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Abstract We study the question of approximability for the inverse of the FEM stiff-
ness matrix for (scalar) second order elliptic boundary value problems by blockwise
low rank matrices such as those given by the H-matrix format introduced by Hack-
busch (Computing 62(2):89–108, 1999). We show that exponential convergence in
the local block rank r can be achieved. We also show that exponentially accurate
LU -decompositions in the H-matrix format are possible for the stiffness matrices
arising in the FEM. Our analysis avoids any coupling of the block rank r to the
mesh width h. We also cover fairly general boundary conditions of mixed Dirichlet–
Neumann–Robin boundary conditions.

Mathematics Subject Classification 65F05 · 65N30 · 65F30 · 65F50

1 Introduction

The format ofH-matrices was introduced in [27] as blockwise low-rank matrices that
permit storage, application, and even a full (approximate) arithmetic with log-linear
complexity, [20,22,28]. This data-sparse format is well suited to represent at high
accuracy matrices arising as discretizations of many integral operators, for example,
those appearing in boundary integral equation methods. Also the sparse matrices that
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616 M. Faustmann et al.

are obtained when discretizing differential operator by means of the finite element
method (FEM) are amenable to a treatment byH-matrices; in fact, they feature a loss-
less representation. Since theH-matrix format comes with an arithmetic that provides
algorithms to invert matrices as well as to compute LU -factorizations, approximations
of the inverses of FEMmatrices or their LU -factorizations are available computation-
ally. Immediately, the question of accuracy and/or complexity comes into sight. On the
one hand, the complexity of theH-matrix inversion can be log-linear if theH-matrix
structure including the block ranks is fixed [20,22,28]. Then, however, the accuracy
of the resulting approximate inverse is not completely clear. On the other hand, the
accuracy of the inverse can be controlled by means of an adaptive arithmetic (going
back at least to [20]); the computational cost at which this error control comes, is
problem-dependent and not completely clear. Therefore, a fundamental question is
how well the inverse can be approximated in a selected H-matrix format, irrespec-
tive of algorithmic considerations. This question is answered in the present paper for
FEM matrices arising from the discretization of second order elliptic boundary value
problems.

It was first observed numerically in [20] that the inverse of the finite element (FEM)
stiffness matrix corresponding to the Dirichlet problem for elliptic operators with
bounded coefficients can be approximated in the format of H-matrices with an error
that decays exponentially in the block rank employed. Using properties of the continu-
ous Green’s function for the Dirichlet problem [4] proves this exponential decay in the
block rank, at least up to the discretization error. Thework [6] improves on the result [4]
in several ways, in particular, by proving a corresponding approximation result in the
framework of H2-matrices; we do not go into the details of H2-matrices here and
merely mention that H2-matrices are a refinement of the concept ofH-matrices with
better complexity properties, [7,18,29,30].

Whereas the analysis of [4,6] is based on the solution operator on the continuous
level (i.e., by studying theGreen’s function), the approach taken in the present article is
towork on the discrete level. This seemingly technical difference has several important
ramifications: First, the exponential approximability in the block rank shown here is
not limited by the discretization error as in [4,6]. Second, in contrast to [4,6], where
the block rank r and the mesh width h are coupled by r ∼ |log h|, our estimates are
explicit in both r and h. Third, a unified treatment of a variety of boundary conditions
is possible and indeed worked out by us. Fourth, our approach paves the way for
a similar approximability result for discretizations of boundary integral operators,
[16,17]. Additionally, we mention that we also allow here the case of higher order
FEM discretizations.

The last theoretical part of this paper (Sect. 5) shows that theH-matrix format admits
H-LU -decompositions or H-Cholesky factorizations with exponential accuracy in
the block rank. This is achieved, following [3,11], by exploiting that the off-diagonal
blocks of certain Schur complements are low-rank. Such an approach is closely related
to the concepts of hierarchically semiseparable matrices (see, for example, [36,42,43]
and references therein) and recursive skeletonization (see [26,32]) and their arithmetic.
In fact, several multilevel “direct” solvers for PDE discretizations have been proposed
in the recent past, [19,31,38,39]. These solvers take the form of (approximate) matrix
factorizations. A key ingredient to their efficiency is that certain Schur complement
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H-matrix approximability of the inverses of FEM matrices 617

blocks are compressible since they are low-rank. Thus, our analysis in Sect. 5 could
also be of value for the understanding of these algorithms. We close by stressing
that our analysis in Sect. 5 of H-LU -decompositions makes very few assumptions
on the actual ordering of the unknowns and does not explore beneficial features of
special orderings. It is well-known in the context of classical direct solvers that the
ordering of the unknowns has a tremendous impact on the fill-in in factorizations. One
of the most successful techniques for discretizations of PDEs are multilevel nested
dissection strategies, which permit to identify largematrix blocks that will not be filled
during the factorization. An in-depth complexity analysis for theH-matrix arithmetic
for such ordering strategies can be found in [25]. The recent works [19,31] and, in a
slightly different context, [5], owe at least parts of their efficiency to the use of nested
dissection techniques.

2 Main results

Let� ⊂ R
d , d ∈ {2, 3}, be a bounded polygonal (for d = 2) or polyhedral (for d = 3)

Lipschitz domain with boundary � := ∂�. We consider differential operators of the
form

Lu := −div(C∇u) + b · ∇u + βu, (1)

where b ∈ L∞(�;Rd), β ∈ L∞(�), and C ∈ L∞(�;Rd×d) is pointwise symmetric
with

c1 ‖y‖22 ≤ 〈C(x)y, y〉2 ≤ c2 ‖y‖22 ∀y ∈ R
d , (2)

with certain constants c1, c2 > 0.
For f ∈ L2(�), we consider the mixed boundary value problem

Lu = f in �, (3a)

u = 0 on �D, (3b)

C∇u · n = 0 on �N , (3c)

C∇u · n + αu = 0 on �R, (3d)

where n denotes the outer normal vector to the surface �, α ∈ L∞(�R), α > 0
and � = �D ∪ �N ∪ �R, with the pairwise disjoint and relatively open subsets
�D, �N , �R. With the trace operator γ int

0 we define H1
0 (�, �D) := {u ∈ H1(�) :

γ int
0 u = 0 on �D}. The bilinear form a : H1

0 (�, �D) × H1
0 (�, �D) → R corre-

sponding to (3) is given by

a(u, v) := 〈C∇u,∇v〉L2(�) + 〈b · ∇u + βu, v〉L2(�) + 〈αu, v〉L2(�R) . (4)

We additionally assume that the coefficients α,C,b, β are such that the coercivity

‖u‖2H1(�)
≤ Ca(u, u) (5)

of the bilinear form a(·, ·) holds. Then, the Lax–Milgram Lemma implies the unique
solvability of the weak formulation of our model problem.
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For the discretization, we assume that � is triangulated by a quasiuniform mesh
Th = {T1, . . . , TN } of mesh width h := maxTj∈Th diam(Tj ), and the Dirichlet �D ,
Neumann �N , and Robin �R-parts of the boundary are resolved by the mesh Th .
The elements Tj ∈ Th are triangles (d = 2) or tetrahedra (d = 3), and we assume
that Th is regular in the sense of Ciarlet. The nodes are denoted by xi ∈ Nh , for
i = 1, . . . , N . Moreover, the mesh Th is assumed to be γ -shape regular in the sense of
h ∼ diam(Tj ) ≤ γ |Tj |1/d for all Tj ∈ Th . In the following, the notation� abbreviates
≤ up to a constant C > 0 which depends only on �, the dimension d, and γ -shape
regularity of Th . Moreover, we use � to abbreviate that both estimates � and � hold.

We consider the Galerkin discretization of the bilinear form a(·, ·) by continu-
ous, piecewise polynomials of fixed degree p ≥ 1 in S p,1

0 (Th, �D) := S p,1(Th) ∩
H1
0 (�, �D) with S p,1(Th) = {u ∈ C(�) : u|Tj ∈ Pp, ∀ Tj ∈ Th}, where Pp

denotes the space of polynomials of degree p. We choose a basis of S p,1
0 (Th, �D),

which is denoted byBh := {ψ j : j = 1, . . . , N }. Given that our results are formulated
for matrices, assumptions on the basis Bh need to be imposed. For the isomorphism
J : RN → S p,1

0 (Th, �D), x �→ ∑N
j=1 x jψ j , we require

hd/2 ‖x‖2 � ‖J x‖L2(�) � hd/2 ‖x‖2 , ∀ x ∈ R
d . (6)

Remark 1 Standard bases for p = 1 are the classical hat functions satisfyingψ j (xi ) =
δi j and for p ≥ 2 we refer to, e.g., [13,34,40].

The Galerkin discretization of (4) results in a positive definite matrix A ∈ R
N×N

with

A jk = 〈
C∇ψk,∇ψ j

〉
L2(�)

+ 〈
b · ∇ψk + βψk, ψ j

〉
L2(�)

+ 〈
αψk, ψ j

〉
L2(�R)

, ψk, ψ j ∈ Bh . (7)

Our goal is to derive anH-matrix approximationBH of the inversematrixB = A−1.
An H-matrix BH is a blockwise low rank matrix based on the concept of “admissi-
bility”, which we now introduce:

Definition 1 (Bounding boxes and η-admissibility) A cluster τ is a subset of the index
set I = {1, . . . , N }. For a cluster τ ⊂ I, we say that BRτ ⊂ R

d is a bounding box if:

(i) BRτ is a hyper cube with side length Rτ ,
(ii) suppψ j ⊂ BRτ for all j ∈ τ .

For η > 0, a pair of clusters (τ, σ ) with τ, σ ⊂ I is η-admissible, if there exist
boxes BRτ , BRσ satisfying (i)–(ii) such that

max{diamBRτ , diamBRσ } ≤ η dist(BRτ , BRσ ). (8)

Definition 2 (blockwise rank-r matrices) Let P be a partition of I × I and η > 0
an admissibility parameter. A matrix BH ∈ R

N×N is said to be a blockwise rank-r
matrix, if for every η-admissible cluster pair (τ, σ ) ∈ P , the block BH|τ×σ is a rank-r
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matrix, i.e., it has the formBH|τ×σ = XτσYT
τσ withXτσ ∈ R

|τ |×r andYτσ ∈ R
|σ |×r .

Here and below, |σ | denotes the cardinality of a finite set σ , and B|τ×σ ∈ R
|τ |×|σ |

denotes the τ × σ subblock of a matrix B as a |τ | × |σ |-matrix.

The following theorems are the main results of this paper. Theorem 1 shows that
admissible blocks can be approximated by rank-r matrices:

Theorem 1 Fix the admissibility parameter η > 0, q ∈ (0, 1). Let the cluster pair
(τ, σ ) be η-admissible. Then, for k ∈ N there are matrices Xτσ ∈ R

|τ |×r , Yτσ ∈
R

|σ |×r of rank r ≤ Cdim(2 + η)dq−dkd+1 such that

∥
∥
∥A−1|τ×σ − XτσYT

τσ

∥
∥
∥
2

≤ CapxNqk . (9)

The constants Capx,Cdim > 0 depend only on the boundary value problem (3), �, d,
p, and the γ -shape regularity of the quasiuniform triangulation Th.
The approximations for the individual blocks can be combined to gauge the approx-
imability of A−1 by blockwise rank-r matrices. Particularly satisfactory estimates are
obtained if the blockwise rank-r matrices have additional structure. To that end, we
introduce the following definitions.

Definition 3 (Cluster tree) A cluster tree with leaf size nleaf ∈ N is a binary tree TI
with root I such that for each cluster τ ∈ TI the following dichotomy holds: either τ

is a leaf of the tree and |τ | ≤ nleaf , or there exist sons τ ′, τ ′′ ∈ TI , which are disjoint
subsets of τ with τ = τ ′ ∪ τ ′′. The level function level : TI → N0 is inductively
defined by level(I) = 0 and level(τ ′) := level(τ ) + 1 for τ ′ a son of τ . The depth of
a cluster tree is depth(TI) := maxτ∈TI level(τ ).

Definition 4 (Far field, near field, and sparsity constant) A partition P of I × I is
said to be based on the cluster tree TI , if P ⊂ TI × TI . For such a partition P and
fixed admissibility parameter η > 0, we define the far field and the near field as

Pfar := {(τ, σ ) ∈ P : (τ, σ ) is η-admissible }, Pnear := P\Pfar.

The sparsity constant Csp, introduced in [20], of such a partition is defined by

Csp := max

{

max
τ∈TI

|{σ ∈ TI : τ × σ ∈ Pfar}| , max
σ∈TI

|{τ ∈ TI : τ × σ ∈ Pfar}|
}

.

The following Theorem 2 shows that the matrix A−1 can be approximated by
blockwise rank-r matrices at an exponential rate in the block rank r :

Theorem 2 Fix the admissibility parameter η > 0. Let a partition P of I × I be
based on a cluster tree TI . Then, there is a blockwise rank-r matrix BH such that

∥
∥
∥A−1 − BH

∥
∥
∥
2

≤ CapxCspNdepth(TI)e−br1/(d+1)
. (10)

The constants Capx, b > 0 depend only on the boundary value problem (3), �, d, p,
and the γ -shape regularity of the quasiuniform triangulation Th.
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Remark 2 Typical clustering strategies such as the “geometric clustering” described in
[28] and applied to quasiuniform meshes withO(N ) elements lead to fairly balanced
cluster trees TI of depthO(log N ) and feature a sparsity constant Csp that is bounded
uniformly in N . We refer to [28] for the fact that the memory requirement to store BH
is O((r + nleaf)N log N ).

Remark 3 With the estimate 1‖A−1‖2
� N−1 from [14, Theorem 2], we get a bound

for the relative error

∥
∥A−1 − BH

∥
∥
2∥

∥A−1
∥
∥
2

� CapxCspdepth(TI)e−br1/(d+1)
. (11)

Let us conclude this section with an observation concerning the admissibility con-
dition (8). If the operator L is symmetric, i.e., b = 0, then the admissibility condition
(8) can be replaced by the weaker admissibility condition

min{diamBRτ , diamBRσ } ≤ η dist(BRτ , BRσ ). (12)

This follows from the fact that Proposition 1 only needs an admissibility criterion of
the form diamBRτ ≤ η dist(BRτ , BRσ ). Due to the symmetry of L , deriving a block
approximation for the block τ × σ is equivalent to deriving an approximation for the
block σ × τ . Therefore, we can interchange roles of the boxes BRτ and BRσ , and as a
consequence the weaker admissibility condition (12) is sufficient. We summarize this
observation in the following corollary.

Corollary 1 In the symmetric case b = 0, the results from Theorems 1 and 2 hold
verbatim with the weaker admissibility criterion (12) instead of (8).

3 Low-dimensional approximation of the Galerkin solution on admissible
blocks

In terms of functions and function spaces, the question of approximating the matrix
block A−1|τ×σ by a low-rank factorization XτσYT

τσ can be rephrased as one of how
well one can approximate locally the solution of certain variational problems. More
precisely, we consider, for data f supported by BRσ ∩ �, the problem to find φh ∈
S p,1
0 (Th, �D) such that

a(φh, ψh) = 〈 f, ψh〉L2(�), ∀ψh ∈ S p,1
0 (Th, �D). (13)

We remark in passing that existence and uniqueness of φh follow from coercivity
of a(·, ·). The question of approximating the matrix block A−1|τ×σ by a low-rank
factorization is intimately linked to the question of approximating φh |BRτ ∩� from low-
dimensional spaces. The latter problem is settled in the affirmative in the following
proposition for η-admissible cluster pairs (τ, σ ):
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Proposition 1 Let (τ, σ ) be a cluster pair with bounding boxes BRτ , BRσ . Assume
that η dist(BRτ , BRσ ) ≥ diam(BRτ ) for a fixed admissibility parameter η > 0. Fix

q ∈ (0, 1). Let �L2 : L2(�) → S p,1
0 (Th, �D) be the L2(�)-orthogonal projection.

Then, for each k ∈ N there exists a space Vk ⊂ S p,1
0 (Th, �D)with dim Vk ≤ Cdim(2+

η)dq−dkd+1 such that for arbitrary f ∈ L2(�) with supp f ⊂ BRσ ∩ � ⊂ Fτ :=
{x ∈ � : η dist(x, BRτ ) ≥ diam(BRτ )}, the solution φh of (13) satisfies

min
v∈Vk

‖φh − v‖L2(BRτ ∩�) ≤ Cboxq
k‖�L2

f ‖L2(�) ≤ Cboxq
k‖ f ‖L2(BRσ ∩�). (14)

The constant Cbox > 0 depends only on the boundary value problem (3) and �, while
Cdim > 0 additionally depends on p, d, and the γ -shape regularity of the quasiuniform
triangulation Th.

The proof of Proposition 1will be given at the end of this section. The basic steps are
as follows: First, one observes that supp f ⊂ BRσ ∩ � together with the admissibility
condition dist(BRτ , BRσ ) ≥ η−1diam(BRτ ) > 0 imply the orthogonality condition

a(φh, ψh)=〈 f, ψh〉L2(BRσ ∩�) =0, ∀ψh ∈ S p,1
0 (Th, �D)with suppψh ⊂ BRτ ∩ �.

(15)
Second, this observationwill allow us to prove a Caccioppoli-type estimate (Lemma 2)
inwhich stronger norms ofφh are estimated byweaker norms ofφh on slightly enlarged
regions. Third, we proceed as in [4,6] by iterating an approximation result (Lemma 3)
derived from Scott–Zhang interpolation of the Galerkin solution φh . This iteration
argument accounts for the exponential convergence (Lemma 4).

3.1 The space Hh(D, ω) and a Caccioppoli type estimate

It will be convenient to introduce, for index sets ρ ⊂ I, the set

ωρ := interior

⎛

⎝
⋃

j∈ρ

suppψ j

⎞

⎠ ⊆ �; (16)

wewill implicitly assumehenceforth that such sets are unions of elements. Let D ⊂ R
d

be a bounded open set and ω ⊂ � be of the form (16). The orthogonality property
that we have identified in (15) is captured by the following space Hh(D, ω):

Hh(D, ω) :=
{
u∈H1(D ∩ ω) : ∃ũ∈ S p,1

0 (Th, �D) s.t. u|D∩ω = ũ|D∩ω, supp ũ ⊂ ω,

a(u, ψh) = 0, ∀ ψh ∈ S p,1
0 (Th, �D)with suppψh ⊂ D ∩ ω

}
. (17)

For the proof of Proposition 1 and subsequently Theorems 1 and 2, we will only need
the special case ω = �; the general case Hh(D, ω) with ω �= � will be required in
our analysis of LU -decompositions in Sect. 5.2.
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Clearly, the finite dimensional spaceHh(D, ω) is a closed subspace of H1(D∩ω),
and we have φh ∈ Hh(BRτ , �) for the solution φh of (13) with supp f ⊂ BRσ ∩ �

and bounding boxes BRτ , BRσ that satisfy the η-admissibility criterion (8). Since
multiplications of elements of Hh(D, ω) with cut-off function and trivial extensions
to � appear repeatedly in the sequel, we note the following very simple lemma:

Lemma 1 Let ω be a union of elements, D ⊂ R
d be bounded and open, and η ∈

W 1,∞(Rd) with supp η ⊂ D. For u ∈ Hh(D, ω) define the function ηu pointwise on
� by (ηu)(x) := η(x)u(x) for x ∈ D ∩ ω and (ηu)(x) = 0 for x /∈ D ∩ ω. Then

(i) ηu ∈ H1
0 (�;�D)

(ii) supp(ηu) ⊂ D ∩ ω

(iii) If η ∈ Sq,1(Th), then ηu ∈ S p+q,1
0 (Th, �D).

Proof We only illustrate (i). Given u ∈ Hh(D, ω) there exists by definition a function
ũ ∈ S p,1

0 (Th, �D) with supp ũ ⊂ ω. By the support properties of η and ũ, the function
ηu coincideswith ηũ. As the product of an H1(�)-function and a Lipschitz continuous
function, the function ηũ is in H1(�).

A main tool in our proofs is the nodal interpolation operator Jh : C(�) →
S p,1
0 (Th, �D). Since p + 1 > d

2 , the interpolation operator Jh has the follow-
ing local approximation property for continuous, Th-piecewise H p+1-functions u ∈
C(�) ∩ H p+1

pw (Th, ω) := {u ∈ L2(ω) : u|T ∈ H p+1(T )∀ T ∈ Th}

‖u − Jhu‖2Hm (T ) ≤ Ch2(p+1−m) |u|2H p+1(T )
, 0 ≤ m ≤ p + 1. (18)

The constantC > 0 depends only on γ -shape regularity of the quasiuniform triangula-
tion Th , the dimension d, and the polynomial degree p. In particular, it is independent
of the choice of the set ω.

In the following, we will construct approximations on nested boxes and therefore
introduce the notion of concentric boxes.

Definition 5 (Concentric boxes) Two boxes BR , BR′ of side length R, R′ are said to
be concentric, if they have the same barycenter and BR can be obtained by a stretching
of BR′ by the factor R/R′ taking their common barycenter as the origin.

For a box BR with side length R ≤ 2 diam(�), we introduce the norm

|||u|||2h,R :=
(
h

R

)2

‖∇u‖2L2(BR∩ω)
+ 1

R2
‖u‖2L2(BR∩ω)

,

which is, for fixed h, equivalent to the H1-norm.
The following lemma states a discrete Caccioppoli-type estimate for functions

in Hh(B(1+δ)R, ω), where B(1+δ)R and BR are concentric boxes. In contrast to the
classical, continuous Caccioppoli inequality, an additional assumption on the size
parameters R, δ of the box B(1+δ)R compared to the mesh size h has to be made.
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H-matrix approximability of the inverses of FEM matrices 623

Lemma 2 Let δ ∈ (0, 1), R ∈ (0, 2 diam(�)) such that h
R ≤ δ

4 and let ω ⊆ � be
of the form (16). Let BR, B(1+δ)R be two concentric boxes. Let u ∈ Hh(B(1+δ)R, ω).
Then, there exists a constant Creg > 0, which depends only on the boundary value
problem (3), �, d, p, and the γ -shape regularity of the quasiuniform triangulation
Th, such that

‖∇u‖L2(BR∩ω) ≤ ‖∇u‖L2(BR∩ω) + 〈αu, u〉1/2
L2(BR∩(�R∩ω))

≤ Creg
1 + δ

δ
|||u|||h,(1+δ)R .

(19)

Proof Let η ∈ S1,1(Th) be a piecewise affine cut-off function with supp η ⊂
B(1+δ/2)R ∩ �, η ≡ 1 on BR ∩ ω, 0 ≤ η ≤ 1, and ‖∇η‖L∞(B(1+δ)R∩�) � 1

δR .

By Lemma 1 we have η2u ∈ S p+2,1
0 (Th, �D) ⊂ H1

0 (�;�D) and

supp(η2u) ⊂ B(1+δ/2)R ∩ ω. (20)

Recall that h is the maximal element diameter and 4h ≤ δR. Hence, for the nodal
interpolation operator Jh , we have supp Jh(η2u) ⊂ B(1+δ)R ; in view of the locality of
the nodal interpolation, we furthermore have supp Jh(η2u) ⊂ ω so that

supp Jh(η
2u) ⊂ B with B := B(1+δ)R ∩ ω. (21)

With the coercivity of the bilinear form a(·, ·) and 1
δR � 1

δ2R2 , since δ < 1 and
R ≤ 2 diam(�), we have

‖∇u‖2L2(BR∩ω)
+ 〈αu, u〉L2(BR∩ω∩�R) ≤ ‖∇(ηu)‖2L2(B)

+ 〈αηu, ηu〉L2(B∩�R)

(22a)

� a(ηu, ηu)

=
∫

B
C∇u · ∇(η2u) + u2C∇η · ∇η dx +

〈
b · ∇u + βu, η2u

〉

L2(B)

+ 〈b · (∇η)u, ηu〉L2(B) +
〈
αu, η2u

〉

L2(B∩�R)

�
∫

B
C∇u · ∇(η2u)dx +

〈
b · ∇u + βu, η2u

〉

L2(B)

+
〈
αu, η2u

〉

L2(B∩�R)
+ 1

δ2R2
‖u‖2L2(B)

= a(u, η2u) + 1

δ2R2
‖u‖2L2(B)

. (22b)
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Recall from (21) that supp Jh(η2u) ⊂ B. The orthogonality relation (17) in the defi-
nition of the space Hh(B, ω) therefore implies

a(u, η2u) = a(u, η2u − Jh(η
2u))

≤ ‖C‖L∞(B) ‖∇u‖L2(B)

∥
∥
∥∇(η2u − Jh(η

2u))

∥
∥
∥
L2(B)

+(‖b‖L∞(B) ‖∇u‖L2(B)+‖β‖L∞(B) ‖ηu‖L2(B)

) ∥
∥
∥η2u− Jh(η

2u)

∥
∥
∥
L2(B)

+
∣
∣
∣
∣

〈
αu, η2u − Jh(η

2u)
〉

L2(B∩�R)

∣
∣
∣
∣ . (23)

The approximation property (18) and the support properties of η2u lead to

∥
∥
∥∇(η2u − Jh(η

2u))

∥
∥
∥
2

L2(�)
� h2p

∑

T∈Th
T⊆B

∣
∣
∣η2u

∣
∣
∣
2

H p+1(T )
. (24)

By Dku, we denote the derivative Dku := ∂ |k|u
∂x

k1
1 ·...∂xkdd

with the multi-index k ∈ N
d
0

with |k| = ∑d
i=1 ki . Since, for each T ⊂ B we have u|T ∈ Pp, we get Dku|T = 0

for all multi-indices k ∈ N
d
0 with |k| = p + 1. The assumption η ∈ S1,1(Th) implies

Dkη|T = 0 for all k ∈ N
d
0 with |k| ≥ 2. With the Leibniz product rule, the right-hand

side of (24) can therefore be estimated by

∣
∣η2u

∣
∣2
H p+1(T )

=
∑

k∈Nd
0|k|=p+1

∥
∥
∥Dk (η2u)

∥
∥
∥
2

L2(T )
�

∑

k∈Nd
0|k|=p+1

∥
∥
∥
∥
∥
∥
∥
∥
∥

∑

�∈Nd
0 ,�≤k

|�|≤2

(
k
�

)

Dk−�uD�(η2)

∥
∥
∥
∥
∥
∥
∥
∥
∥

2

L2(T )

�
∑

k∈Nd
0|k|=p+1

∥
∥
∥
∥
∥
∥
∥
∥
∥

∑

�∈Nd
0 ,�≤k

|�|=1

(
k
�

)

Dk−�u(D�η)η +
∑

m∈Nd
0 ,m≤k−�

|m|=1

(
k

� + m

)

Dk−�−muD�ηDmη

∥
∥
∥
∥
∥
∥
∥
∥
∥

2

L2(T )

�
∑

k∈Nd
0|k|=p+1

∑

�∈Nd
0 ,�≤k

|�|=1

∣
∣
∣
∣

(
k
�

)∣
∣
∣
∣

2

∥
∥
∥
∥
∥
∥
∥
∥
∥

Dk−�u(D�η)η + D�η
∑

m∈Nd
0 ,m≤k−�

|m|=1

(
k
�

)−1 (
k

� + m

)

Dk−�−muDmη

∥
∥
∥
∥
∥
∥
∥
∥
∥

2

L2(T )

� 1

(δR)2

∑

k∈Nd
0|k|=p+1

∑

�∈Nd
0 ,�≤k

|�|=1

|k|2

∥
∥
∥
∥
∥
∥
∥
∥
∥

(Dk−�u)η +
∑

m∈Nd
0 ,m≤k−�

|m|=1

(
k − �

m

)

Dk−�−muDmη

∥
∥
∥
∥
∥
∥
∥
∥
∥

2

L2(T )

+ 1

(δR)2

∑

k∈Nd
0|k|=p+1

∑

�∈Nd
0 ,�≤k

|�|=1

|k|2

∥
∥
∥
∥
∥
∥
∥
∥
∥

∑

m∈Nd
0 ,m≤k−�

|m|=1

((
k
�

)−1 (
k

� + m

)

−
(
k − �

m

))

Dk−�−muDmη

∥
∥
∥
∥
∥
∥
∥
∥
∥

2

L2(T )

123



H-matrix approximability of the inverses of FEM matrices 625

� 1

(δR)2

∑

k∈Nd
0|k|=p+1

∑

�∈Nd
0 ,�≤k

|�|=1

∥
∥
∥Dk−�(uη)

∥
∥
∥
2

L2(T )
+ 1

(δR)4
|u|2H p−1(T )

� 1

(δR)2
|ηu|2H p (T ) + 1

(δR)4
|u|2H p−1(T )

,

where the suppressed constant depends on p. The inverse inequality |ηu|H p(T ) �
h−p+1 ‖∇(ηu)‖L2(T ), see, e.g., [12], leads to

∥
∥
∥∇(η2u − Jh(η

2u))

∥
∥
∥
2

L2(�)
� 1

(δR)2
h2p

∑

T∈Th
T⊆B

(

|ηu|2H p(T ) + 1

(δR)2
|u|2H p−1(T )

)

� h2

(δR)2
‖∇(ηu)‖2L2(B)

+ h2

(δR)4
‖u‖2L2(B)

� h2

(δR)4
‖u‖2L2(B)

+ h2

(δR)2
‖η∇u‖2L2(B)

. (25)

The same line of reasoning leads to

∥
∥
∥η2u − Jh(η

2u)

∥
∥
∥
L2(�)

� h2

(δR)2
‖u‖L2(B) + h2

δR
‖η∇u‖L2(B) . (26)

In order to derive an estimate for the boundary term in (23), we need a second smooth
cut-off function η̃ with supp η̃ ⊂ B(1+δ)R and η̃ ≡ 1 on supp(Jh(η2u) − η2u) and
‖∇η̃‖L∞(B(1+δ)R) � 1

δR . By Lemma 1 we can define the function η̃u ∈ H1(�) with
the support property supp η̃u ⊂ B(1+δ)R ∩ ω = B and therefore

‖η̃u‖H1(�) ≤ ‖u‖L2(B) + ‖∇ (̃ηu)‖L2(B) � 1

δR
‖u‖L2(B) + ‖∇u‖L2(B). (27)

Then, we get

∣
∣
∣
∣

〈
αu, η2u − Jh(η

2u)
〉

L2(B∩�R)

∣
∣
∣
∣ =

∣
∣
∣
∣

〈
αη̃u, η2u − Jh(η

2u)
〉

L2(B∩�R)

∣
∣
∣
∣

≤ ‖α‖L∞(B∩�R) ‖η̃u‖L2(B∩�R)

∥
∥
∥η2u − Jh(η

2u)

∥
∥
∥
L2(B∩�R)

.

The multiplicative trace inequality (see, e.g., [9, inequality (1.6.2)]) for � and the
estimate (27) gives

‖η̃u‖L2(�) � ‖η̃u‖1/2
L2(�)

‖η̃u‖1/2
H1(�)

� 1√
δR

‖u‖L2(B) + ‖u‖1/2
L2(B)

‖∇u‖1/2
L2(B)

.
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The multiplicative trace inequality for � and the estimates (25)–(26) imply

‖η2u − Jh(η
2u)‖L2(�) � ‖η2u − Jh(η

2u)‖L2(�) + ‖η2u − Jh(η
2u)‖1/2

L2(�)
‖∇(η2u

− Jh(η
2u))‖1/2

L2(�)
�

(
h2

δ2R2 ‖u‖L2(B) + h2

δR
‖∇u‖L2(B)

)

+
(

h

δR
‖u‖1/2

L2(B)
+ h√

δR
‖∇u‖1/2

L2(B)

) (√
h

δR
‖u‖1/2

L2(B)
+

√
h√
δR

‖∇u‖1/2
L2(B)

)

� h3/2

(δR)2
‖u‖L2(B) + h3/2

δR
‖∇u‖L2(B) + h3/2

(δR)3/2
‖u‖1/2

L2(B)
‖∇u‖1/2

L2(B)

� h3/2

(δR)2
‖u‖L2(B) + h3/2

δR
‖∇u‖L2(B).

Therefore,

‖η̃u‖L2(�)

∥
∥
∥η2u − Jh(η

2u)

∥
∥
∥
L2(�)

�
(

1√
δR

‖u‖L2(B) + ‖u‖1/2
L2(B)

‖∇u‖1/2
L2(B)

)

·
(

h3/2

(δR)2
‖u‖L2(B) + h3/2

δR
‖∇u‖L2(B)

)

� h3/2

(δR)5/2
‖u‖2L2(B)

+ h3/2

(δR)3/2
‖u‖L2(B)‖∇u‖L2(B)

+ h3/2

(δR)2
‖u‖3/2

L2(B)
‖∇u‖1/2

L2(B)
+ h3/2

δR
‖u‖1/2

L2(B)
‖∇u‖3/2

L2(B)
.

Young’s inequality and h/(δR) ≤ 1/4, as well as δ ∈ (0, 1), R ≤ 2 diam(�) implying
1

δR � 1
δ2R2 , allow us to conclude (rather generously)

∣
∣
∣
∣

〈
αu, η2u − Jh(η

2u)
〉

L2(B∩�R)

∣
∣
∣
∣ � ‖η̃u‖L2(�)

∥
∥
∥η2u − Jh(η

2u)

∥
∥
∥
L2(�)

� h2

(δR)2
‖∇u‖2L2(B)

+ 1

(δR)2
‖u‖2L2(B)

=
(
1 + δ

δ

)2

|||u|||2h,(1+δ)R . (28)

Inserting the estimates (25), (26), (28) into (23) and with Young’s inequality, we
get with (22b) that

‖∇(ηu)‖2L2(B)
+ 〈αηu, ηu〉L2(B∩�R) � a(u, η2u) + 1

δ2R2
‖u‖2L2(B)

� ‖∇u‖L2(B)

(
h

δ2R2
‖u‖L2(B) + h

δR
‖η∇u‖L2(B)

)

+ (‖∇u‖L2(B) + ‖ηu‖L2(B)

)

×
(

h2

δ2R2
‖u‖L2(B) + h2

δR
‖η∇u‖L2(B)

)

+ h2

δ2R2
‖∇u‖2L2(B)

+ 1

δ2R2
‖u‖2L2(B)

≤ C
h2

δ2R2
‖∇u‖2L2(B)

+ C
1

δ2R2
‖u‖2L2(B)

+ 1

2
‖η∇u‖2L2(B)

.
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Moving the term 1
2 ‖η∇u‖2

L2(B)
to the left-hand side and inserting this estimate in

(22a), we conclude the proof.

3.2 Low-dimensional approximation in Hh(D, ω)

In this subsection, we will derive a low dimensional approximation of the Galerkin
solution by Scott–Zhang interpolation on a coarser grid.

We need to be able to extend functions defined on B(1+2δ)R ∩ ω to Rd . To this end,
we use an extension operator E : H1(�) → H1(Rd), see, e.g., [1, Theorem 4.32],
which satisfies Eu = u on � and the H1-stability estimate

‖Eu‖H1(Rd ) ≤ C ‖u‖H1(�) .

For a function u ∈ Hh(B(1+2δ)R, ω) and a cut-off function η ∈ C∞
0 (B(1+2δ)R) with

supp η ⊂ B(1+δ)R , η ≡ 1 on BR we can define the function ηu ∈ H1(�) with the
aid of Lemma 1. We note the support property supp(ηu) ⊂ B(1+2δ)R ∩ ω, due to
supp u ⊂ ω. Therefore, the extension of ηu to � by zero is in H1(�). Therefore, we
have

‖E(ηu)‖H1(Rd ) ≤ C ‖ηu‖H1(ω) . (29)

Moreover, let �h,R : (H1(BR ∩ ω), |||·|||h,R) → (Hh(BR, ω), |||·|||h,R) be the orthog-
onal projection, which is well-defined since Hh(BR, ω) ⊂ H1(BR ∩ ω) is a closed
subspace.

In the following lemma,weuse aScott–Zhangprojection IH : H1(�) → S1,1(KH )

of the form introduced in [41] for a quasiuniform grid KH with mesh width H . By

ωK :=
⋃ {

K ′ ∈ KH : K ∩ K ′ �= ∅}
,

we denote the element patch of K , which contains K and all elements K ′ ∈ KH

that have a common node with K . Then, IH has the following local approximation
property for u ∈ H1(ωK )

‖u − IHu‖2Hm (K ) ≤ CH2(�−m) |u|2H�(ωK )
, 0 ≤ � ≤ 1. (30)

The constant C > 0 depends only on γ -shape regularity of the quasiuniform triangu-
lation KH and the dimension d.

Lemma 3 Let δ ∈ (0, 1), R ∈ (0, 2 diam(�)), BR, B(1+δ)R, and B(1+2δ)R be con-
centric boxes, and let ω ⊆ � of the form (16) and u ∈ Hh(B(1+2δ)R, ω). Assume
h
R ≤ δ

4 . Let KH be an (infinite) γ -shape regular triangulation of Rd and assume
H
R ≤ δ

4 for the corresponding mesh width H. Let η ∈ C∞
0 (B(1+2δ)R) be a cut-off

function satisfying supp η ⊂ B(1+δ)R, η ≡ 1 on BR, and ‖∇η‖L∞(B(1+2δ)R) � 1
δR .

Moreover, let IH : H1(Rd) → S1,1(KH ) be the Scott–Zhang projection and
E : H1(�) → H1(Rd) be an H1-stable extension operator. Then, there exists a
constant Capp > 0, which depends only on the boundary value problem (3), �, d, p,
the γ -shape regularity of the quasiuniform triangulation Th, and E such that
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(i) (u − �h,R IH E(ηu))|BR∩ω ∈ Hh(BR, ω);
(ii)

∣
∣
∣
∣
∣
∣u − �h,R IH E(ηu)

∣
∣
∣
∣
∣
∣
h,R ≤ Capp

1+2δ
δ

( h
R + H

R ) |||u|||h,(1+2δ)R;

(iii) dimW ≤ Capp(
(1+2δ)R

H )d , where W := �h,R IH EHh(B(1+2δ)R, ω).

Proof The statement (iii) follows from the fact that dim IH (EHh(B(1+2δ)R, ω))|B(1+δ)R

� ((1+ 2δ)R/H)d . For u ∈ Hh(B(1+2δ)R, ω), we have u|BR∩ω ∈ Hh(BR, ω) as well
and hence �h,R(u|BR∩ω) = u|BR∩ω, which gives (i). It remains to prove (ii): The
assumption H

R ≤ δ
4 implies

⋃{K ∈ KH : ωK ∩ BR �= ∅} ⊆ B(1+δ)R . The locality
and the approximation properties (30) of IH yield

1

H
‖E(ηu) − IH E(ηu)‖L2(BR) + ‖∇(E(ηu) − IH E(ηu))‖L2(BR)

� ‖∇E(ηu)‖L2(B(1+δ)R) .

We apply Lemma 2 with R̃ = (1+δ)R and δ̃ = δ
1+δ

. Note that (1+ δ̃)R̃ = (1+2δ)R,

and h
R̃

≤ δ̃
4 follows from 4h ≤ δR = δ̃ R̃. Hence, we obtain with (29)

∣
∣
∣
∣
∣
∣u − �h,R IH E(ηu)

∣
∣
∣
∣
∣
∣2
h,R = ∣

∣
∣
∣
∣
∣�h,R (E(ηu) − IH E(ηu))

∣
∣
∣
∣
∣
∣2
h,R ≤ |||E(ηu) − IH E(ηu)|||2h,R

=
(
h

R

)2

‖∇(E(ηu) − IH E(ηu))‖2L2(BR∩ω)
+ 1

R2
‖E(ηu) − IH E(ηu)‖2L2(BR∩ω)

� h2

R2
‖∇E(ηu)‖2L2(B(1+δ)R)

+ H2

R2
‖∇E(ηu)‖2L2(B(1+δ)R)

�
(
h2

R2 + H2

R2

)

‖ηu‖2H1(�)

�
(
h2

R2 + H2

R2

)
1

δ2R2
‖u‖2L2(B(1+δ)R∩ω)

+
(
h2

R2 + H2

R2

)

‖∇u‖2L2(B(1+δ)R∩ω)

�
(
h2

R2 + H2

R2

)
1

δ2R2
‖u‖2L2(B(1+δ)R∩ω)

+
(
h2

R2 + H2

R2

)
(1 + 2δ)2

δ2
|||u|||2L2(B(1+2δ)R)

≤
(

Capp
1 + 2δ

δ

(
h

R
+ H

R

))2

|||u|||2h,(1+2δ)R ,

which concludes the proof.

By iterating this approximation result on suitable concentric boxes, we can derive
a low-dimensional subspace in the space Hh and the bestapproximation in this space
converges exponentially, which is stated in the following lemma.

Lemma 4 LetCapp be the constant of Lemma3. Let q, κ ∈ (0, 1), R ∈ (0, 2 diam(�)),
k ∈ N and ω ⊆ � be of the form (16). Assume

h

R
≤ κq

8kmax{1,Capp} . (31)

Then, there exists a subspace Vk of S
p,1
0 (Th, �D)|BR∩ω with dimension

dim Vk ≤ Cdim

(
1 + κ−1

q

)d

kd+1,
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such that for every u ∈ Hh(B(1+κ)R, ω)

min
v∈Vk

|||u − v|||h,R ≤ qk |||u|||h,(1+κ)R . (32)

The constant Cdim > 0 depends only on the boundary value problem (3), �, d, and
the γ -shape regularity of the quasiuniform triangulation Th.
Proof We iterate the approximation result of Lemma 3 on boxes B(1+δ j )R , with δ j :=
κ
k− j
k for j = 0, . . . , k. We note that κ = δ0 > δ1 > · · · > δk = 0. We choose

H = κqR
8kmax{Capp,1} .

If h ≥ H , then we select Vk = Hh(BR, ω). Due to the choice of H we have
dim Vk � ( Rh )d � k( R

H )d � Cdim( 1+κ−1

q )dkd+1.

If h < H , we apply Lemma 3with R̃ = (1+δ j )R and δ̃ j = 1
2k(1+δ j )

< 1
2 . Note that

δ j−1 = δ j + 1
k gives (1+ δ j−1)R = (1+ 2̃δ j )R̃. The assumption H

R̃
≤ 1

8k(1+δ j )
= δ̃ j

4
is fulfilled due to our choice of H . For j = 1, Lemma 3 provides an approximation
w1 in a subspace W1 of Hh(B(1+δ1)R, ω) with dimW1 ≤ C(

(1+κ)R
H )d such that

|||u − w1|||h,(1+δ1)R ≤ 2Capp
H

(1 + δ1)R

1 + 2̃δ1
δ̃1

|||u|||h,(1+δ0)R

= 4Capp
kH

R
(1 + 2̃δ1) |||u|||h,(1+κ)R ≤ q |||u|||h,(1+κ)R .

Since u−w1 ∈ Hh(B(1+δ1)R, ω), we can use Lemma 3 again and get an approximation
w2 of u − w1 in a subspace W2 of Hh(B(1+δ2)R, ω) with dimW2 ≤ C(

(1+κ)R
H )d .

Arguing as for j = 1, we get

|||u − w1 − w2|||h,(1+δ2)R ≤ q |||u − w1|||h,(1+δ1)R ≤ q2 |||u|||h,(1+κ)R .

Continuing this process k − 2 times leads to an approximation v := ∑k
j=1 wi in the

space Vk := ∑k
j=1 Wj of dimension dim Vk ≤ Ck( (1+κ)R

H )d = Cdim( 1+κ−1

q )dkd+1.

Now we are able to prove the main result of this section.

Proof of Proposition 1 Choose κ = 1
1+η

. By assumption, we have dist(BRτ , BRσ ) ≥
η−1 diam BRτ = √

dη−1Rτ . In particular, this implies

dist(B(1+κ)Rτ
, BRσ ) ≥ dist(BRτ , BRσ ) − κRτ

√
d ≥ √

dRτ (η
−1 − κ)

= √
dRτ

1

η(1 + η)
> 0.

The Galerkin solution φh satisfies φh |B(1+δ)R∩� ∈ Hh(B(1+δ)R,�). The coercivity (5)
of the bilinear form a(·, ·) implies

‖φh‖2H1(�)
� a(φh, φh) = 〈 f, φh〉 =

〈
�L2

f, φh

〉
�

∥
∥
∥�L2

f
∥
∥
∥
L2(�)

‖φh‖H1(�) .
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Furthermore, with h
Rτ

< 1, we get

|||φh |||h,(1+κ)Rτ
�

(

1 + 1

Rτ

)

‖φh‖H1(�) �
(

1 + 1

Rτ

) ∥
∥
∥�L2

f
∥
∥
∥
L2(�)

,

and we have a bound on the right-hand side of (32). We are now in the position to
define the space Vk , for which we distinguish two cases.

Case 1: The condition (31) is satisfied with R = Rτ . With the space Vk provided by
Lemma 4 we get

min
v∈Vk

‖φh − v‖L2(BRτ ∩�) ≤ Rτ min
v∈Vk

|||φh − v|||h,Rτ
� (Rτ + 1)qk

∥
∥
∥�L2

f
∥
∥
∥
L2(�)

� diam(�)qk
∥
∥
∥�L2

f
∥
∥
∥
L2(�)

,

and the dimension of Vk is bounded by dim Vk ≤ C((2 + η)q−1)dkd+1.

Case 2: The condition (31) is not satisfied, i.e., we have h
Rτ

≥ κq
8kmax{1,Capp} .

Then, we select Vk := {v|BRτ ∩� : v ∈ S p,1
0 (Th, �D)}, and the minimum in (14) is

obviously zero. By choice of κ , the dimension of Vk is bounded by

dim Vk �
(
Rτ

h

)d

�
(
8kmax{Capp, 1}

κq

)d

�
(
(1 + η)q−1

)d
kd+1,

which concludes the proof of the non trivial statement in (14). The other estimate
follows directly from the L2(�)-stability of the L2(�)-orthogonal projection.

Remark 4 A result similar to Proposition 1 holds for the pure Neumann problem, i.e.,
� = �N as well. In this case, the matrix A is not invertible and therefore either a
stabilized Galerkin discretization or a saddle point formulation has to be chosen to
deal with the one-dimensional kernel. The general ideas underlying Proposition 1 can
be utilized, see [15,17] for details.

4 Proof of main results

Weuse the approximation ofφh from the lowdimensional spaces given inProposition 1
to construct a blockwise low-rank approximation of A−1 and in turn an H-matrix
approximation of A−1. In fact, we will only use a FEM-isomorphism to transfer
Proposition 1 to the matrix level, which follows the lines of [6, Theorem 2].

Proof of Theorem 1 IfCdim(2+η)dq−dkd+1 ≥ min(|τ |, |σ |), we use the exact matrix
block Xτσ = A−1|τ×σ and Yτσ = I ∈ R

|σ |×|σ |.
IfCdim(2+η)dq−dkd+1 < min(|τ |, |σ |), let λi : L2(�) → R be continuous linear

functionals on L2(�) satisfying λi (ψ j ) = δi j . We define R
τ := {x ∈ R

N : xi =
0 ∀ i /∈ τ } and the mappings
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�τ : L2(�) → R
τ , v �→ (λi (v))i∈τ and Jτ : Rτ → S p,1

0 (Th, �D), x �→
∑

j∈τ

x jψ j .

For x ∈ R
τ , (6) leads to the stability estimate

hd/2 ‖x‖2 � ‖Jτx‖L2(�) � hd/2 ‖x‖2 . (33)

Let Vk be the finite dimensional subspace from Proposition 1.
Because of (33) and the L2-stability of JI�I , the adjoint �∗

I : RN → L2(�)′ �
L2(�) of �I satisfies

∥
∥�∗

Ib
∥
∥
L2(�)

= sup
v∈L2(�)

〈b,�Iv〉2
‖v‖L2(�)

� ‖b‖2 sup
v∈L2(�)

h−d/2 ‖JI�Iv‖L2(�)

‖v‖L2(�)

≤ Ch−d/2 ‖b‖2 .

Moreover, if b = (〈 f, ψi 〉)i∈I , we have (�∗
Ib)(ψi ) = bi = 〈 f, ψi 〉 = 〈�L2

f, ψi 〉.
Therefore, f and �∗

Ib = �L2
f have the same Galerkin approximation.

Let Vk be the finite dimensional subspace from Proposition 1. We define Xτσ as
an orthogonal basis of the space Vτ := {�τv : v ∈ Vk}. Then, the rank of Xτσ is
bounded by dim Vk ≤ Cdim(2 + η)dq−dkd+1.

The estimate (33) and the approximation result from Proposition 1 provide the error
estimate

‖�τφh − �τv‖2 � h−d/2 ‖Jτ (�τφh − �τv)‖L2(�) � h−d/2 ‖φh − v‖L2(BRτ ∩�)

≤ Cboxh
−d/2qk

∥
∥
∥�L2

f
∥
∥
∥
L2(�)

� Cboxh
−dqk ‖b‖2 .

Since XτσXT
τσ is the orthogonal projection from R

N onto Vτ , we get that z :=
XτσXT

τσ �τφh is the best approximation of �τφh in Vτ and arrive at

‖�τφh − z‖2 ≤ ‖�τφh − �τv‖2 � CboxNqk ‖b‖2 .

If we define Yτ,σ := A−1|Tτ×σXτσ , we get z = XτσYT
τσb, since �τφh = A−1|τ×σb.

The following lemma gives an estimate for the global spectral norm by the local
spectral norms, which we will use in combination with Theorem 1 to derive our main
result, Theorem 2.

Lemma 5 [7,20,28, Lemma 6.5.8] LetM ∈ R
N×N and P be a partitioning of I ×I.

Then,

‖M‖2 ≤ Csp

( ∞∑

�=0

max{‖M|τ×σ ‖2 : (τ, σ ) ∈ P, level(τ ) = �}
)

.

Now we are able to prove our main result, Theorem 2.
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Proof of Theorem 2 For each admissible cluster pair (τ, σ ), Theorem 1 provides
matrices Xτσ ∈ R

|τ |×r , Yτσ ∈ R
r×|σ |, so that we can define the H-matrix VH by

BH =
{
XτσYT

τσ if (τ, σ ) ∈ Pfar,
A−1|τ×σ otherwise.

On each admissible block (τ, σ ) ∈ Pfar, we can use the blockwise estimate of Theo-
rem 1 and get for q ∈ (0, 1)

∥
∥
∥(A−1 − BH)|τ×σ

∥
∥
∥
2

≤ CapxNqk .

On inadmissible blocks, the error is zero by definition. Therefore, Lemma 5 concludes
the proof, since

∥
∥
∥A−1 − BH

∥
∥
∥
2

≤ Csp

( ∞∑

�=0

max
{∥
∥
∥(A−1 − BH)|τ×σ

∥
∥
∥
2

: (τ, σ ) ∈ P, level(τ )=�
}
)

≤ CapxCspNqkdepth(TI).

Since in Theorem 1 we have r ≤ Cdim(2 + η)dq−dkd+1, defining b = − ln(q)

C1/(d+1)
dim

qd/(d+1)(2 + η)−d/(1+d) > 0, we obtain qk = e−br1/(d+1)
and hence

∥
∥
∥A−1 − BH

∥
∥
∥
2

≤ CapxCspNdepth(TI)e−br1/(d+1)
,

which concludes the proof.

5 Hierarchical LU-decomposition

In [3] the existence of an (approximate) H-LU decomposition, i.e., a factorization
of the form A ≈ LHUH with lower and upper triangular H-matrices LH and UH,
was asserted for finite element matrices A corresponding to the Dirichlet problem for
elliptic operators with L∞-coefficients. In [25] this result was extended to the case,
where the block structure of the H-matrix is constructed by domain decomposition
clustering methods, instead of the standard geometric bisection clustering.

Algorithms for computing an H-LU decomposition have been proposed repeat-
edly in the literature, e.g., [2,37] and numerical evidence for their usefulness put
forward; we mention here that H-LU decomposition can be employed for black box
preconditioning in iterative solvers, [2,21,23,24,35]. An existence result for H-LU
factorization is then an important step towards a mathematical understanding of the
good performance of these schemes.

The main steps in the proof of [3] are to approximate certain Schur complements
of A by H-matrices and to show a recursion formula for the Schur complement.
Using these two observations an approximation of the exact LU -factors for the Schur
complements, and consequently for the whole matrix, can be derived recursively.
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Since the construction of the approximate LU -factors is completely algebraic, once
we know that the Schur complements have an H-matrix approximation of arbitrary
accuracy, we will show that we can provide such an approximation and only sketch
the remaining steps. Details can be found in [3,25].

Our main result, Theorem 2, shows the existence of an H-matrix approximation
to the inverse FEM stiffness matrix with arbitrary accuracy, whereas previous results
achieve accuracy up to the finite element error. In fact, both [3,25] assume, in order
to derive an H-LU decomposition, that approximations to the inverse with arbitrary
accuracy exist. Thus, due to our main result this assumption is fulfilled for inverse
finite element matrices for elliptic operators with various boundary conditions.

Since we are in the setting of the Lax–Milgram Lemma, we get that the, in gen-
eral, non symmetric matrix A is positive definite in the sense that xTAx > 0 for all
x �= 0. Therefore, A has an LU -decomposition A = LU, where L is a lower trian-
gular matrix and U is an upper triangular matrix, independently of the numbering of
the degrees of freedom, i.e., every other numbering of the basis functions permits an
LU -decomposition as well (see, e.g., [33, Cor. 3.5.6]). By classical linear algebra (see,
e.g., [33, Cor. 3.5.6]), this implies that for any n ≤ N and index set ρ := {1, . . . , n},
the matrix A|ρ×ρ is invertible.

We start with the approximation of appropriate Schur complements.

5.1 Schur complements

One way to approximate the Schur complement for a finite element matrix is to follow
the lines of [3,25] by usingH-arithmetics and the sparsity of the finite element matrix.
We present a different way of deriving such a result, which is more in line with our
procedure in Sect. 3. It relies on interpreting Schur complements as FEM stiffness
matrices from constrained spaces.

Lemma 6 Let (τ, σ ) be an admissible cluster pair and ρ := {i ∈ I : i < min(τ ∪σ)}.
Define the Schur complement S(τ, σ ) = A|τ×σ −A|τ×ρ(A|ρ×ρ)−1A|ρ×σ . Then, there
exists a rank-r matrix SH(τ, σ ) such that

‖S(τ, σ ) − SH(τ, σ )‖2 ≤ Csch
−1e−br1/(d+1) ‖A‖2 ,

where the constant Csc > 0 depends only on the boundary value problem (3), �, p,
d, and the γ -shape regularity of the quasiuniform triangulation Th.

Proof We define ωρ = interior(
⋃

i∈ρ suppψi ) ⊂ � and let BRτ , BRσ be bounding
boxes for the clusters τ , σ with (8). Our starting point is the well-known observation
that the Schur complement matrix S(τ, σ ) can be understood in terms of an orthogo-
nalization with respect to the degrees of freedom in ρ. That is, for u ∈ R

|τ |,w ∈ R
|σ |

a direct calculation (see, e.g., [10] for the essentials) shows

uTS(τ, σ )w = a(̃u, w), (34)
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with w = ∑|σ |
j=1w jψ jσ , where the index jσ denotes the j-th basis function cor-

responding to the cluster σ , and the function ũ ∈ S p,1
0 (Th, �D) is defined by

ũ = ∑|τ |
j=1 u jψ jτ + uρ with supp uρ ⊂ ωρ such that

a(̃u, w) = 0 ∀w ∈ S p,1
0 (Th, �D) with suppw ⊂ ωρ. (35)

The key to approximate the Schur complement S(τ, σ ) is to approximate the function
ũ.Wewill provide such an approximation by applying the techniques from the previous
sections with the use of the orthogonality (35).

Since supp ũ ⊂ BRτ ∪ ωρ , we get for w with suppw ⊂ BRσ that

a(̃u, w) = a(̃u|suppw,w) = a(̃u|BRσ ∩ωρ ,w).

Therefore, we only need to approximate ũ on the intersection BRσ ∩ ωρ . This support
property and the orthogonality (35) imply that ũ ∈ Hh(B(1+δ)Rσ

, ωρ).
Therefore, Lemma 2 can be applied to ũ. As a consequence, Lemma 4 provides a

low dimensional space Vk , where the choice κ = 1
η+1 bounds the dimension of Vk by

dim Vk ≤ Cdim(2 + η)dq−dkd+1. Moreover, the best approximation ṽ = �Vk ũ ∈ Vk
to ũ in the space Vk satisfies

|||̃u − ṽ|||h,(1+δ)Rσ
≤ qk |||̃u|||h,(1+δ)Rσ

.

This implies

|a(̃u, w)−a(̃v, w)|�‖ũ − ṽ‖H1(B(1+δ)Rσ ∩ωρ) ‖w‖H1(B(1+δ)Rσ ∩�)

� Rσ

h
|||̃u−ṽ|||h,(1+δ)Rσ

‖w‖H1(�) �h−1qk ‖ũ‖H1(�) ‖w‖H1(�) .

Since supp(̃u − u) = supp(uρ) ⊂ ωρ with u = ∑|τ |
j=1 u jψ jτ , the coercivity (5) and

orthogonality (35) lead to

‖ũ − u‖2H1(�)
� a(̃u − u, ũ − u) = a(−u, ũ − u) � ‖u‖H1(�) ‖ũ − u‖H1(�) .

Consequently, we get with an inverse estimate and (33) that

|a(̃u, w) − a(̃v, w)| � h−1qk
(‖ũ − u‖H1(�) + ‖u‖H1(�)

) ‖w‖H1(�)

� h−1qk ‖u‖H1(�) ‖w‖H1(�) � hd−3qk ‖u‖2 ‖w‖2 .

The linear mapping E : u �→ ṽ with dim ran E ≤ Cdim(2+ η)dq−dkd+1 has a matrix
representation u �→ Bu, where the rank of B is bounded by Cdim(2 + η)dq−dkd+1.
Therefore, we get that a(Eu, w) = uTBTA|τ×σw. The definition SH(τ, σ ) :=
BTA|τ×σ leads to a matrix SH(τ, σ ) of rank r ≤ Cdim(2 + η)dq−dkd+1 such that
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‖S(τ, σ ) − SH(τ, σ )‖2 = sup
u∈R|τ |,w∈R|σ |

∣
∣uT (S(τ, σ ) − SH(τ, σ ))w

∣
∣

‖u‖2 ‖w‖2
≤ Chd−3e−br1/(d+1)

,

and the estimate 1
‖A‖2 � h2−d from [14, Theorem 2] finishes the proof.

We refer to the next subsection for the existence of the inverseS(τ, τ )−1 of the Schur
complementS(τ, τ ).We proceed to approximate it by blockwise rank-r matrices.With
the representation of the Schur complement from (34), we get that for a given right-
hand side f ∈ L2(�), solving S(τ, τ )u = f with f ∈ R

|τ | defined by fi = 〈
f, ψiτ

〉
, is

equivalent to solving a(̃u, w) = 〈 f, w〉 for all w ∈ S p,1
0 (Th, �D) with suppw ⊂ ωτ .

Let τ1×σ1 ⊂ τ ×τ be an η-admissible subblock. For f ∈ L2(�)with supp f ⊂ BRσ1
,

we get the orthogonality

a(̃u, w) = 0 ∀w ∈ S p,1
0 (Th, �D), suppw ⊂ BRτ1

∩ ωτ .

Therefore, we have ũ ∈ Hh(BRτ1
, ωτ ) and our results from Sect. 3 can be applied to

approximate ũ on BRτ1
∩ωτ . As in Sect. 4, this approximation can be used to construct

a rank-r factorization of the subblock S(τ, τ )−1|τ1×σ1 , which is stated in the following
theorem.

Theorem 3 Let τ ⊂ I and ρ := {i ∈ I : i < min(τ )} and τ1 × σ1 ⊂ τ × τ be η-
admissible. Define the Schur complement S(τ, τ ) = A|τ×τ −A|τ×ρ(A|ρ×ρ)−1A|ρ×τ .
Then, there exist rank-r matrices Xτ1σ1 ∈ R

|τ1|×r , Yτ1σ1 ∈ R
|σ1|×r such that

∥
∥
∥S(τ, τ )−1|τ1×σ1 − Xτ1σ1Y

T
τ1σ1

∥
∥
∥
2

≤ CapxNe−br1/(d+1)
. (36)

The constants Capx, b > 0 depend only on the boundary value problem (3), �, d, p,
and the γ -shape regularity of the quasiuniform triangulation Th.

5.2 Existence of H-LU decomposition

In this subsection, we will use the approximation of the Schur complement from the
previous section to prove the existence of an (approximate) H-LU decomposition.
We start with a hierarchical relation of the Schur complements S(τ, τ ).

The Schur complements S(τ, τ ) for a block τ ∈ TI can be derived from the Schur
complements of its sons by

S(τ, τ ) =
(
S(τ1, τ1) S(τ1, τ2)

S(τ2, τ1) S(τ2, τ2) + S(τ2, τ1)S(τ1, τ1)
−1S(τ1, τ2)

)

,

where τ1, τ2 are the sons of τ . A proof of this relation can be found in [3, Lemma 3.1].
One should note that the proof does not use any properties of the matrix A other than
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invertibility and existence of an LU -decomposition. Moreover, we have by definition
of S(τ, τ ) that S(I, I) = A.

If τ is a leaf, we get the LU -decomposition of S(τ, τ ) by the classical LU -
decomposition, which exists since A has an LU -decomposition. If τ is not a leaf, we
use the hierarchical relation of the Schur complements to define an LU -decomposition
of the Schur complement S(τ, τ ) by

L(τ ) :=
(

L(τ1) 0
S(τ2, τ1)U(τ1)

−1 L(τ2)

)

, U(τ ) :=
(
U(τ1) L(τ1)

−1S(τ1, τ2)

0 U(τ2)

)

, (37)

with S(τ1, τ1) = L(τ1)U(τ1), S(τ2, τ2) = L(τ2)U(τ2) and indeed get S(τ, τ ) =
L(τ )U(τ ). Moreover, the uniqueness of the LU -decomposition of A implies that due
to LU = A = S(I, I) = L(I)U(I), we have L = L(I) and U = U(I).

The existence of the inverses L(τ1)
−1 and U(τ1)

−1 follows by induction over the
levels, since on a leaf the existence is clear and the matrices L(τ ), U(τ ) are block
triangular matrices. Consequently, the inverse of S(τ, τ ) exists.

Moreover, the restriction of the lower triangular part S(τ2, τ1)U(τ1)
−1 of the matrix

L(τ ) to a subblock τ ′
2 × τ ′

1 with τ ′
i a son of τi satisfies

(
S(τ2, τ1)U(τ1)

−1
)

|τ ′
2×τ ′

1
= S(τ ′

2, τ
′
1)U(τ ′

1)
−1,

and the upper triangular part of U(τ ) satisfies a similar relation.
The following Lemma shows that the spectral norm of the inversesL(τ )−1,U(τ )−1

can be bounded by the norm of the inverses L(I)−1, U(I)−1.

Lemma 7 For τ ∈ TI , let L(τ ), U(τ ) be given by (37). Then,

max
τ∈TI

∥
∥
∥L(τ )−1

∥
∥
∥
2

=
∥
∥
∥L(I)−1

∥
∥
∥
2
,

max
τ∈TI

∥
∥
∥U(τ )−1

∥
∥
∥
2

=
∥
∥
∥U(I)−1

∥
∥
∥
2
.

Proof We only show the result for L(τ ). With the block structure of (37) we get the
inverse

L(τ )−1 =
(

L(τ1)
−1 0

−L(τ2)
−1S(τ2, τ1)U(τ1)

−1L(τ1)
−1 L(τ2)

−1

)

.

So, we get by choosing x such that xi = 0 for i ∈ τ1 that

∥
∥
∥L(τ )−1

∥
∥
∥
2
= sup

x∈R|τ |,‖x‖2=1

∥
∥
∥L(τ )−1x

∥
∥
∥
2
≥ sup

x∈R|τ2|,‖x‖2=1

∥
∥
∥L(τ2)

−1x
∥
∥
∥
2
=

∥
∥
∥L(τ2)

−1
∥
∥
∥
2
.

The same argument for (L(τ )−1)T leads to

∥
∥
∥L(τ )−1

∥
∥
∥
2

=
∥
∥
∥
∥

(
L(τ )−1

)T
∥
∥
∥
∥
2

≥
∥
∥
∥L(τ1)

−1
∥
∥
∥
2
.
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Thus, we have
∥
∥L(τ )−1

∥
∥
2 ≥ maxi=1,2

∥
∥L(τ1)

−1
∥
∥
2 and as a consequence maxτ∈TI∥

∥L(τ )−1
∥
∥
2 = ∥

∥L(I)−1
∥
∥
2.

We can now formulate the existence result for anH-LU decomposition.

Theorem 4 LetA = LU withL,U being lower and upper triangular matrices. There
exist lower and upper triangular blockwise rank-r matrices LH,UH such that

‖A − LHUH‖2 ≤
(
CLUh

−1depth(TI)e−br1/(d+1)

+C2
LUh

−2depth(TI)2e−2br1/(d+1)
)

‖A‖2 , (38)

where CLU = CspCapx(κ2(U) + κ2(L)), with the constant Capx from Theorem 1 and
the spectral condition numbers κ2(U), κ2(L).

Proof With Lemma 6, we get a low rank approximation of an admissible subblock
τ ′ × σ ′ of the lower triangular part of L(τ ) by

∥
∥
∥S(τ, σ )U(σ )−1|τ ′×σ ′ − SH(τ ′, σ ′)U(σ ′)−1

∥
∥
∥
2

=
∥
∥
∥S(τ ′, σ ′)U(σ ′)−1 − SH(τ ′, σ ′)U(σ ′)−1

∥
∥
∥
2

≤ Capxh
−1e−br1/(d+1)

∥
∥
∥U(σ ′)−1

∥
∥
∥
2
‖A‖2 .

Since SH(τ ′, σ ′)U(σ ′)−1 is a rank-r matrix, Lemma 5 immediately provides an H-
matrix approximation LH of the LU -factor L(I) = L. Therefore, with Lemma 7 we
get

‖L − LH‖2 ≤ CapxCsph
−1depth(TI)e−br1/(d+1)

∥
∥
∥U−1

∥
∥
∥
2
‖A‖2

and in the same way an H-matrix approximation UH of U(I) = U with

‖U − UH‖2 ≤ CapxCsph
−1depth(TI)e−br1/(d+1)

∥
∥
∥L−1

∥
∥
∥
2
‖A‖2 .

Since A = LU, the triangle inequality finally leads to

‖A−LHUH‖2 ≤ ‖L−LH‖2 ‖U‖2 + ‖U − UH‖2 ‖L‖2 + ‖L − LH‖2 ‖U − UH‖2
� (κ2(U) + κ2(L)) depth(TI)h−1e−br1/(d+1) ‖A‖2

+ κ2(U)κ2(L)depth(TI)2h−2e−2br1/(d+1) ‖A‖22
‖L‖2 ‖U‖2 ,

and the estimate ‖A‖2 ≤ ‖L‖2 ‖U‖2 finishes the proof.
In the symmetric case, we may use the weaker admissibility condition (12) instead

of (8) and obtain a result analogously to that of Theorem 4 for the Cholesky decom-
position.
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Corollary 2 Let b = 0 in (1) so that the resulting Galerkin matrixA is symmetric and
positive definite. Let A = CCT with C being a lower triangular matrix with positive
diagonal entries C j j > 0. There exists a lower triangular blockwise rank-r matrix
CH such that

∥
∥
∥A − CHCH

T
∥
∥
∥
2

≤
(
CChh

−1depth(TI)e−br1/(d+1)
(39)

+C2
Chh

−2depth(TI)2e−2br1/(d+1)
)

‖A‖2 ,

where CCh = 2CspCapx
√

κ2(A), with the constant Capx from Theorem 1 and the
spectral condition number κ2(A).

Proof Since A is symmetric and positive definite, the Schur complements S(τ, τ ) are
symmetric and positive definite as well and therefore we get D(τ )L(τ ) = C(τ ) in
(37), whereD(τ ) is a diagonal matrix, such thatD(τ )2 contains the diagonal elements
of U(τ ). Moreover, we have ‖A‖2 = ‖C‖22 and κ2(C) = ∥

∥C−1
∥
∥
2 ‖C‖2 = √

κ2(A).

6 Numerical examples

In this section, we present numerical examples in two and three dimensions to confirm
our theoretical estimates derived in the previous sections. Since numerical examples
for the Dirichlet case have been studied before, e.g., in [4,20], we will focus on mixed
Dirichlet–Neumann and pure Neumann problems in two and three dimensions.

With the choice η = 2 for the admissibility parameter in (8), the clustering is done
by the standard geometric clustering algorithm, i.e., by splitting bounding boxes in half
until they are admissible or smaller than the constant nleaf, which we choose as nleaf =
25 for our computations. An approximation to the inverse Galerkinmatrix is computed
by using the bestapproximation via singular value decomposition. Throughout, we use
the C-library HLiB [8] developed at the Max-Planck-Institute for Mathematics in the
Sciences.

6.1 2D-diffusion

We consider the unit square � = (0, 1)2. The boundary � = ∂� is divided into the
Neumann part �D := {x ∈ � : x1 = 0∨x2 = 0} and the Dirichlet part �N = �\�D .
We consider the bilinear form a(·, ·) : H1

0 (�, �D)×H1
0 (�, �D) → R corresponding

to the mixed Dirichlet–Neumann Poisson problem
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Fig. 1 Mixed boundary value problem (left), pure Neumann boundary value problem (right) in 2D

a(u, v) := 〈∇u,∇v〉L2(�) (40)

and use a lowest order Galerkin discretization in S1,10 (Th, �D).
As a second example, we study pure Neumann boundary conditions, i.e., � = �N ,

and use the bilinear form aN (·, ·) : H1(�) × H1(�) → R corresponding to the
stabilized Neumann Poisson problem

aN (u, v) := 〈∇u,∇v〉 + 〈u, 1〉 〈v, 1〉 (41)

and a lowest order Galerkin discretization in S1,1(Th).
In Fig. 1, we compare the decrease of the upper bound ‖I − ABH‖2 of the relative

error with the increase in the block-rank for a fixed number N = 262, 144 of degrees
of freedom, where the largest block of BH has a size of 32,768.

We observe exponential convergence in the block rank, where the convergence
rate is exp(−br), which is even faster than the rate of exp(−br1/3) guaranteed by
Theorem 2.

6.2 3D-diffusion

We consider the unit cube � = (0, 1)3 with the Dirichlet boundary �D := {x ∈ � :
∃i ∈ {1, 2, 3} : xi = 0} and the Neumann part �N = �\�D .

Again, we consider the bilinear forms (40) and (41) corresponding to the weak
formulations of the Dirichlet–Neumann Poisson problem and the stabilized Neumann
problem.

In Fig. 2, we compare the decrease of ‖I − ABH‖2 with the increase in the block-
rank for a fixed number N = 32, 768 of degrees of freedom, where the largest block
of BH has a size of 4,096.

Comparing the results with our theoretical bound from Theorem 2, we empirically
observe a rate of e−br1/2 instead of e−br1/4 . Moreover, whether we study mixed bound-
ary conditions or pure Neumann boundary conditions does not make any difference,
as both model problems lead to similar computational results.
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Fig. 2 Mixed boundary value problem (left), pure Neumann boundary value problem (right) in 3D
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Fig. 3 2D convection-diffusion: mixed boundary value problem (left), pure Neumann boundary value
problem (right)

6.3 Convection-diffusion

Finally, we study a convection-diffusion problem on the L-shaped domain � =
(0, 1) × (0, 1

2 ) ∪ (0, 1
2 ) × [ 12 , 1). The boundary � = ∂� is divided into the Neu-

mann part �N := {x ∈ � : x2 = 0 ∨ x1 = 1} and the Dirichlet part �D = �\�N .
We consider the bilinear form a(·, ·) : H1

0 (�, �D)×H1
0 (�, �D) → R correspond-

ing to the mixed Dirichlet–Neumann Poisson problem

a(u, v) := c 〈∇u,∇v〉L2(�) + 〈b · ∇u, v〉L2(�)

with c = 10−2 and b(x1, x2) = (−x2, x1)T and use a lowest order Galerkin discretiza-
tion in S1,10 (Th, �D).

In Fig. 3, we observe exponential convergence of the upper bound ‖I − ABH‖2
of the relative error with respect to the increase in the block-rank for a fixed number
N = 196, 352 of degrees of freedom, where the largest block of BH has a size of
24,544.
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