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Abstract This paper is aimed at developing new shape functions adapted to the scalar
wave equation with smooth (possibly vanishing) coefficients and investigates the
numerical analysis of their interpolation properties. The interpolation is local, but
high order convergence is shown with respect to the size of the domain considered.
The new basis functions are then implemented in a numerical method to solve a scalar
wave equation problem with a mixed boundary condition. The main theoretical result
states that any given order of approximation can be achieved by an appropriate choice
of parameters for the design of the shape functions. The convergence is studied with
respect to the size of the domain, which is referred to in the literature as h-convergence.

Mathematics Subject Classification 65D05 · 65N99

1 Introduction

This paper focuses on the design of Generalized Plane Waves (GPW) to approximate
smooth solutions u ∈ C∞(�) of the model problem

− �u + βu = 0, in � ⊂ R
2, (1)

where β is in C∞(�). This time-harmonic equation, generally called the scalar wave
equation, models for instance the acoustic pressure describing the behavior of sound
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684 L.-M. Imbert-Gérard

in matter or a polarized electromagnetic wave propagating in an isotropic medium.
If β = −ω2, ω ∈ R, the equation is the classical Helmholtz equation and is still
the subject of recent research, see for instance [27]. If β < 0 is non constant, this
is a simple model of wave propagation in an inhomogeneous medium. If β > 0,
it models an absorbing medium and the partial differential equation is coercive.
The applications considered here include both propagative and absorbing media, as
well as smooth transitions in between them, i.e. respectively β > 0, β < 0 and β = 0.

Several types of numerical methods are used for the simulation of wave propa-
gation. Classical finite element methods applied to such problems are known to be
polluted by dispersion, see [1]. An alternative is to consider approximation methods
based on shape functions that are local solutions of the homogeneous equation: this
justifies the development of Trefftz-based methods, first introduced in [32], that rely
on solutions of the homogeneous governing domain equation: information about the
problem is embedded in the finite basis. The present work originated from the idea of
applying such a method to a problem modeled by (1) in which the coefficient is likely
to vanish: shape functions adapted to this problem are here designed and studied. See
the previous work [22] for the physical motivation of the problem. We refer to [29]
and references therein for more recent developments of these Trefftz-based methods,
and to [12,17] for applications linked to one specific method, the so-called UltraWeak
Variational Formulation (UWVF). Themethod coupling the latter to the adapted shape
functions is the topic of [22], and the present work includes numerical results for the
h convergence of the coupled method.

The novelty in the present lies in the fact that the shape functions, calledGeneralized
Plane Waves (GPWs), are selected from a smooth coefficient β of the governing
domain Eq. (1). This work can be compared to recent progress that focus on non
polynomial methods for smooth varying coefficients, see for instance [3,31]. The
design of shape functions adapted to smooth and possibly vanishing coefficients, that
is the core of this work, starts from mimicking the equation

(−� + β)eıω
−→
k ·−→x =

(
−(ıω‖−→k ‖)2 − ω2

)
eıω

−→
k ·−→x = 0,

where ı = √−1. It shows that classical plane waves functions eıω
−→
k ·−→x are exact

solutions of (1) when β = −ω2 is constant and negative.
The case of a piecewise constant coefficient is addressed for example in [5,11], and

themore general case of a smooth coefficient is generally approximated by a piecewise
constant coefficient. A very simple extension of classical plane waves for a positive
or negative constant coefficient would be to consider at a point −→g = (x0, y0) ∈ R

2

the shape function

ϕ(x, y) = exp

(√
sgn
(
β
(−→g ))

√∣∣β (−→g )∣∣ ((x − x0) cos θ + (y − y0) sin θ)

)
, (2)

where the parameter θ represents the direction of the plane wave. Indeed, the case
β
(−→g ) < 0 corresponds to the classical plane wave whereas the case β

(−→g ) > 0
corresponds to a purely imaginary wavenumber. This choice will provide a tool to
extend the interpolation results cited previously. Note that if the coefficient β

(−→g ) < 0
goes to zero then the corresponding classical planewaves functions, generated by equi-
spaced directions θ , tend not to be independent anymore.
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Interpolation properties of generalized plane waves 685

To address the general case of a smooth coefficient, the idea developed in the
present work is to design approximate solutions of the governing equation, in the
form of exponential of polynomials: the GPWs. Typically, in the case β(x, y) = x
the Airy functions Ai and Bi are exact solutions; however, in the general case there
is no exact analytic solution known. Indeed, as was explained in Section 2.1 of [22],
no exponential of a polynomial can solve a generic scalar wave equation. It is then
natural to generalize the classical plane waves by approximate solutions. A parameter
q will describe the order of this approximation. The explicit design of those GPWs is
the first concern of this paper. It is key to prove the interpolation property.

The desired interpolation property aims at approximating any smooth solution of
Eq. (1) using a basis of GPWs. It is the second concern of this paper. The goal of the
theoretical part of this paper is to prove high order approximation properties on such
sets of basis functions, provided that a sufficient number of basis functions is used
with respect to the approximation parameter q. It will be stated with more precision
in Theorem 1, and can be announced/summarized as follows.

Claim Assume n ∈ N, standing for an interpolation parameter and −→g = (x0, y0),
standing for a point in a bounded domain�. Suppose that the coefficients of the Taylor
expansion

∀−→m = (x, y) ∈ �,β
(−→m )

=
∑

0≤i+ j<n+1

∂x
i∂y

jβ
(−→g )

i ! j ! (x − x0)
i (y − y0)

j + O
(∣∣−→m − −→g ∣∣n+1

)

are given, where β is the coefficient of the scalar wave equation (1). Consider a smooth
solution u ∈ Cn+1(�) of Eq. (1). There exists a linear combination of GPWs ua which
is an approximation of order n + 1 of u in the following sense: there is a constant C�

such that for all −→m ∈ R
2

{∣∣u (−→m )− ua
(−→m )∣∣ ≤ C�

∣∣−→m − −→g ∣∣n+1 ‖u‖Cn+1 ,
∥∥∇u

(−→m )− ∇ua
(−→m )∥∥ ≤ C�

∣∣−→m − −→g ∣∣n ‖u‖Cn+1 .

Note that this result is local; it is stated at a given point−→g ∈ R
2. Theorem1 specifies

a sufficient number of GPWs to achieve an arbitrarily high order of convergence. It
can be related to what is called in the literature Hermitte-Birkhoff interpolation thanks
to GPWs, see [30].

Also note that in the literature of finite element or plane wave numerical methods,
such a result is referred to as h-convergence as it provides a rate of convergence with
respect to h if

∣∣−→m − −→g ∣∣ ≤ h. It is opposed to the p-convergence which focuses on
the convergence with respect to the number of basis functions. A first glance at the
p-version is proposed following the proof of the Theorem.

There are two main approaches in proving such interpolation results for Helmholtz
equation that have been developed in the literature. One of them is based on Vekua
theory, which was first translated into English in [14] for functions in R

2. A more
recent introduction to the topic can be found in [2]. Theoretical studies based on
this technical tool can be found in [25], and more recently in [28]. In the latter, the
case of the Helmholtz equation with constant coefficient is explicitly studied and
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interpolation properties are obtained with explicit dependence with respect to the
parameters. However, even if this theory is powerful, in the case of a smooth coefficient
it gives no explicit estimates with respect to the different parameters. The second main
stream method relies on Taylor expansions, and was proposed in [5]. Since the design
of solutions developed in this paper is based on Taylor expansions as well, this second
approach will be the one followed here.

Section 2 describes precisely the design process of the GPWs. The approximation
property is obtained subject to constraints on the function’s coefficients. Then a set
of approximated functions is obtained by specifying these constraints, mimicking the
classical plane wave functions. The notion of a GPW is made precise in Definition 1.
Section 3 focuses on the main approximation result of the paper, namely Theorem 1.
This theorem states a theoretical framework to obtain the approximation properties
presented in the previous claim. Its proof relies on fundamental properties of the
GPWs. Section 4 presents a series of numerical validations of Theorem 1. It considers
two different normalizations of the GPWs. The numerical test cases are chosen to
consider problems linked with reflectometry, a radar diagnostic technique for fusion
plasma, see [22] for more details.

Notation. The complex number
√−1 is denoted by ı . The symbol l ∈ [[n,m]] stands

for the statement: l ∈ N such that n ≤ l ≤ m. The symbol Cn represents the set of
functions whose derivatives up to the order n exist and are continuous.

2 Design of the generalized plane waves

A GPW is designed as a function ϕ = eP, where P is a complex polynomial in two
variables, which satisfies locally an approximated version of the governing Eq. (1):
(−� + β)eP ≈ 0. This section is split into two parts: a first one dedicated to the
design of a GPW as an approximate solution to the scalar wave Eq. (1), and a second
one dedicated to the construction of a basis of such approximate solutions. While the
design process depends on a single approximation order denoted q, the construction
of a basis depends on two additional parameters: the number p of basis functions as
well as a normalization parameter denoted N .

Definition 1 states a precise definition of a GPW.

2.1 An approximate solution

Since the design process is local, denote by −→g = (x0, y0) a point in R
2. Consider a

complex polynomial

P(x, y) =
dP∑
i=0

dP−i∑
j=0

λi, j (x − x0)
i (y − y0)

j , (3)

together with the associated function ϕ = eP . In order for ϕ to be a GPW, its image
by the operator −� + β has to be small. Since β is not constant but smooth, P will
be designed to ensure that
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Interpolation properties of generalized plane waves 687

(−� + β)eP = (− (∂x2 P + (∂x P)2 + ∂y2 P + (∂y P)2) + β
)
eP is locally small.

To simplify the notation, define the polynomial P� = ∂x2 P+(∂x P)2+∂y2 P+(∂y P)2,
so that (−� + β)eP = (−P� + β)eP . Since eP is locally close to eλ0,0 �= 0, the idea
is to set −P� + β to be small.

The design of the GPW is then performed by setting the coefficients of P to match
the Taylor expansions of P� and β: introducing an approximation parameter q ∈ N,
q ≥ 1, the design process described in this paper is be based on the local equation

− P�(x, y) + β(x, y) = O
(‖(x, y) − (x0, y0)‖q

)
. (4)

The specific case q = 1 corresponds to the simplest generalization of plane waves
described previously in (2). Indeed, in that case (4) is reduced to only one equation,
reading for dP ≥ 2

−2λ2,0 − λ21,0 − 2λ0,2 − λ20,1 + β
(−→g ) = 0.

So setting

(λ1,0, λ0,1) =
√
sgnβ

(−→g )
√∣∣β (−→g )∣∣(cos θ, sin θ)

together with λ0,2 = λ2,0 = 0 corresponds to the shape function described in (2) and
is sufficient to satisfy the approximation property (4) for q = 1. In the general case
q ≥ 1, the procedure includes choosing the degree of the polynomial and giving an
explicit expression to compute the coefficients of the polynomial. These two choices
are not independent. A precise analysis of Eq. (4) leads to choosing the degree of P
such that the computation of the coefficients appears to be straightforward.

Consider now the coefficients of P as unknowns in the general case q > 1. In order
to solve to ensure that Eq. (4) holds, consider a system described by:

• Nun = (dP+1)(dP+2)
2 unknowns, namely the coefficients of P ,

• Neq = q(q+1)
2 equations, corresponding to the cancellation of the terms of degree

lower than q in the Taylor expansion of β − P�.

As a result the system is overdetermined if dP + 1 < q, and in such a case the
existence of a solution is not guaranteed. The idea is then to find the smallest value of
dP ≥ q − 1 that would provide an invertible system.

The case dP = q − 1 provides a square, but generally not invertible system. For
instance consider the case q = 2 and dP = 1. Then (4) is reduced to three equations
reading

⎧⎪⎪⎨
⎪⎪⎩

−λ21,0 − λ20,1 + β
(−→g ) = 0,

∂xβ
(−→g ) = 0,

∂yβ
(−→g ) = 0.
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688 L.-M. Imbert-Gérard

Since no unknowns appear in the second and third equations this system obviously
has no solution in the general case.

The case dP = q is more intricate than the next one, since the q equation stem-
ming from the terms of degree q − 1 have no linear term. In a such case, the system
is underdetermined however there is no straightforward way to obtain an invertible
system, because of the nonlinearity. For instance consider the case dP = q = 2. Then
(4) is reduced to three equations reading

⎧
⎪⎪⎨
⎪⎪⎩

−2λ2,0 − λ21,0 − 2λ0,2 − λ20,1 + β(
−→g ) = 0,

−4λ2,0λ1,0 + ∂xβ(
−→g ) = 0,

−4λ0,2λ0,1 + ∂yβ(
−→g ) = 0.

This system is underdetermined, however for a general coefficient β it has no obvious
solution because of the nonlinearity: finding a solution corresponds to computing non
vanishing roots of a polynomial of degree 4 in two variables (λ1,0, λ0,1). So the case
dP = q does not—in general—lead to a convenient invertible system.

As for the case dP = q + 1, the system is underdetermined and the number of
additional equations to be imposed to get a square system is Nun − Neq = 2q + 3.
Moreover, since

β(x, y) =
∑

(i, j)/0≤i+ j≤q−1

∂x
i∂y

jβ(x0, y0)

i ! j ! (x − x0)
i (y − y0)

j

+O
(‖(x, y) − (x0, y0)‖q

)
,

then the Neq equations of the system that come from (4) actually reads

∀(i, j) s.t. 0 ≤ i + j ≤ q − 1,

∂x
i∂y

jβ
(−→g )

i ! j ! = (i + 2)(i + 1)λi+2, j + ( j + 2)( j + 1)λi, j+2

+
i∑

k=0

j∑
l=0

(i − k + 1)(k + 1)λi−k+1, j−lλk+1,l

+
j∑

k=0

i∑
l=0

( j − k + 1)(k + 1)λi−l, j−k+1λl,k+1. (5)

As a consequence, to obtain an invertible system the choice proposed in this paper
is to fix the set of coefficients

{
λi, j , i ∈ {0, 1}, j ∈ [[0, q + 1 − i]]}. Thus this choice

corresponds to the 2q + 2 additional constraints that, together with Eq. (5), form a
square system. The next result states the existence and uniqueness of a solution to this
square system.

Proposition 1 Assume−→g = (x0, y0) is a point inR2 and the approximation parame-
ter q ∈ N is such that q ≥ 1. Finally supposeβ ∈ Cq−1 at−→g and consider the complex
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i

j

q = 6

q + 1i0

j0

i0 + 2 q

∂2
yP

∂2
xP

(∂yP )2

(∂xP )2

i

j

q = 6

q − 1

q + 1

i0

j0
λi0+2,j0

i0 + 2 q

λi0,j0+2

Fig. 1 For a given (i0, j0), the left part of the figure shows the contributions from P� to the xi0 y j0 term
in β − P�. The right part shows that λi0+2, j0 can be explicitly expressed as long as λk,l are known for all
k ≤ i0 + 1 and l ≤ dP − 2 − k

unknowns
{
λi, j , 0 ≤ i + j ≤ q + 1

}
. The system described by (5) together with the

additional constraints of fixing the elements of
{
λi, j , i ∈ {0, 1}, j ∈ [[0, q + 1 − i]]}

has a unique solution, given by

∀(i, j) s.t. 0 ≤ i + j ≤ q − 1,

λi+2, j = 1

(i + 2)(i + 1)

(
∂x

i∂y
jβ
(−→g )

i ! j ! − ( j + 2)( j + 1)λi, j+2

−
i∑

k=0

j∑
l=0

(i − k + 1)(k + 1)λi−k+1, j−lλk+1,l

−
j∑

k=0

i∑
l=0

( j − k + 1)(k + 1)λi−l, j−k+1λl,k+1

)
. (6)

Proof For any given set of coefficients
{
λi, j , i ∈ {0, 1}, j ∈ [[0, q + 1 − i]]}, the exis-

tence and uniqueness of a solution to (5) stems directly from the induction relation
(6). See Fig. 1. ��

As a direct consequence of Proposition 1, the choice dP = q + 1 provides an
invertible system to compute the coefficients of P . Thanks to the preceding study, this
choice dP = q + 1 is actually the smallest value of dP providing such an invertible
system.

Note that for dP > q + 1, the system’s equations are still described by (5).
However there are more unknowns that in the previous case, namely dP = q + 1.
More precisely there are Nun − Neq = (dP+1)(dP+2)−q(q+1)

2 extra unknowns: again
fixing

{
λi, j , i ∈ {0, 1}, j ∈ [[0, q + 1 − i]]} uniquely defines the set of coefficients{

λi, j , 0 ≤ i + j ≤ q + 1
}
since the induction formula (6) still holds. But the remain-
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690 L.-M. Imbert-Gérard

ing coefficients
{
λi, j , q + 1 < i + j ≤ dP

}
do not appear in the equations: they need

to be computed even if they are not involved in the approximation Eq. (4).
Consequently from now on the polynomial P will be of degree q+1. The following

result summarizes how to design a GPW, providing 2q + 1 degree of freedom to do
so.

Corollary 1 Assume −→g = (x0, y0) is a point in R
2 and the approximation para-

meter satisfies q ∈ N such that q ≥ 1. Finally suppose β ∈ Cq−1 at −→g . Con-
sider a given set of complex numbers

{
λi, j , i ∈ {0, 1}, j ∈ [[0, q + 1 − i]]}, and the

corresponding coefficients
{
λi, j , 0 ≤ i + j ≤ q + 1

}
computed by the induction for-

mula (6). The function ϕ(x, y) = exp
∑

0≤i+ j≤q+1 λi, j (x − x0)i (y − y0) j satisfies
(−� + β(x, y))ϕ(x, y) = O(‖(x, y) − (x0, y0)‖q).

The explicit choice for the set of coefficients
{
λi, j , i ∈ {0, 1}, j ∈ [[0, q + 1 − i]]}

that will lead to the explicit definition of a GPW will include a parameter meant to
generate not only one, but a set of independent GPWs at a single point −→g .

2.2 A set of approximate solutions

The construction of a set of approximate solutions will take advantage of the degrees
of freedom available to design an approximate solution, provided by Corollary 1.
Inspired by the construction of classical plane waves, the general design procedure
proposed in this paper involves two parameters:

• a parameter θ corresponding to the direction of the wave,
• a parameter N �= 0 , where −ı N can be interpreted as the local wave number of
the wave.

These parameters are used to set (λ1,0, λ0,1) = N (cos θ, sin θ). It justifies the name
given to the new shape functions: generalized plane waves. Varying θ then provides
different functions ϕ, only as long as N �= 0.

The additional constraints that correspond the coefficients
{
λi, j , i ∈ {0, 1},

j ∈ [[0, q + 1 − i]]} will be fixed in the following way to give a precise definition of
a GPW.

Definition 1 Assume −→g = (x0, y0) is a point in R
2, the approximation parameter

satisfies q ∈ N such that q ≥ 1, θ ∈ R and N ∈ C such that N �= 0. Finally suppose
β ∈ Cq−1 at−→g . A generalized planewave adapted to the operator−�+β is a function
ϕ = exp

∑
0≤i+ j≤q+1 λi, j (x − x0)i (y − y0) j whose coefficients satisfy the induction

formula (6) together with the additional constraints

• λ0,0 = 0,
• (λ1,0, λ0,1) = N (cos θ, sin θ),
• λi, j = 0 for i ∈ {0, 1} and 1 < i + j ≤ q + 1.

Thefirst itemprevents anyblowupof the shape function linked to the exponential, since
then ϕ

(−→g ) = eλ0,0 is independent of−→g and β, while the second itemmimics classical
plane waves. The last item is the simplest possible choice and is meant to simplify both
the numerical computations—by a substantial decrease of basic operations necessary
to evaluate a shape function—and the analysis of the method.
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Interpolation properties of generalized plane waves 691

Remark 1 (Other possible choices) Other choices to obtain an invertible systemwould
give the same theoretical results. For instance choosing to fix {λi, j , j ∈ {0, 1}, i ∈
[[0, q + 1 − j]]} is possible as well. But numerically, as will be seen later on, there is
no evidence of the lack of symmetry with respect to the two space variables.

The condition N �= 0 is mandatory to define a set of linearly independent shape
functions: they then form a basis of an approximation space E−→g (N , p, q), where p is
the dimension of the space and q the order of approximation in (4).

Definition 2 Assume −→g = (x0, y0) is a point in R
2, the approximation parameter

satisfies q ∈ N such that q ≥ 1, p ∈ N such that p ≤ 3 and N ∈ C such that N �= 0.
Finally suppose β ∈ Cq−1 at −→g . Consider then for all l ∈ [[1, p]]
• θl = 2π(l − 1)/p a direction, all directions being equi-spaced,
• (λl1,0, λ

l
0,1) = N (cos θl , sin θl) the corresponding coefficients of the degree one

terms,
• ϕl the corresponding generalized plane wave as introduced in Definition 1.

The set of p shape functions adapted to the operator −� + β, denoted E−→g (N , p, q),
is defined by E−→g (N , p, q) = {ϕl}l∈[[1,p]].

The parameter N is then themain degree of freedom tobefixed to compute explicitly
the approximation space E−→g (N , p, q).

Finally, the explicit design of a set of GPWs at a point −→g = (x0, y0) can be
summarized by the following steps:

1. fix p ∈ N, p ≥ 3, the number of functions, and compute for all l ∈ [[1, p]]:
θl = 2π(l − 1)/p the direction of each function,

2. fix N ∈ C, N �= 0, and compute for all l ∈ [[1, p]]: (λl1,0, λl0,1) = N (cos θl , sin θl),
3. fix q ∈ N, q ≥ 1, the order of approximation, and compute for all l ∈ [[1, p]]

the set of coefficients of each function
{
λli, j , 0 ≤ i + j ≤ q + 1

}
according to

Corollary 1,
4. for all l ∈ [[1, p]] define ϕl = exp

∑
0≤i+ j≤q+1 λli, j (x − x0)i (y − y0) j ;

the desired set of GPWs is {ϕl}l∈[[1,p]].

3 Interpolation

The interpolation properties of the set E−→g (N , p, q) are proved in Theorem 1. This
section is devoted to the proof of this result, which states that, in order to approximate
to a given order n + 1 the solution of the scalar wave Eq. (1) around a point −→g ,
a number p = 2n + 1 of basis functions together with a approximation parameter
q = n + 1 are sufficient. The gradient of the solution is then approximated to the
order n.

The proof of this main theorem relies on a fundamental property of the GPWs,
which is first proved and commented.
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692 L.-M. Imbert-Gérard

3.1 A fundamental property of a generalized pane wave

Since the design and the interpolation study are based on different Taylor expansions,
the derivatives of the shape function ϕ are important quantities. Moreover, only two
coefficients among the set

{
λi, j , i ∈ {0, 1}, j ∈ [[0, q + 1 − i]]} are non-zero to define

a GPW. So it is natural to express the other coefficients with respect to those two. Both

• the coefficients λi, j s defining a shape function ϕ

• the derivatives of ϕ

can actually be expressed as polynomials in two variables with respect to (λ1,0, λ0,1).
The coefficients of these polynomials depend on the indices i , j , the GPW parameter
N and the derivatives of β evaluated at−→g . They do not depend on θ , and this is crucial
to prove Theorem 1.

Proposition 2 states this fundamental property of the derivatives of a generalized
pane wave, and its proof relies on the intermediate Lemma 1. These result strongly
use the fact that for a GPW: λ21,0 + λ20,1 = N 2.

Lemma 1 Assume −→g = (x0, y0) is a point in R
2, the approximation parameter

satisfies q ∈ N such that q ≥ 1, θ ∈ R and N ∈ C such that N �= 0. Finally
suppose β ∈ Cq−1 at −→g . Consider a GPW adapted to the operator −� + β: ϕ =
exp
∑

0≤i+ j≤q+1 λi, j (x − x0)i (y − y0) j .
Then each coefficient of the set {λi, j , 0 ≤ i + j ≤ q + 1} can be described as

polynomials in two variables in (λ1,0, λ0,1) as follows.

{∀i ≥ 2
λi, j is a polynomial of total degree at most i − 2.

(7)

The coefficients of these polynomials depend on the indices i , j , the GPW parameter
N and the derivatives of β evaluated at −→g . They do not depend on θ .

The following proof relies on a close examination of the induction formula (5),
considered as polynomial in two variables, namely (λ1,0, λ0,1). The idea is to track
the terms with higher degree.

Proof Because of the null coefficients, the induction formula (6) for i = 0 and i = 1
reads

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ2,0 = 1

2

(
β
(−→g )− (λ1,0)

2 − (λ0,1)
2
)

,

λ2, j = 1

2

∂y
jβ
(−→g )
j ! ∀ j > 0,

λ3,0 = 1

6

(
∂xβ

(−→g )− 4λ2,0λ1,0
)
,

λ3, j = 1

6

(
∂x∂y

jβ
(−→g )

j ! − 4λ2, jλ1,0

)
∀ j > 0.

(8)
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Interpolation properties of generalized plane waves 693

Then (7) for i = 2 stems from the choice of (λ1,0, λ0,1) in the GPW definition. Indeed
for j = 0 the sum (λ1,0)

2 + (λ0,1)
2 does not depend on (λ1,0, λ0,1) themselves but

only on N . Afterwards (7) for i = 3 is clear from (8).
Now set i ≥ 2 and suppose that the statement (7) holds true for all ĩ ∈ [[3, i + 1]].

Then, isolating λi+2, j in (5), the higher possible degree of each term is

• i − 2 for the term in λi, j+2,
• (i − 1) + 1 for the term in λi+1, jλ1,0,
• (i − k − 1) + (k − 1) for the terms in λi−k+1, j−lλk+1,l with k �= 0 and k �= i ,
• (i − 2) + 1 for the term in λi, j+1λ0,1,
• (i − l − 2) + (l − 2) for the term in λi−l, j−k+1λl,k+1 with l �= 0 and l �= i , note
that λi−l, j−k+1λl,k+1 = 0 with l �= 1 and l �= i − 1 because of null coefficients.

As a consequence the terms with higher degree appearing in the expression of λi+2, j
have degree at most equal to i . It completes the proof of (7) for i > 2 by induction.

The dependence of the polynomial expressions with respect to the different para-
meters is clear through the previous induction proof: the i , j and β terms appear
explicitly in the induction formula (6), while the N appears in the expression of λ2,0
of (8) since N 2 = λ21,0 + λ20,1. The parameter θ does not appear anywhere. ��

Proposition 2 Assume −→g = (x0, y0) is a point in R
2, the approximation parameter

satisfies q ∈ N such that q ≥ 1, θ ∈ R and N ∈ C such that N �= 0. Finally
suppose β ∈ Cq−1 at −→g . Consider a GPW adapted to the operator −� + β: ϕ =
exp
∑

0≤i+ j≤q+1 λi, j (x−x0)i (y−y0) j . Then for all (i, j) ∈ N
2 such that i+ j ≤ q+1

the difference

Ri, j := ∂x
i∂y

jϕ
(−→g )− (λ0,1)

j (λ1,0)
i (9)

can be expressed as a complex polynomial with respect to the two variables λ1,0 and
λ0,1. such that

• its total degree satisfies dRi, j ≤ i − 2,
• its coefficients only depend on i , j , N and on the derivatives of β but do not depend
on θ .

Remark 2 Since (λ1,0)
2 + (λ0,1)

2 is fixed, none of the polynomial expressions that
occur in Proposition 2 can be unique. For instance, any occurrence of (λ1,0)

2 could
be replaced by N 2 − (λ0,1)

2 which would change the term of higher degree. This is
the reason why Ri, j is not unique: see Sect. 3.2 for a different point of view. However,
formula (6) from Proposition 1 gives an explicit procedure for the computation of all
λi, j s: this is the crucial point that will be used for practical implementation.

One could have expected the degree of Ri, j to be smaller than i + j − 1. The
fact that it does actually not depend on j is due to the choice of the coefficients
{λi, j , i ∈ {0, 1}, i + j > 1} to be zero. The fact that it is smaller than i − 2 is due
to the fact that the degree of λ2, j is 0, since (λ1,0)

2 + (λ0,1)
2 = N 2 is constant with

respect to λ0,1 and λ1,0. See Definition 1.
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694 L.-M. Imbert-Gérard

Proof Applying the chain rule introduced in ‘Bivariate version’ in Appendix to the
GPW ϕ one gets for all (i, j) ∈ N

2,

∂x
i∂y

jϕ
(−→g ) = i ! j !

i+ j∑
μ=1

i+ j∑
s=1

∑
ps ((i, j),μ)

s∏
l=1

(λil , jl )
kl

kl ! ,

where ps((i, j), μ) is the set of partitions of (i, j) with length μ:

{
(kl , (il , jl))l∈[[1,s]] : kl ∈ N

∗, 0 ≺ (i1, j1) ≺ · · · ≺ (il , jl),

s∑
l=1

kl = μ,

s∑
l=1

kl(il , jl) = (i, j)

}
.

See ‘Bivariate version’ in Appendix for a definition of this ordering relation. Now
consider such a partition to be given and focus on the degree of the corresponding
product term, namely

∏s
l=1(λil , jl )

kl . Thanks to Lemma 1 one can split this product
into different terms regarding their degree as polynomials with respect to (λ1,0λ0,1).
As a result, since Deg

∏s
l=1(λil , jl )

kl = ∑s
l=1 kl Deg λil , jl , this quantity is also at

most equal to

∑
il=0, jl=1

kl jl +
∑

il=1, jl=0

kl il +
∑
il=2

kl · 0 +
∑
il≥3

kl(il − 2), (10)

where the two first sums contain at most one term each.
Obviously the leading term in ∂x

i∂y
jϕ
(−→g ) is (λ0,1)

j (λ1,0)
i , it corresponds to the

partition (i, j) = j (0, 1) + i(1, 0). Indeed, as long as a partition contains at least one
term such that il ≥ 2, the resulting degree computed from (10) will contain at least one
term kl ·0 or kl(il −2), and any of them is at most kl(il + jl)−2; as a consequence the
degree computed in (10) is then strictly lower than

∑s
l=1 kl(il + jl) − 2 = i + j − 2.

Since the product term corresponding to the partition j (0, 1) + i(1, 0) is
(λ0,1)

j (λ1,0)
i/( j !i !) it proves both the polynomial nature of Ri, j and its degree.

The claim concerning the coefficients of Ri, j directly stems from the same property
of the coefficients of λi, j s from Lemma 1. ��

3.2 A more algebraic viewpoint

This paragraph presents a more algebraic point of view on Remark 2.
Suppose N ∈ C is such that N �= 0, and consider {λi, j } the coefficient of any given

GPW defined with the parameters N and a fixed θ . The value of (λ1,0, λ0,1) gives
that the polynomial PN defined as PN = (λ1,0)

2 + (λ0,1)
2 − N 2 satisfies PN = 0

independently of θ . From then on, considering other quantities as polynomials in two
variables in (λ0,1, λ1,0) is in fact computing in the quotient ring C[λ1,0, λ0,1]/(PN )
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Interpolation properties of generalized plane waves 695

of C[λ1,0, λ0,1] modulo the ideal generated by PN . For instance, the system (8)
reads

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ2,0 = β
(−→g )− N 2

2
(PN ),

λ2, j = ∂y
jβ
(−→g )

2( j !) (PN ), ∀ j > 0,

λ3,0 = ∂xβ
(−→g )− 2λ1,0(β

(−→g )− N 2)

6
(PN ),

λ3, j = ∂x∂y
jβ
(−→g )

6( j !) + 2
∂y

jβ
(−→g )
j ! λ1,0 (PN ), ∀ j > 0.

Of course in this quotient ring, each equivalence class has an infinite number of ele-
ments, and all the computations of the previous subsection are performed on elements
of these classes. Thus any equality applies to all the elements of the same class. Note
that since the ring considered here is the ring of polynomials in two variables, there is
no such thing as the Euclidean division. As a result there is nothing like a canonical
element of a class used for computations. One can easily see that for q ≥ 4

∂x
4∂yϕ

(−→g ) = (λ1,0)
4(λ1,0) + 2∂yβ

(−→g )
(
(λ1,0)

2 − (λ0,1)
2
)

+ 2∂xβ
(−→g ) λ0,1λ1,0

+ 2∂x∂yβ
(−→g ) λ1,0 + (−3∂y

2β
(−→g )+ ∂xβ

(−→g ))λ0,1 − ∂y
3β
(−→g )

+ ∂x
2∂yβ

(−→g ) ,= (λ1,0)
4(λ1,0) + 2∂yβ

(−→g )
(
(λ1,0)

2 + (λ0,1)
2
)

+ 2∂xβ
(−→g ) λ0,1λ1,0 + 2∂x∂yβ

(−→g ) λ1,0 + (−3∂y
2β
(−→g )

+ ∂xβ
(−→g ))λ0,1 − ∂y

3β
(−→g )+ ∂x

2∂yβ
(−→g )− 2N 2∂yβ

(−→g ),

which gives two possible R4,1 ∈ C[λ1,0, λ0,1] satisfying (9) in Proposition 2.

3.3 Theoretical result

This subsection focuses on the interpolation property of the set of basis functions
E−→g (N , p, q). The sketch of the proof is inspired by the one developed by Cessenat
and Després [5], but it is adapted to the generalized plane wave basis functions.

This proof requires the definition of two matrices, Mn and MC
n , containing the

derivatives of classical and generalized plane waves.

Definition 3 Assume N ∈ C is such that N �= 0, n ∈ N is such that n > 0, q ∈ N

such that q ≥ n + 1 and −→g = (x0, y0) ∈ R
2. Finally suppose β ∈ Cq−1 at −→g . For all

l ∈ N such that 1 ≤ l ≤ 2n + 1 consider the direction θl = 2π(l − 1)/(2n + 1), the
corresponding GPW ϕl , κ = −ı N ∈ C

∗ and the function

el(x, y) = eıκ((x−x0) cos θl+(y−y0) sin θl ),
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696 L.-M. Imbert-Gérard

which is a classical plane wave if N ∈ ıR. The (n + 1)(n + 2)/2× (2n + 1) matrices
MC

n and Mn are defined as follows: for all (k1, k2) ∈ N
2, such that k1 + k2 ≤ n

⎧
⎨
⎩

(
MC

n

)
(k1+k2)(k1+k2+1)

2 +k2+1,l
= ∂x

k1∂y
k2 el(

−→g )
k1!k2! ,

(Mn) (k1+k2)(k1+k2+1)
2 +k2+1,l

= ∂x
k1∂y

k2ϕl(
−→g )

k1!k2! .

Their lth columns contain respectively the Taylor expansion coefficients of the func-
tions el and ϕl .

For instance, one has M1 =
⎛
⎝

ϕ1
(−→g ) ϕ2

(−→g ) ϕ3
(−→g )

∂xϕ1
(−→g ) ∂xϕ2

(−→g ) ∂xϕ3
(−→g )

∂yϕ1
(−→g ) ∂yϕ2

(−→g ) ∂yϕ3
(−→g )

⎞
⎠,

MC
1 =

⎛
⎝

1 1 1
ıκ cos θ1 ıκ cos θ2 ıκ cos θ3
ıκ sin θ1 ıκ sin θ2 ıκ sin θ3

⎞
⎠ and

M2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϕ1
(−→g ) ϕ2

(−→g ) ϕ3
(−→g ) ϕ4

(−→g ) ϕ5
(−→g )

∂xϕ1
(−→g ) ∂xϕ2

(−→g ) ∂xϕ3
(−→g ) ∂xϕ4

(−→g ) ∂xϕ5
(−→g )

∂yϕ1
(−→g ) ∂yϕ2

(−→g ) ∂yϕ3
(−→g ) ∂yϕ4

(−→g ) ∂yϕ5
(−→g )

∂x
2ϕ1

(−→g ) /2 ∂x
2ϕ2

(−→g ) /2 ∂x
2ϕ3

(−→g ) /2 ∂x
2ϕ4

(−→g ) /2 ∂x
2ϕ5

(−→g ) /2
∂x∂yϕ1

(−→g ) ∂x∂yϕ2
(−→g ) ∂x∂yϕ3

(−→g ) ∂x∂yϕ4
(−→g ) ∂x∂yϕ5

(−→g )

∂y
2ϕ1

(−→g ) /2 ∂y
2ϕ2

(−→g ) /2 ∂y
2ϕ3

(−→g ) /2 ∂y
2ϕ4

(−→g ) /2 ∂y
2ϕ5

(−→g ) /2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The rank of the matrix MC
n is computed in Lemma 2, which profits from the fact

that the result proved by Cessenat and Després [5] for κ > 0 is actually still valid for
κ ∈ C

∗. The proof of Theorem 1 relies on Lemma 3 that explicits the link between the
matrix MC

n and the corresponding matrix Mn built with the generalized plane waves.

Lemma 2 Assume N ∈ C is such that N �= 0, n ∈ N is such that n > 0 and−→g = (x0, y0) ∈ R
2. Finally suppose β ∈ C0 at −→g . There are two matrices: a

rectangle matrix Pn ∈ C
(2n+1)×(n+1)(n+2)/2 only depending on β

(−→g ) and a square
invertible matrix Sn ∈ C

(2n+1)×(2n+1) only depending on the directions θl such that
Sn = Pn · MC

n and rk(Sn) = 2n + 1. Moreover rk(MC
n ) = 2n + 1.

Proof ConsiderMC
n to be thematrix introduced inDefinition 3 so that for all (k1, k2) ∈

N
2, such that k1 + k2 ≤ n since el

(−→g ) = 1

(
MC

n

)
(k1+k2)(k1+k2+1)

2 +k2+1,l
= ∂x

k1∂y
k2el

(−→g )
k1!k2! = (ıκ)k1+k2

k1!k2! cosk1 θl sin
k2 θl .

Define for all k ∈ [[0, n]]

(Sn)n±k+1,l = 1

(ıκ)k

(
∂x ± ı∂y

)k
el
(−→g ) = k!

(ıκ)k

k∑
s=0

(±ı)s∂x (k−s)∂y
sel
(−→g )

(k − s)!s! .
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Thanks to the definition of MC
n one can check that

(Sn)n±k+1,l = k!
(ıκ)k

k∑
s=0

(±ı)s(MC
n ) ((k−s)+s)((k−s)+s+1)

2 +s+1,l ,

so that Sn is a (2n + 1) × (2n + 1) matrix that is a linear transform of MC
n . More

precisely, define Pn as a (2n + 1) × (n+1)(n+2)
2 matrix such that

(Pn)n±k+1, k(k+1)
2 +s+1 = k!(±ı)s/(ıκ)k .

Then Sn = Pn · MC
n . As a consequence, rk(M

C
n ) ≥ rk(Sn).

The rank of Sn is now to be evaluated thanks to the definition of the plane waves
el . Since el(x, y) = e(ıκ)((x−x0) cos θl+(y−y0) sin θl ) then

(
∂x ± ı∂y

)k
el = (ıκ)k(cos θl ± ı sin θl)

kel .

Consider that zl = cos θl + ı sin θl = (cos θl − ı sin θl)
−1 because |zl | = 1, and since

el
(−→g ) = 1 it yields

(
∂x ± ı∂y

)k
el
(−→g ) = (ıκ)k(zl)

±kel
(−→g ) = (ıκ)k(zl)

±k ⇒ (Sn)n±k+1,l = (zl)
±k .

Thus Sn’s columns are proportional to the one of a Vandermonde matrix and

det Sn =
n∏

i=1

z−n
i

∏
i< j

(zi − z j ).

From the choice of θls, for all i �= j : zi �= z j so that Sn is invertible and rk(MC
n ) ≥

rk(Sn) = 2n + 1. Since

rk
(
MC

n

)
≤ min

(
2n + 1,

(n + 1)(n + 2)

2

)
= 2n + 1

the proof is then completed. ��
Lemma 3 Assume N ∈ C is such that N �= 0, n ∈ N is such that n > 0, q ∈ N is such
that q ≥ n + 1 and −→g = (x0, y0) ∈ R

2. Finally suppose β ∈ Cq−1 at −→g . Consider
E−→g (N , p, q) introduced in Definition 2, together with Mn and MC

n introduced in
Definition3. Then there is a lower triangularmatrixLn,whosediagonal coefficients are
all equal to 1 and whose other coefficients are linear combinations of the derivatives
of β evaluated at −→g , such that

Mn = Ln · MC
n . (11)

As a consequence rk(Mn) = rk(MC
n ) and both ‖Ln‖ and ‖(Ln)

−1‖ are bounded by a
constant only depending on N and β.
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698 L.-M. Imbert-Gérard

The following proof is straightforward considering the feature of the derivatives of
ϕl described in Proposition 2.

Proof From (9) there exists a polynomial Ri, j ∈ C[X,Y ]with Deg Ri, j ≤ i −2 such
that

∀(i, j) ∈ N
2, ∂x

i∂y
jϕl
(−→g ) = ∂x

i∂y
j el
(−→g )+ Ri, j

(
∂x el

(−→g ) , ∂yel
(−→g )) . (12)

The coefficients of Ri, j do not depend on the basis function considered, but only
depends on β and its derivatives evaluated at −→g . By construction of the classical
plane wave el , one has{

∂x
k∂y

mel
(−→g ) = (∂x el

(−→g ))k (∂yel
(−→g ))m ,

= (ıκ)k+m cos(θ)k(i sin(θ))m .

The numbering of the rows in matrices MC
n and Mn is set up such that the derivatives

of smaller order appear higher in the matrix, which proves (11). Indeed (12) shows
that any coefficient of Mn is the sum of the corresponding coefficient in MC

n plus a lin-
ear combination—whose coefficients do not depend on the column that is considered
but only on β and its derivatives evaluated at −→g —of terms that appear higher in the
corresponding column of Mn .

The rank of Mn is then equal to the rank of MC
n , and ‖Ln‖ and ‖(Ln)

−1‖ do only
depend on the coefficients of Ri, j . As a result they do not depend on the basis functions
but only on the parameter N , the coefficient β and its derivatives at −→g . ��

The hypothesis of the following theorem give a sufficient condition on the relation
between the parameters p and q to achieve a high order interpolation.

Theorem 1 Assume � ⊂ R
2 is a bounded domain, N ∈ C is such that N �= 0, n ∈ N

is such that n > 0, q ≥ n + 1, p = 2n + 1 and −→g = (x0, y0) ∈ �. Finally suppose
β ∈ Cq−1 at −→g . Consider that u is a solution of scalar wave Eq. (1) which belongs
to Cn+1. Consider then E−→g (N , p, q) introduced in Definition 2. Then there are a
function ua ∈ Span E−→g (N , p, q) depending on β and n, and a constant C(N ,�, n)

depending on N, β and n such that for all −→m ∈ R
2

{∣∣u (−→m )− ua
(−→m )∣∣ ≤ C(N ,�, n)

∣∣−→m − −→g ∣∣n+1 ‖u‖Cn+1(�) ,∥∥∇u
(−→m )− ∇ua

(−→m )∥∥ ≤ C(N ,�, n)
∣∣−→m − −→g ∣∣n ‖u‖Cn+1(�) .

(13)

Note that it provides an upper bound for the best approximation property of the
function space E−→g (N , p, q):

max
{
‖u − ϕ‖L∞(|−→m −−→g |≤h), ϕ ∈ SpanE−→g (N , p, q)

}

≤ C(N ,�, n) ‖u‖Cn+1(�) h
n+1.

The behavior of the constant C(N ,�, n) as N goes to zero is commented in
Sect. 3.4. It suggests the need for a parameter N that is bounded away from zero,
see Sect. 4.1.
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Proof The idea of the proof is to look for ua = ∑2n+1
l=1 Xlϕl by fitting its Taylor

expansion to the one of u. This will be done by solving a linear system concerning the
unknowns (Xl)l∈[[1,2n+1]].

Since u belongs to Cn+1 and for all l ∈ [[1, 2n + 1]] the basis function ϕl
belongs to C∞, their Taylor expansions read: there is a constant C such that for all−→m = (x, y) ∈ �

∣∣∣∣∣∣
u(x, y) −

n∑
m=0

∑
k1+k2=m

Bk1k2x
k1 yk2

∣∣∣∣∣∣
≤ C

∣∣−→m − −→g ∣∣n+1 ‖u‖Cn+1 ,

∣∣∣∣∣∣
ϕl(x, y) −

n∑
m=0

∑
k1+k2=m

Ml
k1k2x

k1 yk2

∣∣∣∣∣∣
≤ C

∣∣−→m − −→g ∣∣n+1 ‖ϕl‖Cn+1 ,

where for the sake of simplicity Ml
k1k2

stands for the term ∂x
k1∂y

k2ϕl/(k1!k2!), which
is the definition of (Mn) (k2+k1)(k2+k1+1)

2 +k2+1,l
. In the same way, define a vector Bn :

Bk1,k2 stands for the Taylor coefficient of u, which is the definition of the coefficient
(Bn) (k2+k1)(k2+k1+1)

2 +k2+1
. Note that at every point−→g in�, there is a constant C = C−→g

such that the two previous estimates hold. This constant C−→g depends continuously

on −→g , through the derivatives of β evaluated at −→g . Since � is compact, the constant
C = max−→g ∈� C−→g is finite. The system to be solved is then

⎧⎪⎨
⎪⎩

Find (Xl)l∈[[1,2n+1]] ∈ C
2n+1 s.t.

2n+1∑
l=1

Ml
k1,k2Xl = Bk1,k2 , ∀m ∈ [[0, n]], ∀(k1, k2) ∈ [[0, n]]2 s.t. k1 + k2 = m.

In order to study the system’smatrix, the equations depending on (k1, k2) have to be
numbered: they will be considered with increasing m = k1 + k2, and with decreasing

k1 for a fixed value ofm. Defining the corresponding vector Bn ∈ C
(n+1)(n+2)

2 , together
with the unknown Xn = (X1, X2, . . . , X2n+1) ∈ C

2n+1, the system now reads

{
Find Xn ∈ C

2n+1 such that
Mn · Xn = Bn

where Mn ∈ C
(n+1)(n+2)

2 ×(2n+1) is the matrix from Definition 3.
Since the system is not square, there is a solution if and only if Bn ∈ Im(Mn). The

following points are steps toward the proof of existence of such a solution.
(i) The technical point is to prove that rk(Mn) = 2n + 1. It is straightforward from

Lemmas 3 and 2.
(ii) Build subset K ⊂ C

(n+1)(n+2)
2 such that Im(Mn) ⊂ K and Bn ∈ K. Such a sub-

space K can be built from the fact that the basis functions are designed to fit the Taylor
expansion of the scalar wave equation: for all l ∈ [[1, 2n + 1]], for all (k1, k2) ∈
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[[0, n − 2]]2 such that k1 + k2 ≤ n − 2, the element of the lth column of Mn satisfy

(k1 + 1)(k1 + 2)(Mn)k1+2,k2 + (k2 + 1)(k2 + 2)(Mn)k1,k2+2

=
k1∑
i=0

k2∑
j=0

∂x
i∂y

jβ
(−→g )

i ! j ! (Mn)k1−i,k2− j .

This is clear from the design of the GPWs, since for all the basis functions ϕl , all the
terms of order smaller than q in the Taylor expansion of (−�+β)ϕl = (−P�,l +β)ϕl
vanish. So define

K :=
{

(Ck1,k2) ∈ C
(n+1)(n+2)

2 ,∀(k1, k2) ∈ N
2, k1 + k2 ≤ n − 2,

(k1 + 1)(k1 + 2)Ck1+2,k2 + (k2 + 1)(k2 + 2)Ck1,k2+2

=
k1∑
i=0

k2∑
j=0

∂x
i∂y

jβ
(−→g )

i ! j ! Ck1−i,k2− j

⎫⎬
⎭ (14)

With q ≥ n + 1, it is then straightforward to see that Im(Mn) ⊂ K. The fact that
Bn ∈ K simply stems from plugging the Taylor expansions of u and β into scalar wave
equation.

(iii) The dimension of K defined by (14) is dimK = 2n + 1. Indeed, one can
check—using the same numbering as previously for the equations—that K is defined

by n(n − 1)/2 linearly independent relations on C
(n+1)(n+2)

2 , so that its dimension is
(n + 1)(n + 2)/2 − n(n − 1)/2.

As a result of points (i), (ii), and (iii), Im(Mn) there is a solution to the system
Mn · Xn = Bn .

As a consequence, consider a solution Xn to the system Mn · Xn = Bn , and define
ua =∑2n+1

l=1 Xlϕl . Thanks to that definition and to the Taylor expansions of u and the
ϕls it yields

∣∣u (−→m )− ua
(−→m )∣∣ ≤ C

∣∣−→m − −→g ∣∣n+1 (‖u‖Cn+1 + ‖ua‖Cn+1
)
.

Moreover one has the identityXn = (Sn)
−1Pn(Ln)

−1Bn , where (Sn)
−1Pn is bounded

from above by supl∈[[1,2n+1]] ‖el‖Cn+1 , see Lemma 2, (Ln)
−1 is bounded from above by

a constant depending only on β and its derivatives from Lemma 3, and Bn is bounded
by ‖u‖Cn+1 . Since for all l ∈ [[1, 2n + 1]] it yields |Xl | ≤ C(N ,�, n)‖u‖Cn+1 , it turns
out to be the first part of (13):

∣∣u (−→m )− ua
(−→m )∣∣ ≤ C(N ,�, n)(2n + 2)

∣∣−→m − −→g ∣∣n+1 ‖u‖Cn+1 .

123



Interpolation properties of generalized plane waves 701

At last, the second part of (13) stems from taking the Taylor Lagrange formula of
the gradient of u − ua , up to the order n, since

n∑
m=0

∑
k1+k2=m

(
Bk1k2(x−x0)

k1(y−y0)
k2 −

2n+1∑
l=1

(
XlMl

k1k2(x−x0)
k1(y − y0)

k2
))

= 0.

That is: for all −→m = (x, y) ∈ � there are ζ1, ζ2 in R
2 on the segment line between−→m and −→g such that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂x (u − ua)(x, y) =
n∑

l=0

∂x
l+1∂y

n−l(u − ua)(ζ1)

l!(n − l)! (x − x0)
l(y − y0)

n−l ,

∂y(u − ua)(x, y) =
n∑

l=0

∂x
l∂y

n−l+1(u − ua)(ζ2)

l!(n − l)! (x − x0)
l(y − y0)

n−l

which indeed leads to the desired inequality. ��

3.4 Comments on the asymptotic behavior of C(N ,�, n)

Consider first the behavior of this constant with respect to N . Because the Taylor
expansion actually reads

(u − ua)(x, y) =
q∑
j=0

(
∂x

j∂y
q− j u

(−→g )
j !(q − j)! −

p∑
l=1

Xl
∂x

j∂y
q− jϕl

(−→g )
j !(q − j)!

)

(x − x0)
j (y − y0)

q− j + O
(∣∣−→m − −→g ∣∣q+1

)
,

one can see that if cN ,
−→g = ∑p

l=1 Xl
∑q

j=0
∂x

j ∂y
q− jϕl(

−→g )
j !(q− j)! blows up when N goes to

zero, then so does C(N ,�, n).
SinceXn satisfiesSn ·Xn = Pn(Ln)

−1Bn , one can describe the asymptotic behavior
of the Xls with respect to N as follows. The matrix of this system doesn’t depend on
N , but only on p. Now consider the right hand side of this system:

• the vector Bn only depends on u and n,
• thanks to Proposition 2, the matrix Ln has a lower triangular block structure:
particularly the n diagonal square blocs of increasing size k × k for k from 1 to
n+ 1 are identity blocs, while the sub-diagonal rectangle blocs of size (k + 1)× k
for k from 1 to n are zero blocs, and the rest of the sub-diagonal coefficients are
polynomials with respect to N 2,

• the inverse (Ln)
−1 shares this sparse structure with Ln and the same dependence

with respect to N ,
• by construction the only non zero blocs of the matrix Pn are row blocs, each
element of such a bloc having the same modulus 1/Nk , particularly for the first
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1

1/N

1/N

1/N2

1/N2

1/N3

1/N3

1/N4

1/N4

I1

I2

I3

I4

I5

Fig. 2 Profile of matrices Pn and Ln for n = 4. All white blocs are zeros. Left row bloc structure of the
Pn matrix. For k from 0 to n, the rows n ± k + 1 contain a 1× (k + 1) non zero bloc. These non zero blocs
are represented in sky blue. As stated in the definition of Pn , every non zero element on the row n ± k + 1
behaves asymptotically as 1/Nk as N goes to zero. Right bloc structure of the Ln matrix. The diagonal
blocs are identity blocs of increasing size k, they are represented in sky blue. The sub-diagonal blocs of size
k× (k+1) are zeros, so they are represented in white. The rest of the sub-diagonal coefficients, represented
on midnight blue, are polynomials with respect to N2 (color figure online)

and last rows of Pn which first
n(n+1)

2 terms are zero while the last n+ 1 terms are
respectively n!(±ı)s/Nn for s from 0 to n.

It yields that the right hand side behaves as 1/Nn as N goes to zero, see Fig. 2 for an
illustration of these different structures. As a result the coefficients Xls behave as 1/Nn

as N goes to zero as well. As opposed to Proposition 2, a result concerning the lowest
degree term of ∂x

j∂y
q− jϕ as polynomials with respect to (λ1,0, λ0,1) would provide

an explicit estimate for C(N ,�, n) as N goes to zero.
Consider now the behavior of the constant C(N ,�, n) with respect to the local

number of basis functions, p = 2n + 1. The only direct dependence with respect to p
stems from the matrix Sn , more precisely from its determinant. Indeed, it is clear to
see that

|det Sn| =
p∏

j=2

j−1∏
i=1

(
exp

2ıπ(i − 1)

p
− exp

2ıπ( j − 1)

p

)
=

p−1
2∏

l=1

(
sin

2πl

p

)p

.

In order to get a first estimate, one can consider that the convergence will be driven
by the terms such that l/p ≤ 100 and simply bound the other terms by 1. Then from
Stirling’s approximation

p/100∏
l=1

sin
2πl

p
≈ 2π

p/100∏
l=1

l

p
≈ 2π

√
2π

p

100

1

(100e)
p

100
,

123



Interpolation properties of generalized plane waves 703

so that |det Sn| ≤ C
( p

100

)p/2 1

(100e)
p2
100

. This first estimate is encouraging since in

the plane wave literature, and especially for applications linked to the UWVF, the hp-
convergence seems more attractive than the h-convergence, see for instance [18,20].

4 Numerical validation

In order to validate the Theorem 1, each of the numerical validation case is computed,
for a given value of n, setting q = n + 1 and p = 2n + 1. The test case considered
is β(x, y) = x − 1, to approximate the exact solution ue(x, y) = Airy(x)eıy . See
[22] for the physical motivation of this test case: its main interest is that the coefficient
vanishes along the line x = 1, which represents a plasma cut-off that reflects incoming
waves.

First a discussion addresses the choice of the normalization parameter N to design
the basis functions, introduced in Definition 1.

Of course since the theoretical results give local approximation properties, the
validation procedure itself will be local as well. As stated in the theorem ue can be
approximated by a function ua that belongs to the approximation space E−→g (N , p, q),
space that is built with the previously discussed normalizations.

The idea is to follow the error max |ue − ua | on disks with decreasing radius h in
order to observe the order of convergence with respect to h. Several different cases
are proposed to validate the theoretical order of convergence, and additional cases
concern the behavior of the basis functions with respect to the cut-off.

4.1 Two families of generalized plane waves

Two different choices of the normalization parameter N will be considered in this

paper. A first choice is comprised of setting N =
√
sgnβ

(−→g )
√∣∣β (−→g )∣∣, see Defin-

ition 4. It gives a direct generalization of a classical plane waves, since in this case

β
(−→g ) < 0, so that

√
−β
(−→g ) is the local wave number. However, this choice is local

since N does depend on −→g ∈ �, and cannot be used if β
(−→g ) = 0: it is a classical

problem in low frequency regime , see [15,21]. To overcome this limitation and con-
sider the stationary limit case, a second possibility is to choose one constant and non
zero value for N : it will not depend on −→g anymore.

The first type of shape functions corresponds to a local choice since it does depend
on −→g ∈ R

2.

Definition 4 Theβ-normalization forGPWs is definedby choosing N =
√
sgnβ

(−→g )√∣∣β (−→g )∣∣ in Definition 1, which means setting

1. (λ1,0, λ0,1) =
√
sgnβ

(−→g )
√∣∣β (−→g )∣∣(cos θ, sin θ).

2. {λi, j , 0 ≤ i + j ≤ q + 1, i + j �= 1} are set to zero.
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704 L.-M. Imbert-Gérard

Remark 3 (Back to classical Plane Waves from the β-normalization) The fact that the
quantity (λ1,0)

2 + (λ0,1)
2 is equal to β

(−→g ) however gives that the value of β
(−→g )

does actually never appear in the expression of the other coefficients explicitly, but
only in product terms involving λ1,0 or λ0,1. One can easily check by induction that
each one of the terms that are summed in formula (6) contains at least one derivative
of β. Indeed (8) proves it for λi, j , i = 2 and 3, and the induction is then clear for i ≥ 3
thanks to (6).

As a consequence, for β = −ω2 < 0 and for any q ≥ 1, all the coefficients
λi, j such that i > 1 are actually zero, which means that the corresponding function
ϕ = exp

∑
0≤i+ j≤q+1 λi, j (x − x0)i (y − y0) j is nothing more than a classical plane

wave.
As already remarked, it is also obvious that for q = 1 this new shape function is

again nothing more than a classical plane wave as long as β < 0. This case q = 1
corresponds to the classical fact of approximating a smooth coefficient by its piecewise
constant value at the center of the cells.

The fact is that since the terms (λ1,0, λ0,1) of the β-normalization are proportional
to the square root of β, they will vanish when β = 0. Note that the approximation
properties of classical placewaves do not deteriorate as theirwave number goes to zero,
see [26, Section 3.4] . However, numerical results show that it causes severe damaging
to the conditioning of the discrete UWVF problem if β tends to zero. Moreover the
theoretical estimate displayed in Sect. 3.4 justifies the need for a second normalization
to ensure the desired interpolation property. As a consequence, a second normalization
is considered, with a global choice of N independent from −→g ∈ R

2.

Definition 5 The constant-normalization for GPW is defined by choosing N = ı in
Definition 1, which means setting

1. (λ1,0, λ0,1) = ı(cos θ, sin θ).
2. {λi, j , 0 ≤ i + j ≤ q + 1, i + j �= 1} are set to zero.
Remark 4 (Classical PlaneWaves and the constant-normalization) In order to balance
Remark 3, note that since the constant-normalization does not depend on β it arises
that for β = −ω2 �= −1 the term β

(−→g ) appears in higher order terms. For instance it
is clear that λ2,0 = (1+ β

(−→g ))/2. As a consequence, neither when β( �= −1) < 0 is
constant nor when q = 1 the shape function designed from the constant-normalization
can be a classical plane wave.

4.2 In the propagative zone

The point−→g = (−3, 1) is in the propagative zone. Then concentric disks are centered
on −→g with radius h = 1/2k , increasing the value of k. Following the theorem, the
expected order of convergence is n + 1.

Figure 3 displays computed convergence results that fit perfectly the theoretical
result. A set of p = 11 classical PlaneWaves is used as a control case, since p = 11 is
the higher number of basis functions used with both normalizations of the GPWs. As
expected, since both normalizations satisfy N �= 0 away from the cut-off, the orders of
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beta n=1
CST n=1
beta n=2
CST n=2
beta n=3
CST n=3
beta n=4
CST n=4
beta n=5
CST n=5

p = 11 n = 1 n = 2 n = 3 n = 4 n = 5

h PW β CST β CST β CST β CST β CST

1/22 0.92 2.07 1.94 2.96 3.81 4.07 6.08 5.29 6.88 7.06 8.37

1/23 0.69 2.02 1.98 3.00 3.27 3.99 4.50 5.02 6.88 6.44 8.35

1/24 0.51 2.00 2.00 3.00 3.06 4.00 4.04 5.00 6.49 6.09 8.26

1/25 0.34 2.00 2.00 3.00 3.01 4.00 4.00 5.00 5.82 6.00 7.61

1/26 0.21 2.00 2.00 3.00 3.00 4.00 4.00 5.00 5.30 5.97 6.07

Fig. 3 Convergence results in the propagative zone, computed at (−3, 1) ∈ R
2 with different basis func-

tions. Comparison between classical Plane Waves and Generalized Plane Waves for both β and constant
normalizations. Some of the associated orders of convergence are also provided. In the legend, beta and
CST respectively refer to the β and constant normalizations, while n is the parameter introduced in The-
orem 1: in each case the expected order of convergence is n + 1. PW refers to the classical Plane Waves

convergence observed are close to n+1. No significant difference is observed between
the two types of normalization.

Note that machine precision is reached in the higher order cases.

4.3 In the non propagative zone

The point −→g = (2, 1) is in the non propagative zone. Again concentric disks are
centered on −→g with radius h = 1/2k , increasing the value of k, and the expected
order of convergence is n + 1. There is no classical Plane Wave that can be computed
here since β

(−→g ) > 0.
Figure 4 displays computed convergence results that fit perfectly the theoretical

result as well. As was observed in the propagative case, since both normalizations
satisfy N �= 0, the orders of convergence observed are equal or slightly higher than
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beta n=1
CST n=1
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CST n=2
beta n=3
CST n=3
beta n=4
CST n=4
beta n=5
CST n=5

n = 1 n = 2 n = 3 n = 4 n = 5

h β CST β CST β CST β CST β CST

1/22 2.16 2.03 3.05 3.82 4.14 4.82 5.09 7.26 6.24 8.50

1/23 2.07 2.01 3.03 3.27 4.05 4.03 5.04 6.96 6.07 8.28

1/24 2.03 2.00 3.02 3.07 4.02 4.00 5.02 5.83 6.02 7.93

1/25 2.02 2.00 3.01 3.01 4.01 4.00 5.01 5.21 6.00 6.76

1/26 2.01 2.00 3.00 3.00 4.00 4.00 5.00 5.05 5.87 5.70

Fig. 4 Convergence results in the non-propagative zone, computed at (2, 1) ∈ R
2 with different basis

functions. Comparison between Generalized Plane Waves for β and constant normalizations. Some of the
associated orders of convergence are also provided. In the legend, beta and CST respectively refer to the β

and constant normalizations, while n is the parameter introduced in Theorem 1: in each case the expected
order of convergence is n + 1

the theoretical order n + 1. Still no significant difference appears between the two
types of normalization.

Again machine precision is reached in the higher order cases.

4.4 Along the cut-off: β = 0

The point −→g = (1, 1) lies exactly on the vanishing line of β. Then again concentric
disks are centered on−→g with radius h = 1/2k , increasing the value of k. Both classical
Plane Waves and GPWs with β-normalization would provide only one function since
they correspond to N = β

(−→g ) = 0. As to the GPWs with constant-normalization,
the theoretical results show that their interpolation property holds along the cut-off as
well as anywhere else in the domain.

As Figs. 3, 4 and 5 displays results that fit perfectly the theoretical result. The
orders of convergence observed are again slightly better than n + 1. It is an example
of efficient approximation of the exact solution ue along the cut-off.
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n=5

h n = 1 n = 2 n = 3 n = 4 n = 5

1/22 2.01 3.33 4.15 6.72 8.10

1/23 2.00 3.09 4.01 5.49 7.93

1/24 2.00 3.02 4.00 5.11 7.01

1/25 2.00 3.00 4.00 5.03 6.20

1/26 2.00 3.00 4.00 5.01 5.50

Fig. 5 Convergence results computed at (1, 1) ∈ R
2 where β(1, 1) = 0 using Generalized Plane Waves

with the constant-normalization. Some of the associated orders of convergence are also provided. In the
legend, n is the parameter introduced in Theorem 1: in each case the expected order of convergence is
n + 1

4.5 Toward the cut-off: β → 0

Since β(x = 1, y) = 0, it is interesting to look at what happens with the β-
normalization along this line. Again the value of h is h = 1/2k , increasing the value
of k. The point −→g h = [1− h, 1] remains in the propagative zone. Then disks are here
centered on a point−→g h that stands at a distance h from the line x = 1, still with radius
h. As a result all the disks are tangent to the cut-off line defined by x = 1. Classical
Plane Waves are compared to the β-normalization with the same number of basis
functions. Even if this test case does not correspond to the theoretical result proved in
the present work, it is of significant interest for further inclusion of the GPWs to plane
wave methods.

Figure 6 show that the β normalized Generalized plane waves give a high order
approximation of u even getting closer to the vanishing line x = 1, as long as h is not
too small. Note first that there seem to be a significant difference between the classical
and generalized plane waves, as the error obtained with the classical plane waves
rapidly reaches a threshold which is seven orders of magnitude bigger than with the
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PW p=9
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PW p=11
beta n=5

n = 1 n = 2 n = 3 n = 4 n = 5

h PW β PW β PW β PW β PW β

1/22 2.35 2.37 3.27 3.24 3.17 4.09 3.21 5.32 3.21 6.25

1/23 2.23 2.24 3.19 3.19 2.77 4.13 2.82 5.14 2.82 6.11

1/24 2.14 2.15 3.12 3.11 2.47 4.09 2.40 5.08 2.40 6.03

1/25 2.08 2.09 3.08 3.07 2.27 4.06 2.24 5.05 2.24 1.13

1/26 2.05 2.04 3.05 3.04 2.15 4.04 2.13 4.00 2.13 -2.24

Fig. 6 Convergence results toward β = 0, computed at (1 − h, 1) ∈ R
2. Comparison between Classical

Plane Waves and Generalized Plane Waves with the β-normalization. Some of the associated orders of
convergence are also provided. In the legend, beta and PW respectively refer to the β normalization and
classical Plane Waves, while n is the parameter introduced in Theorem 1: in each case the expected order
of convergence is n + 1, and p is the number of classical Plane Waves

GPWs. However it is obvious that, as the parameter n increases, the minimum error
obtained with the β-normalized GPWs increases. It justifies the use of the constant-
normalization for further applications.

Another possibility is to compare the influence of two parameters: the size of the
disk h and the distance d between −→g and the line x = 1. In this case, the error
e = max |ue − ua | depends on both parameters, so one can write e(h, d). Figure 7
displays the error computed for h and d convergence with the β-normalization. The
h convergence is clearly damaged for decreasing values of d. This is linked to the
low frequency limit when β goes to zero. However, looking at the h convergence
with d = h, one can see that the error e(h, h) converges as the error e(h, 1/2) until
h = 1/25.
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h\ d 1/21 1/22 1/23 1/24 1/25 1/26 1/27 1/28 1/29 1/210

1/21

1/22
4.8e-06 5.5e-06 5.5e-06 5.4e-06 5.4e-06 5.3e-06 5.2e-06 5.

5.7e-08 6.4e-08 6.4e-08 6.2e-08 6.1e-08 6.0e-08 5.9e-08 5.

2e-06 5.2e-06 5.2e-06

8e-08 5.8e-08 6.9e-08

1/23 8.3e-10 9.2e-10 9.2e-10 9.0e-10 8.8e-10 8.7e-10 9.2e-10 1.2e-09 3.5e-09 2.4e-08

1/24 1.3e-11 1.4e-11 1.4e-11 1.4e-11 1.8e-11 3.6e-11 1.0e-10 5.4e-10 3.2e-09 2.2e-08

1/25 2.0e-13 2.3e-13 3.5e-13 8.8e-13 6.4e-12 2.8e-11 1.2e-10 5.4e-10 3.8e-09 2.2e-08

1/26 4.3e-15 1.7e-14 1.6e-13 7.6e-13 6.2e-12 3.0e-11 1.0e-10 6.0e-10 3.1e-09 2.0e-08

1/27 2.4e-15 1.6e-14 1.6e-13 7.7e-13 6.2e-12 2.8e-11 9.8e-11 5.1e-10 2.9e-09 2.3e-08

1/28 2.3e-15 1.5e-14 1.6e-13 7.9e-13 6.1e-12 2.7e-11 1.0e-10 5.0e-10 2.5e-09 1.6e-08

1/29 2.0e-15 1.5e-14 1.6e-13 7.9e-13 5.4e-12 2.5e-11 9.7e-11 4.9e-10 2.5e-09 1.9e-08

1/210 1.9e-15 1.4e-14 1.5e-13 7.5e-13 6.0e-12 2.5e-11 8.7e-11 5.0e-10 2.5e-09 1.8e-08

Fig. 7 Error computed on a disk of radius h centered at (1 − d; 1) ∈ R
2. The approximation is computed

with β-normalized basis functions and with n = 5

5 Conclusion

A procedure to design a set of generalized plane waves that are locally approximate
solution of the scalarwave equation has been successfully developed, the novelty being
to consider smooth and non constant coefficients. It is to be noted that the design
procedure is still valid as the coefficient vanishes. Both theoretical and numerical
results evidence the high order approximation property of the GPWs, corresponding
to h-convergence.

The design procedure could easily be generalized to many differential operators,
as described in [23]. Moreover a natural idea would be to extend the generalization
process from the phase to the amplitude of plane waves, by considering a looking for
a shape function as ϕ = QeP where P and Q are two polynomials.
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funded by the Fondation Pierre Ledoux. I would also like to thank Bruno Després for his help.

Appendix: Chain rule in dimension 1 and 2

For the sake of completeness, this section is dedicated to describing the formula to
derive a composition of two functions, in dimensions one and two.Awide bibliography
about this formula is to be found in [24]. It is linked to the notion of partition of an inte-
ger or the one of a set. The 1D version is not actually used in this work but is displayed
here as a comparison with a 2D version, mainly concerning this notion of partition.

A.1 Faa Di Bruno formula

Faa Di Bruno formula gives the mth derivative of a composite function with a single
variable. It is named after Francesco Faa Di Bruno, but was stated in earlier work of
Louis F.A. Arbogast around 1800, see [8].
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If f and g are functions with sufficient derivatives, then

dm

dxm
f (g(x)) = m!

∑
f (
∑

k bk )(g(x))
m∏

k=1

1

bk !

(
g(k)(x)

k!

)bk

,

where the sum is over all different solutions in nonnegative integers (bk)k∈[[1,m]] of∑
k kbk = m. These solutions are actually the partitions of m.

A.2 Bivariate version

Themultivariate formula has beenwidely studied, the version described here is the one
from [7] applied to dimension 2. A linear order on N2 is defined by: ∀(μ, ν) ∈ (N2

)2
,

the relation μ ≺ ν holds provided that

1. μ1 + μ2 < ν1 + ν2; or
2. μ1 + μ2 = ν1 + ν2 and μ1 < ν1.

If f and g are functions with sufficient derivatives, then

∂x
i∂y

j f (g(x, y)) = i ! j !
∑

1≤μ≤i+ j

f μ(g(x, y))

×
i+ j∑
s=1

∑
ps ((i, j),μ)

s∏
l=1

1

kl !
(

1

il ! jl !∂x
il ∂y

jl (g(x, y))

)kl
,

where the partitions of (i, j) are defined by the following sets: ∀μ ∈ [[1, i + j]],
∀s ∈ [[1, i + j]], ps((i, j), μ) is equal to

{
(k1, . . . , ks; (i1, j1), · · · , (is, js)) : ki > 0, 0 ≺ (i1, j1) ≺ · · · ≺ (is, js),

s∑
l=1

kl = μ,

s∑
l=1

kl il = i,
s∑

l=1

kl jl = j

}
.

See [13] for a proof of the formula interpreted in terms of collapsing partitions.
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