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Abstract We prove error estimates in the maximum norm, namely in W 1,∞(�)3 ×
L∞(�), for the Stokes and Navier–Stokes equations in convex, three-dimensional
domains � with simplicial boundaries. We modify the weighted L2 estimates for
regularizedGreen functions used earlier byus,which impose restrictions on thedomain
beyond convexity. The new ingredient is a Hölder regularity estimate proved recently
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the error analysis to W 1,r (�)3 × Lr (�) for 1 < r < ∞.
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1 Introduction

In 2004, we proved stability of the finite element Stokes projection (uh, ph) of the
velocity–pressure pair (u, p) in the product space W 1,∞(�) × L∞(�); cf. Girault
et al. [1,2]:

‖∇ uh‖L∞(�) + ‖ph‖L∞(�) ≤ C
(‖∇ u‖L∞(�) + ‖p‖L∞(�)

)
. (1.1)

Weusedweighted L2 estimates,which require some regularity for theStokes system
in polyhedra. The known regularity theory restricted the angles beyond convexity in
IR3, a restriction that does not occur in IR2. In 2006,V.Maz’ya and J.Rossmannderived
sharper regularity results in Hölder spaces; cf. Maz’ya and Rossmann [3]. Combining
these results with a dyadic decomposition technique, J. Guzmán and D. Leykekhman
recently proved (1.1) on convex polyhedra; cf. Guzmán andLeykekhman [4].We show
here that (1.1) follows by slightly modifying our original proof, and we derive point-
wise error estimates for the steady incompressibleNavier–Stokes equations.Moreover,
we extend (1.1) and the error analysis to W 1,r (�)3 × Lr (�) for 2 < r < ∞.

1.1 Notation

Let � be a domain in IR3 and let (k1, k2, k3) denote a triple of nonnegative integers,
set |k| = k1 + k2 + k3 and define the partial derivative ∂k by

∂kv = ∂ |k|v
∂xk1

1 ∂xk2
2 ∂xk3

3

.

For any nonnegative integerm and number r ≥ 1, recall the classical Sobolev space
(cf. Adams and Fournier [5] or Nečas [6])

W m,r (�) = {v ∈ Lr (�); ∂kv ∈ Lr (�), |k| ≤ m},

equipped with the seminorm

|v|W m,r (�) =
⎡

⎣
∑

|k|=m

∫

�

|∂kv|r dx

⎤

⎦

1
r

,

and norm (for which it is a Banach space)

‖v‖W m,r (�) =
⎡

⎣
∑

0≤k≤m

|v|rW k,r (�)

⎤

⎦

1
r

,

with the usual extension when r = ∞. When r = 2, this space is the Hilbert space
Hm(�). We refer to Grisvard [7], Lions and Magenes [8] or [5] for the definition of
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Max-norm estimates for Stokes and Navier–Stokes approximations 773

fractional Sobolev spaces W m+s,r (�) when m is an integer and 0 < s < 1 is a real
number:

W m+s,r (�) =
{
v ∈ W m,r (�);

∫

�

∫

�

|∂kv(x) − ∂kv( y)|r
|x − y|3+sr

dxd y < ∞, |k| = m

}
,

equipped with the norm

‖v‖W m+s,r (�) =
⎛

⎝‖v‖r
W m,r (�) +

∑

|k|=m

∫

�

∫

�

|∂kv(x) − ∂kv( y)|r
|x − y|3+sr

dxd y

⎞

⎠

1
r

,

for which it is a Banach space. The definitions of these spaces are extended straight-
forwardly to vectors, with the same notation, but with the following modification for
the norms in the non-Hilbert case: if u = (u1, u2, u3), then we set

‖u‖Lr (�) =
[∫

�

|u(x)|r dx
] 1

r

,

where | · | denotes the Euclidean vector norm for vectors or the Frobenius norm for
tensors.

We shall also use the Hölder spaces of continuous functions Cm,α for a nonnegative
integer m and a real number α ∈ ]0, 1]: Cm,α(�) is the set of functions in Cm(�) that
satisfy for 0 ≤ |k| ≤ m,

|∂kv(x) − ∂kv( y)| ≤ C |x − y|α ∀x ∈ �,∀ y ∈ �,

with a constant C independent of x and y, equipped with the seminorm:

|v|Cm,α(�) =
∑

|k|=m

(

sup
x, y∈�,x 	= y

|∂kv(x) − ∂kv( y)|
|x − y|α

)

,

and norm

‖v‖Cm,α(�) =
∑

|k|≤m

sup
x∈�

|∂mv(x)| + |v|Cm,α(�).

Let D(�) denote the set of indefinitely differentiable functions with compact sup-
port in �. For functions that vanish on the boundary ∂� of �, we define, for any real
number r ≥ 1,

W 1,r
0 (�) =

{
v ∈ W 1,r (�); v|∂� = 0

}

W 2,r
0 (�) =

{
v ∈ W 1,r

0 (�); ∇ v ∈ W 1,r
0 (�)3

}
;
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774 V. Girault et al.

when r = 2, we write Hs
0 = W s,2

0 for s = 1, 2. For 1 < r ′ < ∞, the dual space of

W 1,r ′
0 (�) is denoted by W −1,r (�), 1r + 1

r ′ = 1; when r = 2, we write H−1 = W −1,2.
The space W −1,r (�) has the following characterization: a distribution � belongs to
W −1,r (�) if and only if there exist (non unique) functions fi ∈ Lr (�), 0 ≤ i ≤ 3,
such that

� = f0 +
3∑

i=1

∂ fi

∂xi
. (1.2)

By analogy, following Maz’ya and Rossmann [9, p. 517], the space C−1,α(�) is
defined as the space of distributions � of the form (1.2) for functions fi ∈ C0,α(�),
0 ≤ i ≤ 3. Furthermore, the norm on C−1,α(�) can be taken as

‖�‖C−1,α(�) = inf
�= f0+∑3

i=1
∂ fi
∂xi

3∑

i=0

‖ fi‖C0,α(�). (1.3)

We point out that C−1,α(�) is not the dual of C1,α(�).
We recall Poincaré’s inequality: there exists a constant C such that

‖v‖L2(�) ≤ C diam(�)|v|H1(�) ∀v ∈ H1
0 (�). (1.4)

Owing to (1.4), we use the seminorm | · |H1(�) as a norm on H1
0 (�).

For R > 0, we denote by B(x, R) the ball in IR3 with center x and radius R.
We shall also use the standard spaces for incompressible fluids:

V =
{
v ∈ H1

0 (�)3; div v = 0 in �
}
,

V ⊥ =
{
v ∈ H1

0 (�)3;
∫

�

∇ v : ∇ w dx = 0 ∀w ∈ V

}
,

L2
0(�) =

{
q ∈ L2(�);

∫

�

q dx = 0

}
.

1.2 Statement of the problem

Let � be a Lipschitz, connected polyhedral domain of IR3 and let Th be a regular
family of triangulations of �, made of closed tetrahedra T , where h is the global
mesh-size. Let Xh ⊂ H1

0 (�)3 and Mh ⊂ L2
0(�) be a pair of finite element spaces

satisfying a uniform discrete inf-sup condition:

sup
vh∈Xh

∫
�

qhdiv vh dx

‖∇ vh‖L2(�)

≥ β�‖qh‖L2(�) ∀qh ∈ Mh, (1.5)

with a constant β� > 0 independent of h. The Stokes projection of a velocity–pressure
pair (u, p) ∈ H1

0 (�)3 × L2
0(�), with zero divergence velocity, is the pair (uh, ph) ∈

Xh × Mh that solves:
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Max-norm estimates for Stokes and Navier–Stokes approximations 775

∫

�

∇ uh : ∇ vh dx −
∫

�

ph div vh dx =
∫

�

∇ u : ∇ vh dx

−
∫

�

p div vh dx ∀vh ∈ Xh, (1.6)
∫

�

qh div uh dx = 0 ∀qh ∈ Mh . (1.7)

Note that the zero mean-value constraint on the test functions qh in (1.7) can be
relaxed because div uh belongs to L2

0(�). Also observe that uh ∈ Vh where we define

Vh =
{
vh ∈ Xh :

∫

�

qh div vh dx = 0 ∀qh ∈ Mh

}
, (1.8)

and V ⊥
h its orthogonal complement with the H1

0 -inner product. Therefore, there exists
a function vh ∈ V ⊥

h that realizes the sup in the inf-sup condition (1.5).
Let � be convex and the family of meshes {Th} be quasi-uniform. We shall prove

(1.1) under suitable additional assumptions on Xh and Mh , detailed in Sects. 1.8 and
1.9, and the sole regularity assumption on the velocity–pressure pair that (u, p) ∈
W 1,∞(�)3 × L∞(�). The stability constant C in (1.1) is independent of h, u and p
but depends on the largest inner angle of �.

1.3 Regularity results for the Stokes problem

We recall some regularity results for the solution of the Stokes problem on a Lipschitz
and connected domain� of IR3: given f ∈ H−1(�)3, find (v, q) ∈ H1

0 (�)3× L2
0(�)

such that
− � v + ∇ q = f , div v = 0, in �. (1.9)

This problem has a unique solution and it is now well-known that if f belongs
to L2(�)3 and the domain is a convex polyhedron (cf. [10]), then the solution (v, q)

of (1.9) belongs to H2(�)3 × H1(�), with continuous dependence on f . This, in
conjunction with Sobolev embedding, implies

‖v‖W 1,6(�) + ‖q‖L6(�) ≤ C‖ f ‖L2(�). (1.10)

Moreover, we shall exploit the following theorem for handling the Stokes problem
with non-zero divergence; see for instance Amrouche and Girault [11, Corollary 3.1
(part ii)].

Theorem 1 Let � be as above and let r ≥ 1 be a real number. For each g ∈ W 1,r
0 (�)

satisfying
∫
�

g dx = 0, there exists a unique v ∈ W 2,r
0 (�)3 and a constant C > 0

depending on � such that

div v = g, ‖v‖W 2,r (�) ≤ C |g|W 1,r (�). (1.11)
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776 V. Girault et al.

The next theorem proved by Maz’ya and Rossmann [12] extends (1.10) to all finite
r . To simplify, we quote the result in a convex domain, but convexity is not required
for r ≤ 3.

Theorem 2 Let � be a convex polyhedron and let r ∈ [2,∞[. If f belongs to
W −1,r (�)3, then the solution (v, q) of (1.9) belongs to W 1,r (�)3 × Lr (�) and there
is a constant Cr > 0 depending on r such that

‖v‖W 1,r (�) + ‖q‖Lr (�) ≤ Cr‖ f ‖W−1,r (�). (1.12)

To guarantee that (v, q) ∈ W 1,∞(�)3 × L∞(�), we applied in [2] the classical
regularity result [10], namely, Lr 
→ W 2,r × W 1,r with r > 3, which restricts the
angles of the domain � beyond convexity. We shall use now the following result due
to Maz’ya and Rossmann [3].

Theorem 3 Let � be a convex polyhedron. If f belongs to C−1,α(�)3 for some α ∈
]0, 1[, related to the largest inner angle of ∂�, then the solution (v, q) of (1.9) belongs
to C1,α(�)3 × C0,α(�) and there is a constant C > 0 depending on α such that

‖v‖C1,α(�) + ‖q‖C0,α(�) ≤ C‖ f ‖C−1,α(�). (1.13)

Consider a function f ∈ Lr (�). We can write [13,14]

f = f + ∇ · g, (1.14)

where f is the mean value of f and g ∈ W 1,r (�)3. When r > 3, Sobolev’s inequality

implies that W 1,r (�) ⊂ C0,1− 3
r (�), whence

Lr (�) ⊂ C−1,1− 3
r (�). (1.15)

Therefore Theorem 3 with α = 1 − 3
r > 0 implies: there exists a constant C such

that
‖v‖C1,α(�) + ‖q‖C0,α(�) ≤ C‖ f ‖Lr (�) = C‖ f ‖

L
3

1−α (�)
, (1.16)

and, in particular,
‖v‖W 1,∞(�) + ‖q‖L∞(�) ≤ C‖ f ‖Lr (�). (1.17)

1.4 Interpolating bounds

By Sobolev embedding, (1.12) holds for f in Ls(�)3 with s = 3r
r+3 , i.e. r = 3s

3−s ,

s ∈ [ 65 , 3[, r ∈ [2,∞[, and another constant Cr :

‖v‖W 1,r (�) + ‖q‖Lr (�) ≤ Cr‖ f ‖Ls (�). (1.18)

Unfortunately, the constant Cr tends to infinity with r . The purpose of this section
is to combine (1.10) and (1.17) to derive uniform a priori bounds (i.e. with constants
independent of r ) for the pair (v, q) in W 1,r (�) × Lr (�) for 6 ≤ r ≤ ∞.
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Max-norm estimates for Stokes and Navier–Stokes approximations 777

Theorem 4 Let � be a convex polyhedron. Let s ∈ [2, 3], r = 3s
3−s ∈ [6,∞],

and δ > 0. If f belongs to Ls+δ(�)3 then the solution (v, q) of (1.9) belongs to
W 1,r (�)3 × Lr (�) and there is a constant Cδ > 0, depending only on δ but not on s,
such that

‖v‖W 1,r (�) + ‖q‖Lr (�) ≤ Cδ‖ f ‖Ls+δ(�). (1.19)

Proof We define the mapping T f = v which, in view of (1.10) and (1.17), maps
L2(�)3 to W 1,6(�)3 and L3+δ(�)3 to W 1,∞(�)3. Interpolating between these spaces
[15, (14.2.2)], we find that

‖v‖W 1,r (�) ≤ Cδ‖ f ‖L�(�), (1.20)

where
1

�
= λ

2
+ 1 − λ

3 + δ
(1.21)

and λ = 6
r ; hence � = r(3+δ)

3+3δ+r . Since s = 3r
3+r according to the definition of r , we can

write � = s + ε, where

ε = r(3 + δ)

3 + 3δ + r
− 3r

3 + r
= δr(r − 6)

(3 + 3δ + r)(3 + r)
≤ δr(r − 6)

(3 + r)2
≤ δ (1.22)

and ε ≥ 0 because r ≥ 6. This completes the proof of the estimate (1.19) for v.
Defining a mapping T f = q and using similar arguments yields the estimate (1.19)
for q. ��

Of course, the choice r ≥ 6 is arbitrary and a similar result can be derived by
interpolating between (1.18), with another value of r , and (1.17).

1.5 Getting started

From now on, we assume that � is a Lipschitz, connected polyhedron. Finite ele-
ment projections lend themselves easily to estimates in Hilbert spaces. In fact, since
‖div v‖L2(�) ≤ ‖∇v‖L2(�) for all v ∈ H1

0 (�)3 [16, Remark 2.6], [17, Lemma 2.1],
taking vh = uh in (1.6) yields

‖∇ uh‖L2(�) ≤ ‖∇ u‖L2(�) + ‖p‖L2(�), (1.23)

and using the inf-sup condition (1.5) with vh ∈ V ⊥
h implies

‖ph‖L2(�) ≤ 1

β�

(‖∇ u‖L2(�) + ‖p‖L2(�)

); (1.24)

see for instance Girault and Raviart [13]. But deriving pointwise bounds is much more
complex. Our approach to such bounds consists of two steps:

• Reducing the estimate for uh in W 1,∞ to an error estimate for a regularized Green
function in W 1,1.

123



778 V. Girault et al.

• Transforming this error estimate in W 1,1 into an estimate in H1 by introducing an
appropriate weight.

Remark 1 The main difference with [4] lies in the second step: in [4], the error in
W 1,1 is estimated by means of a dyadic decomposition and local H1 estimates. The
global weighted technique requires “only” global weighted regularity results, but the
dyadic decomposition technique requires pointwise estimates for the corresponding
Green function, which are usually more difficult to obtain.

A key step in the proof developed here is the derivation of weighted regularity
estimates for the exact solution of the Stokes system (1.29), (1.30), which is given
in Theorem 6. Weighted estimates can be of independent interest. For example, they
have been used recently to analyze non-uniformly elliptic problems in [18] stemming
from fractional diffusion.

1.6 The first step

Let us describe more precisely the first step. At the beginning, we only assume that the
family Th is regular in the sense of Ciarlet [19]: there exists a constant ζ , independent
of h, such that

ζT := hT


T
≤ ζ ∀T ∈ Th, (1.25)

where hT is the diameter of T and 
T the diameter of the largest ball inscribed in T .
Now let Uh ∈ Xh be arbitrary. Later we will consider the case Uh = uh . We want

to be able to represent pointwise derivatives ofUh in terms of integral expressions.We
pick an element of the matrix∇ Uh , say

∂Uh ,i
∂x j

, we choose a tetrahedron T ∈ Th where

| ∂Uh ,i
∂x j

| is maximal, and we construct an approximate mollifier δM ∈ D(�) supported
by T , satisfying:

∫

�

δM dx = 1, (1.26)
∥∥
∥∥
∂Uh ,i

∂x j

∥∥
∥∥

L∞(�)

=
∣∣
∣∣

∫

�

δM
∂Uh ,i

∂x j
dx

∣∣
∣∣ , (1.27)

and

‖δM‖Lt (B) ≤ Ct



3(1− 1

t )

T

, (1.28)

for any number t with 1 ≤ t ≤ ∞, where the constant Ct depends only on ζ , t , and
on the dimension of the polynomial space to which each component of ∇ Uh belongs
in each T . Here we interpret 1

t = 0 in the case t = ∞.
Next, we define a regularized Green function: let (G, Q) ∈ H1

0 (�)3× L2
0(�) solve

−� G + ∇ Q = − ∂

∂x j
(δM ei ), in �, (1.29)
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Max-norm estimates for Stokes and Navier–Stokes approximations 779

div G = 0, in �, (1.30)

where ei is the i th unit canonical vector. In variational form, (1.29) reads

∫

�

∇ G : ∇ v dx −
∫

�

Q div v dx =
∫

�

δM
∂vi

∂x j
dx ∀v ∈ H1

0 (�)3. (1.31)

When tested with v = u it gives

∫

�

δM
∂ui

∂x j
dx =
∫

�

∇ G : ∇ u dx, (1.32)

and when tested with v = Uh it gives

∫

�

δM
∂Uh ,i

∂x j
dx =
∫

�

∇ G : ∇ Uh dx −
∫

�

Q divUh dx. (1.33)

Let (Gh, Qh) ∈ Xh × Mh be the Stokes projection of (G, Q):

∫

�

∇ Gh : ∇ vh dx −
∫

�

Qh div vh dx =
∫

�

∇ G : ∇ vh dx

−
∫

�

Q div vh dx ∀vh ∈ Xh, (1.34)
∫

�

qh div Gh dx = 0 ∀qh ∈ Mh . (1.35)

When tested with vh = Uh , and combined with (1.33), (1.34), it gives

∫

�

δM
∂Uh ,i

∂x j
dx =
∫

�

∇ Gh : ∇ Uh dx, (1.36)

provided that Uh ∈ Vh , where the latter space was defined in (1.8). In particular, we
have

‖∇Uh‖L∞(�) =
∣∣∣∣

∫

�

δM
∂Uh ,i

∂x j
dx

∣∣∣∣ =
∣∣∣∣

∫

�

∇ Gh : ∇ Uh dx

∣∣∣∣ , (1.37)

for Uh ∈ Vh .
Now we consider the case Uh = uh . By testing (1.6) with Gh and using (1.35) and

(1.30), this equality becomes

∫

�

δM
∂uh,i

∂x j
dx =
∫

�

∇ u : ∇ Gh dx −
∫

�

p div Gh dx

=
∫

�

∇ u : ∇(Gh − G) dx +
∫

�

∇ u : ∇ G dx

−
∫

�

p div(Gh − G) dx.
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Thus (1.32) yields

∫

�

δM
∂uh,i

∂x j
dx =
∫

�

δM
∂ui

∂x j
dx −
∫

�

∇u : ∇(G − Gh) dx

+
∫

�

p div(G − Gh) dx. (1.38)

From here it is easy to prove that

∥
∥∥∥
∂uh,i

∂x j

∥
∥∥∥

L∞(�)

≤ C1‖∂ui

∂x j
‖L∞(�)

+
(
‖∇ u‖L∞(�) + √

3‖p‖L∞(�)

)
‖∇(G − Gh)‖L1(�), (1.39)

i.e. the problem reduces to a uniform estimate for ‖∇(G − Gh)‖L1(�). As alluded to
above, this estimate will be derived by transforming the L1 norm into a weighted L2

norm.

1.7 The weight

In all that follows, we pick a fixed real number R, used in all this work, such that for
any x ∈ � the ball B(x, R) contains �. Here we use the weight function introduced
by Natterer [20]:

σ(x) =
(
|x − x0|2 + (κ h)2

) 1
2
, (1.40)

where x0 is the center of the sphere inscribed in the tetrahedron T where themaximum
of | ∂uh,i

∂x j
| is attained [see the discussion following display (1.25)], and κ > 1 is a

parameter independent of h, but such that

κ h ≤ R.

It will be chosen at the very last step when estimating the weighted norm of
∇(G − Gh). As x0 is not far from the point where the maximum is attained, σ(x) is
a perturbation of the distance between x and this point, the term κ h acting as a reg-
ularization. This weight will be used with the exponent μ

2 where μ is slightly larger
than the dimension:

μ = 3 + λ, 0 < λ < 1. (1.41)

The parameter λ will be chosen at the outset of a duality argument for a weighted
estimate of G − Gh in L2. To simplify, we set

θ = κ h.
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The following bounds will be of constant use in the sequel; the first one is valid for
all λ > 0:

∫

�

σ(x)−μdx ≤ Cλ

1

θλ
where Cλ =

∫

IR3
(1 + |x|2)− 3+λ

2 dx ≤ 4π

λ
, (1.42)

inf
x∈�

σ(x) ≥ θ = κ h, (1.43)

and for any positive integer k and real number s:

|∇k(σ (x)s)| ≤ Ck,sσ(x)s−k, (1.44)

with a constant Ck,s that depends only on s and k; note that C1,1 ≤ 1.
Now, using Cauchy–Schwarz’s inequality and applying (1.42), we write:

‖∇(G − Gh)‖L1(�) ≤
(∫

�

σμ|∇(G − Gh)|2dx
) 1

2
(∫

�

σ−μdx
) 1

2

≤
(

π

λ

) 1
2 2

(κh)
λ
2

∥∥∥σ
μ
2 ∇(G − Gh)

∥∥∥
L2(�)

. (1.45)

Therefore, the bound for ‖∇uh‖L∞(�) in (1.1) reduces to establishing the weighted
error estimate for Gh : ∥∥∥σ

μ
2 ∇(G − Gh)

∥∥∥
L2(�)

≤ Ch
λ
2 . (1.46)

1.8 Weighted interpolation assumptions

To begin with, we make the following assumptions on the approximation operators Ph

and rh , namely, Ph ∈ L(H1
0 (�)3; Xh) and rh ∈ L(L2(�); Mh) satisfy the following

properties, where the functions of Mh are those of Mh without the zero mean-value
constraint:

• Ph and rh have at least order one approximation error and are quasi-local: for all
T ∈ Th ,

‖Ph(v) − v‖L2(T ) + hT ‖∇(Ph(v) − v)‖L2(T ) ≤ C h2
T ‖∇2v‖L2(�T ), (1.47)

‖rh(q) − q‖L2(T ) ≤ C hT ‖∇ q‖L2(�T ), (1.48)

where �T is a macro-element containing at most L elements of Th , including T ,
L being a fixed integer independent of h, q and v;

• Ph preserves the discrete divergence:

∫

�

qh div(Ph(v) − v)dx = 0 ∀qh ∈ Mh; (1.49)
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• Ph is stable in H1(�)3: for all T ∈ Th ,

‖∇ Ph(v)‖L2(T ) ≤ C‖∇ v‖L2(�T ). (1.50)

In the examples below, these properties hold provided Th satisfies (1.25), as demon-
strated in [2].

It is well-known that (1.49) and the global version of (1.50) guarantee a uniform inf-
sup condition (cf. Fortin [21] or Girault and Raviart [13]). The additional assumption
of quasi-locality is fundamental here for deriving weighted estimates. Indeed, with
this property and the regularity of Th , the following weighted approximation error
estimates are obtained in [2, Lemma 3.10].

Lemma 1 Suppose Ph and rh satisfy (1.47)–(1.50). Let v ∈ [H2(�) ∩ H1
0 (�)]3 and

q ∈ H1(�). For any exponent s, we have:

∥∥∥σ
s
2 ∇(Ph(v) − v)

∥∥∥
L2(�)

+ κ

∥∥∥σ
s
2−1(Ph(v) − v)

∥∥∥
L2(�)

≤ C1h
∥∥∥σ

s
2 ∇2v

∥∥∥
L2(�)

,

(1.51)∥
∥∥σ

s
2 (Ph(v) − v)

∥
∥∥

L2(�)
≤ C2h2

∥
∥∥σ

s
2 ∇2v

∥
∥∥

L2(�)
, (1.52)

∥∥∥σ
s
2 (rh(q) − q)

∥∥∥
L2(�)

≤ C3h
∥∥∥σ

s
2 ∇ q
∥∥∥

L2(�)
. (1.53)

Similarly, for v ∈ H1
0 (�)3 and for any exponent s, we have:

∥∥∥σ
s
2 ∇ Ph(v)

∥∥∥
L2(�)

≤ C4‖σ s
2 ∇ v‖L2(�). (1.54)

1.9 Super-approximation and interpolation in Hölder spaces

Usually, the operators Ph and rh are perturbations of regularization operators, such as
the Scott–Zhang operator [22], that are not completely local, because they need to be
applied to functions that have no pointwise values. However, super-approximation acts
on smooth functions, and in this case, we will use simpler versions of Ph and rh , Ph

and rh introduced in [2], constructed by correcting standard Lagrange interpolation
operators: Ph ∈ L((C0(�) ∩ H1

0 (�))3; Xh) satisfying (1.49), and if Mh ⊂ H1(�),
rh ∈ L(C0(�); Mh). Otherwise, rh will coincide with rh .

On the one hand, we will require the super-approximation results: if vh ∈ Xh and
ψ = σμvh , then

∥∥∥σ− μ
2 ∇(ψ − Ph(ψ))

∥∥∥
L2(�)

≤ C
∥∥∥σ

μ
2 −1vh

∥∥∥
L2(�)

∀vh ∈ Xh; (1.55)

if qh ∈ Mh and ζ = σμqh , then

∥∥∥σ− μ
2 (ζ − rh(ζ ))

∥∥∥
L2(�)

≤ C h
∥∥∥σ

μ
2 −1qh

∥∥∥
L2(�)

∀qh ∈ Mh . (1.56)
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On the other hand, we will require that Ph and rh satisfy the following approxima-
tion properties in spaces of Hölder functions:

‖∇(Ph(v) − v)‖L∞(�) ≤ Chα|v|C1,α(�) ∀v ∈ (C1,α(�) ∩ H1
0 (�)
)3

, (1.57)

‖rh(q) − q‖L∞(�) ≤ Chα|q|C0,α(�) ∀q ∈ C0,α(�). (1.58)

The estimates (1.55) and (1.56) are derived in [2, Section 6] for the “mini” element,
the Bernardi–Raugel element, and the Taylor–Hood elements. For the same specific
examples, we will show below the estimates (1.57) and (1.58) by reducing them to
the error of the standard Lagrange interpolation operator Ik,h from C0(T ) into IPk ,
k ≥ 1. In any event, our max-norm error estimates are valid for any spaces having
interpolants satisfying (1.49) and (1.55)–(1.58).

Remark 2 (Lagrange vs Scott–Zhang interpolation) In contrast to regularization oper-
ators that rely on averages distributed over several elements, the Lagrange interpola-
tion operator is completely local to each element and vanishes when applied to bubble
functions. Perhaps it is possible to establish super-approximation for local averaging
interpolants, but at the expense of a more complicated proof.

1.10 Discrete weighted inf-sup conditions

The presence of the weight in the variational formulation requires a weighted inf-sup
condition (Proposition 1 below), analogous to (1.5). It stems from an important result
due to Durán andMuschietti [14], and can be found in [2, Proposition 4.1]. It will play
a major role in this work.

Proposition 1 Suppose that the conditions in Sect. 1.8 hold for the interpolants Ph

and rh. For any real number s, 0 ≤ s < 3, there exists a constant βs > 0, independent
of h and κ , such that

βs

∥∥∥σ
s
2 qh

∥∥∥
L2(�)

≤ sup
vh∈Xh

∫
�

qh div vhdx

‖σ− s
2 ∇ vh‖L2(�)

∀qh ∈ Mh . (1.59)

2 Weighted variational form

Since (1.34) is a variational equation, the only straightforward way for introducing
a weight into it is by multiplying the test function with the weight, but since the
product σμvh does not belong to Xh , we must interpolate it. We use both interpolation
operators Ph and Ph described in Sects. 1.8 and 1.9. We define ψ by

ψ = σμ(Ph(G) − Gh), (2.1)

and we test (1.34) with vh = Ph(ψ):

∫

�

∇(G − Gh) : ∇ Ph(ψ) dx =
∫

�

(Q − Qh)div Ph(ψ) dx. (2.2)

123



784 V. Girault et al.

Then we write

∫

�

σμ|∇(G − Gh)|2 dx =
∫

�

∇(G − Gh) : ∇ [(G − Gh)σμ
]

dx

−
∫

�

(∇(G − Gh)(G − Gh)) · ∇ σμ dx,

and by inserting Ph(G), Ph(ψ), and using (2.2), we obtain

∫

�

σμ|∇(G − Gh)|2 dx =
∫

�

∇(G − Gh) : ∇ [(G − Ph(G))σμ
]

dx

+
∫

�

∇(G − Gh) : ∇(ψ − Ph(ψ)) dx

−
∫

�

(∇(G − Gh)(G − Gh)) · ∇ σμ dx

+
∫

�

(Q − Qh) div Ph(ψ) dx. (2.3)

Even though both Ph and Ph preserve the discrete divergence property (1.49),
multiplicationwith theweight destroys this property; thus neither divψ nor div Ph(ψ)

is orthogonal to discrete pressures. Therefore the pressure Qh cannot be eliminated
from (2.3).

2.1 The interpolation terms in (2.3)

The rest of this work is devoted to estimating the terms in the right-hand side of (2.3).
In each term, the weights need to be suitably distributed between each factor, and
thus each factor requires a separate treatment. The first two terms involve essentially
weighted interpolation errors. Their derivations are not completely standard because:

• The regularized Green function pair (G, Q), albeit sufficiently smooth, depends
on the regularized mollifier δM that is not bounded as h tends to zero (except in
the L1 norm); see (1.28). Therefore the dependence of its derivatives on h must
be carefully elicited.

• A weighted estimate for the interpolation error of Ph requires that Ph be quasi-
local. Despite standard Lagrange interpolants being local or quasi-local, this is
not always the case once we require that the interpolant preserve the discrete
divergence.

• The function ψ is the product of the factor σμ with Ph(G) − Gh , and estimating
its interpolation error relies on a “super-approximation” result that eliminates the
highest-order derivative of Ph(G) − Gh in the right-hand side of the error bound.
Again, this requires a quasi-local interpolant.
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2.2 Motivation for a duality argument

The two terms that originally required that the solution of the Stokes system have
higher regularity than H2 are the third and fourth terms in the right-hand side of (2.3).
Since by (1.44)

|∇(σ (x)μ)| ≤ μσ(x)μ−1 ∀x ∈ IR3,

the third term has the bound:
∣
∣∣∣

∫

�

(∇(G − Gh)(G − Gh)) · ∇ σμ dx

∣
∣∣∣

≤ μ

∥∥∥σ
μ
2 ∇(G − Gh)

∥∥∥
L2(�)

∥∥∥σ
μ
2 −1(G − Gh)

∥∥∥
L2(�)

.

Because of the weight, Poincaré’s inequality does not yield a useful bound for
the second factor, and therefore the standard approach is to estimate it by means of a
duality argument. However, we do not describe it now because it will be a consequence
of a more general duality argument required by the fourth term. Indeed, this term that
involves the pressure can be essentially reduced to the following ones:

∫

�

σμ(rh(Q) − Qh)div(Ph(G) − Gh) dx,

∫

�

(Q − Qh)∇ σμ · (Ph(G) − Gh) dx.

(2.4)
After some manipulations, the first term can be handled by the weighted inf-sup

condition (1.59). But the second term in (2.4) is much more problematic because the
obvious factorization, which after simplification gives

∣
∣∣∣

∫

�

(Q−Qh)∇ σμ · (G−Gh) dx

∣
∣∣∣ ≤ μ

∥
∥∥σ

μ
2 (Q−Qh)

∥
∥∥

L2(�)

∥
∥∥σ

μ
2−1(G−Gh)

∥
∥∥

L2(�)
,

is useless as it requires the weighted inf-sup condition with exponent μ
2 , i.e. beyond

the admissible range: indeed, μ = 3 + λ > 3. In order to stay within the non-critical
range, we consider the factorization

∣∣∣∣

∫

�

(Q − Qh)∇ σμ · (G − Gh) dx

∣∣∣∣

≤ μ

∥∥∥σ
1
2 (μ−ε)(Q − Qh)

∥∥∥
L2(�)

∥∥∥σ
1
2 (μ+ε)−1(G − Gh)

∥∥∥
L2(�)

, (2.5)

where ε = λ + γ for some small γ > 0. Thus, in view of these two terms, and since
λ itself is also small, we are led to find an appropriate bound for

∥∥∥σ
1
2 (μ+ε)−1(G − Gh)

∥∥∥
L2(�)

, (2.6)

for small ε ≥ 0. Clearly this will imply a bound for ‖σ μ
2 −1(G − Gh)‖L2(�).
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2.3 Some estimates for weights

When t = ∞, (1.28) gives

‖δM‖L∞(�) ≤ ĉ1

3

T

.

From the construction of δM (cf. [2]), it is easy to prove that

‖∇ δM‖L∞(�) ≤ ĉ2

4

T

.

Both constants, ĉ1 and ĉ2, are independent of h. As the weight σ is expressed
in terms of the maximum diameter h, besides (1.25) we assume that the family of
triangulations Th is quasi-uniform: there exists a constant τ > 0, independent of h,
such that

τ h < hT ≤ ζ ρT ∀T ∈ Th . (2.7)

Then we easily deduce the following weighted bounds for δM [2, Lemma 2.2]).

Lemma 2 Let Th satisfy (2.7). There exists a constant C that depends only on τ , ζ ,
and the dimension of the polynomial space to which ∇ uh belongs in each T , such that

∥∥∥σ
μ
2 ∇ δM

∥∥∥
L2(�)

≤ 2
μ
4 C κ

μ
2 h

λ
2−1, (2.8)

and ∥
∥∥σ

μ
2 −1δM

∥
∥∥

L2(�)
≤ 2

μ
4 − 1

2 C κ
μ
2 −1h

λ
2−1. (2.9)

2.4 Weighted bounds for the Green function

Let us start with an estimate for Q. Recall that on account of the weight, G cannot be
dissociated from Q. The following is Proposition 3.1 in [2].

Proposition 2 Let Th satisfy (2.7) and μ = 3 + λ with 0 < λ < 2. We have

∥∥∥σ
μ
2 −1Q
∥∥∥

L2(�)
≤ C

(∥∥∥σ
μ
2 −1∇ G

∥∥∥
L2(�)

+ κ
μ
2 −1h

λ
2−1
)

. (2.10)

In turn, this result gives the following bound for σ
μ
2 −1∇ G, which is Proposition

3.2 in [2].

Proposition 3 Let Th satisfy (2.7), μ = 3 + λ with 0 < λ < 2, and κ > 1. Then

∥∥∥σ
μ
2 −1∇ G

∥∥∥
2

L2(�)
≤
∥∥∥σ

μ
2 −2G
∥∥∥

L2(�)

(
C1κ

μ
2 h

λ
2−1 + C2

∥∥∥σ
μ
2 −1∇ G

∥∥∥
L2(�)

)
.

(2.11)
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Therefore wemust find a bound for σ
μ
2 −2G. This is achieved by a duality argument

as in [15,23]. Fromnowon,we assume that 0 < λ < 1. The following is a consequence
of Theorem 3.3 in [2].

Theorem 5 Assume that � is convex, Th satisfy (2.7), μ = 3 + λ with 0 < λ < 1,
and κ > 1. Then there exists a constant C independent of h and κ , such that

∥∥∥σ
μ
2 −2G
∥∥∥

L2(�)
≤ C h

λ
2−1. (2.12)

By substituting (2.12) into (2.11) and the resulting inequality into (2.10), and
observing that μ

4 >
μ
2 − 1, since 0 < λ < 1, we immediately derive the follow-

ing corollary [2, Corollary 3.4].

Corollary 1 With the assumptions and notation of Theorem 5, we have

‖σ μ
2 −1∇ G‖L2(�) + ‖σ μ

2 −1Q‖L2(�) ≤ Cκ
μ
4 h

λ
2−1. (2.13)

As noted in Remark 3.5 in [2], these results hold even for nonconvex domains.
Theorem 3.6 in [2] is the following main result of this subsection.

Theorem 6 Under the assumptions of Theorem 5, the following weighted estimates
hold: ∥∥∥σ

μ
2 ∇2G
∥∥∥

L2(�)
+
∥∥∥σ

μ
2 ∇ Q
∥∥∥

L2(�)
≤ C κ

μ
2 h

λ
2−1. (2.14)

The weighted error estimates for Ph(G) and rh(Q) follow directly from Lemma 1
and Theorem 6.

Theorem 7 We retain the assumptions of Theorem 5 and we assume that Ph and rh

satisfy (1.47)–(1.50). Then

∥∥∥σ
μ
2 ∇(Ph(G) − G)

∥∥∥
L2(�)

+
∥∥∥σ

μ
2 (rh(Q) − Q)

∥∥∥
L2(�)

≤ C κ
μ
2 h

λ
2 , (2.15)

∥∥∥σ
μ
2 (Ph(G) − G)

∥∥∥
L2(�)

+ h κ

∥∥∥σ
μ
2 −1(Ph(G) − G)

∥∥∥
L2(�)

≤ C κ
μ
2 h

λ
2+1. (2.16)

3 Lagrange interpolation error for Hölder functions

Let T ∈ Th and Ik,h ∈ L
(
C0(T ); IPk

)
be the usual Lagrange interpolation operator at

the nodes of the principal lattice of degree k in each T , cf. [19] or [15]; here IPk denotes
polynomials of degree k in three variables. Let T̂ be the unit reference tetrahedron,
FT the affine mapping that maps T̂ onto T : x = BT x̂ + bT and denote by a hat the
composition with FT ; in particular we set Îk = Ik,h ◦ FT .

Lemma 3 For each real number α ∈ ]0, 1], and each integer k ≥ 1, there exists a
constant Ĉ, depending only on α and the geometry of T̂ , such that

‖ Îk(ϕ) − ϕ‖W 1,∞(T̂ )
≤ Ĉ |ϕ|C1,α(T̂ )

∀ϕ ∈ C1,α(T̂ ). (3.1)
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Proof The ideas of the proof are standard (cf. [19]), but we recall them for the reader’s
convenience. The proof proceeds in two steps.

(1) Since Îk preserves IPk and in particular IP1, we have for all ϕ ∈ C1,α(T̂ )

‖ Îk(ϕ) − ϕ‖W 1,∞(T̂ )
≤ ‖ Îk − I‖L(C1,α(T̂ );W 1,∞(T̂ ))

inf
p∈IP1

‖ϕ + p‖C1,α(T̂ )
,

where I denotes the identity mapping. Therefore, it suffices to prove that the
mapping ϕ 
→ |ϕ|C1,α(T̂ )

is a norm on the quotient space C1,α(T̂ )/IP1 equivalent
to the quotient norm. To eliminate the quotient norm, we choose the representative
ϕ of ϕ satisfying ∫

T̂
ϕ(x̂) d x̂ = 0,

∫

T̂
∇x̂ϕ(x̂) d x̂ = 0. (3.2)

Then it is sufficient to prove that there exists a constant Ĉ such that for all ϕ ∈
C1,α(T̂ ) satisfying (3.2), we have

‖ϕ‖C1,α(T̂ )
≤ Ĉ |ϕ|C1,α(T̂ )

. (3.3)

(2) We establish (3.3) by contradiction. If (3.3) is not true, there exists a sequence
{ϕn} of functions in C1,α(T̂ ) satisfying (3.2) such that

∀n, ‖ϕn‖C1,α(T̂ )
= 1, lim

n→∞ |ϕn|C1,α(T̂ )
= 0. (3.4)

The first property in (3.4) implies that the sequence of continuous functions {ϕn}
is uniformly bounded and equicontinuous, as well as the sequence of their gradients.
Therefore by Ascoli–Arzela’s lemma (cf. for example [24]) and the completeness of
C1, there exists a function ϕ ∈ C1(T̂ ) satisfying (3.2), and a subsequence, still denoted
by n, such that

lim
n→∞ ‖ϕn − ϕ‖C1(T̂ )

= 0.

This together with the second property in (3.4) implies that {ϕn} is a Cauchy
sequence in C1,α(T̂ ). The completeness of C1,α yields

|ϕ|C1,α(T̂ )
= lim

n→∞ |ϕn|C1,α(T̂ )
= 0,

and hence the gradient of ϕ is a constant vector. Then ϕ = 0 follows from (3.2). This
contradicts the first part of (3.4). ��

Considering that any pair of points x̂ and ŷ in T̂ are related to their images x and
y in T by x − y = BT (x̂ − ŷ), whence

|x̂ − ŷ| ≥ 1

‖BT ‖ |x − y|,

an easy scaling argument gives the next theorem.
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Theorem 8 There exists a constant C, independent of h, such that for all T in Th

‖Ik,h(ϕ) − ϕ‖L∞(T ) ≤ Ch1+α
T |ϕ|C1,α(T ) ∀ϕ ∈ C1,α(T ). (3.5)

If the family Th satisfies (1.25), there exists another constant C, independent of h,
such that for all T in Th

‖∇(Ik,h(ϕ) − ϕ)‖L∞(T ) ≤ Cζhα
T |ϕ|C1,α(T ) ∀ϕ ∈ C1,α(T ), (3.6)

where ζ is the constant of (1.25).

3.1 The “mini” element

Since we propose to approximate continuous functions, Ph is replaced in this and the
next two subsections by the variant Ph that will be specified in each case.

For the “mini” element, the discrete pressure space is defined by

Mh =
{

qh ∈ C0(�); qh |T ∈ IP1 ∀T ∈ Th

}
, Mh = Mh ∩ L2

0(�), (3.7)

and the discrete velocity space is the space of continuous functions vh defined in each
T by (cf. Arnold et al. [25] or [13])

vh =
4∑

i=1

viλi + vcbT = I1,h(vh) + vcbT , (3.8)

where vi are the values of vh at the vertices ai of T , λi are the barycentric coordinates
of T ,

bT = 44
4∏

i=1

λi , vc = vh(c) − I1,h(vh)(c),

with c the barycenter of T .
We begin with a general approximation result that says that, for the mini element,

approximation of a function in V from Vh is as good as from Xh . Moreover, we can
state this in Lr spaces.

Lemma 4 Suppose that 2 ≤ r ≤ ∞. If Th satisfies (1.25) with constant ζ , there exists
a constant C independent of h and r,such that for all T ∈ Th

‖∇(vh − v)‖Lr (T ) ≤ ‖∇(vh − v)‖Lr (T ) + Cζh−1
T ‖vh − v‖Lr (T ) (3.9)

for all v ∈ W 1,r
0 (�)3 and for all vh ∈ Xh, where

vh = vh +
∑

T ∈Th

cT bT , (3.10)
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is defined by choosing

cT = 1
∫

T bT dx

∫

T
(v − vh) dx. (3.11)

If further v ∈ V , then vh ∈ Vh.

Proof For each T , we have

‖∇(vh − v)‖Lr (T ) ≤ ‖∇(vh − v)‖Lr (T ) + |cT |‖∇bT ‖Lr (T )

≤ ‖∇(vh − v)‖Lr (T ) + C |T |−1+ 1
r ′ ‖∇bT ‖Lr (T )‖vh − v‖Lr (T )

≤ ‖∇(vh − v)‖Lr (T ) + Cζh−1
T ‖vh − v‖Lr (T ). (3.12)

Furthermore
∫

�

div(vh − v)qh dx =
∫

�

(v − vh) · ∇qh dx = 0, (3.13)

since cT was chosen to make v − vh mean zero on each T , and ∇qh is piecewise
constant. As a consequence, v ∈ V implies vh ∈ Vh . ��

The estimate (3.9) is sharp in the sense that the lower-order term on the right-hand
side cannot be eliminated: simply consider the situation where vh − v is constant in
T whence cT 	= 0. Therefore, the approximation properties of Vh stem from Lemma
4, with vh replaced by a suitable approximation Ph(v) of v. Here we choose instead
Ph defined by:

Ph(v) = I1,h(v) +
∑

T ∈Th

cT bT , (3.14)

where

cT = 1
∫

T bT dx

∫

T
(v − I1,h(v))dx. (3.15)

Lemma 4 implies that Ph satisfies (1.49) and satisfies a completely local version
of (1.47):

‖Ph(v) − v‖L2(T ) + hT ‖∇(Ph(v) − v)‖L2(T ) ≤ C h2
T ‖∇2v‖L2(T ) ∀v ∈ H2(T )3.

(3.16)
In addition, Lemma 4 and Theorem 8 yield the following interpolation error.

Proposition 4 Let the family Th satisfy (1.25) with constant ζ . There exists a constant
C, independent of h, such that the mini-element satisfies for all T in Th

‖∇(Ph(v) − v)‖L∞(T ) ≤ Cζhα
T |v|C1,α(T ) ∀v ∈ C1,α(T )3. (3.17)

To approximate the pressure, we take rh = I1,h in each T . Then Theorem 8 yields

Proposition 5 There exists a constant C, independent of h, such that for all T ∈ Th

‖rh(q) − q‖L∞(T ) ≤ Chα
T |q|C0,α(T ) ∀q ∈ C0,α(T ). (3.18)
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3.2 The Bernardi–Raugel element

For the Bernardi–Raugel element, the pressure space is defined by:

Mh =
{

qh ∈ L2(�); qh |T ∈ IP0 ∀T ∈ Th

}
, Mh = Mh ∩ L2

0(�). (3.19)

As far as the velocity is concerned, let F denote any one of the four faces of an
element T , cF the barycenter of F and nF the unit normal to F exterior to T . Let bF

denote the polynomial of degree 3 that vanishes on ∂T \F and takes the value 1 at cF

(e.g. if F lies on the plane λ1 = 0 then bF = 27λ2λ3λ4). Then vh is defined in each
T by (cf. Bernardi and Raugel [26] or [13]):

vh =
4∑

i=1

viλi +
∑

F⊂∂T

(vF · nF )bFnF = I1,h(vh) +
∑

F⊂∂T

(vF · nF )bFnF , (3.20)

where

vF · nF = vh(cF ) · nF − (I1,h(vh)(cF )) · nF .

Note that (3.20) does not depend on the orientation of nF .
We have the following result analogous to Lemma 4, which we state without proof.

Lemma 5 Suppose that 2 ≤ r ≤ ∞. If Th satisfies (1.25) with constant ζ , there exists
a constant C independent of h and r, such that for all T ∈ Th

‖∇(vh − v)‖Lr (T ) ≤ (1 + Cζ )‖∇(vh − v)‖Lr (T ) + Cζh−1
T ‖vh − v‖Lr (T ), (3.21)

for all v ∈ W 1,r
0 (�)3 and for all vh ∈ Xh, where vh is defined in each T by

vh = vh +
∑

F⊂∂T

(
1

∫
F bF ds

∫

F
(v − vh) · nF ds

)
bFnF. (3.22)

If further v ∈ V , then vh ∈ Vh.

This last property holds because for all faces F :

∫

F
(v − vh) · nF ds = 0;

hence vh satisfies (1.49). Then Ph(v) is defined in each T by choosing vh = I1,h(v):

Ph(v) = I1,h(v) +
∑

F⊂∂T

(
1

∫
F bF ds

∫

F
(v − I1,h(v)) · nF ds

)
bFnF . (3.23)

Lemma 5 yields the analogue of Proposition 4:
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Proposition 6 Let the family Th satisfy (1.25) with constant ζ . There exists a constant
C, independent of h, such that the Bernardi–Raugel element satisfies for all T in Th

‖∇(Ph(v) − v)‖L∞(T ) ≤ Cζhα
T |v|C1,α(T ) ∀v ∈ C1,α(T )3. (3.24)

Regarding the pressure, as the functions in Mh are discontinuous, we take for rh

the L2-orthogonal projection on IP0 in each T :

rh(q)|T = 1

|T |
∫

T
q(x)dx ∀T ∈ Th . (3.25)

Considering that rh preserves the constants in each T , the approximation properties
of rh are obtained via an easy variant of Lemma 3.

Proposition 7 There exists a constant C independent of h such that for all T in Th,

‖rh(q) − q‖L∞(T ) ≤ Chα
T |q|C0,α(T ) ∀q ∈ C0,α(T ). (3.26)

3.3 Taylor–Hood finite elements

The finite element spaces are, for k ≥ 2:

Xh =
{
vh ∈ C0(�)3; vh |T ∈ IP3

k ∀T ∈ Th

}
∩ H1

0 (�)3, (3.27)

Mh =
{

qh ∈ C0(�); qh |T ∈ IPk−1 ∀T ∈ Th

}
, Mh = Mh ∩ L2

0(�). (3.28)

For k ≥ 3, Taylor–Hood finite elements have a quasi-local interpolation operator
Ph satisfying (1.47), (1.49) and (1.50); see [27]. For k = 2, this also holds if Th is
partitioned into R(h) non-overlapping macro-elements, say Oi , each macro-element
containing a fixedmaximumnumber of elements, and each element having one interior
vertex in Oi . Furthermore, we assume that the boundary of each macro-element ∂Oi

is partitioned into non-overlapping pairs of adjacent faces, say ω j = T ′
k ∪ T ′

� where
T ′

k and T ′
� are adjacent faces of elements in Oi , each ω j being planar. In other words,

the ω j are planar quadrilaterals. A mesh Th with these properties can be generated by
first partitioning� into non-overlapping convex hexahedra, dividing each face of each
hexahedron into two triangles (whence a total of 12 boundary triangles T ′), placing
one vertex, say c, in the center of each hexahedron and constructing the 12 tetrahedra
with common vertex c and base T ′, for all boundary triangles T ′ (cf. Ciarlet and
Girault [28]).

Let v ∈ W 1,r
0 (�)3. We study the case k = 2, the others being simpler, upon gener-

alizing the approach of Boland and Nicolaides [29] and Stenberg [30]. Following [27],
given any vh in Xh , we construct vh by proceeding in two steps: first we construct an
auxiliary function v1h whose divergence in eachOi has the same mean-value as v, and
next we add a correction to v1h so that the corrected function vh satisfies (1.49). This
second correction is done locally in each Oi . In all cases except k = 2, the auxiliary
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function v1h can be easily constructed locally and the mean-value of the divergence is
preserved in each element because these elements have at least one degree of freedom
in the interior of each face. This is not the case when k = 2, where all degrees of free-
dom are located on edges. But in the above non-overlapping decomposition, faces are
grouped into non-overlapping quadrilaterals ω j , each ω j having one interior degree
of freedom located at the midpoint a j of the edge shared by T ′

k and T ′
� ; for this reason

we ask that Th have this structure.
Let {Oi }1≤i≤R(h) be the family of non-overlapping macro-elements partitioning

Th , and for eachOi , let ω j , 1 ≤ j ≤ Ki , be the set of quadrilaterals partitioning ∂ Oi .
The two steps are:

(1) In each Oi , we define

v1h = vh +
Ki∑

j=1

c j b j , (3.29)

where b j ∈ C0(�) is the IP2 function in each T that takes the value 1 at the
midpoint a j and 0 at all the vertices and other edge midpoints of Th . Note that the
integral of b j over ω j is never zero. This degree of freedom is used to preserve
the mean-value of the divergence in Oi . More precisely,

c j = c j (v − vh) = 1
∫
ω j

b j ds

∫

ω j

(v − vh)ds, (3.30)

whence ∫

Oi

div(v1h − v)dx = 0. (3.31)

Note that c j is a linear functional applied to v − vh .
Next, in each Oi , we define the local spaces:

Xh(Oi ) = {vh ∈ Xh; vh |∂Oi = 0},

Mh(Oi ) =
{

qh |Oi − 1

|Oi |
∫

Oi

qh(x)dx; qh ∈ Mh

}
.

(2) Following the argument of [27], we construct a second correction Ch ∈ Xh(Oi )

such that
∫

Oi

qh div Chdx =
∫

Oi

qh div(v − v1h)dx

=
∫

Oi

qh div(v − vh −
Ki∑

j=1

c j (v − vh)b j ) dx ∀qh ∈ Mh(Oi ),

(3.32)

‖∇ Ch‖L2(Oi )
≤ 1

η
‖div(v − v1h)‖L2(Oi )

, (3.33)
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with a constant η > 0 independent of i , h and v. By a standard algebraic argument
(see for instance [13]), the existence of this correction satisfying (3.32), (3.33),
and furthermore its uniqueness in the orthogonal of Vh(Oi ) with respect to the
scalar product of H1

0 (Oi ), stems from a uniform inf-sup condition in each Oi :

inf
qh∈Mh(Oi )

sup
vh∈Xh(Oi )

∫
Oi

qhdiv vh dx

‖∇ vh‖L2(Oi )
‖qh‖L2(Oi )

≥ η. (3.34)

As all tetrahedra of Oi have one interior vertex in Oi , the proof of (3.34) follows
from the construction of [13,31]. Again, we may view Ch = Ch(v − vh) as a linear
operator on v − vh .

Finally, as themacro-elementsOi form a partition of Th we define vh as the function
whose restriction to each Oi is:

vh = v1h + Ch = vh +
Ki∑

j=1

c j (v − vh)b j + Ch(v − vh). (3.35)

By construction vh belongs to Xh and satisfies

∫

Oi

qhdiv(vh − v) dx = 0 ∀qh ∈ Mh(Oi ). (3.36)

Furthermore, it satisfies a result similar to that of Lemmas 4 and 5 in each Oi . We
set


i = inf
T ⊂Oi


T, hi = sup
T ⊂Oi

hT,

then since a regular triangulation is locally quasi-uniform, Eq. (1.25) implies that, for
some constant C independent of i and h,

hi


i
≤ Cζ. (3.37)

Lemma 6 Suppose that 2 ≤ r ≤ ∞. Let Th be partitioned as above and satisfy (1.25)
with constant ζ . Then there exists a constant C independent of h and r, such that for
all Oi , 1 ≤ i ≤ R(h),

‖∇(vh − v)‖Lr (Oi ) ≤ (1 + Cζ )2‖∇(vh − v)‖Lr (Oi )

+ C(1 + Cζ )ζh−1
i ‖vh − v‖Lr (Oi ), (3.38)

for all v ∈ W 1,r
0 (�)3 and for all vh ∈ Xh, where vh is defined in each Oi by (3.35).

If in addition v ∈ V , then vh ∈ Vh.
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Proof All constants below are independent of h, i , and r . The last statement of the
lemma follows readily from (3.36) and

∫

Oi

div(vh − v)dx =
∫

Oi

div(v1h − v)dx +
∫

Oi

div Chdx = 0,

owing to (3.31) and the fact that Ch is in Xh(Oi ).
To prove the error inequality (3.38), we write

‖∇(vh − v)‖Lr (Oi ) ≤
∥∥∥∇(v1h − v)

∥∥∥
Lr (Oi )

+ ‖∇ Ch‖Lr (Oi ).

Consider first the second term. To simplify, we set w = ∇ Ch . Since each compo-
nent of w|T belongs to IP1, a finite dimensional argument yields:

‖w‖Lr (Oi ) ≤ C

⎛

⎝
∑

T ⊂Oi

|T |
|T̂ | ‖ŵ‖r

L2(T̂ )

⎞

⎠

1
r

.

Then, reverting to T and applying Jensen’s inequality since r ≥ 2:

‖w‖Lr (Oi ) ≤ C

⎛

⎝
∑

T ⊂Oi

( |T |
|T̂ |
)1− r

2 ‖w‖r
L2(T )

⎞

⎠

1
r

≤ C max
T ⊂Oi

|T | 1r − 1
2 ‖w‖L2(Oi )

.

Then (3.33) and Hölder’s inequality imply

‖w‖Lr (Oi ) ≤ C max
T ⊂Oi

|T | 1r − 1
2

∥∥∥div
(
v − v1h

)∥∥∥
L2(Oi )

≤ C max
T ⊂Oi

|T | 1r − 1
2 |Oi | 12− 1

r

∥∥∥div
(
v − v1h

)∥∥∥
Lr (Oi )

. (3.39)

Therefore, by (3.37), we obtain the auxiliary bound

‖∇(vh − v)‖Lr (Oi ) ≤ (1 + Cζ )

∥∥∥∇
(
v1h − v

)∥∥∥
Lr (Oi )

. (3.40)

As the first correction is defined on the faces of Oi , the bound for the first term
above is the same as for the Bernardi–Raugel element, with T replaced by Oi :

∥∥∥∇
(
v1h − v

)∥∥∥
Lr (Oi )

≤ (1+Cζ )‖∇(vh −v)‖Lr (Oi ) +Cζ
1

hi
‖vh −v‖Lr (Oi ), (3.41)

and (3.38) follows by substituting (3.41) into (3.40).
When k ≥ 3, the construction of vh is much the same, but as explained above, it

requires no partition and the only restriction on Th , other than regularity, is that each
tetrahedron has at least one interior vertex in �; see [31]. ��
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Then Ph(v) = vh is defined by choosing vh = Ik,h(v), k ≥ 2, that is

Ph(v) = Ik,h(v) = Ik,h(v) +
Ki∑

j=1

c j (v − Ik,h(v))b j + Ch(v − Ik,h(v)). (3.42)

Lemma 6 gives the approximation result:

Proposition 8 Let the family Th satisfy (1.25) with constant ζ , and be partitioned as
above when k = 2, or be such that each tetrahedron has at least one interior vertex
in �, when k ≥ 3. There exists a constant C, independent of h and i , such that the
Taylor–Hood element satisfies for all Oi , 1 ≤ i ≤ R(h),

‖∇(Ph(v) − v)‖L∞(Oi ) ≤ Cζhα
i |v|C1,α(Oi )

∀v ∈ C1,α(Oi )
3. (3.43)

Finally the pressure is interpolated with rh = Ik−1,h and its error is estimated by
Proposition 5.

3.4 Super-approximation

In this short paragraph we recall that if vh ∈ Xh andψ = σμvh , then the interpolation
operator Ph introduced in the three examples above satisfies the super-approximation
property (1.55) for typical elements. This property, that heavily relies on the local or
semi-local character of Ph , is based upon the fact that in each element

vh = pk + b,

where pk |T ∈ IP3
k and b is such that Ik,h(b) = 0. The details of the proof of (1.55)

for the Taylor–Hood elements, the “mini” element and the Bernardi–Raugel element
are written in [2]. It is worthwhile to point out that the proof is valid when the family
of triangulations is regular i.e. satisfies (1.25).

4 General duality argument

In this section, we use a two-step bootstrap procedure for estimating σ
1
2 (μ+ε)−1(G −

Gh), which appears in (2.6), in terms of σ
μ
2 ∇(G − Gh) for 0 ≤ ε ≤ ε0, where ε0 is a

small positive number that depends on the inner angles of ∂�. The first step includes
the lower order term σ

μ
2 −1(G − Gh) in the right-hand side. The following theorem

represents a modification of Theorem 5.1 in [2].

Theorem 9 Let Th satisfy (2.7), � be convex, and κ > 1 be defined in (1.40). Let
α0 ∈ ]0, 1[ be the number related to the largest inner angle of ∂� in the statement
of Theorem 3, and choose α = min{α0,

1
2 }. Suppose that the numbers ε ≥ 0 and

0 < λ < 1 satisfy
λ

2
+ ε < 1 − 3

r
= α. (4.1)
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Let the interpolation operators Ph ∈ L((C0(�) ∩ H1
0 (�))3; Xh) and rh ∈

L(C0(�); Mh) satisfy (1.49), (1.57), and (1.58). Then there exists a constant Cε such
that the following bound holds

∥∥
∥σ

1
2 (μ+ε)−1(G − Gh)

∥∥
∥
2

L2(�)

≤ Cε

θε

κα

(∥∥∥σ
μ
2 ∇(G − Gh)

∥∥∥
L2(�)

+ Cκ
μ
2 h

λ
2

)

×
( ∥∥
∥σ

μ
2 ∇(G − Gh)

∥∥
∥
2

L2(�)
+
∥∥
∥σ

μ
2 −1(G − Gh)

∥∥
∥
2

L2(�)

) 1
2
, (4.2)

where μ = 3 + λ (recall that θ = κ h).

Proof Let (ϕ, s) ∈ H1
0 (�)3 × L2

0(�) be the solution of the Stokes problem:

− �ϕ + ∇ s = σμ+ε−2(G − Gh), divϕ = 0, in �, ϕ = 0, on ∂�. (4.3)

Since � is convex, the forcing σμ+ε−2(G − Gh) belongs to Lr (�)3 for any r and
in particular for

r = 3

1 − α
i.e. α = 1 − 3

r
.

From (1.15), we have σμ+ε−2(G−Gh) ∈ C−1,α(�)3, and it follows fromTheorem
3 that ϕ ∈ C1,α(�)3, s ∈ C0,α(�) with

‖ϕ‖C1,α(�) + |s|C0,α(�) ≤ Cα‖σμ+ε−2(G − Gh)‖Lr (�). (4.4)

The estimate (4.4) is a key difference between the argument in [2, Theorem 5.1]
and Theorem 9 in the present manuscript. Now, multiplying the first equation in (4.3)
by G − Gh and integrating by parts, we obtain

∫

�

σμ+ε−2|G − Gh |2dx

=
∫

�

∇ϕ : ∇(G − Gh)dx −
∫

�

s div(G − Gh)dx

=
∫

�

∇ϕ : ∇(G − Gh)dx −
∫

�

(s − rh(s)) div(G − Gh)dx. (4.5)

At the last step, we used the fact that div Gh belongs to L2
0(�) to conclude that∫

�
q divGh dx = 0 for all q ∈ Mh , that is, we can add an arbitrary constant to q ∈ Mh .

Applying the error Eq. (1.34) and the fact that divϕ = 0, we find
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∫

�

∇ϕ : ∇(G − Gh)dx =
∫

�

∇(ϕ − Ph(ϕ)) : ∇(G − Gh) dx

+
∫

�

(Q − Qh)divPh(ϕ) dx

=
∫

�

∇(ϕ − Ph(ϕ)) : ∇(G − Gh)dx

+
∫

�

(Q − Qh)div(Ph(ϕ) − ϕ)dx. (4.6)

Combining (4.5) and (4.6) with (1.49) for Ph , we have

∫

�

σμ+ε−2|G − Gh |2dx =
∫

�

∇(ϕ − Ph(ϕ)) : ∇(G − Gh)dx

+
∫

�

(Q − rh(Q))div(Ph(ϕ) − ϕ)dx

−
∫

�

(s − rh(s))div(G − Gh)dx. (4.7)

Therefore

∥∥∥σ
1
2 (μ+ε)−1(G − Gh)

∥∥∥
2

L2(�)

≤ √
3
∥∥
∥σ− μ

2 (s − rh(s))
∥∥
∥

L2(�)

∥∥
∥σ

μ
2 ∇(G − Gh)

∥∥
∥

L2(�)

+
∥∥∥σ− μ

2 ∇(ϕ − Ph(ϕ))

∥∥∥
L2(�)

( ∥∥∥σ
μ
2 ∇(G − Gh)‖L2(�)

+√
3‖σ μ

2 (Q − rh(Q))

∥∥∥
L2(�)

)
. (4.8)

Let us work on the factor involving Ph , the treatment of rh being the same. We
proceed in two steps. First, applying (1.42), we write

∥∥∥σ− μ
2 ∇(ϕ − Ph(ϕ))

∥∥∥
L2(�)

≤ ‖∇(ϕ − Ph(ϕ))‖L∞(�)

(∫

�

σ−μ(x) dx
) 1

2

≤
√

Cλθ−λ‖∇(ϕ − Ph(ϕ))‖L∞(�).

Then (1.57) yields

∥∥∥σ− μ
2 ∇(ϕ − Ph(ϕ))

∥∥∥
L2(�)

≤ C1hα
√

Cλθ−λ|ϕ|C1,α(�),

and with (4.4), this becomes

∥∥∥σ− μ
2 ∇(ϕ − Ph(ϕ))

∥∥∥
L2(�)

≤ C1Cαhα
√

Cλθ−λ‖σμ+ε−2(G − Gh)‖Lr (�). (4.9)
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Similarly, (1.58) gives

∥∥
∥σ− μ

2 (s − rh(s))
∥∥
∥

L2(�)
≤ C2Cαhα

√
Cλθ−λ‖σμ+ε−2(G − Gh)‖Lr (�).

The second step is devoted to a weighted interpolation inequality. The argument is
briefly sketched because it is the same as in [2]. First, we observe that σμ+ε−2(G −
Gh) ∈ H1

0 (�)3 and therefore

∥∥∥σμ+ε−2(G − Gh)

∥∥∥
Lr (�)

≤ C
∥∥∥∇(σμ+ε−2(G − Gh))

∥∥∥
Lt (�)

, (4.10)

where t is the exponent of Sobolev’s embedding:

W 1,t (�) ⊂ Lr (�), i.e., t = 3r

r + 3
= 3

2 − α
.

We have 3
2 < t ≤ 2 for 0 < α ≤ 1

2 , which we have assumed. The conditiion (4.1)
guarantees that r satisfies

r >
3

1 − λ
2 − ε

so that
(
2 − ε − μ

2

) 2t

2 − t
>

(
1 − 2α

2

)
2t

2 − t
= 3,

for t < 2. Introducing the weight σ (2−ε− μ
2 )t in the integral, and observing that (1.42)

holds, we find (for t < 2)

∥∥∥∇(σμ+ε−2(G − Gh))

∥∥∥
Lt (�)

≤
(∫

�

σ−q(2−ε− μ
2 ) dx

) 1
q ∥∥∥σ 2−ε− μ

2 ∇(σμ+ε−2(G − Gh))

∥∥∥
L2(�)

≤ Cλ,ε

θ
2−ε− μ

2 − 3
q

∥
∥∥σ 2−ε− μ

2 ∇(σμ+ε−2(G − Gh))

∥
∥∥

L2(�)

= Cλ,ε

θ1− λ
2−ε− 3

r

∥
∥∥σ 2−ε− μ

2 ∇(σμ+ε−2(G − Gh))

∥
∥∥

L2(�)
, (4.11)

where q = 2t
2−t . By inspection, this also holds for t = 2. Finally, expanding the

gradient in the above right-hand side, we obtain

∥
∥∥∇(σμ+ε−2(G − Gh))

∥
∥∥

Lt (�)
≤ Cλ,ε

θ1− λ
2−ε− 3

r

(∥
∥∥σ

μ
2 ∇(G − Gh)

∥
∥∥
2

L2(�)

+
∥∥
∥σ

μ
2 −1(G − Gh)

∥∥
∥
2

L2(�)

) 1
2

.

Then (4.2) follows by substituting this inequality into (4.10) and (4.9), next substi-
tuting into (4.8) and applying (2.15). ��
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As in [2, Corollary 5.3], Theorem 9 is applied with ε = 0 to obtain the following.

Corollary 2 We take ε = 0 in the statement of Theorem 9. Then

∥∥∥σ
μ
2 −1(G − Gh)

∥∥∥
2

L2(�)
≤ 1

κα

(
1 + 2C2

0

) ∥∥∥σ
μ
2 ∇(G − Gh)

∥∥∥
2

L2(�)
+ Cκμ−αhλ.

(4.12)

Proof To simplify set

X =
∥∥∥σ

μ
2 −1(G − Gh)

∥∥∥
L2(�)

.

Then (4.2) with ε = 0 reads

X2 ≤ C0

κα

(∥∥∥σ
μ
2 ∇(G − Gh)

∥∥∥
2

L2(�)
+ X2
) 1

2
(∥∥∥σ

μ
2 ∇(G − Gh)

∥∥∥
L2(�)

+ Cκ
μ
2 h

λ
2

)
.

Applying Young’s inequality, we obtain:

X2 ≤ 1

2κα

(∥
∥∥σ

μ
2 ∇(G − Gh)

∥
∥∥
2

L2(�)
+ X2
)

+ 1

κα
C2
0

(∥∥∥σ
μ
2 ∇(G − Gh)

∥∥∥
2

L2(�)
+ C2κμhλ

)
.

Considering that κ > 1, the factor of X2 in the above right-hand side is smaller
than 1

2 and hence

1

2
X2 ≤ 1

2κα

(
1 + 2C2

0

) ∥∥∥σ
μ
2 ∇(G − Gh)

∥
∥∥
2

L2(�)
+ 1

κα
C2C2

0κ
μhλ,

whence (4.12). ��
In the second step, similar to [2, Corollary 5.4], the desired estimate is derived by

substituting (4.12) into (4.2) with ε > 0 such that (4.1) holds.

Corollary 3 Under the assumptions of Theorem 9, we have:

∥∥∥σ
1
2 (μ+ε)−1(G − Gh)

∥∥∥
2

L2(�)
≤ Cε

θε

κα

(
�

∥∥∥σ
μ
2 ∇(G − Gh)

∥∥∥
2

L2(�)
+ Cκμhλ

)
,

(4.13)
where Cε is the constant of (4.2) for ε > 0, � = ( 32 + 1

2κα

(
1 + 2C2

0

) )
and C0 the

constant for ε = 0.

Remark 3 The only difference between (4.12), (4.13) and the corresponding estimates
in [2] is the power of κ in the denominator: this power is one in [2] versus α > 0 here.
However the specific value of the exponent is not important as long as it is positive.

123



Max-norm estimates for Stokes and Navier–Stokes approximations 801

5 The pressure term

Throughout this section, we assume that Ph satisfies (1.49) together with the super-
approximation condition (1.55). As mentioned in Sect. 1, the unknown pressure Qh ,
appearing in the fourth term of (2.3), cannot be eliminated, but owing to (1.49), it can
be split as follows:

∫

�

(Q − Qh)div Ph(ψ) dx =
∫

�

(Q − rh(Q))div (Ph(ψ) − ψ) dx

+
∫

�

(Q − rh(Q))divψ dx

+
∫

�

(rh(Q) − Qh)divψ dx. (5.1)

The middle term in (5.1) is studied in the first lemma, which is analogous to [2,
Lemma 7.1] but uses the new estimate (4.12).

Lemma 7 Under the assumptions of Theorem 9 with ε = 0, we have

∣∣∣
∣

∫

�

(Q − rh(Q))divψ dx

∣∣∣
∣ ≤ Cκμ+ 1

2 hλ + 1√
κ

∥∥∥σ
μ
2 ∇(G − Gh)

∥∥∥
2

L2(�)
. (5.2)

Proof To simplify set

X =
∥∥∥σ

μ
2 ∇(G − Gh)

∥∥∥
L2(�)

.

Formula (2.15) gives

∣∣∣∣

∫

�

(Q − rh(Q))divψ dx

∣∣∣∣ ≤ C1κ
μ
2 h

λ
2

∥∥∥σ− μ
2 divψ

∥∥∥
L2(�)

.

Expanding ψ = σμ(Ph(G) − Gh)), and using that ∇σμ ≤ μσμ−1, we obtain

∥∥∥σ− μ
2 divψ

∥∥∥
L2(�)

≤ √
3

(∥∥∥σ
μ
2 ∇(Ph(G) − G)

∥∥∥
L2(�)

+ X

)

+ μ

(∥∥∥σ
μ
2 −1(Ph(G) − G)

∥∥∥
L2(�)

+
∥∥∥σ

μ
2 −1(G − Gh)

∥∥∥
L2(�)

)
.

With (2.15) and (2.16), this becomes

∥∥∥σ− μ
2 divψ

∥∥∥
L2(�)

≤ C2κ
μ
2 h

λ
2 + C3κ

μ
2 −1h

λ
2 + √

3X + μ‖σ μ
2 −1(G − Gh)‖L2(�).
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Considering that κ > 1, Corollary 2 gives

‖σ− μ
2 divψ‖L2(�) ≤ C4κ

μ
2 h

λ
2 + √

3X + μ

κ
α
2

((
1 + 2C2

0

)
X2 + C5κ

μhλ

) 1
2

≤ C6κ
μ
2 h

λ
2 + X

(√
3 + μ

κ
α
2

(
1 + 2C2

0

) 1
2
)

.

Therefore
∣∣
∣∣

∫

�

(Q − rh(Q))divψ dx

∣∣
∣∣ ≤ C7κ

μhλ + C1κ
μ
2 h

λ
2 X

(√
3 + μ

κ
α
2

(
1 + 2C2

0

) 1
2
)

,

and (5.2) follows by a suitable application of Young’s inequality. ��
The next lemma studies the first term in (5.1).

Lemma 8 Under the assumptions of Theorem 9 with ε = 0, we have

∣∣∣∣

∫

�

(Q−rh(Q))div(Ph(ψ)−ψ) dx

∣∣∣∣ ≤ Cκμ+ 1
2−αhλ+ 1√

κ

∥∥∥σ
μ
2 ∇(G − Gh)

∥∥∥
2

L2(�)
.

(5.3)

Proof Again, we set

X =
∥
∥∥σ

μ
2 ∇(G − Gh)

∥
∥∥

L2(�)
.

Applying (1.55) and (2.15), we have

∣∣∣
∣

∫

�

(Q − rh(Q))div(Ph(ψ) − ψ) dx

∣∣∣
∣ ≤ C1κ

μ
2 h

λ
2

∥∥∥σ
μ
2 −1(Ph(G) − Gh)

∥∥∥
L2(�)

.

But (2.16) and Corollary 2 yield

∥∥∥σ
μ
2 −1(Ph(G) − Gh)

∥∥∥
L2(�)

≤ C2κ
μ
2 −1h

λ
2 + 1

κ
α
2

((
1 + 2C2

0

)
X2 + C3κ

μhλ

) 1
2

.

Therefore by Young’s inequality

∣∣∣
∣

∫

�

(Q − rh(Q))div(Ph(ψ) − ψ) dx

∣∣∣
∣

≤ C4κ
μ−1hλ + C5

κ
μ
2

κ
α
2

h
λ
2

((
1 + 2C2

0

) 1
2

X + C
1
2
3 κ

μ
2 h

λ
2

)

≤ C4κ
μ−1hλ + C6κ

μ− α
2 hλ + 1√

κ
X2 + C7κ

μ+ 1
2−αhλ,

whence (5.3) follows. ��
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As mentioned in Sect. 1, the last term in (5.1) is problematic. It is split as follows:

∫

�

(rh(Q) − Qh)divψ dx =
∫

�

σμ(rh(Q) − Qh) div(Ph(G) − Gh) dx

+
∫

�

(rh(Q) − Qh)∇ σμ · (Ph(G) − Gh)) dx. (5.4)

For the first term in (5.4), we set on the one hand

ζ = σμ(rh(Q) − Qh),

and interpolant ζ with rh satisfying (1.56). Thus

∣∣∣∣

∫

�

σμ(rh(Q) − Qh)div(Ph(G) − Gh) dx

∣∣∣∣

=
∣∣∣∣

∫

�

(ζ − rh(ζ ))div(Ph(G) − Gh) dx

∣∣∣∣

≤ √
3
∥∥∥σ

μ
2 ∇(Ph(G) − Gh)

∥∥∥
L2(�)

∥∥∥σ− μ
2 (ζ − rh(ζ ))

∥∥∥
L2(�)

≤ C h
∥∥
∥σ

μ
2 ∇(Ph(G) − Gh)

∥∥
∥

L2(�)

∥∥
∥σ

μ
2 −1(rh(Q) − Qh)

∥∥
∥

L2(�)
. (5.5)

On the other hand, the following is Theorem 4.2 in [2]; it follows from the discrete
weighted inf-sup condition of Proposition 1.

Theorem 10 Under the assumptions of Theorem 5 and if rh and Ph satisfy (1.48),
(1.49) and (1.50), then for 0 < s < 3, there exists a constant Cs, depending only on
s, such that:

∥∥∥σ
s
2 (rh(Q) − Qh)

∥∥∥
L2(�)

≤ Cs

θ
1
2 (μ−s)

(∥∥∥σ
μ
2 ∇(G − Gh)

∥∥∥
L2(�)

+ Cκ
μ
2 h

λ
2

)
. (5.6)

Then combining (2.15), (5.6) with s = μ − 2, and (5.5), we easily derive the next
result.

Proposition 9 Under the assumptions of Theorem 10, we have

∣∣∣∣

∫

�

σμ(rh(Q) − Qh)div(Ph(G) − Gh) dx

∣∣∣∣ ≤ C1κ
μ−1hλ

+ C2

κ

∥∥∥σ
μ
2 ∇(G − Gh)

∥∥∥
2

L2(�)
.

(5.7)
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In order to bound the second term in (5.4), we suppose that � is convex and we
choose ε = λ + γ for some small number γ > 0. Then, if for instance, we take

γ = λ

2
,

condition (4.1) implies the upper bound for λ:

2λ < α, i.e. λ <
α

2
. (5.8)

Proposition 10 Let � be convex, κ > 1, and α ∈ ]0, 1
2 [ be as in Theorem 9. Let

0 < λ < α
2 . If Th satisfies (2.7), then

∣
∣∣∣

∫

�

(rh(Q) − Qh)∇ σμ · (Ph(G) − Gh) dx

∣
∣∣∣ ≤ C1κ

μ− α
2 hλ

+ C2

κ
α
2

∥∥∥σ
μ
2 ∇(G − Gh)

∥∥∥
2

L2(�)
.

(5.9)

Proof The proof is written for ε = λ + γ with positive arbitrary λ and γ satisfying
3
2λ + γ < α; in particular it is valid for λ satisfying (5.8). We have

∣∣
∣∣

∫

�

(rh(Q) − Qh)∇ σμ · (Ph(G) − Gh) dx

∣∣
∣∣

≤ μ

∥∥∥σ
1
2 (μ−λ−γ )(rh(Q) − Qh)

∥∥∥
L2(�)

∥∥∥σ
1
2 (μ+λ+γ )−1(Gh − G)

∥∥∥
L2(�)

+ μ

∥∥∥σ
μ
2 −1(rh(Q) − Qh)

∥∥∥
L2(�)

∥∥∥σ
μ
2 (G − Ph(G))

∥∥∥
L2(�)

. (5.10)

Let

X =
∥∥∥σ

μ
2 ∇(G − Gh)

∥∥∥
L2(�)

.

For the first term in the above right-hand side, we apply Theorem 10 with s =
μ − λ − γ = 3 − γ < 3:

∥∥∥σ
1
2 (μ−λ−γ )(rh(Q) − Qh)

∥∥∥
L2(�)

≤ C1

θ
ε
2

(
X + C2κ

μ
2 h

λ
2

)
.

Next, we apply Corollary 3 with ε = λ + γ :

∥∥∥σ
1
2 (μ+ε)−1(Gh − G)

∥∥∥
L2(�)

≤
(

Cεθ
ε

κα

) 1
2
(

�X2 + C3κ
μhλ

) 1
2

.
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Therefore, up to the factor μ, the first term in the right-hand side of (5.10) has the
bound

∥∥
∥σ

1
2 (μ−λ−γ )(rh(Q) − Qh)

∥∥
∥

L2(�)

∥∥
∥σ

1
2 (μ+λ+γ )−1(Gh − G)

∥∥
∥

L2(�)

≤ C4

κ
α
2

(
X2 + κμhλ

)
.

This is the dominating term. The second term in the right-hand side of (5.10) is
more favorable. We apply (2.16) to the second factor and Theorem 10 with s = μ− 2
to the first factor:

∥∥∥σ
μ
2 −1(rh(Q) − Qh)

∥∥∥
L2(�)

≤ C5

θ

(
X + C6κ

μ
2 h

λ
2

)
,

∥∥∥σ
μ
2 (G − Ph(G))

∥∥∥
L2(�)

≤ C7κ
μ
2 h

λ
2+1.

Thus, up to the factor μ, the second term in the right-hand side of (5.10) satisfies

∥∥∥σ
μ
2 −1(rh(Q) − Qh)

∥∥∥
L2(�)

∥∥∥σ
μ
2 (G−Ph(G))

∥∥∥
L2(�)

≤ C8κ
μ
2 −1h

λ
2

(
X +C6κ

μ
2 h

λ
2

)
.

As α < 1 and κ > 1, this term is indeed dominated by the first one. ��
Collecting (5.1)–(5.4), (5.7) and (5.9), we derive the estimate for the pressure term

in (2.2) and (5.1).

Theorem 11 Let � be convex, let κ > 1, and α ∈ ]0, 1
2 [ be as in Theorem 9, and let

0 < λ < α
2 . If Th satisfies (2.7), then

∣∣
∣∣

∫

�

(Q − Qh) div Ph(ψ) dx

∣∣
∣∣ ≤ C1κ

μ+ 1
2 hλ + C2

κ
α
2

∥∥
∥σ

μ
2 ∇(G − Gh)

∥∥
∥
2

L2(�)
. (5.11)

6 Maximum norm estimates

Recall that for any x ∈ � the ball B(x, R) contains � and that κ h ≤ R.

6.1 Velocity estimates

By collecting the results of the previous sections, we obtain the estimate (1.46).

Theorem 12 Let � be convex, let α ∈ ]0, 1
2 [ be as in Theorem 9, let 0 < λ < α

2 and
let μ = 3 + λ. Let Th satisfy (2.7). Then there exists a number κ1 > 1 such that for
all κ ≥ κ1 and for all meshsizes h > 0 such that κ h ≤ R, we have

∥∥
∥σ

μ
2 ∇(G − Gh)

∥∥
∥

L2(�)
≤ Cκ

μ
2 + 1

4 h
λ
2 . (6.1)
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Proof Again, we set

X =
∥
∥∥σ

μ
2 ∇(G − Gh)

∥
∥∥

L2(�)
.

From (2.3), we obtain

X2 ≤ X

[ ∥∥∥σ
μ
2 ∇(G − Ph(G))

∥∥∥
L2(�)

+
∥∥∥σ− μ

2 ∇(ψ − Ph(ψ)

∥∥∥
L2(�)

+ C

(∥∥
∥σ

μ
2 −1(G − Ph(G))

∥∥
∥

L2(�)
+
∥∥
∥σ

μ
2 −1(G − Gh)

∥∥
∥

L2(�)

)]

+
∣∣∣
∣

∫

�

(Q − Qh)div Ph(ψ) dx

∣∣∣
∣.

By applying (2.15), (2.16), (1.55), Corollary 2 and Theorem 11, this reduces to

X2 ≤ C1

κ
α
2

X2 + C2κ
μ+ 1

2 hλ, (6.2)

because α < 1 and κ > 1. Let us choose κ1 such that for instance

C1

κ
α
2
1

≤ 1

2
, i.e. κ

α
2
1 ≥ 2C1; (6.3)

this is possible because κ1 > 1. Then for all κ ≥ κ1 and all h > 0 such that κ h ≤ R,
(6.2) implies (6.1). ��

Combining Theorem 12 with (1.39), (1.42), and (1.45), we derive the main result
of this work for the velocity.

Theorem 13 Under the assumptions of Theorem 12 and provided the solution (u, p)

of the Stokes problem (1.6), (1.7) belongs to W 1,∞(�)3 × L∞(�), there exists a
constant C∗ independent of h, u and p, but dependent on the parameter α < 1 of
Theorem 3, such that

‖∇ uh‖L∞(�) ≤ C∗
(‖∇ u‖L∞(�) + ‖p‖L∞(�)

)
. (6.4)

Corollary 4 Let the assumptions of Theorem 12 be valid and the solution (u, p) of
the Stokes problem (1.6), (1.7) belong to W 1,r (�)3 × Lr (�) for 2 ≤ r ≤ ∞. Then

‖∇ uh‖Lr (�) ≤ C
1− 2

r∗
(‖∇ u‖Lr (�) + ‖p‖Lr (�)

)
. (6.5)

Proof Since the linear operator (u, p) 
→ uh satisfies both (1.23) and (6.4), we apply
operator interpolation theory to derive (6.5) [15].
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6.2 Pressure estimates

We use a similar approach for the pressure. Let xM be a point in � where |ph(x)|
attains its maximum, let δM be the function constructed in Sect. 1.6 with ph instead
of ∂uh,i

∂x j
and let (GP , Q P ) ∈ H1

0 (�)3 × L2
0(�) be the solution of

− � GP + ∇ Q P = 0, div GP = δM − B, (6.6)

where B is a fixed function of D(�) such that
∫
�
B(x) dx = 1. By virtue of (1.26),

δM −B belongs to D(�) ∩ L2
0(�) and Problem (6.6) has a unique solution. Invoking

Theorem1, Problem (6.6) can be expressed as (1.9)with f in Lr (�)3 and the regularity
of its solution is guaranteed by Theorem 3. Then, we define GP,h ∈ Xh , the Stokes
projection of GP , and its associated pressure Q P,h ∈ Mh by

∫

�

∇(GP,h − GP ) : ∇ vh dx −
∫

�

(Q P,h − Q P )div vh dx = 0 ∀vh ∈ Xh, (6.7)
∫

�

qhdiv(GP,h − GP ) dx = 0 ∀qh ∈ Mh . (6.8)

With the operator rh defined in Sect. 1.8, we easily see that

‖ph‖L∞(�) =
∫

�

phδM =
∫

�

δM p +
∫

�

B(ph − p) +
∫

�

p div(Gh − G)

+
∫

�

∇(uh − u) : ∇(Gh − G) +
∫

�

(Q − rh(Q)) div(uh − u),

whence

‖ph‖L∞(�) ≤ C1
(‖p‖L∞(�) + ‖∇u‖L∞(�)

)(
1 + ‖∇(GP − GP,h‖L1(�)

+ ‖Q P − rh(Q P )‖L1(�)

)
, (6.9)

because
∫

�

B(ph − p) ≤ ‖B‖L2(�)‖ph − p‖L2(�) ≤ C
(
‖p‖L2(�) + ‖∇u‖L2(�)

)
.

Estimating ∇(GP,h − GP ) and rh(Q P ) − Q P in L1(�) is an easy variant of the
previous estimates. Let us review them quickly. It follows from (6.7), (6.8) that (2.3)
is still valid here. As −� GP + ∇ Q P = 0, (2.10) is replaced by

∥
∥∥σ

μ
2 −1Q P

∥
∥∥

L2(�)
≤ C1

∥
∥∥σ

μ
2 −1∇ GP

∥
∥∥

L2(�)
.

Thus, (2.11) is replaced by

∥∥∥σ
μ
2 −1∇ GP

∥∥∥
L2(�)

≤ C2

(∥∥∥σ
μ
2 −1(δM − B)

∥∥∥
L2(�)

+
∥∥∥σ

μ
2 −2GP

∥∥∥
L2(�)

)
,
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and (2.9) yields

∥∥∥σ
μ
2 −1∇ GP

∥∥∥
L2(�)

≤ C2

∥∥∥σ
μ
2 −2GP

∥∥∥
L2(�)

+ C3κ
μ
2 −1h

λ
2−1,

since the contribution of ‖σ μ
2 −1B‖L2(�) is bounded by a constant that is dominated

by κ
μ
2 −1h

λ
2−1 for κ large and h small; recall that λ < α

2 < 1
2 .

The statement of the duality Theorem 5 is still valid:

∥∥∥σ
μ
2 −2GP

∥∥∥
L2(�)

≤ Ch
λ
2−1,

and we deduce the analogue of (2.13):

∥∥
∥σ

μ
2 −1∇ GP

∥∥
∥

L2(�)
+
∥∥
∥σ

μ
2 −1Q P

∥∥
∥

L2(�)
≤ Cκ

μ
2 −1h

λ
2−1. (6.10)

Similarly, the statement of Theorem 6 also holds:

∥∥∥σ
μ
2 ∇2GP

∥∥∥
L2(�)

+
∥∥∥σ

μ
2 ∇ Q P

∥∥∥
L2(�)

≤ C κ
μ
2 h

λ
2−1,

and we recover the same weighted error estimates as in Theorem 7. In addition, The-
orem 10, which relies on the discrete inf-sup condition, is valid. Finally, it is easy to
check that the general duality argument of Sect. 4 is unchanged because it involves the
difference GP − GP,h whose divergence is orthogonal to the functions of Mh . The
same is true for the pressure estimates of Sect. 5. Hence, when all the above estimates
are collected in (2.3), they yield the same estimate as (6.1) with possibly another
constant, still independent of h and κ . This proves the following pressure estimate.

Theorem 14 Let the assumptions of Theorem 13 be satisfied and the solution (u, p)

of the Stokes problem (1.6), (1.7) belong to W 1,∞(�)3 × L∞(�). Then, there exists a
constant C# > 0 independent of h, u, and p, but dependent on the parameter α < 1
of Theorem 3, such that

‖ph‖L∞(�) ≤ C#
(‖∇u‖L∞(�) + ‖p‖L∞(�)

)
. (6.11)

Corollary 5 Let the assumptions of Theorem 13 be satisfied and the solution (u, p)

of the Stokes problem (1.6), (1.7) belong to W 1,r (�)3 × Lr (�) for 2 ≤ r ≤ ∞. Then,

‖ph‖Lr (�) ≤ C
1− 2

r
#

β
2
r
�

(‖∇u‖Lr (�) + ‖p‖Lr (�)

)
. (6.12)

Proof Combine (6.11) with (1.24) and argue as in Corollary 4. ��
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Remark 4 A duality argument shows that the uniform estimates in Corollaries 4 and
5 hold in Lr for r ∈]1, 2]. Indeed, let r ′ ∈ [2,∞[ be the dual exponent of r , and for
any f ∈ W −1,r ′

(�)3, let (v, q) ∈ W 1,r ′
0 (�)3× Lr ′

0 (�) solve the Stokes problem (1.9)
and satisfy (1.12) with r ′ instead of r :

‖v‖W 1,r ′
(�)

+ ‖q‖Lr ′
(�)

≤ Cr ′ ‖ f ‖W−1,r ′
(�)

. (6.13)

This enables us to write

‖∇ uh‖Lr (�) = sup
f∈W−1,r ′

(�)3

〈uh,−� v + ∇ q〉
‖ f ‖W−1,r ′

(�)

= sup
f∈W−1,r ′

(�)3

(∇ uh,∇ v) − (div uh, q)

‖ f ‖W−1,r ′
(�)

.

By inserting the Stokes projection (vh, qh) of (v, q), the numerator in the last
expression reads

(∇ uh,∇ v) − (div uh, q) = (∇ u,∇ vh)−(p, divvh).

Then Corollary 4, together with (6.13), readily implies (6.5) for r ∈]1, 2].
Regarding the pressure, we use an extension of (1.5) in Lr (�)

sup
vh∈Xh

(ph, div vh)

‖∇ vh‖Lr ′
(�)

≥ βr‖ph‖Lr (�) ∀ph ∈ Mh, (6.14)

with βr independent of h. This is a straightforward consequence of the same exact
inf-sup condition, see for instance [14], and the stability of Ph in W 1,r ′

0 (�)3, which
in turn follows easily from its quasi-local character. Then (6.12) for ph in Lr (�),
r ∈]1, 2], follows readily from (6.14), the preceding bound for uh and

(ph, div vh) = (∇(uh − u),∇ vh) + (p, div vh).

6.3 Optimal error estimates

Wemake the following crucial observation: the only assumption on the solution (u, p)

of the Stokes problem (1.6), (1.7) used so far is that it belongs to W 1,r (�)3 × Lr (�)

for some 2 ≤ r ≤ ∞. In fact, the Lr (�) regularity of the forcing term for the Stokes
system is only necessary to deal with the regularized Green functions (G, Q) and
(GP , Q P ).

We thus consider the pair (u− vh, p − qh), where (vh, qh) ∈ Vh × Mh is arbitrary,
along with its Stokes projection (uh − vh, ph − qh). We apply Corollaries 4 and 5 to
infer the following optimal error estimate for any 2 ≤ r ≤ ∞:
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‖∇(u − uh)‖Lr (�) + ‖p − ph‖Lr (�)

≤ C inf
(vh ,qh)∈Vh×Mh

(
‖∇(u − vh)‖Lr (�) + ‖p − qh‖Lr (�)

)
. (6.15)

To replace the subspace Vh by Xh on the right-hand side of (6.15) we make the
following assumption for all 2 ≤ r ≤ ∞: given v ∈ W 1,r

0 (�) and vh ∈ Xh , there
exists a function vh ∈ Vh such that

‖∇(vh − v)‖Lr (�) ≤ C1‖∇(vh − v)‖Lr (�) + C2h−1‖vh − v‖Lr (�), (6.16)

with constants C1 and C2 independent of h and r . We point out that Lemmas 4–6
guarantee that (6.16) is valid for the finite element spaces studied here. We further
assume that there exists an operator Rh ∈ L(H1

0 (�)3; Xh), locally stable in W 1,r ,
with a constant C independent of h and r :

‖∇ Rh(v)‖Lr (T ) ≤ C‖∇ v‖Lr (�T ) ∀ T ∈ Th, (6.17)

invariant in Xh , and that preserves constantswhen restricted to an element. This is valid
for the Scott–Zhang interpolation operator [22]. Since the restriction of the space Xh

to an element contains constants, we readily deduce again with a constant independent
of h and r

‖Rh(v) − v‖Lr (T ) ≤ ChT ‖∇v‖Lr (�T ) ∀ T ∈ Th . (6.18)

In addition, the invariance of Rh in Xh yields Rh(Rh(v)−v) = 0 whence applying
(6.18) to w = Rh(v) − v,

‖Rh(v) − v‖Lr (T ) ≤ ChT ‖∇(Rh(v) − v)‖Lr (�T ) ∀ T ∈ Th . (6.19)

We thus obtain the following best approximation result.

Corollary 6 Let the assumptions of Theorem 13 be satisfied and the solution (u, p)

of the Stokes problem (1.6), (1.7) belong to W 1,r (�)3 × Lr (�) for some 2 ≤ r ≤ ∞.
If (6.16) and (6.17) are valid, then there exists a constant C independent of h, u and
p, and uniform for all Lebesgue exponents such that

‖∇(u − uh)‖Lr (�) + ‖p − ph‖Lr (�)

≤ C inf
(vh ,qh)∈Xh×Mh

(
‖∇(u − vh)‖Lr (�) + ‖p − qh‖Lr (�)

)
. (6.20)

Proof In view of (6.15) and (6.16), it suffices to show that we can eliminate the term
‖u− vh‖Lr (�) from the latter. Let us apply (6.16) with v = u and vh = Rh(u) ∈ Xh .
Then

inf
wh∈Vh

‖∇(u − wh)‖Lr (�) ≤ ‖∇(u − vh)‖Lr (�)

≤ C1‖∇(Rh(u) − u)‖Lr (�) + C2h−1‖Rh(u) − u‖Lr (�).
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But for any vh ∈ Xh , the invariance of Rh and (6.17) yield:

‖∇(Rh(u) − u)‖Lr (�) = ‖∇ Rh(u − vh) + ∇(vh − u)‖Lr (�)

≤ (1 + C)‖∇(vh − u)‖Lr (�).

Therefore (6.19) implies

h−1‖Rh(u) − u‖Lr (�) ≤ C‖∇(Rh(u) − u)‖Lr (�) ≤ C‖∇(vh − u)‖Lr (�).

Hence

inf
wh∈Vh

‖∇(u − wh)‖Lr (�) ≤ C ‖∇(u − vh)‖Lr (�),

for all vh ∈ Xh . The fact that vh is arbitrary yields the assertion.

7 Navier–Stokes equations

The (steady) Navier–Stokes equations can be written, for f ∈ H−1(�)3, as

∫

�

∇ u : ∇ v dx +
∫

�

(u · ∇ u) · v dx −
∫

�

p div v dx = 〈 f , v〉 ∀v ∈ X,

∫

�

q divu = 0 ∀q ∈ M, (7.1)

where u ∈ X = H1
0 (�)3 and p ∈ M = L2

0(�), and the viscosity coefficient is set to
one because it does not affect the results of this section. The problem (7.1) corresponds
to the Navier–Stokes equations with no-slip boundary condition; if u = g 	= 0 on ∂�,
or other boundary conditions are imposed, then (7.1) is formulated differently. We
limit our discussion to the case (7.1) for simplicity. It is well-known that this problem
has at least one solution and every solution (u, p) satisfies the a priori bound:

‖∇ u‖H1(�) ≤ ‖ f ‖H−1(�), ‖p‖L2(�) ≤ C
(
1 + ‖ f ‖H−1(�)

)‖ f ‖H−1(�). (7.2)

7.1 Continuous a priori bounds

Since the domain is convex, a simple bootstrap argument combined with the regularity
of the Stokes solution shows that, if f is smoother than f ∈ H−1(�)3, then each
solution is accordingly smoother. Even though the argument is elementary, and the
results useful, we are not able to point to specific references for a discussion of them.
We collect the estimates in the following lemma, which will be used several times
later.
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Lemma 9 Let � be convex and let (u, p) ∈ X × M be any solution of (7.1) with data
f ∈ H−1(�)3, let r ∈ [2,∞] and set

s = 3r

r + 3
. (7.3)

If for some r ∈]2, 6], f is in Ls(�)3, then (u, p) is in W 1,r (�)3 × Lr (�) with

‖∇ u‖Lr (�) + ‖p‖Lr (�) ≤ C
(
‖ f ‖Ls (�) + ‖∇ u‖2Lt (�)

)
, (7.4)

where

t = 6s

3 + s
= 6r

3 + 2r
< 3, (7.5)

and the constant C is independent of r . Note that t ≤ 3 for all r ∈ [2,∞]. In particular,
we have for 2 < r ≤ 3

‖∇ u‖Lr (�) + ‖p‖Lr (�) ≤ C
(
‖ f ‖Ls (�) + ‖ f ‖2H−1(�)

)
, (7.6)

and for 3 < r ≤ 6, we have

‖∇ u‖Lr (�) + ‖p‖Lr (�) ≤ C

(
‖ f ‖Ls (�) +

(
‖ f ‖Lσ (�) + ‖ f ‖2H−1(�)

)2)
. (7.7)

where σ = 3t
t+3 = 6r

4r+3 ≤ 4
3 . Note that σ < s for r ≥ 2.

If for some r ∈]6,∞] and real number ε > 0, f is in Ls+ε(�)3, then (u, p) is in
W 1,r (�)3 × Lr (�) with

‖∇ u‖Lr (�) + ‖p‖Lr (�) ≤ Cε

(
‖ f ‖Ls+ε (�) + ‖∇ u‖2Ltε (�)

)
, (7.8)

where

tε = 6(s + ε)

3 + (s + ε)
+ ε, (7.9)

and the constant Cε depends only on ε. In particular, we have for 6 < r < ∞

‖∇ u‖Lr (�) + ‖p‖Lr (�) ≤ Cε

(
‖ f ‖Ls+ε (�) +

(
‖ f ‖Lσ+ε (�) + ‖ f ‖2H−1(�)

)2)
,

(7.10)
provided ε ≤ 3

r+3 . The case r = ∞ requires one more iteration:

‖∇ u‖L∞(�) + ‖p‖L∞(�) ≤ Cε

(
‖ f ‖L3+ε (�) +

(
‖ f ‖

L
3
2+ε

(�)

+ (‖ f ‖
L

4
3 (�)

+ ‖ f ‖2H−1(�)

)2)2
)

, (7.11)

provided 0 < ε ≤ 3
2 .
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The estimates above can be summarized by introducing functionals Ms,ε defined
on Lebesgue functions by

Mr,ε( f ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖ f ‖
L

3r
r+3 (�)

+ ‖ f ‖2
H−1(�)

2 < r ≤ 3

‖ f ‖
L

3r
r+3 (�)

+
(

‖ f ‖
L

6r
4r+3 (�)

+ ‖ f ‖2
H−1(�)

)2
3 < r ≤ 6

‖ f ‖
L

3r
r+3 +ε

(�)
+
(

‖ f ‖
L

6r
4r+3 +ε

(�)
+ ‖ f ‖2

H−1(�)

)2
6 < r < ∞

‖ f ‖L3+ε (�) +
(
‖ f ‖

L
3
2 +ε

(�)
+ (‖ f ‖

L
4
3 (�)

+ ‖ f ‖2
H−1(�)

)2)2
r = ∞.

(7.12)

Then Lemma 9 and (7.2) imply that

‖∇ u‖L2(�) ≤ ‖ f ‖H−1(�)

‖p‖L2(�) ≤ C
(
‖ f ‖H−1(�) + ‖ f ‖2H−1(�)

)

‖∇ u‖Lr (�) + ‖p‖Lr (�) ≤ CεMr,ε( f ), r > 2, (7.13)

where Cε does not depend on f , and we can take ε = 0 for r ≤ 6. For 6 < r < ∞,
we must have 0 < ε ≤ 3

r+3 , and for r = ∞, we must have 0 < ε ≤ 3
2 .

Proof of Lemma 9. Let (u, p) ∈ X × M be any solution of (7.1); then (u, p) is the
solution of the Stokes problem

−� u + ∇ p = f − u · ∇ u, div u = 0. (7.14)

Let 2 < r ≤ 6, define s by (7.3) and assume that f ∈ Ls(�)3. By Sobolev’s
embedding, we have f ∈ W −1,r (�)3 and if u · ∇ u ∈ Ls(�)3, then Theorem 2
guarantees (u, p) ∈ W 1,r (�)3 × Lr (�) for r ∈]2, 6]. Our next goal is to show (7.4),
which in turn is a consequence of the estimate

‖u · ∇ u‖Ls (�) ≤ C‖∇u‖2Lt (�), (7.15)

for t satisfying (7.5). To prove (7.15), we consider a general expression of the form
aDb where D represents a first order, constant coefficient differential operator. For
example, we will be interested in the cases aDb = a · ∇ b and aDb = a∇ · b. Then
Hölder’s inequality implies

‖aDb‖Ls (�) ≤ ‖a‖
L

st
t−s (�)

‖b‖W 1,t (�),

which holds for s < t < ∞. We now invoke Sobolev’s inequality to choose t such
that

‖a‖
L

st
t−s (�)

≤ C‖a‖W 1,t (�).
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We thus impose t = 6s
s+3 = 6r

2r+3 . Therefore

‖aDb‖Ls (�) ≤ ‖a‖W 1,t (�)‖b‖W 1,t (�). (7.16)

This proves (7.4).
To prove (7.6), we use the fact that r ≤ 3 implies t ≤ 2 in (7.4), and then we use

(7.2).
We now use (7.6) to estimate ‖∇u‖Lt (�) which appears in (7.4):

‖∇ u‖Lt (�) + ‖p‖Lt (�) ≤ C
(
‖ f ‖Lσ (�) + ‖ f ‖2H−1(�)

)
, (7.17)

valid for 2 < t ≤ 3, where

σ = 3t

t + 3
= 6r

4r + 3
. (7.18)

To prove (7.7), we use the fact that r ≤ 6 implies t ≤ 12
5 , and thus we can apply

(7.17) together with (7.4).
When r > 6, we use Theorem 4 with ε instead of δ:

‖∇ u‖Lr (�) + ‖p‖Lr (�) ≤ Cε

(‖ f ‖Ls+ε (�) + ‖u · ∇ u‖Ls+ε (�)

)
. (7.19)

To simplify, we set sε := s + ε. Note that since s ≤ 3, and the expression for tε in
(7.9) is monotonic, we have

tε = 6(s + ε)

3 + (s + ε)
+ ε ≤ 6(3 + ε)

6 + ε
+ ε ≤ 3 + 2ε. (7.20)

Since s ∈]2, 3], an easy computation shows that

tε := 6sε

sε + 3
+ ε > sε;

therefore (7.16) holds with s and t replaced respectively by sε and tε . Now, if tε < 3,
Sobolev’s inequality yields W 1,tε (�) ⊂ Lq(�) for any q ≤ 3tε

3−tε
. But sε tε

tε−sε
≤ 3tε

3−tε
if

and only if tε ≥ 6sε
sε+3 , which is true by (7.9). Finally, if tε ≥ 3, the above embedding

holds for any q. Hence

‖u · ∇ u‖Ls+ε (�) ≤ C‖∇u‖2Ltε (�), (7.21)

Therefore (7.8) follows.
When r < ∞, we have tε < 3 provided ε ≤ 3−s

3 = 3
r+3 (so s + ε ≤ 3 − 2ε):

tε = 6(s + ε) + ε(s + ε + 3)

s + ε + 3
≤ 3(s + ε) + 3(3 − 2ε) + ε(6 − 2ε)

s + ε + 3

= 3(s + ε) + 9 − 2ε2

s + ε + 3
< 3. (7.22)
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Thus (7.19), combined with (7.17) and (7.21), implies

‖∇ u‖Lr (�) + ‖p‖Lr (�) ≤ Cε

(
‖ f ‖Ls+ε (�) +

(
‖ f ‖Lσε (�) + ‖ f ‖2H−1(�)

)2)
,

(7.23)
with σε = 3tε

tε+3 . Using the auxiliary function φ(x) = x
x+3 , we can further estimate

tε = 6φ(s + ε) + ε ≤ 6φ(s) + (6φ′(2) + 1)ε = t +
(
18

25
+ 1

)
ε < t + 2ε, (7.24)

because s ≥ 2 and φ′(x) = 3
(x+3)2

. For r ≥ 6, t ≥ 12
5 and φ′( 125 ) ≤ 1

8 , whence

σε = 3tε
tε + 3

= 3φ(tε) ≤ 3φ(t) + 6φ′
(
12

5

)
ε ≤ σ + 3

4
ε, (7.25)

and this proves (7.10).
For r = ∞, we use (7.19), (7.21), and (7.20) with s = 3:

‖∇ u‖L∞(�) + ‖p‖L∞(�) ≤ Cε

(
‖ f ‖L3+ε (�) + ‖∇ u‖2Ltε (�)

)
,

where tε ≤ 3 + 2ε. We now apply (7.7) for r = 3 + ε̂, ε̂ > 0. We have s = 9+3ε̂
6+ε̂

≤
1
2 (3 + ε̂) from (7.3), and moreover if 0 < ε̂ ≤ 3,

σε̂ = 6(3 + ε̂)

4(3 + ε̂) + 3
= 18 + 6ε̂

15 + 4ε̂
≤ 4

3
, (7.26)

so (7.7) implies

‖∇ u‖L3+ε̂ (�) + ‖p‖L3+ε̂ (�) ≤ Cε

(
‖ f ‖

L
1
2 (3+ε̂)

(�)
+ (‖ f ‖

L
4
3 (�)

+ ‖ f ‖2H−1(�)

)2)
.

(7.27)
Then (7.11) follows from (7.27) with ε̂ = 2ε, with a constant Cε that depends only

on ε. ��

7.2 Finite element approximation

The finite element approximation of (7.1) is the pair (uh, ph) ∈ Xh × Mh which
solves

∫

�

∇ uh : ∇ vh dx −
∫

�

ph div vh dx + bι(uh, uh, vh) = 〈 f , vh〉 ∀vh ∈ Xh,

∫

�

qh div uh dx = 0 ∀qh ∈ Mh,

(7.28)
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where we can pick either ι = 0 or ι = 1 and

bι(uh, vh,wh) =
∫

�

(uh · ∇ vh) · wh dx + ι

2

∫

�

div uh(vh · wh) dx.

The second term in b1 is consistent and makes b1 skew-symmetric, namely,

b1(uh, uh, uh) = 0.

This leads to a stronger stability result that could have significant implications in
practice.

Lemma 10 Suppose that the assumptions on Xh and Mh in Sects. 1.8 and 1.9 hold.
Then there is a constant C independent of f and h, and a constant h0 such that, for
0 < h ≤ h0, there is at least one solution (uh, ph) to (7.28) and it satisfies

‖uh‖H1(�) ≤ C‖ f ‖H−1(�),

‖ph‖L2(�) ≤ C
(
‖ f ‖H−1(�) + ‖ f ‖2H−1(�)

)
. (7.29)

For the stabilized projection (ι = 1), h0 is independent of f and all solutions satisfy
(7.29); for the case ι = 0, h0 depends on f .

Proof In the stabilized case (ι = 1), the result follows by taking vh = uh in (7.28).
For the case ι = 0, see [32]. ��

Lemma 10 requires no restrictions on the size of data f . However, the classical
error bound

‖∇(u − uh)‖L2(�) + ‖p − ph‖L2(�)

≤ C inf
(vh ,qh)∈Xh×Mh

(
‖∇(u − vh)‖L2(�) + ‖p − qh‖L2(�)

)
(7.30)

is not known without stronger assumptions on f . For instance, it holds under a condi-
tion sufficient for uniqueness, namely when ‖ f ‖H−1(�) is sufficiently small (see for
instance [33] or [13]). More generally, it is also known that as long as the solution
to the continuous problem is nonsingular, discrete solutions exist satisfying (7.30) for
h ≤ h0 sufficiently small [13]. Here the constant C depends on the Jacobian of the
solution of the Navier–Stokes equations with respect to variation in Reynolds number.

7.3 Discrete a priori bounds

Owing to (6.5) and (6.12), the a priori bounds of Lemma 9 carry over to the discrete
system (7.28).

Lemma 11 Let � be convex and Th satisfy (2.7). Suppose that the assumptions on
Xh and Mh in Sects. 1.8 and 1.9 hold and assume that (uh, ph) ∈ Xh × Mh solves the
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discrete system (7.28) with data f ∈ H−1(�)3. Let r ∈ [2,∞] and define s by (7.3).
If for some r ∈]2, 6], f is in Ls(�)3, then

‖∇ uh‖Lr (�) + ‖ph‖Lr (�) ≤ C
(
‖ f ‖Ls (�) + ‖∇ uh‖2Lt (�)

)
, (7.31)

where t is defined by (7.5), that is t = 6r
3+2r , and the constant C is independent of r .

If for some r ∈]6,∞] and real number ε > 0, f is in Ls+ε(�)3, then

‖∇ uh‖Lr (�) + ‖ph‖Lr (�) ≤ Cε

(
‖ f ‖Ls+ε (�) + ‖∇ uh‖2Ltε (�)

)
, (7.32)

where tε is given by (7.9) and the constant Cε depends only on ε.

Proof All constants below are independent of r . Assume that (uh, ph) ∈ Xh × Mh

solves (7.28). We introduce the auxiliary Stokes system for (z, π) ∈ X × M given by

∫

�

∇ z : ∇ v dx −
∫

�

π div v dx = 〈 f , v〉 − bι(uh, uh, v) ∀v ∈ X,

∫

�

q div z dx = 0 ∀q ∈ M. (7.33)

Clearly (uh, ph) is the Stokes projection of (z, π). Hence (6.5) and (6.12) imply,

‖∇ uh‖Lr (�) + ‖ph‖Lr (�) ≤ C
(‖∇ z‖Lr (�) + ‖π‖Lr (�)

)
.

Thus, for 2 < r ≤ 6, (1.18) gives

‖∇ uh‖Lr (�) + ‖ph‖Lr (�) ≤ C‖ f − uh · ∇ uh − ι

2
(div uh)uh‖

L
3r

r+3 (�)
, (7.34)

and for 6 < r ≤ ∞, (1.19) with ε > 0 instead of δ yields, with a constant Cε that
depends only on ε,

‖∇ uh‖Lr (�) + ‖ph‖Lr (�) ≤ Cε‖ f − uh · ∇ uh − ι

2
(div uh)uh‖

L
3r

r+3+ε
(�)

. (7.35)

Since (div uh)uh has the same character as uh · ∇ uh in terms of using (7.16), then
(7.31) and (7.32) follow immediately from the argument of Lemma 9. ��

A discrete analogue of Lemma 9 stems from Lemma 11 by applying the same
bootstrapping argument as in Lemma 9.

Lemma 12 Let � be convex and Th satisfy (2.7). Suppose that the assumptions on
Xh and Mh in Sects. 1.8 and 1.9 hold and assume that (uh, ph) ∈ Xh × Mh is any
solution of (7.28), with data f ∈ H−1(�)3, that satisfies (7.29). If r ∈]2, 6] and

f ∈ L
3r

r+3 (�)3, then

‖∇ uh‖Lr (�) + ‖ph‖Lr (�) ≤ CMr,0( f ), (7.36)
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where the constant C is independent of h and r. If r ∈]6,∞] and f ∈ L
3r

r+3+ε(�)3

for some real number ε ∈]0, 3
r+3 ] when r < ∞ and ε ∈]0, 3

2 ] when r = ∞, then

‖∇ uh‖Lr (�) + ‖ph‖Lr (�) ≤ CεMr,ε( f ) (7.37)

where Cε depends only on ε. The above estimates hold for 0 < h ≤ h0, where h0
is independent of f for the stabilized projection (ι = 1), and for the case ι = 0, h0
depends on f .

7.4 Error estimates

In a convex polyhedron, the preceding analysis can be easily adapted to yield estimates
for the error (u− uh, p − ph), assuming that the exact solution is sufficiently smooth.
To this end, we regard again (7.1) as a Stokes system, as in (7.14), and we introduce
the Stokes projection (wh, πh) ∈ Xh × Mh of (u, p) ∈ X × M :

∫

�

∇ wh : ∇ vh dx −
∫

�

πh div vh dx = 〈 f , vh〉

−
∫

�

(u · ∇ u) · vh dx, ∀vh ∈ Xh,

∫

�

qh divwh dx = 0 ∀qh ∈ Mh .

(7.38)

Then the difference (wh −uh, πh − ph) is the Stokes projection of (z, q) ∈ X × M
that solves

∫

�

∇ z : ∇ v dx −
∫

�

q div v dx =
∫

�

((
uh · ∇(uh − u)

)+ ((uh − u) · ∇ u
)

+ ι

2
div(uh − u)uh

)
· v dx, ∀v ∈ X,

∫

�

y div z dx = 0 ∀y ∈ M. (7.39)

All constants below are independent of h and r . On one hand, under the assumptions
of Sect. 6.3, Corollary 6 for the Stokes system implies that for all r ∈ [2,∞],

‖∇(u − wh)‖Lr (�) + ‖p − πh‖Lr (�)

≤ C inf
(vh ,qh)∈Xh×Mh

(
‖∇(u − vh)‖Lr (�) + ‖p − qh‖Lr (�)

)
. (7.40)
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On the other hand, for 2 < r ≤ 6, we infer from the argument of Lemma 11 [see
(7.34)] that

‖∇(wh − uh)‖Lr (�) + ‖πh − ph‖Lr (�) ≤ C
(‖∇ uh‖Lt (�)

+ ‖∇ u‖Lt (�)

)‖∇(uh − u)‖Lt (�),

(7.41)

with t defined by (7.5), that is t = 6r
3+2r , and the constant C is independent of r .

Similarly, for 6 < r ≤ ∞ and ε > 0 [see (7.35)],

‖∇(wh − uh)‖Lr (�) + ‖πh − ph‖Lr (�) ≤ Cε

(‖∇ uh‖Ltε (�)

+ ‖∇ u‖Ltε (�)

)‖∇(uh − u)‖Ltε (�),

(7.42)

where tε is given by (7.9) and the constantCε depends only on ε. It remains to combine
(7.40), (7.41), and (7.42). To simplify the notation we define

Er = ‖∇(u − uh)‖Lr (�) + ‖p − ph‖Lr (�),

Er = inf
(vh ,qh)∈Xh×Mh

(‖∇(u − vh)‖Lr (�) + ‖p − qh‖Lr (�)

)
,

for 2 ≤ r ≤ ∞. Then for 2 < r ≤ 3, by using (7.40), (7.41), (7.2), and (7.29), we
obtain

Er ≤ C
(
Er + ‖ f ‖H−1(�)‖∇(u − uh)‖L2(�)

) ≤ C
(
Er + ‖ f ‖H−1(�)E2

)
, (7.43)

since t = 6r
3+2r ≤ 2. For 3 < r ≤ 6, by using (7.40), (7.41), and (7.36), we deduce

Er ≤ C
(
Er + Mt,0( f )Et

)
. (7.44)

For 6 < r ≤ ∞, (7.40), (7.42), and (7.37) imply

Er ≤ CEr + CεMtε ,0( f )Etε, (7.45)

where tε ≤ 3+2ε is given in (7.9). Using these estimates, we can prove the following.

Lemma 13 Let � be a convex polyhedron and let (u, p) be any solution of (7.1) with
f ∈ H−1(�)3. Let the mesh Th satisfy (2.7), suppose that the assumptions on Xh and
Mh in Sects. 1.8 and 1.9 hold, and assume that (uh, ph) ∈ Xh × Mh is any solution
of (7.28), with data f ∈ H−1(�)3, that satisfies (7.29). Suppose that 2 < r ≤ 6 and

f ∈ L
3r

r+3 (�)3. For 2 < r ≤ 3,

Er ≤ C
(
Er + ‖ f ‖H−1(�)‖∇(u − uh)‖L2(�)

)
, (7.46)
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and for r ∈]3, 6],

Er ≤ C
(
Er + M 12

5 ,0( f )
(
E 12

5
+ ‖ f ‖H−1(�)‖∇(u − uh)‖L2(�)

))
. (7.47)

If f is in L
3r

r+3+ε(�)3 for some 6 < r < ∞ and 0 < ε ≤ 3
r+3 , then

Er ≤ CEr + CεM3,0( f )
(
E3 + ‖ f ‖H−1(�)‖∇(u − uh)‖L2(�)

)
, (7.48)

where Cε depends only on ε. Finally, for r = ∞ and 0 < ε ≤ 3
2 ,

E∞ ≤ CE∞+CεM3+2ε,0( f )
(
E3+2ε +M 12

5 ,0( f )
(
E 12

5
+‖ f ‖H−1(�)‖∇(u−uh)‖L2(�)

))
.

(7.49)
In all cases, C and Cε are independent of f , h and r.

Proof When 2 < r ≤ 3, Eq. (7.46) is the same as (7.43). For 3 < r ≤ 6, we have
t ≤ 12

5 ; hence (7.44), (7.12), and (7.46) with r = 12
5 prove (7.47). When r ∈]6,∞[,

we can choose tε < 3 in (7.9) and next use (7.45) together with (7.46) to show that

Er ≤ CEr + CεMtε ,0( f )Etε

≤ CEr + CεM3,0( f )E3

≤ CEr + CεM3,0( f )
(
E3 + ‖ f ‖H−1(�)‖∇(u − uh)‖L2(�)

)
, (7.50)

which is (7.48). When r = ∞, we have tε ≤ 3 + 2ε from (7.24) and can use (7.45)
together with (7.47) to show that

E∞ ≤ CE∞ + CεM3+2ε,0( f )E3+2ε

≤ CE∞ + CεM3+2ε,0( f )
(
E3+2ε + M 12

5 ,0( f )
(
E 12

5

+ ‖ f ‖H−1(�)‖∇(u − uh)‖L2(�)

))
, (7.51)

which is (7.49). ��
Lemma 13 is unusual in that it gives a bound on the difference between u and uh

even if they are not related in any particular way. The nonlinear problems can have
multiple solutions, and Lemma 13 applies to all such pairs of (continuous and discrete)
solutions. What it says is: if the pair is close in one norm (here, the L2 norm), then it
will be close in another (finer) norm.

To complete the error analysis, we must control ‖∇(u − uh)‖L2(�) for which we
recall (7.30), which states that

E2 ≤ CE2, (7.52)

for h ≤ h0 sufficiently small. The following theorem extends (7.52) for Lebesgue
exponents greater than two and complements the statement of Lemma 13.
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Theorem 15 Let � be a convex polyhedron, and the mesh Th satisfy (2.7). Let the
solution (u, p) of (7.1) satisfy (u, p) ∈ W 1,r (�)3 × Lr (�) for some 2 ≤ r ≤ ∞
along with (7.52) for h ≤ h0 sufficiently small. There is a constant C, independent of
f , r , and h0, such that for 2 < r ≤ 3, there is a solution (uh, ph) satisfying

Er = ‖∇(u − uh)‖Lr (�) + ‖p − ph‖Lr (�) ≤ C
(
Er + ‖ f ‖H−1(�)E2

)
, (7.53)

and for 3 < r ≤ 6,

Er ≤ C
(
Er + M 12

5 ,0( f )
(
E 12

5
+ ‖ f ‖H−1(�)E2

))
. (7.54)

If f is in L
3r

r+3+ε(�)3 for some 6 < r < ∞ and 0 < ε ≤ 3
r+3 , then

Er ≤ CEr + CεM3,0( f )
(
E3 + ‖ f ‖H−1(�)E2

)
, (7.55)

and, for r = ∞, if f is in L3+ε(�)3 and 0 < ε ≤ 3
2 , then

E∞ ≤ CE∞ + CεM3+2ε,0( f )
(
E3+2ε + M 12

5 ,0( f )
(
E 12

5
+ ‖ f ‖H−1(�)E2

))
,

(7.56)
where Cε depends only on ε. The above estimates hold for h ≤ h0, where h0 depends
on f if (7.28) is used with ι = 0 (nonconservative scheme), but h0 is independent of
f if (7.28) is used with ι = 1 (conservative scheme).
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