵀA(x)ξ � ω(x)|ξ |2, ∀ξ ∈ R

n, a.e. �. (1.2)
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Polynomial interpolation in weighted spaces 87

Here the relation a � b indicates that a ≤ Cb, with a constant C and ω is a weight
function, i.e., a nonnegative and locally integrable measurable function, which might
vanish, blow up, and possess singularities. Examples of this type of equations are the
harmonic extension problem related with the fractional Laplace operator [14,15,60],
elliptic problems involving measures [3,25], elliptic PDE in an axisymmetric three
dimensional domain with axisymmetric data [10,42], and equations modeling the
motion of particles in a central potential field in quantum mechanics [6]. Due to the
nature of the coefficient A, the classical Sobolev space H1(�) is not appropriate for
the analysis and approximation of this problem.

Nonuniformly elliptic equations of the type (1.1)–(1.2), with ω in the so-called
Muckenhoupt class A2, have been studied in [36]: for f ∈ L2(ω−1,�), there exists a
unique solution in H1

0 (ω,�) [36, Theorem 2.2] (see Sect. 2.2 for notation). Consider
the discretization of (1.1) with the finite element method. Let T be a conforming
triangulation of� and letV(T ) be a finite element space. TheGalerkin approximation
of the solution to (1.1) is given by the unique function UT ∈ V(T ) that solves

ˆ
�

A∇UT · ∇W =
ˆ

�

f W, ∀W ∈ V(T ). (1.3)

Invoking Galerkin orthogonality, we deduce

‖u −UT ‖H1
0 (ω,�) � inf

W∈V(T )
‖u − W‖H1

0 (ω,�). (1.4)

In other words, the numerical analysis of this boundary value problem reduces to
a result in approximation theory: the distance between the exact solution u and its
approximation UT in a finite element space is bounded by the best approximation
error in the finite element space with respect to an appropriate weighted Sobolev norm.
A standard way of obtaining bounds for the approximation error is by considering
W = �T v in (1.4), where �T is a suitable interpolation operator.

The purpose of this work is twofold. We first go back to the basics, and develop an
elementary constructive approach to piecewise polynomial interpolation in weighted
Sobolev spaces with Muckenhoupt weights. We consider an averaged version of the
Taylor polynomial and, upon using an appropriate weighted Poincaré inequality and
a cancellation property, we derive optimal approximation estimates for constant and
linear approximations. We extend these results to any polynomial degree m (m ≥ 0),
by a simple induction argument.

The functional framework considered is weighted Sobolev spaces with weights in
the Muckenhoupt class Ap(R

n), thereby extending the classical polynomial approx-
imation theory in Sobolev spaces [13,23,24,65]. In addition, we point out that the
results about interpolation in Orlicz spaces of [26,30] do not apply to our situation
since, for weighted spaces, the Young function used to define the modular depends
on the point in space as well. In this respect, our results can be regarded as a first
step in the development of an approximation theory in Orlicz–Musielak spaces and in
Sobolev spaces in metric measure spaces [46].

The second main contribution of this work is the construction of a quasi-inter-
polation operator �T , built on local averages over stars and thus well defined for
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functions in L1(�) as those in [24,65]. The ensuing polynomial approximation theory
in weighted Sobolev spaces with Muckenhoupt weights allows us to obtain optimal
and local interpolation estimates for the quasi-interpolant �T . On simplicial dis-
cretizations, these results hold true for any polynomial degree m ≥ 0, and they are
derived in the weighted Wk

p-seminorm (0 ≤ k ≤ m + 1). The key ingredient is an
invariance property of the quasi-interpolant �T over the finite element space. On the
other hand, on rectangular discretizations, we only assume that neighboring cells inT
have comparable size, as in [31,60]. This mild assumption enables us also to obtain
anisotropic error estimates for domains that can be decomposed into n–rectangles.
These estimates are derived in the weighted W 1

p-semi-norm and the weighted L p-
norm, the latter being a new result even for the unweighted setting. For m = 0, 1,
we also derive interpolation estimates in the space Wm

q (ρ,�) when the smoothness
is measured in the space Wm+1

p (ω,�), with different weights ω 
= ρ and Lebesgue
exponents 1 < p ≤ q, provided Wm+1

p (ω,�) ↪→ Wm
q (ρ,�).

The outline of this paper is as follows. In Sect. 2.1 we introduce some terminology
used throughout this work. In Sect. 2.2, we recall the definition of a Muckenhoupt
class, weighted Sobolev spaces and some of their properties. Section 3 is dedicated
to an important weighted L p-based Poincaré inequality over star-shaped domains and
domains that can be written as the finite union of star-shaped domains. In Sect. 4, we
consider an averaged version of the Taylor polynomial, and we develop a constructive
theory of piecewise polynomial interpolation in weighted Sobolev spaces with Muck-
enhoupt weights. We discuss the quasi-interpolation operator�T and its properties in
Sect. 5.We derive optimal approximation properties in theweightedWk

p-seminorm for
simplicial triangulations in Sect. 5.1. In Sect. 5.2 we derive anisotropic error estimates
on rectangular discretizations for a Q1 quasi-interpolant operator assuming that � is
an n-rectangle. Section 6 is devoted to derive optimal and local interpolation estimates
for different metrics (i.e., p ≤ q, ω 
= ρ). Finally, in Sect. 7 we present applications
of our interpolation theory to nonuniformly elliptic equations (1.1), elliptic equations
with singular sources, and fractional powers of elliptic operators.

2 Notation and preliminaries

2.1 Notation

Throughout this work,� is an open, bounded and connected subset ofRn , with n ≥ 1.
The boundary of � is denoted by ∂�. Unless specified otherwise, we will assume that
∂� is Lipschitz.

The set of locally integrable functions on � is denoted by L1
loc(�). The Lebesgue

measure of a measurable subset E ⊂ R
n is denoted by |E |. The mean value of a

locally integrable function f over a set E is

 
E
f dx = 1

|E |
ˆ
E
f dx .

For amulti-index κ = (κ1, . . . , κn) ∈ N
n wedenote its length by |κ| = κ1+· · ·+κn ,

and, if x ∈ R
n , we set xκ = xκ1

1 . . . xκn
n ∈ R, and
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Dκ = ∂κ1

∂xκ1
1

. . .
∂κn

∂xκn
n

.

Given p ∈ (1,∞), we denote by p′ the real number such that 1/p + 1/p′ = 1,
i.e., p′ = p/(p − 1).

Let γ, z ∈ R
n , the binary operation ◦ : Rn × R

n → R
n is defined by

γ ◦ z = (γ1z1, γ2z2, · · · , γnzn) ∈ R
n . (2.1)

If X and Y are topological vector spaces, we write X ↪→ Y to denote that X is
continuously embedded in Y . We denote by X ′ the dual of X . If X is normed, we
denote by ‖ · ‖X its norm. The relation a � b indicates that a ≤ Cb, with a constant C
that does not depend on either a or b, the value of C might change at each occurrence.

2.2 Weighted Sobolev spaces

We now introduce the class of Muckenhoupt weighted Sobolev spaces and refer to
[27,36,50,51,70] for details. We start with the definition of a weight.

Definition 2.1 (weight) A weight is a function ω ∈ L1
loc(R

n) such that ω(x) > 0 for
a.e. x ∈ R

n .

Every weight induces a measure, with density ω dx , over the Borel sets of Rn . For
simplicity, this measure will also be denoted by ω. For a Borel set E ⊂ R

n we define
ω(E) = ´

E ω dx .
We recall the definition of Muckenhoupt classes; see [27,36,58,70].

Definition 2.2 (Muckenhoupt class Ap) Let ω be a weight and 1 < p < ∞. We say
ω ∈ Ap(R

n) if there exists a positive constant Cp,ω such that

sup
B

( 
B

ω

)( 
B

ω1/(1−p)
)p−1

= Cp,ω < ∞, (2.2)

where the supremum is taken over all balls B in Rn . In addition,

A∞(Rn) =
⋃
p>1

Ap(R
n), A1(R

n) =
⋂
p>1

Ap(R
n).

If ω belongs to the Muckenhoupt class Ap(R
n), we say that ω is an Ap-weight, and

we call the constant Cp,ω in (2.2) the Ap-constant of ω.

A classical example is the function |x |γ , which is an Ap-weight if and only if
−n < γ < n(p − 1). Another important example is d(x) = d(x, ∂�)α , where for
x ∈ �, d(x, ∂�) denotes the distance from the point x to the boundary ∂�. The
function d belongs to A2(R

n) if and only if −n < α < n. This function is used to
define weighted Sobolev spaces which are important to study Poisson problems with
singular sources; see [3,25].
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Throughout this work, we shall use some properties of the Ap-weights which, for
completeness, we state and prove below.

Proposition 2.1 (properties of the Ap-class) Let 1 < p < ∞, and ω ∈ Ap(R
n).

Then, we have the following properties:

(i) ω−1/(p−1) ∈ L1
loc(R

n).
(ii) Cp,ω ≥ 1.
(iii) If 1 < p < r < ∞, then Ap(R

n) ⊂ Ar (R
n), and Cr,ω ≤ Cp,ω.

(iv) ω−1/(p−1) ∈ Ap′(Rn) and, conversely, ω−1/(p′−1) ∈ Ap(R
n). Moreover,

Cp′,ω−1/(p−1) = C1/(p−1)
p,ω .

(v) The Ap-condition is invariant under translations and isotropic dilations, i.e., the
weights x �→ ω(x +b) and x �→ ω(Ax), with b ∈ R

n and A = a · I with a ∈ R,
both belong to Ap(R

n) with the same Ap-constant as ω.

Proof Properties (i) and (iv) follow directly from the definition of the Muckenhoupt
class Ap(R

n) given in (2.2). By writing 1 = ω1/pω−1/p and the Hölder inequality,
we obtain that for every ball B ⊂ R

n ,

1 =
 
B

ω1/pω−1/p ≤
( 

B
ω

)1/p ( 
B

ω−1/(p−1)
)(p−1)/p

,

which proves (ii). Using the Hölder inequality again, we obtain

( 
B

ω1/(1−r)
)r−1

≤
( 

B
ω1/(1−p)

)p−1

,

which implies (iii). Finally, to prove property (v) we denote ω̄(x) = ω(Ax + b), and
let Br be a ball of radius r in R

n . Using the change of variables y = Ax + b, we
obtain

 
Br

ω̄(x) dx = 1

an|Br |
ˆ
Bar

ω(y) dy, (2.3)

which, since an|Br | = |Bar |, proves (v). ��
From the Ap-condition and Hölder’s inequality follows that an Ap-weight satisfies

the so-called strong doubling property. The proof of this fact is standard and presented
here for completeness; see [70, Proposition1.2.7] for more details.

Proposition 2.2 (strong doubling property) Let ω ∈ Ap(R
n) with 1 < p < ∞ and

let E ⊂ R
n be a measurable subset of a ball B ⊂ R

n. Then

ω(B) ≤ Cp,ω

( |B|
|E |
)p

ω(E). (2.4)
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Proof Since E ⊂ R
n is measurable, we have that

|E | ≤
(ˆ

E
ω dx

)1/p (ˆ
E

ω−p′/p dx

)1/p′

≤ ω(E)1/p|B|1/p′
( 

B
ω−p′/p

)1/p′

≤ C1/p
p,ω ω(E)1/p|B|1/p′

( 
B

ω

)−1/p

= C1/p
p,ω

(
ω(E)

ω(B)

)1/p

|B|.

This completes the proof. ��
In particular, every Ap-weight satisfies a doubling property, i.e., there exists a

positive constant C such that

ω(B2r ) ≤ Cω(Br ), (2.5)

for every ball Br ⊂ R
n . The infimum over all constants C , for which (2.5) holds,

is called the doubling constant of ω. The class of Ap-weights was introduced by
Muckenhoupt [58], who proved that the Ap-weights are precisely those for which the
Hardy–Littlewoodmaximal operator is bounded from L p(ω,Rn) to L p(ω,Rn), when
1 < p < ∞. We now define weighted Lebesgue spaces as follows.

Definition 2.3 (weighted Lebesgue spaces) Let ω ∈ Ap, and let � ⊂ R
n be an open

and bounded domain. For 1 < p < ∞, we define the weighted Lebesgue space
L p(ω,�) as the set of measurable functions u on � equipped with the norm

‖u‖L p(ω,�) =
(ˆ

�

|u|pω
)1/p

. (2.6)

An immediate consequence ofω ∈ Ap(R
n) is that functions in L p(ω,�) are locally

summable which, in fact, only requires that ω−1/(p−1) ∈ L1
loc(R

n).

Proposition 2.3 (L p(ω,�) ⊂ L1
loc(�)) Let � be an open set, 1 < p < ∞ and ω be

a weight such that ω−1/(p−1) ∈ L1
loc(�). Then, L p(ω,�) ⊂ L1

loc(�).

Proof Let u ∈ L p(ω,�), and let B ⊂ � be a ball. By Hölder’s inequality, we have

ˆ
B

|u|=
ˆ
B

|u|ω1/pω−1/p ≤
(ˆ

B
|u|pω

)1/p (ˆ
B

ω−1/(p−1)
)(p−1)/p

� ‖u‖L p(ω,�),

which concludes the proof. ��
Notice that when� is bounded we have L p(ω,�) ↪→ L1(�). In particular, Propo-

sition 2.3 shows that it makes sense to talk about weak derivatives of functions in
L p(ω,�). We define weighted Sobolev spaces as follows.

Definition 2.4 (weighted Sobolev spaces) Let ω be an Ap-weight with 1 < p < ∞,
� ⊂ R

n be an open and bounded domain and m ∈ N. The weighted Sobolev space
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92 R. H. Nochetto et al.

Wm
p (ω,�) is the set of functions u ∈ L p(ω,�) such that for any multi-index κ with

|κ| ≤ m, the weak derivatives Dκu ∈ L p(ω,�), with seminorm and norm

|u|Wm
p (ω,�) =

⎛
⎝∑

|κ|=m

‖Dκu‖p
L p(ω,�)

⎞
⎠

1/p

, ‖u‖Wm
p (ω,�) =

⎛
⎝∑

j≤m

|u|p
W j

p (ω,�)

⎞
⎠

1/p

,

respectively. We also define
◦
Wm

p (ω,�) as the closure of C∞
0 (�) in Wm

p (ω,�).

Without any restriction on the weightω, the spaceWm
p (ω,�)may not be complete.

However,whenω−1/(p−1) is locally integrable inRn ,Wm
p (ω,�) is aBanach space; see

[52]. Properties of weighted Sobolev spaces can be found in classical references like
[50,51,70]. It is remarkable thatmost of the properties of classical Sobolev spaces have
a weighted counterpart and it is more so that this is not because of the specific form of
theweight but rather due to the fact that theweightω belongs to theMuckenhoupt class
Ap; see [36,41,58]. In particular, we have the following results (cf. [70, Proposition
2.1.2, Corollary 2.1.6] and [41, Theorem 1]) .

Proposition 2.4 (properties of weighted Sobolev spaces) Let� ⊂ R
n be an open and

bounded domain, 1 < p < ∞, ω ∈ Ap(R
n) and m ∈ N. The spaces Wm

p (ω,�) and
◦
Wm

p (ω,�) are complete, and Wm
p (ω,�) ∩ C∞(�) is dense in Wm

p (ω,�).

3 A weighted Poincaré inequality

In order to obtain interpolation error estimates in L p(ω,�) andW 1
p(ω,�), it is instru-

mental to have a weighted Poincaré-like inequality [31,60]. A pioneering reference
is the work by Fabes et al. [36], which shows that, when the domain is a ball and the
weight belongs to Ap with 1 < p < ∞, a weighted Poincaré inequality holds [36,
Theorem 1.3 and Theorem 1.5]. For generalizations of this result see [38,47]. For a
star-shaped domain, and a specific A2-weight, we have proved a weighted Poincaré
inequality [60, Lemma 4.3]. In this section we extend this result to a general exponent
p and a general weight ω ∈ Ap(R

n). Our proof is constructive and not based on a
compactness argument. This allows us to trace the dependence of the stability constant
on the domain geometry.

Lemma 3.1 (weighted Poincaré inequality I) Let S ⊂ R
n be bounded, star-shaped

with respect to a ball B̂, with diam S ≈ 1. Let χ be a continuous function on S with
‖χ‖L1(S) = 1. Given ω ∈ Ap(R

n), we define μ(x) = ω(Ax + b), for b ∈ R
n and

A = a · I, with a ∈ R. If v ∈ W 1
p(μ, S) is such that

´
S χv = 0, then

‖v‖L p(μ,S) � ‖∇v‖L p(μ,S), (3.1)

where the hidden constant depends only on χ , Cp,ω and the radius r̂ of B̂, but is
independent of A and b.
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Proof Property (v) of Proposition 2.1 shows that μ ∈ Ap(R
n) and Cμ,p = Cω,p.

Given v ∈ W 1
p(μ, S), we define

ṽ = sign(v)|v|p−1μ −
(ˆ

S
sign(v)|v|p−1μ

)
χ.

Hölder’s inequality yields

ˆ
S
μ|v|p−1 =

ˆ
S
μ1/p′ |v|p−1μ1/p

≤
(ˆ

S
μ|v|p

)1/p′ (ˆ
S
μ

)1/p

� ‖v‖p−1
L p(μ,S), (3.2)

which implies that ṽ ∈ L1(S) and ‖ṽ‖L1(S) � ‖v‖p−1
L p(μ,S). Notice, in addition, that

since
´
S χ = 1, the function ṽ has vanishing mean value.

Given 1 < p < ∞, we define q = −p′/p, and we notice that q + p′ = 1 and
p′(p − 1) = p. We estimate ‖ṽ‖L p′ (μq ,S)

as follows:

(ˆ
S
μq |ṽ|p′

)1/p′

=
(ˆ

S
μq
∣∣∣∣sign(v)|v|p−1μ −

(ˆ
S
sign(v)|v|p−1μ

)
χ

∣∣∣∣
p′)1/p′

≤
(ˆ

S
μq+p′ |v|p′(p−1)

)1/p′

+
(ˆ

S
|v|p−1μ

)
‖χ‖L p′ (μq ,S)

� ‖v‖p−1
L p(μ,S),

where we have used (3.2) together with the fact that μ ∈ Ap(R
n) implies μq ∈

L1
loc(R

n) (see Proposition 2.1 (i)), whence ‖χ‖L p′ (μq ,S)
≤ ‖χ‖L∞(S)μ

q(S)1/p
′ � 1.

Propertiesμq ∈ Ap′(Rn), that S is star-shapedwith respect to B̂ and ṽ ∈ L p′
(μq , S)

has vanishing mean value, suffice for the existence of a vector field u ∈ ◦
W 1

p′(μq , S)

satisfying

div u = ṽ,

and,
‖u‖W 1

p′ (μ
q ,S) � ‖ṽ‖L p′ (μq ,S)

, (3.3)

where the hidden constant depends on Cp′,μq and the radius r of B̂; see [33, Theo-
rem 3.1].

Finally, since
´
S χv = 0, the definition of ṽ implies

‖v‖p
L p(μ,S) =

ˆ
S
vṽ +

(ˆ
sign(v)|v|p−1μ

) ˆ
S
χv =

ˆ
S
vṽ.
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94 R. H. Nochetto et al.

Replacing ṽ by −div u, integrating by parts and using (3.3), we conclude

‖v‖p
L p(μ,S) =

ˆ
S
∇v · u ≤

(ˆ
S
μ|∇v|p

)1/p (ˆ
S
μq |u|p′

)1/p′

� ‖∇v‖L p(μ,S)‖ṽ‖L p′ (μq ,S)
.

Invoking ‖ṽ‖L p′ (μq ,S)
� ‖v‖p−1

L p(μ,S) yields the desired inequality. ��
In Sect. 5 we construct an interpolation operator based on local averages. Conse-

quently, the error estimates on an element T depend on the behavior of the function
over a so-called patch of T , which is not necessarily star shaped. Then, we need to
relax the geometric assumptions on the domain S and let the vanishing mean property
hold just in a subdomain. The following result is an adaptation of [60, Corollary 4.4].

Corollary 3.2 (weighted Poincaré inequality II) Let S = ∪N
i=1Si ⊂ R

n be a con-
nected domain and each Si be star-shaped with respect to a ball Bi . Let χi ∈ C0(S̄i )
and μ be as in Lemma 3.1. If v ∈ W 1

p(μ, S) and vi = ´
Si

vχi , then

‖v − vi‖L p(μ,S) � ‖∇v‖L p(μ,S) ∀1 ≤ i ≤ N , (3.4)

where the hidden constant depends on {χi }Ni=1, the radii ri of Bi , and the amount of
overlap between the subdomains {Si }Ni=1, but is independent of A and b.

Proof This is an easy consequence of Lemma 3.1 and [28, Theorem 7.1]. For com-
pleteness, we sketch the proof. It suffices to deal with two subdomains S1, S2 and the
overlapping region D = S1 ∩ S2. We start from

‖v − v1‖L p(μ,S2) ≤ ‖v − v2‖L p(μ,S2) + ‖v1 − v2‖L p(μ,S2).

Since v1 and v2 are constant

‖v1 − v2‖L p(μ,S2) =
(

μ(S2)

μ(D)

)1/p

‖v1 − v2‖L p(μ,D),

which together with

‖v1 − v2‖L p(μ,D) ≤ ‖v − v1‖L p(μ,S1) + ‖v − v2‖L p(μ,S2),

and (3.1) imply ‖v − v1‖L p(μ,S2) � ‖∇v‖L p(μ,S1∪S2). This and (3.1) give (3.4) for
i = 1, with a stability constant depending on the ratio μ(S2)

μ(D)
. ��

4 Approximation theory in weighted Sobolev spaces

In this section, we introduce an averaged version of the Taylor polynomial and study
its approximation properties in Muckenhoupt weighted Sobolev spaces. Our results
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are optimal and are used to obtain error estimates for the quasi-interpolation opera-
tor defined in Sect. 5 on simplicial and rectangular discretizations. The interpolation
operator is built on local averages over stars, and so is similar to the one introduced
in [28]. The main difference is that it is directly defined on the given mesh instead
of using a reference element. This idea is fundamental in order to relax the regular-
ity assumptions on the elements, which is what allows us to derive the anisotropic
estimates on rectangular elements presented in Sect. 5.2.

4.1 Discretization

We start with some terminology and describe the construction of the underlying finite
element spaces. In order to avoid technical difficulties we shall assume ∂� is polyhe-
dral. We denote by T = {T } a partition, or mesh, of � into elements T (simplices or
cubes) such that

�̄ =
⋃
T∈T

T, |�| =
∑
T∈T

|T |.

The mesh T is assumed to be conforming or compatible: the intersection of any two
elements is either empty or a common lower dimensional element. We denote by T a
collection of conforming meshes, which are shape regular i.e., there exists a constant
σ > 1 such that, for all T ∈ T,

max {σT : T ∈ T } ≤ σ, (4.1)

where σT = hT /ρT is the shape coefficient of T . In the case of simplices, hT =
diam(T ) and ρT is the diameter of the sphere inscribed in T ; see, for instance, [13].
For the definition of hT and ρT in the case of n-rectangles see [23].

In Sect. 5.2, we consider rectangular discretizations of the domain � = (0, 1)n

which satisfy a weaker regularity assumption and thus allow for anisotropy in each
coordinate direction (cf. [31]).

Given a mesh T ∈ T, we define the finite element space of continuous piecewise
polynomials of degree m ≥ 1

V(T ) =
{
W ∈ C0(�̄) : W|T ∈ P(T ) ∀T ∈ T , W|∂� = 0

}
, (4.2)

where, for a simplicial element T ,P(T ) corresponds toPm —the space of polynomials
of total degree at mostm. If T is an n-rectangle, thenP(T ) stands forQm — the space
of polynomials of degree not larger than m in each variable.

Given an element T ∈ T , we denote byN(T ) and
◦
N(T ) the set of nodes and interior

nodes of T , respectively. We set N(T ) := ∪T∈T N(T ) and
◦
N(T ) := N(T ) ∩ ∂�.

Then, any discrete function V ∈ V(T ) is characterized by its nodal values on the set
◦
N(T ). Moreover, the functions φz ∈ V(T ), z ∈ ◦

N(T ), such that φz(y) = δyz for
all y ∈ N(T ) are the canonical basis of V(T ), and
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V =
∑

z∈ ◦
N(T )

V (z)φz .

The functions {φz}z∈ ◦
N(T )

are the so called shape functions.

Given z ∈ N(T ), the star or patch around z is Sz :=⋃z∈T T, and, for T ∈ T , its
patch is ST :=⋃z∈T Sz . For each z ∈ N(T ), we define hz := min{hT : z ∈ T }.

4.2 The averaged interpolation operator

We now develop an approximation theory in Muckenhoupt weighted Sobolev spaces,
which is instrumental in Sect. 5. We define an averaged Taylor polynomial, built on
local averages over stars and thus well defined for L p(ω,�)-functions. Exploiting
the weighted Poincaré inequality derived in Sect. 3, we show optimal error estimates
for constant and linear approximations. These results are the basis to extend these
estimates to any polynomial degree via a simple induction argument in Sect. 4.4.

Let ψ ∈ C∞(Rn) be such that
´

ψ = 1 and suppψ ⊂ B, where B denotes the ball

in Rn of radius r = r(σ ) and centered at zero. For z ∈ ◦
N(T ), we define the rescaled

smooth functions

ψz(x) = (m + 1)n

hnz
ψ

(
(m + 1)(z − x)

hz

)
, (4.3)

where m ≥ 0 is the polynomial degree. The scaling of ψz involving the factor m + 1
guarantees the property

suppψz ⊂ Sz

for all nodes z ∈ ◦
N(T ) (not just the interior vertices of T ) provided r is suitably

chosen. This is because the distance from z to ∂Sz is proportional to hz/(m + 1) for
shape regular meshes.

Given a smooth function v, we denote by Pmv(x, y) the Taylor polynomial of order
m in the variable y about the point x , i.e.,

Pmv(x, y) =
∑

|α|≤m

1

α!D
αv(x)(y − x)α. (4.4)

For z ∈ ◦
N(T ), and v ∈ Wm

p (ω,�), we define the corresponding averaged Taylor
polynomial of order m of v about the node z as

Qm
z v(y) =

ˆ
Pmv(x, y)ψz(x) dx . (4.5)

Integration by parts shows that Qm
z v is well-defined for functions in L1(�) [13, Propo-

sition 4.1.12]. Proposition 2.3 then allows us to conclude that (4.5) is well defined for
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v ∈ L p(ω,�). Since suppψz ⊂ Sz , the integral appearing in (4.5) can be also written
over Sz . Moreover, we have the following properties of Qm

z v:

• Qm
z v is a polynomial of degree less or equal than m in the variable y (cf. [13,

Proposition 4.1.9]).
• Qm

z v = Qm
z Q

m
z v, i.e., Qm

z is invariant over Pm .
• For any α such that |α| ≤ m,

DαQm
z v = Qm−|α|

z Dαv ∀v ∈ W |α|
1 (B), (4.6)

(cf. [13, Proposition 4.1.17]). As a consequence of ω ∈ Ap(R
n), together with

Proposition 2.3, we have that (4.6) holds for v in W |α|
p (ω, B).

The following stability result is important in the subsequent analysis.

Lemma 4.1 (stability of Qm
z ) Let ω ∈ Ap(R

n) and z ∈ ◦
N(T ). If v ∈ Wk

p(ω, Sz),
with 0 ≤ k ≤ m, we have the following stability result

‖Qm
z v‖L∞(Sz) � h−n

z ‖1‖L p′ (ω−p′/p,Sz)

k∑
l=0

hlz |v|Wl
p(ω,Sz). (4.7)

Proof Using the definition of the averaged Taylor polynomial (4.5), we arrive at

‖Qm
z v‖L∞(Sz) �

∑
|α|≤m

∥∥∥∥
ˆ
Sz
Dαv(x)(y − x)αψz(x) dx

∥∥∥∥
L∞(Sz)

.

This implies estimate (4.7) if k = m. Otherwise, integration by parts on the higher
derivatives Dαv with k < |α| ≤ m, ψz = 0 on ∂Sz , the fact that Dαψ is uniformly
bounded on R

n , the estimate |y − x | � hz for all x, y ∈ Sz , together with Hölder’s
inequality, yield (4.7). ��

Givenω ∈ Ap(R
n) and v ∈ Wm+1

p (ω,�)withm ≥ 0, in the next section we derive
approximation properties of the averaged Taylor polynomial Qm

z v in the weighted
Wk

p(ω,�)-norm, with 0 ≤ k ≤ m, via a weighted Poincaré inequality and a simple
induction argument. Consequently, we must first study the approximation properties

of Q0
zv, the weighted average of v ∈ L p(ω,�), which for z ∈ ◦

N(T ) reads

Q0
zv =

ˆ
Sz

v(x)ψz(x) dx . (4.8)

4.3 Weighted L p-based error estimates

We start by adapting the proofs of [31, Lemma 2.3] and [60, Lemma 4.5] to obtain
local approximation estimates in the weighted L p-norm for the polynomials Q0

zv and
Q1

zv.
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Lemma 4.2 (weighted L p-based error estimates) Let z ∈ ◦
N(T ). If v ∈ W 1

p(ω, Sz),
then we have

‖v − Q0
zv‖L p(ω,Sz) � hz‖∇v‖L p(ω,Sz). (4.9)

If v ∈ W 2
p(ω, Sz) instead, the following estimate holds

‖∂x j (v − Q1
zv)‖L p(ω,Sz) � hz‖∂x j ∇v‖L p(ω,Sz), (4.10)

for j = 1, . . . , n. In both inequalities, the hidden constants depend only on Cp,ω, σ
and ψ .

Proof Define the mapping Fz : x �→ x̄ by

x̄ = z − x

hz
,

the star S̄z = Fz(Sz) and the function v̄(x̄) = v(x). Set Q̄0v̄ = ´
v̄ψ dx̄, where ψ is

the smooth function introduced in Sect. 4.2.
Notice that suppψ ⊂ S̄z . Consequently, in the definition of Q̄0v̄, integration takes

place over S̄z only. Using the mapping Fz , we have

Q0
zv =

ˆ
Sz

vψz dx =
ˆ
S̄z

v̄ψ dx̄ = Q̄0v̄,

and, since
´
S̄z

ψ dx̄ = 1,

ˆ
S̄z

(v − Q̄0v̄)ψ dx̄ =
ˆ
S̄z

v̄ψ dx̄ − Q̄0v̄ = 0. (4.11)

Define the weight ω̄z = ω ◦F−1
z . In light of property (v) in Proposition 2.1 we have

ω̄z ∈ Ap(R
n) and Cp,ω̄z = Cp,ω. Changing variables we get

ˆ
Sz

ω|v − Q0
zv|p dx = hnz

ˆ
S̄z

ω̄z |v̄ − Q̄0v̄|p dx̄ . (4.12)

As a consequence of the shape regularity assumption (4.1), diam S̄z ≈ 1. Then, in
view of (4.11), we can apply Lemma 3.1 to v̄ − Q̄0v̄ over S = S̄z , with μ = ω̄z and
χ = ψ , to conclude

‖v̄ − Q̄0v̄‖L p(ω̄z ,S̄z) � ‖∇̄v̄‖L p(ω̄z ,S̄z),

where the hidden constant depends only on σ , Cp,ω̄z and ψ . Inserting this estimate
into (4.12) and changing variables with F−1

z to get back to S̄z we get (4.9).
In order to prove (4.10), we modify Fz and S̄z appropriately and define

Q̄1v̄(ȳ) =
ˆ
S̄z

(
v̄(x̄) + ∇̄v̄(x̄) · (ȳ − x̄)

)
ψ(x̄) dx̄,
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Weobserve thatQ1
zv(y) = Q̄1v̄(ȳ),whereQ1

zv is definedby (4.5). Since ∂ȳi Q̄
1v̄(ȳ) =´

S̄z
∂x̄i v̄(x̄)ψ(x̄) dx̄ is constant for i ∈ {1, · · · , n}, we have the vanishing mean value

property

ˆ
S̄z

∂x̄i

(
v̄(x̄) − Q̄1v̄(x̄)

)
ψ(x̄) dx̄ = 0.

This, together with Lemma 3.1, leads to (4.10). ��
The following result is an optimal error estimate in the L p-weighted norm for the

averaged Taylor polynomial Q1
zv, which is instrumental to study Qm

z v (m ≥ 0).

Lemma 4.3 (weighted L p-based error estimate for Q1
z ) Let z ∈ ◦

N(T ). If v ∈
W 2

p(ω, Sz), then the following estimate holds

‖v − Q1
zv‖L p(ω,Sz) � h2z |v|W 2

p(ω,Sz), (4.13)

where the hidden constant depends only on Cp,ω, σ and ψ .

Proof Since

v − Q1
zv = (v − Q1

zv) − Q0
z (v − Q1

zv) − Q0
z (Q

1
zv − v),

and ∇(v − Q1
zv) = ∇v − Q0

z∇v from (4.6), we can apply (4.9) twice to obtain

‖(v − Q1
zv) − Q0

z (v − Q1
zv)‖L p(ω,Sz) � hz‖∇(v − Q1

zv)‖L p(ω,Sz) � h2z |v|W 2
p(ω,Sz).

So it remains to estimate the term R1
z (v) := Q0

z (Q
1
zv − v). Since Q0

zv = Q0
z Q

0
zv,

we notice that R1
z (v) = Q0

z (Q
1
zv − Q0

zv). Then, using the definition of the averaged
Taylor polynomial given by (4.5), we have

R1
z (v) =

ˆ
Sz

(ˆ
Sz

∇v(x) · (y − x)ψz(x) dx

)
ψz(y) dy.

We exploit the crucial cancellation property R1
z (p) = 0 for all p ∈ P1 as follows:

R1
z (v) = R1

z (v − Q1
zv) = 0. This yields

‖R1
z (v)‖p

L p(ω,Sz)
=
ˆ
Sz

ω

∣∣∣∣
ˆ
Sz

(ˆ
Sz

∇(v(x)−Q1
zv(x)) · (y−x)ψz(x) dx

)
ψz(y) dy

∣∣∣∣
p

.

Applying Hölder inequality to the innermost integral I (y) leads to

|I (y)|p � h p
z

(ˆ
Sz

ω|∇(v(x) − Q1
zv(x))|p dx

)(ˆ
Sz

ω−p′/pψz(x)
p′
dx

)p/p′

.
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This is combinedwith
´
Sz

ψz(y) dy = 1 and ‖ψz‖L p′ (ω−p′/p,Sz)‖1‖L p(ω,Sz) � 1,which
follows from the definition of ψz and the definition (2.2) of the Ap-class, to arrive at

‖R1
z (v)‖p

L p(ω,Sz)
� h2pz

ˆ
Sz

ω|D2v|p. (4.14)

This yields the desired estimate (4.13). ��

4.4 Induction argument

In order to derive approximation properties of the averaged Taylor polynomial Qm
z v

for any m ≥ 0, we apply an induction argument. We assume the following estimate
as induction hypothesis:

‖v − Qm−1
z v‖L p(ω,Sz) � hmz |v|Wm

p (ω,Sz). (4.15)

Notice that, for m = 1, the induction hypothesis is exactly (4.10), while for m = 2 it
is given by Lemma 4.3. We have the following general result for any m ≥ 0.

Lemma 4.4 (weighted L p-based error estimate for Qm
z ) Let z ∈ ◦

N(T ) and m ≥ 0.
If v ∈ Wm+1

p (ω, Sz), then we have the following approximation result

‖v − Qm
z v‖L p(ω,Sz) � hm+1

z |v|Wm+1
p (ω,Sz)

, (4.16)

where the hidden constant depends only on Cp,ω, σ , ψ and m.

Proof We proceed as in the proof of Lemma 4.3. Notice, first of all, that

v − Qm
z v = (v − Qm

z v) − Qm−1
z (v − Qm

z v) − Qm−1
z (Qm

z v − v).

The induction hypothesis (4.15) yields

‖(v − Qm
z v) − Qm−1

z (v − Qm
z v)‖L p(ω,Sz) � hmz |v − Qm

z v|Wm
p (ω,Sz).

Since DαQm
z v = Q0

z D
αv for all |α| = m, according to property (4.6), the estimate

(4.9) yields |v − Qm
z v|Wm

p (ω,Sz) � hz |v|Wm+1
p (ω,Sz)

, and then

‖(v − Qm
z v) − Qm−1

z (v − Qm
z v)‖L p(ω,Sz) � hm+1

z |v|Wm+1
p (ω,Sz)

.

It thus remains to bound the term

Rm
z (v) := Qm−1

z (Qm
z v − v).
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Since Qm−1
z Qm−1

z v = Qm−1
z v, writing Qm

z = Qm−1
z +∑|β|=m T β

z with

T β
z (v) = 1

β!
ˆ
Sz
Dβv(ζ )(x − ζ )βψz(ζ ) dζ,

we obtain

Rm
z (v) =

∑
|β|=m

Qm−1
z T β

z (v).

This representation allows us to write

Rm
z (v)(y) =

∑
|α|<m,|β|=m

Iα,βv(y),

with

Iα,βv(y) = 1

α!
ˆ
Sz

ψz(x)D
α
x T

β
z v(x)(y − x)α dx

= 1

α!
ˆ
Sz

ψz(x)
1

(β − α)!
ˆ
Sz
Dβ

ζ v(ζ )(x − ζ )β−αψz(ζ ) dζ(y − x)α dx .

Finally, we notice the following cancellation property: Qm
z p = p for all p ∈ Pm ,

whence Rm
z (p) = 0. Consequently Rm

z (v) = Rm
z (v − Qm

z v) implies

‖Iα,βv‖p
L p(ω,Sz)

� hmp
z

ˆ
Sz

ω(y)

∣∣∣∣
ˆ
Sz

ψz(x)
ˆ
Sz
Dβ

ζ (v − Qm
z v)(ζ )ψz(ζ ) dζ dx

∣∣∣∣
p

dy.

Combining the identity DβQm
z v = Q0

z D
βv, with (4.9) and the bound

‖ψz‖L p′ (ω−p′/p,Sz)‖1‖L p(ω,Sz) � 1,

we infer that

‖Rm
z v‖p

L p(ω,Sz)
� hmp

z ‖1‖p
L p(ω,Sz)

‖Dmv − DmQm
z v‖p

L p(ω,Sz)
‖ψz‖p

L p(ω−p′/p,Sz)

� h(m+1)p
z |v|p

Wm+1
p (ω,Sz)

.

This concludes the proof. ��
The following corollary is a simple consequence of Lemma 4.4.

Corollary 4.5 (weighted Wk
p-based error estimate for Qm

z ) Let z ∈ ◦
N(T ). If v ∈

Wm+1
p (ω, Sz) with m ≥ 0, then

|v − Qm
z v|Wk

p(ω,Sz) � hm+1−k
z |v|Wm+1

p (ω,Sz)
, k = 0, 1, . . . ,m + 1, (4.17)
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where the hidden constant depends only on Cp,ω, σ , ψ and m.

Proof For k = 0, the estimate (4.17) is given by Lemma 4.4, while for k = m + 1,

|v − Qm
z v|Wm+1

p (ω,Sz)
= |v|Wm+1

p (ω,Sz)
.

For 0 < k < m + 1, we employ property (4.6) of DαQm
z v with |α| = k to write

|v − Qm
z v|Wk

p(ω,Sz) =
⎛
⎝∑

|α|=k

‖Dαv − Qm−k
z Dαv‖p

L p(ω,Sz)

⎞
⎠

1/p

.

Therefore, applying estimate (4.16) to ‖Dαv − Qm−k
z Dαv‖L p(ω,Sz), we obtain

|v − Qm
z v|Wk

p(ω,Sz) � hm+1−k
z |v|Wm+1

p (ω,Sz)
,

which is the asserted estimate. ��

5 Weighted interpolation error estimates

In this section we construct a quasi-interpolation operator �T , based on local aver-
ages over stars. This construction is well defined for functions in L1(�), and thus
for functions in the weighted space L p(ω,�). It is well known that this type of
quasi-interpolation operator is important in the approximation of nonsmooth func-
tions without point values because the Lagrange interpolation operator is not even
defined [24,65]. Moreover, averaged interpolation has better approximation proper-
ties than the Lagrange interpolation for anisotropic elements [1]. We refer the reader
to [9,31,60] for applications of quasi-interpolation.

The construction of �T is based on the averaged Taylor polynomial defined in
(4.5). In Sect. 5.1, using the approximation estimates derived in Sect. 4 together with
an invariance property of �T over the space of polynomials, we derive optimal error
estimates for �T in Muckenhoupt weighted Sobolev norms on simplicial discretiza-
tions. The case of rectangular discretizations is considered in Sect. 5.2.

Given ω ∈ Ap(R
n) and v ∈ L p(ω,�), we recall that Qm

z v is the averaged Taylor
polynomial of order m of v over the node z; see (4.5). We define the quasi-interpolant

�T v as the unique function ofV(T ) that satisfies �T v(z) = Qm
z v(z) if z ∈ ◦

N(T ),
and �T v(z) = 0 if z ∈ N(T ) ∩ ∂�, i.e.,

�T v =
∑

z∈ ◦
N(T )

Qm
z v(z) φz . (5.1)

Optimal error estimates for�T rely on its stability, which follows from the stability
of Qm

z obtained in Lemma 4.1.
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Lemma 5.1 (stability of �T ) Let v ∈ Wk
p(ω, ST ) with 0 ≤ k ≤ m + 1 and T ∈ T .

Then, the quasi-interpolant operator �T defined by (5.1) satisfies the following local
stability bound

|�T v|Wk
p(ω,T ) �

k∑
l=0

hl−k
T |v|Wl

p(ω,ST ). (5.2)

Proof Using the definition of �T given by (5.1), we have

|�T v|Wk
p(ω,T ) ≤

∑
z∈ ◦

N(T )

‖Qm
z v‖L∞(Sz) |φz|Wk

p(ω,T ).

We resort to Lemma 4.1 to derive

|�T v|Wk
p(ω,T ) �

∑
z∈ ◦

N(T )

h−n
z |φz|Wk

p(ω,T )‖1‖L p′ (ω−p′/p,Sz)

k∑
l=0

hlz|v|Wl
p(ω,Sz).

Since |Dkφz | � h−k
z on ST and ω ∈ Ap(R

n), we obtain

h−n
z |φz |Wk

p(ω,T )‖1‖L p′ (ω−p′/p, Sz) �
h−k
z

hnz

(ˆ
Sz

ω

)1/p (ˆ
Sz

ω−p′/p
)1/p′

� h−k
z ,

which, given the definition of ST , the shape regularity ofT , and the finite overlapping
property of stars imply (5.2). ��

5.1 Interpolation error estimates on simplicial discretizations

The quasi-interpolant operator�T is invariant over the space of polynomials of degree

m on simplicial meshes: �T v|Sz = v for v ∈ Pm(Sz) and z ∈ ◦
N(T ) such that

∂Sz ∩ ∂� = ∅. Consequently,

�T Qm
z φ = Qm

z φ. ∀φ ∈ L p(ω, Sz). (5.3)

This property, together with (4.5), yields optimal interpolation estimates for �T .

Theorem 5.2 (interpolation estimate on interior simplices) Given T ∈ T such that
∂T ∩ ∂� = ∅ and v ∈ Wm+1

p (ω, ST ), we have the following interpolation error
estimate

|v − �T v|Wk
p(ω,T ) � hm+1−k

T |v|Wm+1
p (ω,ST )

, k = 0, 1, . . . ,m + 1, (5.4)

where the hidden constant depends only on Cp,ω, σ , ψ and m.
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Proof Given T ∈ T , choose a node z ∈ ◦
N(T ). Property (5.3) yields,

|v − �T v|Wk
p(ω,T ) ≤ |v − Qm

z v|Wk
p(ω,T ) + |�T (Qm

z v − v)|Wk
p(ω,T ).

Combining the stability of �T given by (5.2) together with (4.17) implies

|v − �T v|Wk
p(ω,T ) �

k∑
l=0

hl−k
T |v − Qm

z v|Wl
p(ω,ST ) � hm+1−k

T |v|Wm+1
p (ω,ST )

,

which is exactly (5.4). ��
By using the fact that, v ∈ Wm+1

p (ω,�)∩ ◦
W 1

p(ω,�) implies �T v|∂� = 0 we can
extend the results of Theorem 5.2 to boundary elements. The proof is an adaption of
standard techniques and, in order to deal with the weight, those of the aforementioned
Theorem 5.2. See also Theorem 5.10 below.

Theorem 5.3 (interpolation estimates on Dirichlet simplices) Let v ∈ ◦
W 1

p(ω,�) ∩
Wm+1

p (ω,�). If T ∈ T is a boundary simplex, then (5.4) holds with a constant that
depends only on Cp,ω, σ and ψ .

We are now in the position to write a global interpolation estimate.

Theorem 5.4 (global interpolation estimate over simplicial meshes) Given T ∈ T

and v ∈ Wm+1
p (ω,�), we have the following global interpolation error estimate

⎛
⎝∑

T∈T
h−(m+1−k)p
T |v − �T v|p

Wk
p(ω,T )

⎞
⎠

1/p

� |v|Wm+1
p (ω,�)

, (5.5)

for k = 0, . . . ,m + 1, where the hidden constant depends only on Cp,ω, σ , ψ and m.

Proof Raise (5.4) to the p-th power and add over all T ∈ T . The finite overlapping
property of stars of T yields the result. ��

5.2 Anisotropic interpolation estimates on rectangular meshes

Narrow or anisotropic elements are those with disparate sizes in each direction. They
are necessary, for instance, for the optimal approximation of functions with a strong
directional-dependent behavior such as line and edge singularities, boundary layers,
and shocks (see [31,32,60]).

Inspired by [31], here we derive interpolation error estimates assuming only that
neighboring elements have comparable sizes, thus obtaining results which are valid
for a rather general family of anisotropic meshes. Since symmetry is essential, we
assume that � = (0, 1)n , or that � is any domain which can be decomposed into
n-rectangles. We use below the notation introduced in [31].
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We assume that the mesh T is composed of rectangular elements R, with sides
parallel to the coordinate axes. By v ∈ N(T ) we denote a node or vertex of the
triangulation T and by Sv, SR the associated patches; see Sect. 4.1. Given R ∈ T ,
we define hiR as the length of R in the i-th direction and, if v ∈ N(T ), we define
hiv = min{hiR : v ∈ R} for i = 1, · · · , n. The finite element space is defined by (4.2)
with P = Q1.

We assume the following weak shape regularity condition: there exists a constant
σ > 1, such that if R, S ∈ T are neighboring elements, we have

hiR
hiS

≤ σ, i = 1, . . . , n. (5.6)

Whenever v is a vertex of R the shape regularity assumption (5.6) implies that hiv and
hiR are equivalent up to a constant that depends only on σ . We define

ψv(x) = 1

h1v . . . hnv
ψ

(
v1 − x1

h1v
, . . . ,

vn − xn
hnv

)
,

which, owing to (5.6) and r ≤ 1/σ , satisfies suppψv ⊂ Sv. Notice that this function
incorporates a different length scale on each direction xi , which will prove useful in
the study of anisotropic estimates.

Given ω ∈ Ap(R
n), and v ∈ L p(ω,�), we define Q1

vv, the first degree regularized
Taylor polynomial of v about the vertex v as in (4.5). We also define the quasi-
interpolation operator �T as in (5.1), i.e., upon denoting by λv the Lagrange nodal
basis function of V(T ), �T v reads

�T v :=
∑

v∈ ◦
N(T )

Q1
vv(v)λv. (5.7)

The finite element space V(T ) is not invariant under the operator defined in
(5.7). Consequently, we cannot use the techniques for simplicial meshes developed in
Sect. 5.1. This, as the results below show, is not a limitation to obtain interpolation
error estimates.

Lemma 5.5 (anisotropic L p-weighted error estimates I) Let v ∈ ◦
N(T ). If v ∈

W 1
p(ω, Sv), then we have

‖v − Q0
vv‖L p(ω,Sv) �

n∑
i=1

hiv‖∂xi v‖L p(ω,Sv). (5.8)

If v ∈ W 2
p(ω, Sv) instead, then the following estimate holds

‖∂x j (v − Q1
vv)‖L p(ω,Sv) �

n∑
i=1

hiv‖∂xi ∂x j v‖L p(ω,Sv), (5.9)
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for j = 1, . . . , n. In both inequalities, the hidden constants depend only on Cp,ω, σ
and ψ .

Proof To exploit the symmetry of the elements we define the map

Fv : x �→ x̄, x̄i = vi − xi
hiv

, i = 1, . . . , n, (5.10)

and proceed exactly as in the proof of Lemma 4.2. ��
Lemma 5.5, in conjunction with the techniques developed in Lemma 4.3 give rise

the second order anisotropic error estimates in the weighted L p-norm.

Lemma 5.6 (anisotropic L p-weighted error estimate II) Let v ∈ ◦
N(T ). If v ∈

W 2
p(ω, Sv), then we have

‖v − Q1
vv‖L p(ω,Sv) �

n∑
i, j=1

hivh
j
v‖∂xi ∂x j v‖L p(ω,Sv), (5.11)

where the hidden constant in the inequality above depends only on Cp,ω, σ and ψ .

Proof Recall that, if R1
v(v) = Q0

v(Q
1
vv − v), then we can write

v − Q1
vv = (v − Q1

vv) − Q0
v(v − Q1

vv) − R1
v(v).

Applying estimates (5.8) and (5.9) successively, we see that

‖(v − Q1
vv) − Q0

v(v − Q1
vv)‖L p(ω,Sv) �

n∑
i=1

hiv‖∂xi (v − Q1
vv)‖L p(ω,Sv)

�
n∑

i, j=1

hivh
j
v‖∂xi ∂x j v‖L p(ω,Sv).

It remains then to bound R1
v(v). We proceed as in the proof of (4.14) in Lemma 4.3.

The definition (4.5) of the averaged Taylor polynomial, together with the cancellation
property R1

v(v) = R1
v(v − Q1

vv), implies

‖R1
v(v)‖p

L p(ω,Sv) �
n∑

i=1

(hiv)
p‖∂xi (v−Q1

vv)‖p
L p(ω,Sv)‖1‖p

L p(ω,Sv)‖ψv‖p

L p′ (ω−p′/p,Sv)
.

Combining (5.9) with the inequality ‖ψv‖L p′ (ω−p′/p,Sv)
‖1‖L p(ω,Sv) � 1, which fol-

lows from the definition of ψv and the definition (2.2) of the Ap-class, yields

‖R1
v(v)‖L p(ω,Sv) �

n∑
i, j=1

hivh
j
v‖∂xi ∂x j v‖L p(ω,Sv),
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and leads to the asserted estimate (5.11). ��
The anisotropic error estimate (5.8) together with the weighted L p stability of the

interpolation operator�T , enables us to obtain anisotropic weighted L p interpolation
estimates, as shown in the following Theorem.

Theorem 5.7 (anisotropic L p-weighted interpolation estimate I) Let T satisfy (5.6)
and R ∈ T . If v ∈ L p(ω, SR), we have

‖�T v‖L p(ω,R) � ‖v‖L p(ω,SR). (5.12)

If, in addition, w ∈ W 1
p(ω, SR) and ∂R ∩ ∂� = ∅, then

‖v − �T v‖L p(ω,R) �
n∑

i=1

hiR‖∂xi v‖L p(ω,SR). (5.13)

The hidden constants in both inequalities depend only on Cp,ω, σ and ψ .

Proof The local stability (5.12) of �T follows from Lemma 5.1 with k = 0. Let us

now prove (5.13). Choose a nodev ∈ ◦
N(R). Since Q0

vv is constant, and ∂R∩∂� = ∅,
�T Q0

vv = Q0
vv over R. This, in conjunction with estimate (5.12), allows us to write

‖v − �T v‖L p(ω,R) = ‖(I − �T )(v − Q0
vv)‖L p(ω,R) � ‖v − Q0

vv‖L p(ω,SR).

The desired estimate (5.13) now follows from Corollary 3.2. ��
To prove interpolation error estimates on the first derivatives for interior elements

we follow [31, Theorem 2.6] and use the symmetries of a cube, thus handling the
anisotropy in every direction separately. We start by studying the case of interior
elements.

Theorem 5.8 (anisotropic W 1
p-weighted interpolation estimates) Let R ∈ T be such

that ∂R ∩ ∂� = ∅. If v ∈ W 1
p(ω, SR) we have the stability bound

‖∇�T v‖L p(ω,R) � ‖∇v‖L p(ω,SR). (5.14)

If, in addition, v ∈ W 2
p(ω, SR) we have, for j = 1, · · · , n,

‖∂x j (v − �T v)‖L p(ω,R) �
n∑

i=1

hiR‖∂x j ∂xi v‖L p(ω,SR). (5.15)

The hidden constants in the inequalities above depend only on Cp,ω, σ and ψ .

Proof Let us bound the derivative with respect to the first argument x1. The other ones
follow from similar considerations. As in [31, Theorem 2.5], to exploit the geometry
of R, we label its vertices in an appropriate way: vertices that differ only in the first
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Fig. 1 An anisotropic cube with sides parallel to the coordinate axes and the labeling of its vertices. The
numbering of the vertices proceeds recursively as follows: a cube in dimensionm is obtained as theCartesian

product of an (m − 1)-dimensional cube with vertices {vi }2m−1

i=1 and an interval, and the new vertices are

{vi+2m−1 }2m−1

i=1

component are denoted vi and vi+2n−1 for i = 1, . . . , 2n−1; see Fig. 1 for the three-
dimensional case.

Clearly v −�T v = (v − Q1
v1v)+ (Q1

v1v −�T v), and the difference v − Q1
v1v is

estimated by Lemma 5.5. Consequently, it suffices to consider q = Q1
v1v − �T v ∈

Q1(R). Thanks to the special labeling of the vertices we have that ∂x1λvi+2n−1 =
−∂x1λvi . Therefore

∂x1q =
2n∑
i=1

q(vi )∂x1λvi =
2n−1∑
i=1

(q(vi ) − q(vi+2n−1))∂x1λvi ,

so that

‖∂x1q‖L p(ω,R) ≤
2n−1∑
i=1

|q(vi ) − q(vi+2n−1)|‖∂x1λvi ‖L p(ω,R). (5.16)

This shows that it suffices to estimate δq(v1) = q(v1) − q(v1+2n−1). The definitions
of �T , q, and the averaged Taylor polynomial (4.5), imply that

δq(v1) =
ˆ

P1v(x,v1+2n−1)ψv1+2n−1 (x) dx

−
ˆ

P1v(x,v1+2n−1)ψv1(x) dx, (5.17)

whence employing the operation ◦ defined in (2.1) and changing variables, we get

δq(v1) =
ˆ (

P1v(v1+2n−1 − hv1+2n−1 ◦ z,v1+2n−1)

−P1v(v1 − hv1 ◦ z,v1+2n−1)

)
ψ(z) dz.
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Define

θ1 = v11+2n−1 − v11 + (h1v1 − h1v1+2n−1
)z1,

θ = (θ1, 0, . . . , 0) and, for t ∈ [0, 1], the function Fz(t) = P1v(v1 − hv1 ◦ z +
tθ,v1+2n−1). Since, for i = 2, . . . , n we have that hiv1 = hiv1+2n−1

and vi1 = vi
1+2n−1 ,

by using the definition of θ we arrive at

P1v(v1+2n−1−hv1+2n−1 ◦ z,v1+2n−1)−P1v(v1−hv1 ◦ z,v1+2n−1)=Fz(1) − Fz(0),

and consequently

δq(v1) =
ˆ

(Fz(1) − Fz(0))ψ(z) dz =
ˆ 1

0

ˆ
F ′
z(t)ψ(z) dz dt.

Since ψ is bounded and B = suppψ ⊂ B(0, 1), it suffices to bound the integral

I (t) =
ˆ
B

|F ′
z(t)| dz.

Invoking the definition of Fz , we get F ′
z(t) = ∇P1v(v1 − hv1 ◦ z + tθ,v1+2n−1) · θ,

which, together with the definition of the polynomial P1v given by (4.4), yields

I (t) �
ˆ
B

|∂2x1v(v1 − hv1 ◦ z + tθ)| |v11+2n−1 − v1
1 + h1v1 z1 − tθ1| |θ1| dz

+
n∑

i=2

ˆ
B

|∂2xi x1v(v1 − hv1 ◦ z + tθ)| |vi1+2n−1 − vi1 + hiv1 zi | |θ1| dz.

Now, using that |z| ≤ 1, 0 ≤ t ≤ 1, and the definition of θ , we easily see that
|θ | = |θ1| � h1v1 as well as |v1

1+2n−1 − v1 + h1v1 z1 − tθ1| � h1v1 and |vi
1+2n−1 − vi1 −

hiv1 zi | � hiv1 for i = 2, . . . n, whence

I (t) �
n∑

i=1

h1v1h
i
v1

ˆ
B

|∂2xi x1v(v1 − hv1 ◦ z + tθ)| dz.

Changing variables via y = v1 − hv1 ◦ z + tθ , we obtain

I (t) � 1

h2v1 . . . hnv1

n∑
i=1

hiv1

ˆ
SR

|∂2xi x1v(y)| dy,

wherewe have used that the support ofψ ismapped into Sv1 ⊂ SR . Hölder’s inequality
implies
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I (t) � 1

h2v1 . . . hnv1
‖1‖L p′ (ω−p′/p,SR)

n∑
i=1

hiv1‖∂2xi x1v‖L p(ω,SR),

which combined with ‖∂x1λv1‖L p(ω,R)‖1‖L p′ (ω−p′/p,SR)
� h2v1 . . . hnv1 , because ω ∈

Ap(R
n), gives the following bound for the first term in (5.16)

δq(v1)‖∂x1λv1‖L p(ω,R) �
n∑

i=1

hiv1‖∂2xi x1v‖L p(ω,SR).

This readily yields (5.15).
The estimate (5.14) follows along the same arguments as in [60, Theorem 4.7]. In

fact, by the triangle inequality

‖∇�T v‖L p(ω,R) ≤ ‖∇Q1
v1v‖L p(ω,R) + ‖∇(Q1

v1v − �T v)‖L p(ω,R). (5.18)

The estimate of the first term on the right hand side of (5.18) begins by noticing that
the definition of ψv1 and the Definition 2.2 of the Ap class imply

‖ψv1‖L p′ (ω−p′/p,SR)
‖1‖L p(ω,SR) � 1.

This, together with the definition (4.5) of regularized Taylor polynomial Q1
v1v, yields

‖∇Q1
v1v‖L p(ω,R) ≤ ‖∇v‖L p(ω,SR)‖ψv1‖L p′ (ω−p′/p,SR)

‖1‖L p(ω,SR)

� ‖∇v‖L p(ω,SR).

To estimate the second term of the right hand side of (5.18), we integrate by parts
(5.17), using that ψvi = 0 on ∂Svi for i = 1, . . . , n, to get

δq(v1) = (n+1)

(ˆ
v(x)ψv1+2n−1 (x) dx−

ˆ
v(x)ψv1(x) dx

)

−
ˆ

v(x)(v1+2n−1−x) · ∇ψv1+2n−1 (x) dx+
ˆ

v(x)(v1−x) · ∇ψv1(x) dx .

In contrast to (5.17), we have now created differences which involve v(x) instead of
∇v(x). However, the same techniques used to derive (5.15) yield

|δq(v1)| � 1

h2v1 . . . hnv1
‖∇v‖L p(ω,SR)‖1‖L p′ (ω−p′/p,SR)

,

which, since ‖∂x1λv1‖L p′ (ω−p′/p,SR)
‖1‖L p(ω,SR) � h2v1 . . . hnv1 , results in

|δq(v1)|‖∂x1λv1‖L p(ω,R) � ‖∇v‖L p(ω,SR).
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Replacing this estimate in (5.16), we get

‖∇(Q1
v1v − �T v)‖L p(ω,R) � ‖∇v‖L p(ω,SR),

which implies the desired result (5.14). This completes the proof. ��
Let us now derive a second order anisotropic interpolation error estimates for the

weighted L p-norm, which is novel even for unweighted norms. For the sake of sim-
plicity, and because the arguments involved are rather technical (as in Theorem 5.8),
we prove the result in two dimensions. However, analogous results can be obtained in
three and more dimensions by using similar arguments.

Theorem 5.9 (anisotropic L p-weighted interpolation estimate II) LetT satisfy (5.6)
and R ∈ T such that ∂R ∩ ∂� = ∅. If v ∈ W 2

p(ω, SR), then we have

‖v − �T v‖L p(ω,R) �
n∑

i, j=1

hiRh
j
R‖∂xi ∂x j v‖L p(ω,SR), (5.19)

where the hidden constant in the inequality above depends only on Cp,ω, σ and ψ .

Proof To exploit the symmetry of R, we label its vertices of R according to Fig. 1:
v2 = v1 + (a, 0),v3 = v1 + (0, b),v4 = v1 + (a, b). We write v − �T v =
(v − Q1

v1v) + (Q1
v1v − �T v). The difference v − Q1

v1v is estimated by Lemma 5.6.
Consequently, it suffices to estimate q = Q1

v1v − �T v.
Since q ∈ V(T ),

q =
4∑

i=1

q(vi )λvi �⇒ ‖q‖L p(ω,R) ≤
4∑

i=1

|q(vi )|‖λvi ‖L p(ω,R), (5.20)

and we only need to deal with q(vi ) for i = 1, . . . , 4. Since q(v1) = 0, in accordance
with the definition (5.7) of �T , we just consider i = 2. Again, by (5.7), we have

q(v2) = Q1
v1v(v2) − Q1

v2v(v2)

which, together with the definition of the averaged Taylor polynomial (4.5) and a
change of variables, yields

q(v2) =
ˆ (

P1v(v1 − hv1 ◦ z,v2) − P1v(v2 − hv2 ◦ z,v2)
)

ψ(z) dz.

To estimate this integral, we define θ = (θ1, 0), where θ1 = v11 −v1
2 + (h1v2 − h1v1)z1,

and the function Fz(t) = P1v(v2 − hv2 ◦ z + tθ,v2). Exploiting the symmetries of
R, i.e., using that v21 = v22 and h2v1 = h2v2 , we arrive at

q(v2) =
ˆ (

Fz(1) − Fz(0)
)
ψ(z) dz =

ˆ 1

0

ˆ
F ′
z(t)ψ(z) dz dt.
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By using the definition of the Taylor polynomial P1v given in (4.4), we obtain

F ′
z(t) = θD2v(v2 − hv2 ◦ z + tθ)(hv2 ◦ z − tθ)

which, together with the definition of θ and the inequalities |θ1| � h1v2 , |h1v2 z1−tθ1| �
h1v2 and |h2v2 z2| � h2v2 , implies

ˆ
F ′
z(t)ψ(z) dz ≤

ˆ
|∂x1x1v(v2 − hv2 ◦ z + tθ)| |h1v2 z1 − tθ1| |θ1| |ψ(z)| dz

+
ˆ

|∂x2x1v(v2 − hv2 ◦ z + tθ)| |h2v2 z2| |θ1| |ψ(z)| dz

� h1v2h
1
v2

ˆ
|∂x1x1v(v2 − hv2 ◦ z + tθ)| |ψ(z)| dz

+ h2v2h
1
v2

ˆ
|∂x2x1v(v2 − hv2 ◦ z + tθ)| |ψ(z)| dz.

The change of variables y = v2 − hv2 ◦ z + tθ yields

ˆ
F ′
z(t)ψ(z) dz �

(
h1v2
h2v2

‖∂x1x1v‖L p(ω,SR) + ‖∂x2x1v‖L p(ω,SR)

)
‖1‖L p′ (ω−p′/p,SR)

,

where we used Hölder inequality, that the support of ψ is mapped into SR , and ψ ∈
L∞(Rn). Finally, using the Ap-condition, we conclude

|q(v2)|‖λv2‖L p(ω,R) � (h1v2)
2‖∂x1x1v‖L p(ω,SR) + h1v2h

2
v2‖∂x2x1v‖L p(ω,SR).

The same arguments above apply to the remaining terms in (5.20). For the term
labeled i = 3, we obtain

|q(v3)|‖λv3‖L p(ω,R) � (h2v3)
2‖∂x2x2v‖L p(ω,SR) + h1v3h

2
v3‖∂x1x2v‖L p(ω,SR),

whereas for the term labeled i = 4, rewritten first in the form

q(v4) = (Q1
v1v(v4) − Q1

v3v(v4)
)+ (Q1

v3v(v4) − Q1
v4v(v4)

)
,

we deduce

|q(v4)|‖λv4‖L p(ω,R) �
2∑

i, j=1

hiv4h
j
v4‖∂xi ∂x j v‖L p(ω,SR).

Finally, replacing the previous estimates back into (5.20), and using the shape
regularity properties h j

vi ≈ h j
R for i = 1, . . . , 4 and j = 1, 2, which result from (5.6),

we arrive at the desired anisotropic estimate (5.19). ��
Let us comment on the extension of the interpolation estimates of Theorem 5.8 to

elements that intersect the Dirichlet boundary, where the functions to be approximated
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vanish. The proof is very technical and is an adaptation of the arguments of [31,
Theorem 3.1] and [60, Theorem 4.8], together with the ideas involved in the proof of
Theorem 5.8 to deal with the Muckenhoupt weight ω ∈ Ap(R

n).

Theorem 5.10 (stability and local interpolation: Dirichlet elements) Let R ∈ T be a
boundary element. If v ∈ W 1

p(ω, SR) and v = 0 on ∂R ∩ ∂�, then we have

‖∇�T v‖L p(ω,R) � ‖∇v‖L p(ω,SR). (5.21)

Moreover, if v ∈ W 2
p(ω, SR), then

‖∂x j (v − �T v)‖L p(ω,R) �
n∑

i=1

hiR‖∂x j ∂xi v‖L p(ω,SR). (5.22)

for j = 1, . . . , n. The hidden constants in both inequalities depend only on Cp,ω, σ
and ψ .

6 Interpolation estimates for different metrics

Given v ∈ W 1
p(ω, ST ) with ω ∈ Ap(R

n) and p ∈ (1,∞), the goal of this section
is to derive local interpolation estimates for v in the space Lq(ρ, T ), with weight
ρ 
= ω and Lebesgue exponent q 
= p. To derive such an estimate, it is necessary to
ensure that the function v belongs to Lq(ρ, T ), that is, we need to discuss embeddings
between weighted Sobolev spaces with different weights and Lebesgue exponents.

Embedding results in spaces of weakly differentiable functions are fundamental
in the analysis of partial differential equations. They provide some basic tools in
the study of existence, uniqueness and regularity of solutions. To the best of our
knowledge, the first to prove such a result was Sobolev in 1938 [67]. Since then, a
great deal of effort has been devoted to studying and improving such inequalities;
see, for instance, [12,59,71]. In the context of weighted Sobolev spaces, there is an
abundant literature that studies the dependence of this result on the properties of the
weight; see [38,41,45–49].

Let us first recall the embedding results in the classical case, which will help us
draw an analogy for the weighted case. We recall the Sobolev number of Wm

p (�)

sob(Wm
p ) = m − n

p
,

which governs the scaling properties of the seminorm |v|Wm
p (�): the change of variables

x̂ = x/h transforms � into �̂ and v into v̂, while the seminorms scale as

|v̂|Wm
p (�̂)

= hsob(W
m
p )|v|Wm

p (�).

With this notation classical embeddings [40, Theorem 7.26] can bewritten in a concise
way: if � denotes an open and bounded domain with Lipschitz boundary, 1 ≤ p < n
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and sob(W 1
p) ≥ sob(Lq), then

◦
W 1

p(�) ↪→ Lq(�) and

‖v‖Lq (�) � diam(�)sob(W
1
p)−sob(Lq )‖∇v‖L p(�) (6.1)

for all v ∈ ◦
W 1

p(�). When sob(W 1
p) > sob(Lq) the embedding is compact. Results

analogous to (6.1) in the weighted setting have been studied in [19,38,57,62] for
n > 1. For n = 1, if � = (0, a), v ∈ W 1

p(ω,�), and ω ∈ Ap(R
n), Proposition

2.3 yields v ∈ W 1
1 (�). Consequently v ∈ L∞(�), and then v ∈ Lq(ρ,�) for any

weight ρ and q ∈ (1,∞). However, to gain intuition on the explicit dependence of the
embedding constant in terms of the weights and the Lebesgue measure of the domain,
let us consider the trivial case n = 1 in more detail. To simplify the discussion assume
that v(0) = v(a) = 0. We thus have

ˆ a

0
|v(x)|qρ(x) dx =

ˆ a

0
ρ(x)

∣∣∣∣
ˆ x

0
v′(s)ω(s)1/pω(s)−1/p ds

∣∣∣∣q dx

≤
ˆ a

0
ρ(x)

(ˆ x

0
ω(s)|v′(s)|p ds

)q/p (ˆ x

0
ω(s)−p′/p ds

)q/p′
dx,

whence invoking the definition of the Muckenhoupt class (2.2) we realize that

ˆ a

0
|v(x)|qρ(x) dx � ‖v′‖qL p(ω,�)|�|qρ(�)ω(�)−q/p.

The extension of this result to the n-dimensional case has been studied in [19,38,57]
and is reported in the next two theorems; see [19] for a discussion.

Theorem 6.1 (embeddings in weighted spaces) Let ω ∈ Ap(R
n), p ∈ (1, q], and ρ

be a weight that satisfies the strong doubling property (2.4). Let the pair (ρ, ω) satisfy
the compatibility condition

r

R

(
ρ(B(x, r))

ρ(B(x, R))

)1/q

≤ Cρ,ω

(
ω(B(x, r))

ω(B(x, R))

)1/p

, (6.2)

for all x ∈ � and r ≤ R. If v ∈ ◦
W 1

p(ω,�), then v ∈ Lq(ρ,�) and

‖v‖Lq (ρ,�) � diam(�)ρ(�)1/qω(�)−1/p‖∇v‖L p(ω,�), (6.3)

where the hidden constant depends on the quotient between the radii of the balls
inscribed and circumscribed in �.

Proof Given v ∈ ◦
W 1

p(ω,�) we denote by ṽ its extension by zero to a ball BR of
radius R containing � such that R ≤ 2 diam(�). We then apply [19, Theorem 1.5] if
p < q, or [57, Corollary 2.1] if p = q, to conclude

‖ṽ‖Lq (ρ,BR) � Rρ(BR)1/qω(BR)−1/p‖∇ṽ‖L p(ω,BR).
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By assumption ρ satisfies the strong doubling property (2.4) and so, for Br ⊂ � ⊂
�̄ ⊂ BR , we have ρ(BR) � ρ(Br ) ≤ ρ(�)with a constant that only depends on R/r .
Applying this property, together with ω(�) ≤ ω(BR), we derive (6.3). ��
Theorem 6.2 (Poincaré inequality) Let p ∈ (1, q], ρ be a weight that satisfies the
strong doubling property (2.4), and ω ∈ Ap(R

n), and let the pair (ρ, ω) satisfy (6.2).
If v ∈ W 1

p(ω,�), then there is a constant v� such that

‖v − v�‖Lq (ρ,�) � diam(�)ρ(�)1/qω(�)−1/p‖∇v‖L p(ω,�), (6.4)

where the hidden constant depends on the quotient between the radii of the balls
inscribed and circumscribed in �.

Proof Since � is open and bounded, we can choose 0 < r < R such that B̄r ⊂ � ⊂
�̄ ⊂ BR , where Bδ is a ball of radius δ. The extension theorem on weighted Sobolev
spaces proved in [22, Theorem 1.1] shows that there exists ṽ ∈ W 1

p(ω, BR) such that
ṽ|� = v and

‖∇ṽ‖L p(ω,BR) � ‖∇v‖L p(ω,�), (6.5)

where the hidden constant does not depend on v. If p < q, then we invoke [38,
Theorem 1] and [19, Theorem 1.3] to show that inequality (6.4) holds over BR with
v� being a weighted mean of ṽ in BR . If p = q instead, we appeal to [57, Remark 2.3]
and arrive at the same conclusion. Consequently, we have

‖ṽ − v�‖Lq (ρ,�) ≤ ‖ṽ − v�‖Lq (ρ,BR) � Rρ(BR)1/qω(BR)−1/p‖∇ṽ‖L p(ω,BR).

The strong doubling property ρ(BR) � ρ(�) and ω(�) ≤ ω(BR) yield

‖ṽ − v�‖Lq (ρ,�) � diam(�)ρ(�)1/qω(�)−1/p‖∇ṽ‖L p(ω,BR).

Employing (6.5) we finally conclude (6.4). ��
Inequalities (6.3) and (6.4) are generalizations of several classical results. We first

consider ω = ρ ≡ 1, for which an easy manipulation shows that (6.2) holds if
sob(W 1

p) ≥ sob(Lq), whence (6.4) reduces to (6.1). We next consider ρ = ω ∈
Ap(R

n), for which (6.2) becomes

ω(B(x, R)) �
(
R

r

)pq/(q−p)

ω(B(x, r)).

This is a consequence of the strong doubling property (2.4) for ω in conjunction
with |BR | ≈ Rn , provided the restriction q ≤ pn/(n − 1) between q and p is
valid. Moreover, owing to the so-called open ended property of the Muckenhoupt
classes [58]: if ω ∈ Ap(R

n), then ω ∈ Ap−ε(R
n) for some ε > 0, we conclude that

q ≤ pn/(n − 1) + δ for some δ > 0, thus recovering the embedding results proved
by Fabes et al. [36, Theorem 1.3] and [36, Theorem 1.5]; see [19] for details.

The embedding result of Theorem 6.2 allows us to obtain polynomial interpolation
error estimates in Lq(ρ, T ) for functions in W 1

p(ω, ST ).

123



116 R. H. Nochetto et al.

Theorem 6.3 (interpolation estimates for different metrics I) Let T be a simplicial
mesh and P = P1 in (4.2). Let the pair (ρ, ω) ∈ Aq(R

n) × Ap(R
n) satisfy (6.2). If

v ∈ W 1
p(ω, ST ) for any T ∈ T , then

‖v − �T v‖Lq (ρ,T ) � hT ρ(ST )1/qω(ST )−1/p‖∇v‖L p(ω,ST ), (6.6)

where the hidden constant depends only on σ , ψ , Cp,ω and Cρ,ω.

Proof Given an interior element T ∈ T , let us denote vT the constant such that the
estimate (6.4) holds true on ST . Since vT is constant over ST , we have that�T vT = vT
in T . This, together with the stability bound (5.2) for the operator �T , implies

‖v − �T v‖Lq (ρ,T ) = ‖(I − �T )(v − vT )‖Lq (ρ,T ) � ‖v − vT ‖Lq (ρ,ST ).

The Poincaré inequality (6.4) and the mesh regularity assumption (5.6) yield

‖v − �T v‖Lq (ρ,T ) � ‖v − vT ‖Lq (ρ,ST ) � hT ρ(ST )1/qω(ST )−1/p‖∇v‖L p(ω,ST )

which is (6.6). A similar argument yields (6.6) on boundary elements. ��
A trivial but important consequence of Theorem 6.3 is the standard, unweighted,

interpolation error estimate in Sobolev spaces; see [23, Theorem 3.1.5].

Corollary 6.4 (Lq -based interpolation estimate) If p < n and sob(W 1
p) > sob(Lq),

then for all T ∈ T and v ∈ W 1
p(ST ), we have the local error estimate

‖v − �T v‖Lq (T ) � h
sob(W 1

p)−sob(Lq )

T ‖∇v‖L p(ST ), (6.7)

where the hidden constant depends only on σ and ψ .

For simplicial meshes, the invariance property of �T and similar arguments to
those used in Sect. 5.1 enable us to obtain other interpolation estimates. We illustrate
this in the following result.

Theorem 6.5 (interpolation estimates for different metrics II) Let T be a simplicial
mesh and P = P1 in (4.2). Given p ∈ (1, q], let the pair (ω, ρ) ∈ Ap(R

n) × Aq(R
n)

satisfy (6.2). Then, for every T ∈ T and every v ∈ W 2
p(ω, ST ) we have

‖∇(v − �T v)‖Lq (ρ,T ) � hT ρ(ST )1/qω(ST )−1/p|v|W 2
p(ω,ST ), (6.8)

where the hidden constant depends only on σ , ψ , Cp,ω and Cρ,ω.

Proof Let, again, T ∈ T be an interior element, the proof for boundary elements
follows from similar arguments. Denote by v a vertex of T . Since the pair of weights
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(ω, ρ) satisfies (6.2) the embedding W 2
p(ω, ST ) ↪→ W 1

q (ρ, ST ) holds and it is legiti-
mate to write

‖∇(v − �T v)‖Lq (ρ,T ) ≤ ‖∇v − ∇Q1
vv‖Lq (ρ,T ) + ‖∇(Q1

vv − �T v)‖Lq (ρ,T ).

In view of (5.3) and (5.2), we have

‖∇(Q1
vv − �T v)‖Lq (ρ,T ) � ‖∇v − ∇Q1

vv‖Lq (ρ,T ).

We now recall (4.6), namely ∇Q1
vv = Q0

v∇v, to end up with

‖∇(v − �T v)‖Lq (ρ,T ) � ‖∇v − Q0
v∇v‖Lq (ρ,T ) � ‖∇v − (∇v)T ‖Lq (ρ,T ),

because Q0
vc = c for any constant c and Q0

v is continuous in Lq(ρ, T ). Applying
(6.4) finally implies (6.8). ��

7 Applications

We now present some immediate applications of the interpolation error estimates
developed in the previous sections. We recall that V(T ) denotes the finite element
space over the meshT ,�T the quasi-interpolation operator defined in (5.1), andUT
the Galerkin solution to (1.3).

7.1 Nonuniformly elliptic boundary value problems

We first derive novel error estimates for the finite element approximation of solutions
of a nonuniformly elliptic boundary value problem. Let � be a polyhedral domain
in R

n with Lipschitz boundary, ω ∈ A2(R
n) and f be a function in L2(ω−1,�).

Consider problem (1.1) with A as in (1.2). The natural space to seek a solution u of
problem (1.1) is the weighted Sobolev space H1

0 (ω,�).
Since � is bounded and ω ∈ A2(R

n), Proposition 2.4 shows that H1
0 (ω,�) is

Hilbert. The Poincaré inequality proved in [36, Theorem 1.3] and the Lax–Milgram
lemma then imply the existence and uniqueness of a solution to (1.1) as well as (1.3).
The following result establishes a connection between u and UT .

Corollary 7.1 (error estimates for nonuniformly elliptic PDE) Let ω ∈ A2(R
n) and

V(T ) consist of simplicial elements of degree m ≥ 1 or rectangular elements of
degree m = 1. If the solution u of (1.1) satisfies u ∈ H1

0 (ω,�) ∩ Hk+1(ω,�) for
some 1 ≤ k ≤ m, then we have the following global error estimate

‖∇(u −UT )‖L2(ω,�) � ‖hk Dk+1u‖L2(ω,�), (7.1)

where h denotes the local mesh-size function of T .
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Proof By Galerkin orthogonality we have

‖∇(u −UT )‖L2(ω,�) � inf
V∈V(T )

‖∇(u − V )‖L2(ω,�).

Consider V = �T u and use the local estimates of either Theorem5.4 or Theorems 5.8
and 5.10, depending on the discretization. This concludes the proof. ��
Remark 7.2 (regularity assumption) We assumed that u ∈ Hm+1(ω,�) in Corol-
lary 7.1. Since the coefficient matrix A is not smooth but rather satisfies (1.2), it
is natural to ponder whether u ∈ Hm+1(ω,�) holds. References [18,21] provide
sufficient conditions on A, � and f for this result to be true for m = 1.

Remark 7.3 (multilevelmethods)Multilevelmethods are known to exhibit linear com-
plexity for the solution of the ensuing algebraic systems. We refer to [43] for weights
of class A1 and [20] for weights of class A2 (including fractional diffusion).

7.2 Elliptic problems with Dirac sources

Dirac sources arise in applications as diverse asmodeling of pollutant transport, degra-
dation in an aquatic medium [5] and problems in fractured domains [25]. The analysis
of the finite element method applied to such problems is not standard, since in gen-
eral the solution does not belong to H1(�) for n ≥ 1. A priori error estimates in
the L2(�)-norm have been derived in the literature using different techniques. In a
two dimensional setting and assuming that the domain is smooth, Babuška [7] derived
almost optimal a priori error estimates of orderO(h1−ε), for an arbitrary ε > 0. Scott
[64] improved these estimates by removing the ε and thus obtaining an optimal error
estimate of order O(h2−n/2) for n = 2, 3. It is important to notice, as pointed out in
[66, Remark 3.1], that these results leave a “regularity gap”. In other words, the results
of [64] require a C∞ domain yet the triangulation is assumed to consist of simplices.
Using a different technique, Casas [17] obtained the same result for polygonal or poly-
hedral domains and general regular Borel measures on the right-hand side. Estimates
in other norms are also available in the literature [34,63].

In the context of weighted Sobolev spaces, interpolation estimates and a priori
error estimates have been developed in [3,25] for such problems. We now show how
to apply our polynomial interpolation theory to obtain similar results.

Let � be a convex polyhedral domain in Rn with Lipschitz boundary, and x0 be an
interior point of �. Consider the following elliptic boundary value problem:

{
−∇ · (A∇u) + b · ∇u + cu = δx0 , in �,

u = 0, on ∂�,
(7.2)

where A ∈ L∞(�) is a piecewise smooth and uniformly symmetric positive definite
matrix, b ∈ W 1,∞(�)n , c ∈ L∞(�), and δx0 denotes the Dirac delta supported at
x0 ∈ �. Existence and uniqueness of u in weighted Sobolev spaces follows from [3,
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Theorem 1.3] and Lemma 7.7 below, and its asymptotic behavior near x0 is dictated
by that of the Laplacian

∇u(x) ≈ |x − x0|1−n . (7.3)

Denote by d = diam(�) the diameter of� and bydx0(x) the scaled Euclidean distance
dx0(x) = |x − x0|/(2d) to x0. Define the weight

�(x) =
⎧⎨
⎩

dx0 (x)n−2

log2 dx0 (x)
, 0 < dx0(x) < 1

2 ,

22−n

log2 2
, dx0(x) ≥ 1

2 .
(7.4)

We now study two important properties of � : ∇u ∈ L2(�,�) and � ∈ A2(R
n).

Lemma 7.4 (regularity of ∇u) The solution u of (7.2) satisfies ∇u ∈ L2(�,�).

Proof Since � ⊂ B, the ball of radius d centered at x0, we readily have from (7.3)

ˆ
�

|∇u|2� �
ˆ
B
dx0(x)

2(1−n) dx0(x)
n−2

log2 dx0(x)
dx �

ˆ 1
2

0

1

r log2 r
dr = 1

log 2
,

which is the asserted result. ��
Lemma 7.5 (� ∈ A2(R

n)) The weight � belongs to the Muckenhoupt class A2(R
n)

with constant C2,� only depending on d.

Proof Let x0 = 0 for simplicity, let Br = Br (y) be a ball in Rn of radius r and center
y, and denote �(Br ) = ´

Br
� and �−1(Br ) = ´

Br
�−1. We must show

�(Br )�−1(Br ) � r2n ∀ r > 0, (7.5)

with a hidden constant depending solely on d. We split the proof into two cases.

1. Case |y| < 2r : Since Br (y) ⊂ B3r (0) we infer that

�(Br ) �
ˆ
B3r (0)

( |x |
2d

)n−2

log2 |x |
2d

dx�
ˆ 3r

2d

0

s2n−3

log2 s
ds≈

( 3r
2d

)2n−2

log2 3r
2d

and

�−1(Br )�
ˆ
B3r (0)

( |x |
2d

)2−n
log2

( |x |
2d

)
dx �

ˆ 3r
2d

0
s log2 s ds≈

( 3r
2d

)2
log2

3r

2d
,

provided 3r < d. The equivalences ≈ can be checked via L’Hôpital’s rule for
r → 0. If 3r ≥ d, then both �(Br ) and �−1(Br ) are bounded by constants
depending only on d. Therefore, this yields (7.5).

123



120 R. H. Nochetto et al.

2. Case |y| ≥ 2r : Since all x ∈ Br (y) satisfy 1
2 |y| ≤ |x | ≤ 3

2 |y| we deduce

� ≤min

{( 3|y|
4d

)n−2

log2 3|y|
4d

,
22−n

log2 2

}
, �−1 ≤ max

{( |y|
4d

)2−n
log2

|y|
4d

, 2n−2 log2 2

}
,

whence �(Br )�−1(Br ) satisfies again (7.5).

This completes the proof. ��
The fact that the weight � ∈ A2(R

n) is the key property for the analysis of dis-
cretizations of problem (7.2). Let us apply the results of Theorem 6.1 to this particular
weight.

Lemma 7.6 (H1(�) ↪→ L2(�−1,�)) Let � be defined in (7.4). If n < 4, then the
following embedding holds:

H1(�) ↪→ L2(�−1,�).

Proof This is an application of Theorem 6.1. We must show when condition (6.2)
holds with p = q = 2, ω = 1 and ρ = �−1. In other words, we need to verify

�(r, R) := r2−n

R2−n

�−1(Br )

�−1(BR)
� 1, ∀r ∈ (0, R],

where both Br and BR are centered at y ∈ R
n . We proceed as in Lemma 7.5 and

consider now three cases.

1. |y| < 2r . We know from Lemma 7.5 that �−1(Br ) �
( 3r
2d

)2 log2 ( 3r2d ). Moreover,
every x ∈ BR(y) satisfies |x | < |y| + R ≤ 3R whence

�−1(BR) ≥
ˆ
BR

(3|x |
2d

)2−n
log2

(3|x |
2d

)
dx ≈

ˆ 3R
2d

0
s log2 s ds

≈
(3R
2d

)2
log2

(3R
2d

)
.

If n < 4, then this shows

�(r, R) � r4−n

R4−n

log2
( 3r
2d

)
log2

( 3R
2d

) � 1.

2. 2r ≤ |y| < 2R. We learn from Lemma 7.5 that

�−1(Br ) � |Br |
( |y|
4d

)2−n
log2

( |y|
4d

)
�
( r

2d

)2
log2

( r

2d

)
.

In addition, any x ∈ BR satisfies |x | ≤ |y| + R ≤ 3R and the same bound as in
Case 1 holds for �−1(BR). Consequently, �(r, R) � 1 again for n < 4.
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3. |y| ≥ 2R. Since still |y| > 2r we have for �−1(Br ) the same upper bound as in
Case 2. On the other hand, for all x ∈ BR we realize that |x | ≤ |y| + R ≤ 3

2 |y|
and �−1(x) ≥ �−1( 32 y). Therefore, we deduce(3R

d

)2
log2

3R

d
� Rn

(3|y|
2d

)2−n
log2

(3|y|
2d

)
� �−1(BR),

which again leads to �(r, R) � 1 for n < 4.

This concludes the proof. ��
The embedding of Lemma 7.6 allows us to develop a general theory for equations

of the form (7.2) on weighted spaces. To achieve this, define

a(w, v) =
ˆ

�

A∇w · ∇v + b · ∇wv + cwv. (7.6)

The following results follow [3,25].

Lemma 7.7 (inf–sup conditions) The bilinear form a, defined in (7.6), satisfies

1 � inf
w∈H1

0 (�,�)

sup
v∈H1

0 (�−1,�)

a(w, v)

‖∇w‖L2(�,�)‖∇v‖L2(�−1,�)

, (7.7)

1 � inf
v∈H1

0 (�−1,�)

sup
w∈H1

0 (�,�)

a(w, v)

‖∇w‖L2(�,�)‖∇v‖L2(�−1,�)

. (7.8)

Proof We divide the proof into several steps:

1. We first obtain an orthogonal decomposition of L2(�−1,�) [25, Lemma 2.1]: for
every q ∈ L2(�−1,�) there is a unique couple (σ , v) ∈ X := L2(�−1,�) ×
H1
0 (�−1,�) such that

q = σ + ∇v,

ˆ
�

Aσ · ∇w = 0, ∀w ∈ H1
0 (�,�), (7.9)

‖σ‖L2(�−1,�) + ‖∇v‖L2(�−1,�) � ‖q‖L2(�−1,�). (7.10)

To see this, we let Y := L2(�−1,�) × H1
0 (�,�), write (7.9) in mixed form

B[(σ , v), (τ , w)] :=
ˆ

�

σ · τ +
ˆ

�

∇v · τ +
ˆ

�

Aσ · ∇w

=
ˆ

�

q · τ ∀ (τ , w) ∈ Y,

and apply the generalized Babuška-Brezzi inf–sup theory [11, Theorem 2.1], [25,
Lemma 2.1]. This requires only that A be positive definite along with the trivial
fact that φ ∈ L2(�−1,�) implies �−1φ ∈ L2(�,�).
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2. Set |b| = c = 0 and let w ∈ H1
0 (�,�) be given. According to Step 1 we can

decompose q = �∇w ∈ L2(�−1,�) into q = σ + ∇v. Invoking (7.9), as in
[25, Corollary 2.2] and [3, Proposition 1.1], we infer that

ˆ
�

A∇w · ∇v=
ˆ

�

A∇w · q −
ˆ

�

A∇w · σ =
ˆ

�

�A∇w · ∇w≈
ˆ

�

� |∇w|2,

whence, using (7.10) in the form ‖∇v‖L2(�−1,�) � ‖∇w‖L2(�,�), we deduce the
inf–sup condition (7.7).

3. As in [3], we show that for every F ∈ H1
0 (�−1,�)′ the problem

w ∈ H1
0 (�,�) : a(w, v) = 〈F, v〉, ∀v ∈ H1

0 (�−1,�),

is well posed. To this end, we decompose w = w1 + w2 ∈ H1
0 (�,�), with

w1 ∈ H1
0 (�,�) :

ˆ
�

A∇w1 · ∇v = 〈F, v〉, ∀v ∈ H1
0 (�−1,�), (7.11)

w2 ∈ H1
0 (�) : a(w2, v) = −

ˆ
�

(b · ∇w1 + cw1) v, ∀v ∈ H1
0 (�). (7.12)

In fact, if problems (7.11) and (7.12) have a unique solution, then we obtain

a(w, v) = a(w1 + w2, v)

=
ˆ

�

A∇w1 · ∇v +
ˆ

�

(b · ∇w1 + cw1) v + a(w2, v) = 〈F, v〉,

for any v ∈ H1
0 (�−1,�) ⊂ H1

0 (�). The conclusion of Step 2 shows that (7.11)
is well posed. The Cauchy–Schwarz inequality and Lemma 7.6 yield

ˆ
�

(b · ∇w1 + cw1) v � ‖w1‖H1(�,�)‖v‖L2(�−1,�)

� ‖F‖H1
0 (�−1,�)′ ‖∇v‖L2(�−1,�),

which combines with the fact that a(·, ·) satisfies the inf–sup condition in H1
0 (�)

[8, Theorem 5.3.2 - Part I] to show that (7.12) is well posed as well.

Finally, the general inf–sup theory [35] [61, Theorem 2] guarantees the validity of the
two inf–sup conditions (7.7) and (7.8). This concludes the proof. ��

We also have the following discrete counterpart of Lemma 7.7. We refer to [25,
Lemma 3.3] and [3, Theorem 2.1] for similar results which, however, do not exploit
the Muckenhoupt structure of the weight � .
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Lemma 7.8 (discrete inf–sup conditions) Let T be a quasi-uniform mesh of size h
consisting of simplices. If V(T ) is made of piecewise linears, then the bilinear form
a, defined in (7.6), satisfies:

1 � inf
W∈V(T )

sup
V∈V(T )

a(W, V )

‖∇W‖L2(�,�)‖∇V ‖L2(�−1,�)

,

1 � inf
V∈V(T )

sup
W∈V(T )

a(W, V )

‖∇W‖L2(�,�)‖∇V ‖L2(�−1,�)

.

where the hidden constants depend on C2,� but not on h.

Proof We proceed as in Lemma 7.7. We define the spaces of piecewise constants

V0(T ) = W0(T ) = {Q ∈ L∞(�) : Q|T ∈ R
n, ∀T ∈ T

}
,

those of piecewise linears V1(T ) = W1(T ) = V(T ), and endow the product
spaces V0(T ) × V1(T ) and W0(T ) × W1(T ) with the norms of X and Y respec-
tively, the latter spaces being defined in Lemma 7.7. Given Q ∈ V0(T ), we need
the following orthogonal decomposition—a discrete counterpart of (7.9)–(7.10): find
� ∈ V0(T ), V ∈ V1(T ) so that

Q = � + ∇V,

ˆ
�

A� · ∇W = 0, ∀W ∈ W1(T ), (7.13)

‖�‖L2(�−1,�) + ‖∇V ‖L2(�−1,�) � ‖Q‖L2(�−1,�). (7.14)

We first have to verify that the bilinear formB satisfies a discrete inf–sup condition,
as in Step 1 of Lemma 7.7. We just prove the most problematic inf–sup

‖∇W‖L2(�,�) � sup
T∈V0(T )

´
�
AT · ∇W

‖T‖L2(�−1,�)

.

We let T = �T ∇W ∈ V0(T ), where �T is the piecewise constant weight defined
on each element T ∈ T as �T |T = |T |−1

´
T � . Since ∇W ∈ V0(T ), we get

ˆ
�

AT · ∇W =
ˆ

�

�T A∇W · ∇W ≈
ˆ

�

�T ∇W · ∇W =
ˆ

�

� |∇W |2,

and

ˆ
�

�−1|T|2 =
∑
T∈T

ˆ
T

|T |−2�−1
(ˆ

T
�

)2

|∇W|T |2 ≤ C2,�

ˆ
�

� |∇W |2.

We employ a similar calculation to perform Step 2 of Lemma 7.7, and the rest is
exactly the same as in Lemma 7.7. The proof is thus complete. ��
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The numerical analysis of a finite element approximation to the solution of problem
(7.2) is now a consequence of the interpolation estimates developed in Sect. 6.

Corollary 7.9 (error estimate for elliptic problems with Dirac sources) Assume that
n < 4 and let u ∈ H1

0 (�,�) be the solution of (7.2) and UT ∈ V(T ) be the finite
element solution to (7.2). If T is simplicial, quasi-uniform and of size h, we have the
following error estimate

‖u −UT ‖L2(�) � h2−n/2| log h|‖∇u‖L2(�,�). (7.15)

Proof We employ a duality argument. Let ϕ ∈ H1
0 (�) be the solution of

a(v, ϕ) =
ˆ

�

(u −UT )v ∀ v ∈ H1
0 (�), (7.16)

which is the adjoint of (7.2). Since � is convex and polyhedral, and the coefficients
A, b, c are sufficiently smooth, we have the standard regularity pick-up [40]:

‖ϕ‖H2(�) � ‖u −UT ‖L2(�). (7.17)

This, together with Lemma 7.6, allows us to conclude that, if n < 4,

ϕ ∈ H2(�) ∩ H1
0 (�) ↪→ H1

0 (�−1,�).

Moreover, Theorem 6.5 yields the error estimate

‖∇(ϕ − �T ϕ)‖L2(�−1,�) � σ(h)‖ϕ‖H2(�),

with

σ(h) = h
(
�−1(Bh)

) 1
2 |Bh |− 1

2 � h2−
n
2 | log h|.

Let �T ∈ V(T ) be the Galerkin solution to (7.16). Galerkin orthogonality and
the continuity of the form a on H1

0 (�,�) × H1
0 (�−1,�) yield

‖u −UT ‖2L2(�)
= a(u, ϕ − �T ) � ‖∇u‖L2(�,�)‖∇(ϕ − �T )‖L2(�−1,�). (7.18)

The discrete inf–sup conditions of Lemma 7.8 and the continuity of the form a allow
us to conclude that

‖∇(ϕ − �T )‖L2(�−1,�) � ‖∇(ϕ − �T ϕ)‖L2(�−1,�).

Combining this bound with (7.17) and (7.18) results in

‖u −UT ‖2L2(�)
� σ(h)‖∇u‖L2(�,�)‖u −UT ‖L2(�),

which is the asserted estimate (7.15) in disguise. ��
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Remark 7.10 (an interpolation result) For any β ∈ (−n, n)we can consider theweight
dx0(x)

β , which belongs to the A2(R
n)Muckenhoupt class. Theorem5.4 andTheorems

5.8 and 5.10 show that

‖u − �T u‖L2(dx0
β ,�)

� ‖h∇u‖L2(dx0
β ,�)

.

This extends the interpolation error estimates of [3, Proposition 4.6], which are valid
for β ∈ (−n, 0) only.

7.3 Fractional powers of uniformly elliptic operators

We finally examine finite element approximations of solutions to fractional differential
equations; we refer the reader to [60] for further details. Let� be a polyhedral domain
inRn (n ≥ 1), with boundary ∂�. Given a piecewise smooth and uniformly symmetric
positive definite matrix A ∈ L∞(�) and a nonnegative function c ∈ L∞(�), define
the differential operator

Lw = −div(A∇w) + cw.

Given f ∈ H−1(�), the problem of finding u ∈ H1
0 (�) such that Lu = f has a

unique solution. Moreover, the operator L : D(L) ⊂ L2(�) → L2(�) with domain
D(L) = H2(�) ∩ H1

0 (�) has a compact inverse [44, Theorem 2.4.2.6]. Therefore,
there exists a sequence of eigenpairs {λk, ϕk}∞k=1, with λk > 0, such that

Lϕk = λkϕk, in � ϕk |∂� = 0.

The sequence {ϕk}∞k=1 is an orthonormal basis of L2(�).
In this case, for s ∈ (0, 1), we define the fractional powers of L0 (where the sub-

index is used to indicate the homogeneous Dirichlet boundary conditions) by

w =
∑
k

wkϕk �⇒ Ls
0w =

∑
k

λskwkϕk .

It is possible also to show that Ls
0 : Hs(�) → H

−s(�) is an isomorphism, where

H
s(�) =

⎧⎪⎨
⎪⎩
Hs(�), s ∈ (0, 1

2 ),

H1/2
00 (�), s = 1

2 ,

Hs
0 (�), s ∈ ( 12 , 1),

(7.19)

and H
−s(�) denotes its dual space. We are interested in finding numerical solutions

to the following fractional differential equation: given s ∈ (0, 1) and a function f ∈
H

−s(�), find u such that
Ls
0u = f. (7.20)
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The fractional operator Ls
0 is nonlocal (see [14,15,55]). To localize it, Caffarelli

and Silvestre showed in [15] that any power of the fractional Laplacian in R
n can be

determined as a Dirichlet-to-Neumann operator via an extension problem on the upper
half-space Rn+1+ . For a bounded domain � and more general operators, this result has
been extended and adapted in [16,69], respectively. This way the nonlocal problem
(7.20) is replaced by the local one

−div
(
yαA∇U ) + yαcU = 0

with α := 1−2s, A = diag{A, 1} ∈ R
(n+1)×(n+1), posed in the semi-infinite cylinder

C = {(x ′, y) : x ′ ∈ �, y ∈ (0,∞)
}
,

and subject to a Neumann condition at y = 0 involving f . Since C is an unbounded
domain, this problem cannot be directly approximated with finite-element-like tech-
niques. However, as [60, Proposition 3.1] shows, the solution to this problem decays
exponentially in the extended variable y so that, by truncating the cylinder C to

CY = � × (0,Y),

and setting a vanishing Dirichlet condition on the upper boundary y = Y, we only
incur in an exponentially small error in terms of Y [60, Theorem 3.5].

Define

◦
H1
L(yα, CY) =

{
v ∈ H1(yα, CY) : v = 0 on ∂LCY ∪ � × {Y}

}
,

where ∂LCY = ∂� × (0,Y) is the lateral boundary. As [60, Proposition 2.5] shows,
the trace operator

◦
H1
L(yα, CY) � w �→ tr� w ∈ H

s(�) is well defined. The aforemen-

tioned problem then reads: find U ∈ ◦
H1
L(yα, CY) such that for all v ∈ ◦

H1
L(yα, CY)

ˆ
CY

yα ((A∇U ) · ∇v + cU v) = ds〈 f, tr� v〉H−s (�)×Hs(�), (7.21)

where 〈·, ·〉Hs (�)×H−s(�) denotes the duality pairing betweenH
s(�) andH−s(�) and

ds is a positive normalization constant which depends only on s.
The second order regularity of the solutionU of (7.21), with CY being replaced by

C, is much worse in the pure y direction as the following estimates from [60, Theorem
2.6] reveal

‖Lx ′U ‖L2(yα,C) + ‖∂y∇x ′U ‖L2(yα,C) � ‖ f ‖H1−s (�), (7.22)

‖Uyy‖L2(yβ ,C) � ‖ f ‖L2(�), (7.23)

where β > 2α + 1. This suggests that graded meshes in the extended variable y play
a fundamental role.
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We construct a mesh over CY with cells of the form T = K × I with K ⊂ � being
an element that is isoparametrically equivalent either to [0, 1]n or the unit simplex
in R

n and I ⊂ R is an interval. Exploiting the Cartesian structure of the mesh it is
possible to handle anisotropy in the extended variable and, much as in Sect. 5.2, obtain
estimates of the form

‖v − �T v‖L2(yα,T ) � hv′ ‖∇x ′v‖L2(yα,ST ) + hv′′ ‖∂yv‖L2(yα,ST ),

‖∂x j (v − �T v)‖L2(yα,T ) � hv′ ‖∇x ′∂x j v‖L2(yα,ST ) + hv′′ ‖∂y∂x j v‖L2(yα,ST ),

with j = 1, . . . , n + 1 and where hv′ = min{hK : v′ is a vertex of K }, and hv′′ =
min{hI : v′′ is a vertex of I }; see [60, Theorems 4.6–4.9] for details. However, since
Uyy ≈ y−α−1 as y ≈ 0, we realize that U /∈ H2(yα, CY) and the second estimate is
not meaningful for j = n + 1. In view of the regularity estimate (7.23) it is necessary
to measure the regularity of Uyy with a stronger weight and thus compensate with a
graded mesh in the extended dimension. This makes anisotropic estimates essential.

We consider the graded partition of the interval [0,Y] with mesh points

yk =
(

k

M

)γ

Y, k = 0, . . . , M, (7.24)

where γ > 3/(1 − α), along with a quasi-uniform triangulation T� of the domain
�. We construct the mesh TY as the tensor product of T� and the partition given in
(7.24); hence #T = M #T�. Assuming that #T� ≈ Mn we have #TY ≈ Mn+1.
Finally, since T� is shape regular and quasi-uniform, hT�

≈ (#T�)−1/n . All these
considerations allow us to obtain the following result.

Corollary 7.11 (error estimate for fractional powers of elliptic operators) LetT be a
graded tensor product grid, which is quasi-uniform in � and graded in the extended
variable so that (7.24) hold. If V(T ) is made of bilinear elements, then the solution
of (7.21) and its Galerkin approximation UT ∈ V(T ) satisfy

‖U −UT ‖ ◦
H1
L (yα,C)

� | log(#TY)|s(#TY)
−1/(n+1)‖ f ‖H1−s (�),

where Y ≈ log(#TY). Alternatively, if u denotes the solution of (7.20), then

‖u −UT (·, 0)‖Hs (�) � | log(#TY)|s(#TY)
−1/(n+1)‖ f ‖H1−s (�)

Proof First of all, notice that yα ∈ A2(R
n+1) for α ∈ (−1, 1). Owing to the exponen-

tial decay ofU , and the choice of the parameter Y, it suffices to estimateU −�TYU
on themeshTY; see [60, Sect. 4.1]. To do so, we notice that if I1 and I2 are neighboring
cells on the partition of [0,Y], then the weak regularity condition (5.6) holds. Thus,
we decompose the mesh TY into the sets

T0 = {T ∈ TY : ST ∩ (�̄ × {0}) = ∅} , T1 = {T ∈ TY : ST ∩ (�̄ × {0}) 
= ∅} ,
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128 R. H. Nochetto et al.

and apply our interpolation theory developed in Theorems 5.8 and 5.10 for interior
and boundary elements respectively, together with the local regularity estimates for
the function U derived in [60, Theorem 2.9]. ��

The error estimates with graded meshes are quasi-optimal in both regularity and
order. Error estimates for quasi-uniform meshes are suboptimal in terms of order [60,
Section 5].Mesh anisotropy is thus able to capture the singular behavior of the solution
U and restore optimal decay rates.

Acknowledgments We dedicate this paper to R.G. Durán, whose work at the intersection of real and
numerical analysis has been inspirational to us.

References

1. Acosta, G.: Lagrange and average interpolation over 3D anisotropic elements. J. Comput. Appl. Math.
135(1), 91–109 (2001)

2. Agler, J., McCarthy, J.E.: Pick interpolation and Hilbert function spaces. In: Graduate Studies in
Mathematics, vol. 44. American Mathematical Society, Providence (2002)

3. Agnelli, J.P., Garau, E.M., Morin, P.: A posteriori error estimates for elliptic problems with Dirac
measure terms in weighted spaces. ESAIM: Math. Modell. Numer. Anal. 48(11), 1557–1581 (2014)

4. Apel, T.: Interpolation of non-smooth functions on anisotropic finite element meshes. M2AN. Math.
Model. Numer. Anal. 33(6), 1149–1185 (1999)

5. Araya, R., Behrens, E., Rodríguez, R.: An adaptive stabilized finite element scheme for a water quality
model. Comput. Methods Appl. Mech. Eng. 196(29–30), 2800–2812 (2007)

6. Arroyo, D., Bespalov, A., Heuer, N.: On the finite elementmethod for elliptic problemswith degenerate
and singular coefficients. Math. Comp. 76(258), 509–537 (2007)

7. Babuška, I.: Error-bounds for finite element method. Numer. Math. 16, 322–333 (1970/1971)
8. Babuška, I., Aziz, A.K.: Survey lectures on the mathematical foundations of the finite element method.

In: The Mathematical Foundations of the Finite Element Method with Applications to Partial Differ-
ential Equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972), pp. 1–359. Academic Press,
New York. With the collaboration of G. Fix and R. B. Kellogg (1972)

9. Bartels, S., Nochetto, R.H., Salgado, A.J.: A total variation diminishing interpolation operator and
applications. Math. Comput. (2014, accepted)

10. Belhachmi, Z., Bernardi, Ch., Deparis, S.: Weighted Clément operator and application to the finite
element discretization of the axisymmetric Stokes problem. Numer. Math. 105(2), 217–247 (2006)

11. Bernardi, Ch., Canuto, C., Maday, Y.: Generalized inf-sup conditions for Chebyshev spectral approx-
imation of the Stokes problem. SIAM J. Numer. Anal. 25(6), 1237–1271 (1988)

12. Besov, O.V., Il’in, V.P., Nikol’skiı̆, S.M.: Integralnye predstavleniya funktsii i teoremy vlozheniya. 2nd
ed. Fizmatlit “Nauka”, Moscow (1996)

13. Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. In: Texts in Applied
Mathematics, vol. 15. 3rd ed. Springer, New York (2008)

14. Cabré, X., Sire, Y.: Nonlinear equations for fractional Laplacians ii: existence, uniqueness and quali-
tative properties of solutions. Trans. Amer. Math. Soc. (2014, To appear)

15. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial
Differ. Equ. 32(7–9), 1245–1260 (2007)

16. Capella, A., Dávila, J., Dupaigne, L., Sire, Y.: Regularity of radial extremal solutions for some non-local
semilinear equations. Commun. Partial Differ. Equ. 36(8), 1353–1384 (2011)

17. Casas, E.: L2 estimates for the finite element method for the Dirichlet problem with singular data.
Numer. Math. 47(4), 627–632 (1985)

18. Cavalheiro, A.C.: A theorem on global regularity for solutions of degenerate elliptic equations. Com-
mun. Math. Anal. 11(2), 112–123 (2011)

19. Chanillo, S., Wheeden, R.L.: Weighted Poincaré and Sobolev inequalities and estimates for weighted
Peano maximal functions. Am. J. Math. 107(5), 1191–1226 (1985)

20. Chen, L., Nochetto, R.H., Otárola, E., Salgado, A.J.: Multilevel methods for nonuniformly elliptic
operators. arXiv:1403.4278. (2014)

123

http://arxiv.org/abs/1403.4278


Polynomial interpolation in weighted spaces 129

21. Chen, Y.: Regularity of solutions to the Dirichlet problem for degenerate elliptic equation. Chin. Ann.
Math. Ser. B 24(4), 529–540 (2003)

22. Chua, S.-K.: Extension theorems onweighted Sobolev spaces. IndianaUniv.Math. J. 41(4), 1027–1076
(1992)

23. Ciarlet, P.G.: The finite element method for elliptic problems. In: Classics in Applied Mathematics,
vol. 40. SIAM, Philadelphia (2002)

24. Clément, P.: Approximation by finite element functions using local regularization. RAIRO Analyse
Numérique 9(R-2), 77–84 (1975)

25. D’Angelo, C.: Finite element approximation of elliptic problemswith Diracmeasure terms in weighted
spaces: applications to one- and three-dimensional coupled problems. SIAM J. Numer. Anal. 50(1),
194–215 (2012)
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