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Abstract There has been much recent research on preconditioning discretisations
of the Helmholtz operator � + k2 (subject to suitable boundary conditions) using a
discrete version of the so-called “shifted Laplacian” � + (k2 + iε) for some ε > 0.
This is motivated by the fact that, as ε increases, the shifted problem becomes easier
to solve iteratively. Despite many numerical investigations, there has been no rigorous
analysis of how to chose the shift. In this paper, we focus on the question of how
large ε can be so that the shifted problem provides a preconditioner that leads to
k-independent convergence of GMRES, and our main result is a sufficient condition
on ε for this property to hold. This result holds for finite element discretisations of
both the interior impedance problem and the sound-soft scattering problem (with the
radiation condition in the latter problem imposed as a far-field impedance boundary
condition). Note that we do not address the important question of how large ε should
be so that the preconditioner can easily be inverted by standard iterative methods.
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1 Introduction

TheHelmholtz equation is the simplest possible model of wave propagation. Although
most applications are concerned with the propagation of waves in exterior domains,
it is common to use as a model problem the Helmholtz equation posed in an interior
domain with an impedance boundary condition, i.e.

�u + k2u = − f in �, (1.1a)

∂nu − iku = g on �, (1.1b)

where� is a bounded Lipschitz domain inRd (d = 2 or 3) with boundary�, and f and
g are prescribed functions. This paper is predominately concerned with the interior
impedance problem (1.1), but we also consider the exterior Dirichlet problem, with
the radiation condition realised as an impedance boundary condition (i.e., a first-order
absorbing boundary condition).

The Helmholtz equation is difficult to solve numerically for the following two
reasons:

1. The solutions of the homogeneous Helmholtz equation oscillate on a scale of 1/k,
and so to approximate them accurately one needs the total number of degrees of
freedom, N , to be proportional to kd as k increases. Furthermore, the pollution
effect means that in some cases (e.g. for low-order finite element methods) having
N ∼ kd is still not enough to keep the relative error bounded independently of k
as k increases. This growth of N with k leads to very large matrices, and hence to
large (and sometimes intractable) computational costs.

2. The standard variational formulation of the Helmholtz equation is sign-indefinite
(i.e., not coercive). This means that (1) it is hard to prove error estimates for the
Galerkin method that are explicit in k, and (2) it is hard to prove anything a priori
about how iterative methods behave when solving the Galerkin linear system;
indeed, one expects iterative methods to behave extremely badly if the indefinite
system is not preconditioned.

Quite a lot of recent research has focused on preconditioning (1.1) using the dis-
cretisation of the original Helmholtz problem with a complex shift:

�u + (k2 + iε)u = − f in �, (1.2a)

∂nu − iηu = g on �. (1.2b)

The parameter η is usually chosen to be either k or
√
k2 + iε, and the analysis in this

paper covers both these choices. It is well-known that, with k fixed, the solution of
(1.2) tends to the solution of (1.1) as ε → 0; this is called the “principle of limited
absorption”. When used as a preconditioner for (1.1), the problem (1.2) is usually
called the “shifted Laplacian preconditioner” (even though the shift is added to the
Helmholtz operator itself).

In some ways it is more natural to consider adding absorption to the problem (1.1)
by letting k �→ k + iδ for some δ > 0 (with η then usually chosen as either k or
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The shifted Laplacian preconditioner for the Helmholtz equation 569

k+ iδ). The results in this paper are equally applicable to this preconditioner, however
we consider absorption in the form of (1.2) since this form seems to be more prevalent
in the literature.

The question then arises, how should one choose the “absorption” (or “shift”)
parameter ε? In this paper we investigate this question when (1.1) is solved using
finite element methods (FEMs) of fixed order.

Oneof the advantages of the shiftedLaplacian preconditioner is that it can be applied
when the wavenumber k is variable (i.e., the medium being modelled is inhomoge-
neous) as was done, for example, in [15,42], and [54] (with the last paper considering
the higher-order case). In the present paper, however, all the theory is for constant k
(although Example 5.5 contains an experiment where k is variable).

Recall that the standard variational formulation of (1.2) (for any ε ≥ 0) is, given
f ∈ L2(�), g ∈ L2(�), η > 0, and k > 0,

find u ∈ H1(�) such that aε(u, v) = F(v) for all v ∈ H1(�), (1.3)

where

aε(u, v) :=
∫

�

∇u · ∇v − (k2 + iε)
∫

�

uv − iη
∫

�

uv. (1.4)

and

F(v) :=
∫

�

f v +
∫

�

gv. (1.5)

The original Helmholtz problem that we are interested in solving, (1.1), is therefore
(1.3) when ε = 0 and η = k, and in this case we write a(u, v) instead of aε(u, v).

If VN is an N -dimensional subspace of H1(�) with basis {φi : i = 1, . . . , N } then
the corresponding Galerkin approximation of (1.3) is:

find uN ∈ VN such that aε(uN , vN ) = F(vN ) for all vN ∈ VN . (1.6)

The Galerkin equations (1.6) are equivalent to the N -dimensional linear system

Aεu = f, with Aε = S − (k2 + iε)M − iηN, (1.7)

where S
,m = ∫
�

∇φ
 · ∇φm is the stiffness matrix, M
,m = ∫
�

φ
φm is the domain
mass matrix, and N
,m = ∫

�
φ
φm is the boundary mass matrix. When ε = 0 and

η = k, (1.7) is the discretisation of the original problem (1.1), in which case we write
A instead of Aε in (1.7). Note that Aε and A are both symmetric but not Hermitian.

The “shifted Laplacian preconditioner” (applied in left-preconditioning mode)
replaces the solution of Au = f with the solution of:

A−1
ε Au = A−1

ε f . (1.8)

GMRES works well applied to this problem if ‖I−A−1
ε A‖2 is sufficiently small (and

this can be quantified by the Elman estimate recalled in Theorem 1.8 and Corollary
1.9 below).
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In practice, A−1
ε in (1.8) is replaced with an approximation that is easy to compute

(e.g. a multigrid V-cycle). Then, letting B−1
ε denote an approximation of A−1

ε , we
replace (1.8) with

B−1
ε Au = B−1

ε f . (1.9)

Writing

I − B−1
ε A = I − B−1

ε Aε + B−1
ε Aε(I − A−1

ε A), (1.10)

we see that a sufficient condition for GMRES to converge in a k–independent number
of steps is that both ‖I −A−1

ε A‖2 and ‖I −B−1
ε Aε‖2 are sufficiently small. We write

these two conditions as

(P1) A−1
ε is a good preconditioner for A

and

(P2) B−1
ε is a good preconditioner for Aε.

In other words, the task is to find ε and Bε so that both properties (P1) and (P2)
are satisfied. At this stage, one might already guess that achieving both (P1) and (P2)
imposes somewhat contradictory requirements on ε. Indeed, on the one hand, (P1)
requires ε to be sufficiently small (since the ideal preconditioner for A is A−1, which
is A−1

0 ). On the other hand, the larger ε is, the less oscillatory the shifted problem is,
and the cheaper it will be to construct a good approximation to A−1

ε in (P2). These
issues have been explored numerically in the literature (see the discussion in Sect. 1.1
below), however there are no rigorous results about how to achieve either (P1) or (P2),
and hence no theory about the best choice of ε.

In this paper we perform the first step in this analysis by describing rigorously
how large one can choose ε so that (P1) still holds. These results can then be used in
conjunction with results concerning (P2) to answer the question of how to choose ε

in (1.9). Indeed, the question of how one should choose ε for (P2) to hold when B−1
ε

is constructed using multigrid is considered in the recent preprint [7]. Furthermore,
in a subsequent paper [21] we will describe for a class of domain decomposition
preconditioners how ε should be chosen for these so that (P2) holds.

It could be argued that splitting the question of how to choose ε in (1.9) into (P1)
and (P2) is somewhat artificial from a practical point of view. However, it is difficult
to see how any rigorous numerical analysis of this question can proceed without this
split.

We also mention here that although the discussion above was presented in the
context of left preconditioning, it applies equally well to right preconditioning and the
main results (Theorems 1.4 and 1.5) are for both approaches.

Before outlining themain results of this paper, we review the literature on the shifted
Laplacian preconditioner, focusing on the choices of ε proposed, and whether these
choices are aimed at achieving (P1) or (P2). (Although not all of this previous work
concerns finite-element discretisations of the Helmholtz equation, in the discussion
belowwe still useA to denote the discretisation of the (unshifted) Helmholtz problem,
and A−1

ε to denote the preconditioner arising from the shifted Helmholtz problem.)
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The shifted Laplacian preconditioner for the Helmholtz equation 571

1.1 Previous work on the shifted Laplacian preconditioner

Preconditioning theHelmholtz operatorwith the inverse of theLaplacianwas proposed
in [2], and preconditioning with (� − k2)−1 was proposed in [32].

Preconditioning the Helmholtz operator with (�+iε)−1 was considered in [16] and
[17], and then preconditioning with (� + k2 + iε)−1 was considered in [15] and [55].
For both preconditioners, the authors chose ε ∼ k2, and constructed an approximation
to the discrete counterpart of (� + iε)−1 or (� + k2 + iε)−1 using multigrid. (Using
the notation above, preconditioning with the second operator corresponds to choosing
ε ∼ k2 and constructing B−1

ε using a multigrid V-cycle.) Preconditioning with (� +
k2 + iε)−1 and ε ∼ k2 was then further investigated in the context of multigrid in [8]
and [49].

The choice ε ∼ k2 was motivated by analysis of the 1-d Helmholtz equation in an
interval with Dirichlet boundary conditions in [16, Sect. 5], [14, Sect. 5.1.2], [15, Sect.
3], with this analysis using the fact that in this situation the eigenvalues of the Laplacian
are known explicitly. The investigations in [16, Sect. 5] and [14, Sect. 5.1.2] considered
preconditioning the 1-d Helmholtz operator with (d2/dx2 + k2(a+ ib))−1, and found
that, under the restriction that a ≤ 0, |λmax|/|λmin| was minimised for the operator
(d2/dx2 + k2(a + ib))−1(d2/dx2 + k2) when a = 0 and b = ±1. The eigenvalues of
(d2/dx2 + k2(a + ib))−1(d2/dx2 + k2) for this boundary value problem were plotted
in [15, Sect. 3], and it was found that they were better clustered for a = 1 and several
choices of b ∼ 1 than for a = 0 and b = 1. (This eigenvalue clustering can be seen
as partially achieving (P1) at the continuous level).

A more general eigenvalue-analysis was conducted in [55], with this investigation
considering a general class of Helmholtz problems (including the interior impedance
problem in 2- and 3-d). This investigation hinged on the fact that the field of values of
many Helmholtz problems is contained within a closed half-plane (and thus the eigen-
values are also in this closed half-plane). One can see this for the interior impedance
problem by noting from (1.4) that, since η ∈ R,

�a0(v, v) ≤ 0 for all v ∈ H1(�).

The investigation in [55] uses the bound on the number of GMRES iterations that (1)
assumes that the eigenvalues are enclosed by a circle not containing the origin, and (2)
involves the condition number of thematrix of eigenvectors (see, e.g., [45, Theorem 5],
[44, Corollary 6.33]). Because of (1), [55] needs to assume that the wavenumber has
a small imaginary part (to prevent the circle enclosing zero), and because of (2) [55]
needs to assume that the matrix of eigenvectors is well-conditioned. Under this strong
assumption about the matrix of eigenvectors, it was shown that when the operator
�+ k̃2, with k̃ = k+ iα, α > 0, is preconditioned by (�+ c+ id))−1 with c ≤ 0, the
best choices for c and d (in terms of minimising the number of GMRES iterations)
are c = 0 and d = |̃k2| [55, Sect. 4.1].

Another eigenvalue-analysis of theHelmholtz equation in 1-dwithDirichlet bound-
ary conditions was conducted in [18]. Here, the eigenvalues of a finite-difference dis-
cretisation of this problem were calculated, and it was stated that ε < k is needed for
the eigenvalues to be clustered around one [which partially achieves (P1)]. Further-
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572 M. J. Gander et al.

more, a Fourier analysis of multigrid in this paper showed that ε ∼ k2 is needed for
multigrid to converge for Aε.

Other uses of the shifted Laplacian preconditioner include its use with ε ∼ k2

in the context of domain decomposition methods in [30], and its use with ε ∼ k
in the sweeping preconditioner of Enquist and Ying in [13] (these authors consider
preconditioning the Helmholtz equation with k replaced by k + iδ with δ ∼ 1, and
this corresponds to choosing ε ∼ k). Finally we note that solving the problem with
absorption by preconditioningwith the inverse of the Laplacian (i.e., aiming to achieve
(P2) with ε = 0) has been investigated in [24,25].

Two points to note from this literature review are the following.

(i) All the analysis of how to choose ε has focused on studying the eigenvalues of
A−1

ε A (and then trying to either minimise |λmax|/|λmin| or cluster the eigenvalues
around the point 1).

(ii) All these investigations, apart from that in [55], consider the Helmholtz equation
posed in a 1-d interval with Dirichlet boundary conditions, under the assumption
that k2 is not an eigenvalue.

Recall that linear systems involving Hermitian matrices can be solved using the con-
jugate gradient method, and bounds on the number of iterations can be obtained
from information about the eigenvalues of the matrix. However, if the matrix is
non-Hermitian, general purpose iterative solvers such as GMRES or BiCGStab are
required, and information about the spectrum is usually not enough to provide infor-
mation about the number of iterations required. Even when A is Hermitian (as is the
case for Dirichlet boundary conditions, but not for impedance boundary conditions),
Aε is not Hermitian, and therefore the investigations of the eigenvalues of A−1

ε A dis-
cussed above are not sufficient to provide bounds on the number of iterations (with
this fact noted in [15]).

1.2 Statement of the main results

In this paper we prove several results that give sufficient conditions on ε for the shifted
Laplacian to be a good preconditioner for the Helmholtz equation, in the sense that
(P1) above is satisfied. We emphasise again that these results alone are not sufficient
to decide how to choose the shift in the design of practical preconditioners forA, since
they do not consider the cost of constructing approximations of A−1

ε , or equivalently
the question of when the property (P2) holds.

The boundary value problems for the Helmholtz equation that we consider are

1. The interior impedance problem (1.1), and
2. The truncated sound-soft scattering problem.

By “the truncated sound-soft scattering problem” wemean the exterior Dirichlet prob-
lem (with zero Dirichlet boundary conditions on the obstacle) where the radiation
condition is imposed via an impedance boundary condition on the boundary of a large
domain containing the obstacle (i.e., a first-order absorbing boundary condition); see
Problem 2.4 and Fig. 2.
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The shifted Laplacian preconditioner for the Helmholtz equation 573

We consider solving these boundary value problems with FEMs of fixed order.
Although such methods suffer from the pollution effect, they are still highly used in
applications. We prove results when

(a) The boundary of the domain is smooth and a quasi-uniform sequence of meshes
is used, and

(b) The domain is non-smooth and locally refined meshes are used (under suitable
assumptions).

For simplicity, we now state the main results of the paper for the interior impedance
problem when (a) holds (Theorems 1.4 and 1.5 below). The analogous result for the
interior impedance problem when (b) holds is Theorem 4.4, and the analogous result
for the truncated sound-soft scattering problem when (a) holds is Theorem 4.5.

Notation 1.1 We use the notation a � b to mean that there exists a C > 0 (indepen-
dent of all parameters of interest and in particular k, ε, and h) such that a ≤ C b. We
say that a ∼ b if a � b and a � b.

Throughout the paper we make the assumption that

ε � k2. (1.11)

It is possible to derive analogous results for larger ε, but ε ∼ k2 is the largest value of
the shift/absorption usually considered in the literature andwedo not expect interesting
results for larger ε.

Definition 1.2 (Star-shaped)

(i) The domain � is star-shaped with respect to the point x0 ∈ � if the line segment
[x0, x] is a subset of � for all x ∈ �.

(ii) The domain � is star-shaped with respect to the ball Ba(x0) (with a > 0 and
x0 ∈ �) if � is star-shaped with respect to every point in Ba(x0).

Remark 1.3 (Remark on star-shapedness) If� is Lipschitz (and so has a normal vector
at almost every point on the boundary) then � is star-shaped with respect to x0 if and
only if (x− x0) ·n(x) ≥ 0 for all x ∈ ∂� for which n(x) is defined. Furthermore, � is
star-shaped with respect to Ba(x0) if and only if (x−x0) ·n(x) ≥ a for all x ∈ ∂� for
which n(x) is defined (for proofs of these statements see [36, Lemma 5.4.1] or [27,
Lemma 3.1]). Whenever we consider a star-shaped domain (in either sense) in this
paper, we assume that x0 = 0.

Theorem 1.4 (Sufficient conditions for A−1
ε to be a good preconditioner) Suppose

that either � is a C1,1 domain in 2- or 3-d that is star-shaped with respect to a ball or
� is a convex polygon and suppose that A and Aε are obtained using H1-conforming
polynomial elements of fixed order on a quasi-uniform sequence of meshes. Assume
that ε � k2 and either η = k or η = √

k2 + iε. Then, given any k0 > 0 and C > 0,
there exist C1,C2,C3 > 0 (independent of h, k, and ε but depending on k0 and C)
such that if hk2 ≥ C and

hk
√

|k2 − ε| ≤ C1 (1.12)
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574 M. J. Gander et al.

then
∥∥∥I − A−1

ε A
∥∥∥
2

≤ C2
ε

k
(1.13)

and
∥∥∥I − AA−1

ε

∥∥∥
2

≤ C3
ε

k
(1.14)

for all k ≥ k0.

Therefore, if ε/k is sufficiently small, A−1
ε is a good preconditioner for A. (If

absorption is added to the original problem by letting k �→ k+ iδ, with corresponding
Galerkin matrix Aδ , then the analogues of (1.13) and (1.14) are ‖I − A−1

δ A‖2 ≤
C2δ and ‖I − AA−1

δ ‖2 ≤ C3δ, and thus if δ is sufficiently small, A−1
δ is a good

preconditioner for A.) Theorem 1.4 has the following consequence.

Theorem 1.5 (k-independent GMRES estimate) If the assumptions of Theorem 1.4
hold and ε/k is sufficiently small, then when GMRES is applied to either of the equa-
tions A−1

ε Au = A−1
ε f or AA−1

ε v = f , it converges in a k–independent number of
iterations.

These two theorems are proved in §4, along with analogous results for non-quasi-
uniform meshes.

Where do the requirements on h in Theorem 1.4 come from? The requirement (1.12)
ensures that the Galerkin method is quasi-optimal, with constant independent of k and
ε, when it is applied to the variational problem (1.3), and the proof of Theorem 1.4
requires this quasi-optimality. (Recall that the best result so far about quasi-optimality
of the h-FEM is that, under some geometric restrictions, quasi-optimality holds with
constant independent of k when hk2 � 1 [35, Prop. 8.2.7]. The condition (1.12) is the
analogue of hk2 � 1 for the shifted problem; see Lemma 3.5 below for more details.)
We discuss the condition (1.12) more in Remark 4.2, but note that if quasi-optimality
could be proved under less restrictive conditions, then the bound (1.13) would hold
under these conditions too.

When dealing with discretisations of the Helmholtz equation one expects to
encounter a condition such as (1.12), however one does not usually expect to encounter
a condition such as hk2 ≥ C (although in practice this will always be satisfied). This
second condition is only necessary when η = √

k2 + iε (and not when η = k), and
arises from bounding ‖A−1

ε N‖2 and ‖NA−1
ε ‖2 independently of k, ε, and h; see Sect.

1.3 below and Lemma 4.1.
How sharp is the bound (1.13)? Numerical evidence suggests that (1.13) is sharp in

the sense that the right-hand side cannot be replaced by ε/kα for α > 1. Indeed, Fig.
1 plots the boundary of the numerical range of A−1

ε A for increasing k for each of the
three choices ε = k, ε = k3/2, and ε = k2 (Recall that the numerical range of a matrix
C is the set W (C) := {(Cx, x) : x ∈ C

N , ‖x‖2 = 1}.) In this example, � is the unit
square, η = k, f = 1, g = 0, VN is the standard hat-function basis for conforming
P1 finite elements on a uniform triangular mesh on �, and the mesh diameter h is
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Fig. 1 The numerical range of A−1
ε A, from top left to bottom for ε = k (top left), ε = k3/2 (top right),

and ε = k2 (bottom), k = 10, 20, 40, 80

chosen to decrease proportional to k−2. The numerical range is computed using an
accelerated version of the algorithm of Cowen and Harel [9] (the algorithm is adapted
to sparse matrices and the eigenvalues are estimated by an iterative method, which
avoids forming the system matrix).

The figures show that when ε = k the numerical range remains bounded away from
the origin as k increases, whereas when ε = k3/2 or k2 the distance of the numerical
range from the origin decreases as k increases. This is consistent with the result of
Theorem 1.4 since, when ‖x‖2 = 1,

∣∣(A−1
ε Ax, x

)∣∣ = ∣∣1 − (
(I − A−1

ε A)x, x
)∣∣ ≥ 1 −

∥∥∥I − A−1
ε A

∥∥∥
2

≥ 1 − C2
ε

k
,

[whereC2 is the constant in (1.13)]. This bound shows that when ε/k is small enough,
the numerical range is bounded away from the origin, although we cannot quantify
“small enough” here, since the value of C2 is unknown (although in principle one
could work it out).

Of course, these experiments do not rule out the possibility that a bound such as

∥∥∥I − A−1
ε A

∥∥∥
2

≤ C3
ε

kα
(1.15)
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Table 1 dist(0,W (A−1
ε A)) and

(in bold) the number of GMRES
iterations needed to reduce the
initial residual by six orders of
magnitude starting with a zero
initial guess

The results on the left are
obtained with h = k−2, and the
results on the right are obtained
with h = k−3/2

k ε = k ε = k3/2 ε = k2

10 0.76 (6) 0.46 (8) 0.15 (13)

20 0.75 (6) 0.34 (11) 0.055 (24)

40 0.74 (6) 0.23 (14) 0.017 (48)

80 0.73 (6) 0.14 (16) 0.0060 (86)

10 0.76 (6) 0.45 (8) 0.14 (13)

20 0.75 (6) 0.34 (11) 0.054 (24)

40 0.74 (6) 0.23 (14) 0.017 (48)

80 0.73 (6) 0.14 (16) 0.0060 (86)

holds for some α > 1 and for some large C3. Nevertheless, in Sect. 6 we see that the
condition “ε/k sufficiently small” also ariseswhen one considers howwell the solution
of the boundary value problem with absorption (1.2) approximates the solution of the
boundaryvalueproblemwithout absorption (1.1), independently of anydiscretisations,
and thus we conjecture that (1.15) does not hold for any α > 1.

A disadvantage of the bounds in Theorem 1.4 is that they seem to allow for the
possibility that ‖I−A−1

ε A‖2 and ‖I−AA−1
ε ‖2 might growwith increasing k if ε � k.

However, we also prove the following result, which rules out any growth.

Lemma 1.6 (Alternative bound on ‖I − A−1
ε A‖2 and ‖I − AA−1

ε ‖2) Under the con-
ditions of Theorem 1.4 there exists a C4 > 0 such that

max
{∥∥∥I − A−1

ε A
∥∥∥
2
,

∥∥∥I − AA−1
ε

∥∥∥
2

}
≤ C4, (1.16)

for all k ≥ k0.

In Table 1 we plot dist(0,W (A−1
ε A)) and also the number of GMRES iterations

needed to reduce the initial residual by six orders of magnitude, starting with a zero
initial guess, when GMRES is applied toA−1

ε Ax = A−1
ε 1. The difference between the

two sets of results is that results on the left are obtained with h = k−2 (in accordance
with the conditions of Theorem 1.4), and the results on the right are obtained with the
less restrictive condition that h = k−3/2; we see that the two sets of results are almost
identical.

When ε = k the number of iterations stays constant as k increases (which is
consistent with Theorem 1.5), but when ε = k3/2 or ε = k2 the number of iterations
grows with k. The results of more extensive experiments are given in Sect. 5, but
they all show similar behaviour (i.e., the number of iterations remaining constant as k
increases when ε = k, but increasing as k increases for larger ε).

1.3 The idea behind the proofs of Theorems 1.4 and 1.5

The idea behind Theorem 1.4. Considering first the case of left preconditioning and
noting that

123



The shifted Laplacian preconditioner for the Helmholtz equation 577

I − A−1
ε A = A−1

ε (Aε − A) = −iεA−1
ε M − i(η − k)A−1

ε N, (1.17)

whereM andN are as in (1.7),we see that a boundon‖I−A−1
ε A‖2 canbeobtained from

bounds on ‖A−1
ε M‖2 and ‖A−1

ε N‖2. We obtain bounds on ‖A−1
ε M‖2 and ‖A−1

ε N‖2
in Lemma 4.1 below using an argument that bounds these quantities when Aε is the
Galerkin matrix of a general variational problem and one has

(i) a bound on the solution operator of the continuous problem, and
(ii) conditions under which the Galerkin method is quasi-optimal.

In our context, we need the bound (i) and the conditions (ii) (along with the corre-
sponding constant of quasi-optimality) to be explicit in h, k, and ε.

Regarding (i): proving bounds on the solution of the Helmholtz equation posed
in exterior domains is a classic problem, and in particular can be achieved using
identities introduced by Morawetz in [39]. Bounds on the solution of the interior
impedance problem (1.1) and the truncated sound-soft scattering problemwere proved
independently (although essentially usingMorawetz’s identities) in [35], [10], and [26]
(see [6, §5.3], [50, §1.2] for discussions of this work). In this paper we use Green’s
identity to bound the solution of the shifted interior impedance problem (1.2) explicitly
in k and ε when ε � k and � is a general Lipschitz domain, and we use Morawetz’s
identities to bound the solution (again explicitly in k and ε) when ε � k and � is a
Lipschitz domain that is star-shaped with respect to a ball. (We also prove analogous
results for the truncated sound-soft scattering problem.)

Regarding (ii): k-explicit quasi-optimality of the h-version of the FEM was proved
byMelenk in [35] in the case ε = 0. IndeedMelenk showed that quasi-optimality holds
with a quasi-optimality constant independent of k under the condition that hk2 � 1.
This result was obtained using a duality argument that is often attributed to Schatz [47]
alongwith the k-explicit bound on the solution discussed in (i).We apply this argument
to the case when ε > 0, with the only difference being that the variational formulation
of (1.2) is coercive when ε > 0 with coercivity constant ∼ ε/k2 (see Lemma 3.1).
Therefore, instead of the mesh threshold hk2 � 1 we obtain hk

√|k2 − ε| � 1,
reflecting the fact that if ε = k2 then the uniform coercivity in this case implies that
quasi-optimality holds with no mesh threshold.

The argument used to bound ‖A−1
ε M‖2 and ‖A−1

ε N‖2 in Lemma 4.1 below can
also be used to bound ‖A−1

ε ‖2 (whenAε is the Galerkin matrix of a general variational
problem) if one has (i) and (ii) above. We have not been able to find this argument
explicitly in the literature, although it is alluded to in [31, Last paragraph of §2.4].
Furthermore, put anotherway, this argument states that if the sesquilinear form satisfies
a continuous inf-sup condition and the Galerkin solutions exist, are unique, and are
quasi-optimal, then one can obtain a discrete inf-sup condition. When phrased in this
way, this result can be seen as a special case of [33, Theorem 3.9].

Remark 1.7 The argument for the case of right preconditioning is very similar, in that
a bound on ‖I − AA−1

ε ‖2 can be obtained from bounds on ‖MA−1
ε ‖2 and ‖NA−1

ε ‖2.
Then, because M and N are real symmetric matrices,
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∥∥∥MA−1
ε

∥∥∥
2

=
∥∥∥
(
MA−1

ε

)∗∥∥∥
2

=
∥∥∥(A∗

ε)
−1M

∥∥∥
2

and
∥∥∥NA−1

ε

∥∥∥
2

=
∥∥∥
(
NA−1

ε

)∗∥∥∥
2

=
∥∥∥(A∗

ε)
−1N

∥∥∥
2
.

Since the matrix A∗
ε is simply the Galerkin matrix corresponding to the adjoint to

problem (1.2), and we also have bounds on the solution operator for this problem (as
outlined in Remark 2.5), the argument to obtain bounds on ‖A−1

ε M‖2 and ‖A−1
ε N‖2

in Lemma 4.1 below can be repeated for the adjoint problem, resulting in bounds on
‖MA−1

ε ‖2 and ‖NA−1
ε ‖2.

The idea behind Theorem 1.5. Theorem 1.5 follows from Theorem 1.4 by using the
Elman estimate for GMRES.

Theorem 1.8 If the matrix equationCx = y is solved using GMRES then, for m ∈ N,
the GMRES residual rm := Cxm − y satisfies

‖rm‖2
‖r0‖2 ≤ sinm β, where cosβ = dist

(
0,W (C)

)
‖C‖2 (1.18)

(recall that W (C) := {(Cx, x) : x ∈ C
N , ‖x‖2 = 1} is the numerical range or field

of values).

The bound (1.18) was originally proved in [12] (see also [11, Theorem 3.3]) and
appears in the form above in [3, Equation 1.2]. A variant of this theory, where the
Euclidean inner product (·, ·) and norm ‖ · ‖2 are replaced by a general inner product
and norm, is used in [5].

Theorem 1.8 has the following corollary.

Corollary 1.9 If ‖I − C‖2 ≤ σ < 1, then in (1.18)

cosβ ≥ 1 − σ

1 + σ
and sin β ≤ 2

√
σ

(1 + σ)2
.

Theorem 1.5 follows fromTheorem 1.4 by applying Corollary 1.9 withC = A−1
ε A.

Indeed, Theorem 1.4 shows that if ε/k is sufficiently small, ‖I−C‖2 can be bounded
below one, independently of k and ε. Therefore GMRES converges and the number
of iterations is independent of k.

1.4 Outline and preliminaries

In Sect. 2 we prove bounds that are explicit in k, η, and ε on the solutions of the
shifted interior impedance problem (1.2) and the shifted truncated sound-soft scatter-
ing problem. In Sect. 3 we prove results about the continuity and coercivity of aε(·, ·)
and obtain sufficient conditions for the Galerkin method applied to aε(·, ·) to be quasi-
optimal (with all the constants given explicitly in terms of k, η, and ε). In Sect. 4
we put the results of Sects. 2 and 3 together to prove Theorem 1.4 and its analogue
for non-quasi-uniform meshes. In Section 5 we illustrate the theory with numerical
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The shifted Laplacian preconditioner for the Helmholtz equation 579

experiments. Section 6 contains some concluding remarks about approximating the
solution of (1.1) by the solution of (1.2), independently of any discretisations.

Notation and recap of elementary results. Let � ⊂ R
d , d = 2, or 3, be a bounded

Lipschitz domain (where by “domain” we mean a connected open set) with boundary
�. We do not introduce any special notation for the trace operator, and thus the trace
theorem is simply

‖v‖H1/2(�) � ‖v‖H1(�) for all v ∈ H1(�) (1.19)

(see [34, Theorem 3.38, Page 102]), and the multiplicative trace inequality is

‖v‖2L2(∂�)
� ‖v‖L2(�) ‖v‖H1(�) for all v ∈ H1(�) (1.20)

[22, Theorem 1.5.1.10, last formula on Page 41].
Let ∂n denote the normal-derivative trace on� (with the convention that the normal

vector points out of �). Recall that if u ∈ H2(�) then ∂nu := n · ∇u, and, for
u ∈ H1(�) with �u ∈ L2(�), ∂nu is defined so that Green’s first identity holds
(see, e.g., [6, Equation (A.29)]). Denote the surface gradient on � by ∇�; see, e.g., [6,
Equation A.14] for the definition of this operator in terms of a parametrisation of the
boundary.

Finally, we repeatedly use the inequalities

2ab ≤ a2

δ
+ δb2 (1.21)

and

1

2
(a + b)2 ≤ a2 + b2 ≤ (a + b)2, (1.22)

where a, b, and δ are all > 0. (Recalling Notation 1.1, we see that (1.22) implies that
a + b ∼ √

a2 + b2.)

2 Bounds on the solution operators to the problems with absorption

In this section we prove bounds that are explicit in k, η, and ε on the solutions of
the shifted interior impedance problem and the shifted truncated sound-soft scattering
problem. First, we define precisely what we mean by these problems.

Problem 2.1 (Interior Impedance Problem with absorption) Let � ⊂ R
d , with d = 2

or 3, be a bounded Lipschitz domain with outward-pointing unit normal vector n and
let � := ∂�. Given f ∈ L2(�), g ∈ L2(�), η ∈ C\{0} and ε ≥ 0, find u ∈ H1(�)

such that

�u + (k2 + iε)u = − f in �, (2.1a)

∂nu − iηu = g on �. (2.1b)
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Remark 2.2 (Existence and uniqueness) One can prove using Green’s identity that the
solution of the Problem 2.1 (if it exists) is unique; see Sect. 2.1.2. One can prove via
Fredholm theory [using the fact that H1(�) is compactly contained in L2(�)] that
uniqueness implies existence in exactly the same way as for the problem with ε = 0.

Remark 2.3 (The choice of η) If one thinks of the impedance boundary condition
as being a first order approximation to the Sommerfeld radiation condition, then for
the unshifted problem η should be equal to k, and for the shifted problem η should
be equal to

√
k2 + iε. With ηR and ηI denoting the real and imaginary parts of η

respectively, we prove bounds under the assumption that ηR ∼ k and 0 ≤ ηI � k.
These assumptions cover both the case that η = k and the case that η = √

k2 + iε
(recall that we assume that ε � k2).

Problem 2.4 (Truncated sound-soft scattering problem with absorption) Let �D be a
bounded Lipschitz open set in Rd (d = 2 or 3) such that the open complement �+ :=
R
d\�D is connected. Let �R be a bounded Lipschitz domain such that �D ⊂ �R ⊂

R
d with d(�D, ∂�R) > 0 (where d(·, ·) is the distance function). Let �R := ∂�R,

�D := ∂�D, and � := �R\�D (thus ∂� = �R ∪ �D and �R ∩ �D = ∅). Given
f ∈ L2(�), g ∈ L2(�R), η ∈ C\{0}, and ε ≥ 0, find u ∈ H1(�) such that

�u + (k2 + iε)u = − f in �, (2.2a)

∂nu − iηu = g on �R, (2.2b)

u = 0 on �D. (2.2c)

If ε = 0, η = k, �R is a large ball containing �D , and f and g are chosen
appropriately, then the solution of the truncated sound-soft scattering problem is a
classical approximation to the solution of the sound-soft scattering problem (see, e.g.,
[6, Equation (2.16)]); Fig. 2 shows�R and�D in this case.We use the convention that
on �D the normal derivative ∂nv equals nD · ∇v for v that are H2 in a neighbourhood
of �D , and similarly ∂nv = nR ·∇v on �R , where nD and nR are oriented as in Figure
2. Note that Remarks 2.2 and 2.3 also apply to Problem 2.4.

Fig. 2 An example of the
domains �D and �R in
Problem 2.4

ΩR

ΩD

R

ΓD

nR

nD

Γ
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We go through the details of the bounds for Problem 2.1 in Sect. 2.1, and then
outline in Sect. 2.2 the (small) modifications needed to the arguments to prove the
analogous bounds for Problem 2.4.

2.1 Bounds on the interior impedance problem with absorption

Remark 2.5 (The adjoint problem) All the bounds on the solution of the interior
impedance problem proved in this section are also valid when the signs of ε and
η are changed; i.e., the bounds also hold for the solution of

�w + (k2 − iε)w = − f in �, (2.3a)

∂nw + iηw = g on � (2.3b)

(under the same conditions on ε and η).

Remark 2.6 (Regularity) Let u be the solution of Problem 2.1. Since f ∈ L2(�) we
have that �u ∈ L2(�), and since g ∈ L2(�) we have that ∂nu ∈ L2(�). These two
facts imply that u ∈ H1(�) by a regularity result of Nečas for Lipschitz domains [41,
§5.2.1], [34, Theorem 4.24(ii)].

We now state the two main results of this section.

Theorem 2.7 (Bound for ε > 0 for general Lipschitz �) Let u solve Problem 2.1, let
η = ηR + iηI and assume that ηI ≥ 0, ηR > 0. Then, given k0 > 0, there exists a
C > 0, independent of ε, k, ηR, and ηI , such that

‖∇u‖2L2(�)
+ k2 ‖u‖2L2(�)

≤ C

[
k2

ε2

(
1 + ε

k2
+
( ε

k2

)2) ‖ f ‖2L2(�)
+ k2

εηR

(
1 + ε

k2

)
‖g‖2L2(�)

]
(2.4)

for all k ≥ k0, ηR > 0, and ε > 0.

Assuming that ε � k2, we obtain the following corollary.

Corollary 2.8 If the conditions in Theorem 2.7 hold and, in addition, ε � k2, then

‖∇u‖2L2(�)
+ k2 ‖u‖2L2(�)

�
[
k2

ε2
‖ f ‖2L2(�)

+ k2

εηR
‖g‖2L2(�)

]
(2.5)

for all k ≥ k0, ηR > 0, and ε > 0. In particular, if ηI ≥ 0, ηR ∼ k, and ε ∼ k then

‖∇u‖2L2(�)
+ k2 ‖u‖2L2(�)

�
[
‖ f ‖2L2(�)

+ ‖g‖2L2(�)

]
, (2.6)

while if ηI ≥ 0, ηR ∼ k, and ε ∼ k2 then
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‖∇u‖2L2(�)
+ k2 ‖u‖2L2(�)

�
[
1

k2
‖ f ‖2L2(�)

+ 1

k
‖g‖2L2(�)

]

for all k ≥ k0.

This corollary shows how the k-dependence of the bounds on the solution operator
improves as ε is increased from k to k2.

As ε → 0, the right-hand side of (2.5) blows up. A bound that is valid uniformly
in this limit can be obtained by imposing some geometric restrictions on �.

Theorem 2.9 (Bound for ε/k sufficiently small when � is star-shaped with respect
to a ball and Lipschitz) Let � be a Lipschitz domain that is star-shaped with respect
to a ball (see Definition 1.2), and let u be the solution of Problem 2.1 in �. If ηR ∼ k
and |ηI | � k then, given k0 > 0, there exist c and C (independent of k, ε, and η and
> 0) such that, if ε/k ≤ c for all k ≥ k0, then

‖∇u‖2L2(�)
+ k2 ‖u‖2L2(�)

≤ C
[
‖ f ‖2L2(�)

+ ‖g‖2L2(�)

]
for all k ≥ k0. (2.7)

Remark 2.10 (The case ε = 0) The bound (2.7) for ε = 0 was proved for d = 2 in
[35, Prop. 8.1.4] and for d = 3 in [10, Theorem 1] using essentially the same methods
we use here (see Remark 2.16 for more details).

It is useful for what follows to combine the results of Theorems 2.7 and 2.9 to form
the following corollary.

Corollary 2.11 (Bound for ε � k2) If � is star-shaped with respect to a ball, ε � k2,
ηR ∼ k, and 0 ≤ ηI � k, then, given k0 > 0,

‖∇u‖2L2(�)
+ k2 ‖u‖2L2(�)

�
[
‖ f ‖2L2(�)

+ ‖g‖2L2(�)

]
(2.8)

for all k ≥ k0.

In §3 we find sufficient conditions for the Galerkin method applied to Problem 2.1
to be quasi-optimal. To do this, we need a bound on the H2-norm of the solution (in
cases where the solution is in H2(�)), and this can be obtained by combining the
following lemma with the bound (2.8).

Lemma 2.12 (A bound on the H2(�) norm) Let u be the solution of Problem 2.1,
and assume further that g ∈ H1/2(�). If � is C1,1 (in 2- or 3-d) then u ∈ H2(�) and
there exists a C (independent of k and ε) such that

‖u‖H2(�) ≤ C
[
(1 + k)

√
‖∇u‖2

L2(�)
+ k2 ‖u‖2

L2(�)
+ ‖ f ‖L2(�) + ‖g‖H1/2(�)

]

(2.9)

for all k > 0 and ε ≥ 0. Furthermore, if � is a convex polygon and g ∈ H1/2
pw (�)

(i.e., H1/2 on each side) then the bound (2.9) also holds, with ‖g‖H1/2(�) replaced by
‖g‖

H1/2
pw (�)

(i.e., the sum of the H1/2–norms of g on each side).
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Proof of Lemma 2.12 First consider the casewhen� isC1,1. By [22, Theorem2.3.3.2,
Page 106], if v ∈ H1(�) with �v ∈ L2(�) and ∂nv ∈ H1/2(�) then

‖v‖H2(�) �
(‖�v‖L2(�) + ‖v‖H1(�) + ‖∂nv‖H1/2(�)

)
. (2.10)

The bound (2.9) then follows from (2.10) by using (1) the fact that u satisfies the PDE
(2.1a) and boundary conditions (2.1b), and (2) the trace theorem (1.19).

When � is a convex polygon, the result (2.9) will follow if we can again establish
that (2.10) holds (except with the condition that ∂nv ∈ H1/2(�) replaced by ∂nv ∈
H1/2
pw (�)). (There is a slight subtlety in that we need to show that ‖u‖

H1/2
pw (�)

�
‖u‖H1(�), but this follows from the trace result for polygons in [22, Part (c) of Theorem
1.5.2.3, Page 43] using the fact that u is continuous at the corners of the polygon. This
latter fact follows from the Sobolev embedding theorem [34, Theorem 3.26] and the
fact that u ∈ H1(�), which follows from the regularity result of Nečas [34, Theorem
4.24 (ii)] since u ∈ H2(�) implies ∂nu ∈ L2(�).)

The bound (2.10) can be established when� is a convex polygon by combining two
results in [22] and performing some additional work as follows. When � is a convex
polygon and v is such that v ∈ H1(�), �v ∈ L2(�), and ∂nv = 0 on �, then

‖v‖H2(�) �
(‖�v‖L2(�) + ‖v‖L2(�)

)
(2.11)

by [22, Theorem 4.3.1.4, Page 198].When ∂nv �= 0 but is in H1/2
pw (�) then v ∈ H2(�)

by [22, Corollary 4.4.3.8, Page 233] (note that the sum in [22, Equation 4.4.3.8] is
empty since� is convex). Therefore, by linearity, to prove that the bound (2.10) holds
when � is a convex polygon we only need to show that for these domains there exists
a lifting operator G : H1/2

pw (�) → H2(�) with ∂nG(g) = g and

‖G(g)‖H2(�) � ‖g‖
H1/2
pw (�)

(2.12)

(in fact we show below that this is the case when � is any polygon). Using a partition
of unity it is sufficient to construct such an operator when (1) � is a half-space, and
(2) � is an infinite wedge.

For (1), given g defineG(g) to be the solution of theNeumannproblem forLaplace’s
equation in� (with Neumann data g). The explicit expression for the solution in terms
of the Fourier transform shows that (2.12) is satisfied.

For (2), first consider the case when the wedge angle is π/2 (i.e., a right-angle).
By linearity we can take g to be zero on one side of the wedge. Introduce coordinates
(x1, x2) so that g �= 0 on the positive x1–axis and g = 0 on the positive x2–axis. Extend
g to the negative x1–axis by requiring that g is even about x1 = 0; one can then show
that this extension is a continuous mapping from H1/2(R+) to H1/2(R). The solution
of the Neumann problem for Laplace’s equation in the half-space {(x1, x2) : x2 > 0}
then satisfies ∂nu = 0 on the positive x2–axis, and thus this function satisfies the
requirements of the lifting. A lifting for a wedge of arbitrary angle can be obtained
from a lifting for a right-angled wedge by expressing the function in polar coordinates
and rescaling the angular variable. (Note that all our liftings up to this point have

123



584 M. J. Gander et al.

satisfied Laplace’s equation. Rescaling the angular variable means that the resulting
function does not satisfy Laplace’s equation, but is still in H2(�).) ��

2.1.1 Green, Rellich, and Morawetz identities for the Helmholtz equation

For the proofs of Theorems 2.7 and 2.9 we need the following identities.

Lemma 2.13 (Green, Rellich, and Morawetz identities for the Helmholtz equation)
Let v ∈ C2(D) for some domain D ⊂ R

d , and let

Lv := �v + k2v, Mv := x · ∇v + αv,

for k and α ∈ R. Then, on the domain D,

vLv = ∇ · [v∇v
] − |∇v|2 + k2|v|2 (Green), (2.13)

2�(
x · ∇vLv

) = ∇ ·
[
2� (

x · ∇v ∇v
) + (k2|v|2 − |∇v|2)x

]
+ (d − 2)|∇v|2 − dk2|v|2

(Rellich), (2.14)

2�(MvLv
) = ∇ ·

[
2�(Mv ∇v

) + (k2|v|2 − |∇v|2)x
]

+ (d − 2 − 2α)|∇v|2 + (2α − d)k2|v|2 (Morawetz). (2.15)

Proof of Lemma 2.13 The identities (2.13) and (2.14) can be proved by expanding the
divergences on the right-hand sides; for (2.13) this is straightforward, but for (2.14)
this is more involved; see, e.g., [51, Lemma 2.1] for the details. The identity (2.15) is
then (2.14) plus 2α times the real part of (2.13). ��
Remark 2.14 All three of the identities in Lemma 2.13 are formed by multiplying the
Helmholtz operatorLv by a function of v, sayN v, and then expressing this quantity as
the divergence of something plus some non-divergence terms. The multiplierN v = v

is associated with the name of Green, and (2.13) is a special case of the pointwise form
(as opposed to integrated form) of Green’s first identity. The multiplier N v = x · ∇v

was introduced by Rellich in [43], and identities resulting from multipliers that are
derivatives of v are thus often called Rellich identities. The idea of takingN v to be a
linear combination of v and a derivative of v (in general Z · ∇v − ikβv + αv for Z a
real vector field and β and α real scalar fields) was used extensively by Morawetz in
the context of the Helmholtz and wave equations; see [38,40], and [39]. The identity
(2.15) is essentially contained in [39, §I.2] and [40]; see [52, Remark 2.7] for more
details. For more discussion of Rellich and Morawetz identities, see [6, §5.3].

For the proofs of Theorems 2.7 and 2.9, we integrate the indentities (2.13) and
(2.15) over �.

Lemma 2.15 (Integrated forms of the Green and Morawetz identities) With � as in
Problem 2.1, define the space V by

V :=
{
v : v ∈ H1(�), �v ∈ L2(�), ∂nv ∈ L2(�), v ∈ H1(�)

}
, (2.16)
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(note that either of the conditions ∂nv ∈ L2(�) or v ∈ H1(�) can be dropped from
the definition of V by the results of Nečas [41, §5.1.2, 5.2.1], [34, Theorem 4.24]).
Then, with Lv and Mv as in Lemma 2.13, if v ∈ V then

∫
�

vLv =
∫

�

v ∂nv +
∫

�

k2|v|2 − |∇v|2 (2.17)

and

∫
�

2�(
MvLv

) =
∫

�

2�(
Mv ∂nv

) + (
k2|v|2 − |∇v|2)(x · n)

+
∫

�

(d − 2 − 2α)|∇v|2 + (2α − d)k2|v|2, (2.18)

where the expression ∇v in the integral on � is understood as ∇�v + n∂nv.

Proof of Lemma 2.15 Equations (2.17) and (2.18) hold as consequences of the diver-
gence theorem applied to the identities (2.13) and (2.15). Indeed, the divergence theo-
rem

∫
�

∇ ·F = ∫
�
F ·n is valid when � is Lipschitz and F ∈ (C1(�))d [34, Theorem

3.34]. Therefore, (2.17) and (2.18) hold for v ∈ D(�) := {U |� : U ∈ C∞
0 (Rd)}.

By the density of D(�) in the space V [37, Appendix A], (2.17) and (2.18) hold for
v ∈ V . ��

2.1.2 Proof of Theorem 2.7

Outline The only ingredients for the proof are the integrated form of Green’s identity
(2.17), the Cauchy-Schwarz inequality, and the inequality (1.21). By Remark 2.6, the
solution u of Problem 2.1 is in the space V ; therefore, by Lemma 2.15, (2.17) holds
with v replaced by u. Using the impedance boundary condition (2.1b) and the fact that
Lu = − f − iεu in �, we obtain

(k2 + iε) ‖u‖2L2(�)
− ‖∇u‖2L2(�)

+ (iηR − ηI ) ‖u‖2L2(�)
= −

∫
�

f u −
∫

�

g u.

(2.19)

From here, the proof consists of the following three steps:

1. Use the imaginary part of (2.19) to estimate ‖u‖2
L2(�)

and ‖u‖2
L2(�)

by ‖ f ‖2L2(�)

and ‖g‖2L2(�)
.

2. Use the real part of (2.19) to estimate ‖∇u‖2
L2(�)

+ k2 ‖u‖2
L2(�)

by ‖u‖2
L2(�)

,

‖u‖2
L2(�)

, ‖ f ‖2L2(�)
, and ‖g‖2L2(�)

.
3. Put the estimates of Steps 1 and 2 together to give the result (2.4).
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Step 1. Taking the imaginary part of (2.19) and using the Cauchy-Schwarz inequality,
we obtain

ε ‖u‖2L2(�)
+ ηR ‖u‖2L2(�)

≤ ‖ f ‖L2(�) ‖u‖L2(�) + ‖g‖L2(�) ‖u‖L2(�) . (2.20)

(Note that this inequality establishes uniqueness of the interior impedance problem
with absorption, since if f and g are both zero then the inequality implies that u is
zero in �.) Using the inequality (1.21) on both terms on the right-hand side, we find
that
(

ε − δ1

2

)
‖u‖2L2(�)

+
(

ηR − δ2

2

)
‖u‖2L2(�)

≤ 1

2δ1
‖ f ‖2L2(�)

+ 1

2δ2
‖g‖2L2(�)

.

(2.21)

Taking δ1 = ε and δ2 = ηR , we obtain

ε

2
‖u‖2L2(�)

+ ηR

2
‖u‖2L2(�)

≤ 1

2ε
‖ f ‖2L2(�)

+ 1

2ηR
‖g‖2L2(�)

. (2.22)

Step 2. Taking the real part of (2.19) yields

−k2 ‖u‖2L2(�)
+ ‖∇u‖2L2(�)

+ ηI ‖u‖2L2(�)
= �

∫
�

f u + �
∫

�

g u,

and thus (since ηI ≥ 0)

‖∇u‖2L2(�)
≤ k2 ‖u‖2L2(�)

+ ‖ f ‖L2(�) ‖u‖L2(�) + ‖g‖L2(�) ‖u‖L2(�) .

Adding k2 ‖u‖2
L2(�)

to both sides and then using the inequality (1.21) on the terms
involving f and g, we obtain

‖∇u‖2L2(�)
+ k2 ‖u‖2L2(�)

≤
(
2k2 + δ1

2

)
‖u‖2L2(�)

+ δ2

2
‖u‖2L2(�)

+1

2

(
1

δ1
‖ f ‖2L2(�)

+ 1

δ2
‖g‖2L2(�)

)
. (2.23)

Step 3. We choose δ1 = k2 in (2.23) and then use (2.22) to estimate ‖u‖2
L2(�)

and

‖u‖2
L2(�)

in terms of ‖ f ‖2L2(�)
and ‖g‖2L2(�)

to get

‖∇u‖2L2(�)
+ k2 ‖u‖2L2(�)

�
(
k2

ε2
+ δ2

εηR
+ 1

k2

)
‖ f ‖2L2(�)

+
(

k2

εηR
+ δ2

η2R
+ 1

δ2

)
‖g‖2L2(�)

.

We then choose δ2 = ηR (to make 1/δ2 and δ2/η
2
R equal) and obtain the bound (2.4).
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2.1.3 Proof of Theorem 2.9

Outline. The proof consists of the following two steps:

1. Use the integrated Morawetz identity (2.18) to show that, given k0 > 0, there exist
c and C (independent of k, η, and ε and > 0) such that if ε ≤ ck then

‖∇u‖2L2(�)
+ k2 ‖u‖2L2(�)

≤ C
[
(k2 + |η|2) ‖u‖2L2(�)

+ ‖ f ‖2L2(�)
+ ‖g‖2L2(�)

]

(2.24)

for all k ≥ k0.
2. Use the imaginary part of Green’s identity to remove the (k2 +|η|2) ‖u‖2

L2(�)
term

from the right-hand side of (2.24).

We first prove the bound in Step 2 and then prove the bound in Step 1.
Step 2. In the proof of Theorem 2.7 we used the imaginary part of Green’s iden-
tity to obtain the bound (2.22). We could use (2.22) to bound the (k2 + |η|2) ‖u‖2

L2(�)

term in (2.24) by ‖ f ‖2L2(�)
and ‖g‖2L2(�)

, however the right-hand side of (2.22) blows
up if ε → 0 and we want to be able to include the case when ε = 0.

The bound (2.22) came from (2.21) with δ1 = ε and δ2 = ηR . If we instead keep
δ1 arbitrary we obtain

ηR

2
‖u‖2L2(�)

+ ε ‖u‖2L2(�)
≤ 1

2δ1
‖ f ‖2L2(�)

+ 1

2ηR
‖g‖2L2(�)

+ δ1

2
‖u‖2L2(�)

(2.25)

Dropping ε ‖u‖2
L2(�)

from the left-hand side of (2.25) and then using the resulting
inequality in (2.24) we obtain

‖∇u‖2L2(�)
+
(
k2 − δ1C

k2 + |η|2
ηR

)
‖u‖2L2(�)

≤ C

(
1 + k2 + |η|2

δ1ηR

)
‖ f ‖2L2(�)

+ C

(
1 + k2 + |η|2

η2R

)
‖g‖2L2(�)

, (2.26)

for all k ≥ k0. If ηR ∼ k and |ηI | � k then

k2 + |η|2
ηR

≤ bk, for some b > 0, and
k2 + |η|2

(ηR)2
� 1.

Therefore, if we let δ1 = kθ (for some θ > 0) then the right-hand side of (2.26) is
� ‖ f ‖2L2(�)

+ ‖g‖2L2(�)
, which is the right-hand side of (2.7) [with the constant C in

(2.7) different to the constant C in (2.26)]. The left-hand side of (2.26) is then

≥ ‖∇u‖2L2(�)
+ k2 (1 − Cbθ) ‖u‖2L2(�)

and so choosing θ less than 1/(Cb) gives the result (2.7).
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Step 1. Remark 2.6 implies that u is in the space V defined by (2.16). Lemma 2.15
then implies that the integrated identity (2.18) holds with v replaced by u. Recalling
that ∇u on � is understood as ∇�u + n∂nu, we find that the integral over � in (2.18)
can be rewritten as

∫
�

2�
(
(x · ∇�u + αu)∂nu

)
+
(
|∂nu|2 + k2|u|2 − |∇�u|2

)
(x · n). (2.27)

Therefore, using both (2.27) and that fact that Lu = − f − iεu, we can rewrite (2.18)
as ∫

�

(2α + 2 − d)|∇u|2 + (d − 2α)k2|u|2 +
∫

�

|∇�u|2(x · n)

= 2�
∫

�

Mu f − 2ε�
∫

�

Mu u +
∫

�

2�
(
(x · ∇�u + αu)∂nu

)

+
(
|∂nu|2 + k2|u|2

)
(x · n). (2.28)

We now let

δ− := ess inf
x∈�

(x · n), δ+ := ess sup
x∈�

(x · n), R := ess sup
x∈�

|x|,

and note that δ+ ≥ δ− > 0 since � is assumed to be star-shaped with respect to
a ball (see Remark 1.3). Using both the definition of Mu and the Cauchy-Schwarz
inequality on the right-hand side of (2.28), and writing the integrals as norms, we
obtain that

(2α + 2 − d) ‖∇u‖2L2(�)
+ (d − 2α)k2 ‖u‖2L2(�)

+ δ− ‖∇�u‖2L2(�)

≤ 2R ‖∇u‖L2(�) ‖ f ‖L2(�) + 2α ‖u‖L2(�) ‖ f ‖L2(�) + 2εR ‖∇u‖L2(�) ‖u‖L2(�)

+ δ+
(
‖∂nu‖2L2(�)

+ k2 ‖u‖2L2(�)

)
+ 2R ‖∇�u‖L2(�) ‖∂nu‖L2(�)

+ 2α ‖u‖L2(�) ‖∂nu‖L2(�) .

(Note that the boundary condition (2.1b) gives us ∂nu on � in terms of u and g, but
we choose not to use this yet.) Next we let 2α = d − 1 so that the coefficients of
both ‖∇u‖2

L2(�)
and ‖u‖2

L2(�)
on the left-hand side become equal to one. We now use

(1.21) on each of the terms on the right-hand side (with a different δ each time) to
obtain (

1 − Rδ3 − εR

δ5

)
‖∇u‖2L2(�)

+
(
1 − (d − 1)δ4

2k2
− εRδ5

k2

)
k2 ‖u‖2L2(�)

+(δ− − Rδ6) ‖∇�u‖2L2(�)

≤
(
R

δ3
+ d − 1

2δ4

)
‖ f ‖2L2(�)

+
(

δ+ + R

δ6
+ d − 1

2δ7

)
‖∂nu‖2L2(�)

+
(

δ+ + (d − 1)δ7
2k2

)
k2 ‖u‖2L2(�)

. (2.29)
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To prove the bound (2.24) we need to ensure that a) each bracket on the left-hand side
is greater than zero and doesn’t grow with k, and b) each bracket on the right-hand
side does not grow with k.

We choose δ7 = 1, δ6 = δ−/(2R) (so that the coefficient of ‖∇�u‖2
L2(�)

on the

left-hand side becomes δ−/2, which is> 0), δ4 = k2/(d−1), and δ3 = 1/(2R). With
these choices, and neglecting the term involving ‖∇�u‖2

L2(�)
on the left-hand side, we

obtain from (2.29) the bound

(
1

2
− εR

δ5

)
‖∇u‖2L2(�)

+
(
1

2
− εRδ5

k2

)
k2 ‖u‖2L2(�)

≤ C ′
(

‖∂nu‖2L2(�)
+
(
1 + 1

k2

) (
k2 ‖u‖2L2(�)

+ ‖ f ‖2L2(�)

))
, (2.30)

for some C ′ > 0 (independent of k, η and ε). The right-hand side of (2.30) is bounded
above by

C ′′
(

‖g‖2L2(�)
+ (

1 + k2 + |η|2) ‖u‖2L2(�)
+
(
1 + 1

k2

)
‖ f ‖2L2(�)

)

for some C ′′ > 0 (again independent of k, η and ε), since the boundary condition
(2.1b) and the inequality (1.21) imply that

‖∂nu‖2L2(�)
≤ 2

(
|η|2 ‖u‖2L2(�)

+ ‖g‖2L2(�)

)
.

Also, given any k0 > 0, there exists a C ′′′ > 0 independent of k such that

(
1 + 1

k2

)
‖ f ‖2L2(�)

≤ C ′′′ ‖ f ‖2L2(�)
for all k ≥ k0.

Therefore, to establish (2.24) we only need to show that the coefficients of ‖∇u‖2
L2(�)

and k2‖u‖2
L2(�)

on the left-hand side of (2.30) are bounded away from zero, indepen-
dently of k. If ε = 0 this is immediately true. If ε �= 0 we choose δ5 = 4εR. The
left-hand side of (2.30) then becomes

1

4
‖∇u‖2L2(�)

+
(
1

2
− 4R2ε2

k2

)
k2 ‖u‖2L2(�)

.

If ε/k ≤ 1/(4R) then this last expression is

≥ 1

4

(
‖∇u‖2L2(�)

+ k2 ‖u‖2L2(�)

)

and we are done.
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Remark 2.16 The earlier proofs of the bound (2.7) when ε = 0 discussed in Remark
2.10 use essentially the same method that we use here, except that to get (2.24) they
apply theRellich (2.14) andGreen (2.13) identities separately and then take the particu-
lar linear combination that corresponds to theMorawetz identity (2.15)with 2α = d−1
(whereas we use the Morawetz identity with 2α = d − 1 directly). (In addition, these
earlier proofs only consider the case when � is piecewise smooth, and not Lipschitz.)

In the next subsection we obtain the analogue of the bound of Theorem 2.9 for the
truncated sound-soft scattering problem (see Theorem 2.18). For the case ε = 0, this
bound was obtained in [26, Proposition 3.3] using essentially the same method as we
do (but again using a combination of the Rellich and Green identities that is equivalent
to using the Morawetz identity).

2.2 Bounds on the truncated sound-soft scattering problem

The following are analogues of Theorems 2.7 and 2.9 for Problem 2.4.

Theorem 2.17 (Bound for ε > 0 for Lipschitz �D and �R) Let u be the solution of
Problem 2.4, and let η = ηR + iηI with ηI ≥ 0, ηR > 0. Then, given k0 > 0, there
exists a C > 0, independent of ε, k, ηR and ηI , such that

‖∇u‖2L2(�)
+ k2 ‖u‖2L2(�)

≤ C

[
k2

ε2

(
1 + ε

k2
+
( ε

k2

)2) ‖ f ‖2L2(�)
+ k2

εηR

(
1 + ε

k2

)
‖g‖2L2(�)

]

for all k ≥ k0, ηR > 0, and ε > 0.

Theorem 2.18 (Bound for ε/k sufficiently small when �R and �D are star-shaped)
Let u be the solution to Problem 2.4 and assume that �R is star-shaped with respect
to a ball centred at the origin and �D is star-shaped with respect to the origin, i.e.

ess inf
x∈�D

(x · nD) ≥ 0 and ess inf
x∈�R

(x · nR) > 0, (2.31)

where nD and nR are the unit normal vectors to �D and �R respectively (oriented as
in Fig. 2). If ηR ∼ k and |ηI | � k, then, given k0 > 0, there exist c and C (independent
of k, η, and ε and > 0) such that, if ε/k ≤ c for all k ≥ k0, then

‖∇u‖2L2(�)
+ k2 ‖u‖2L2(�)

≤ C
[
‖ f ‖2L2(�)

+ ‖g‖2L2(�)

]

for all k ≥ k0.

Proof of Theorem 2.17 This follows the proof of Theorem 2.7 exactly. Indeed, the
starting point of Theorem 2.7 was (2.19) (the integrated form of Green’s identity with
the PDE and boundary conditions imposed on u), and this holds for the truncated
sound-soft scattering problem with � replaced by �R (since the integral over �D that
arises when Green’s identity is applied in � is zero as u = 0 on �D). ��
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Proof of Theorem 2.18 This follows the proof of Theorem 2.9 exactly. Indeed, Step
2 is the same since it depends on Green’s identity. For Step 1, we note that applying
the integrated Morawetz identity (2.18) in � yields (2.28) with � replaced by �R , and
the additional term

∫
�D

(x · nD)|∂nu|2 on the left-hand side. By (2.31), this additional
term is non-negative, and the proof proceeds as before. ��

3 Variational formulations and quasi-optimality

In Sect. 3.1 we prove results about the continuity and coercivity of aε(·, ·), and then
we use these in Sect. 3.2–Sect. 3.4 to obtain sufficient conditions for quasi-optimality
of the Galerkin method applied to aε(·, ·). In Sect. 3.1–3.4 we consider the interior
impedance problem, and then in Sect. 3.5 we outline the small modifications needed
to extend the results to the truncated scattering problem.

3.1 Continuity and coercivity of aε(·, ·)

Recall from Sect. 1 the variational formulation of the shifted interior impedance prob-
lem (1.3) and its Galerkin approximation (1.6). Define a norm on H1(�) by

‖v‖21,k,� := ‖∇v‖2L2(�)
+ k2 ‖v‖2L2(�)

; (3.1)

in what follows we always have k ≥ k0 for some k0 > 0 and thus ‖ · ‖1,k,� is indeed
a norm and is equivalent to the usual H1-norm.

Lemma 3.1 (Continuity and coercivity of aε(·, ·))
(i) If |η| � k and ε � k2 then, given k0 > 0, there exists a Cc (independent of k, η,

and ε) such that
∣∣aε(u, v)

∣∣ ≤ Cc ‖u‖1,k,� ‖v‖1,k,�

for all k ≥ k0 and u, v ∈ H1(�).
(ii) If ηR and ηI are both ≥ 0 and 0 < ε � k2, then there exists a constant α > 0

(independent of k, η, and ε) such that

∣∣aε(v, v)
∣∣ ≥ α

ε

k2
‖v‖21,k,� (3.2)

for all k > 0 and v ∈ H1(�).

Proof (i) This follows from the Cauchy-Schwarz inequality and the multiplicative
trace inequality (1.20).

(ii) Given k > 0 and ε > 0, define p > 0 and q > 0 by

p2 := k2 + √
k4 + ε2

2
and q2 := −k2 + √

k4 + ε2

2
,
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so that k2 + iε = (p + iq)2. The definition of p and the fact that ε � k2 mean that
k ≤ p � k, and the fact that 2qp = ε then implies that q ∼ ε/k. Now

aε(v, v) = ‖∇v‖2L2(�)
− (p + iq)2 ‖v‖2L2(�)

− iη ‖v‖2L2(�)
,

and so

(p − iq)aε(v, v) = (p − iq) ‖∇v‖2L2(�)
− (p + iq)(p2 + q2) ‖v‖2L2(�)

−i(p − iq)η ‖v‖2L2(�)
.

(3.3)

Therefore, taking the imaginary part of each side of (3.3), we have

�[ − (p − iq)aε(v, v)
] = q

[
‖∇v‖2L2(�)

+ (p2 + q2) ‖v‖2L2(�)

]

+(pηR + qηI )‖v‖2L2(�)
.

Now, defining� := −(p − iq)/|p − iq| = −(p− iq)/
√
p2 + q2, and using the fact

that ηR and ηI are both ≥ 0 we have

∣∣aε(v, v)
∣∣ = ∣∣�aε(v, v)

∣∣ ≥ �[�aε(v, v)
]

≥ q√
p2 + q2

[
‖∇v‖2L2(�)

+ (p2 + q2) ‖v‖2L2(�)

]
.

The result (3.2) follows since p ∼ k, q ∼ ε/k, and ε � k2. ��

Remark 3.2 This “trick” of multiplying the sesquilinear form by the complex conju-
gate of the wavenumber (in the proof above this was p − iq) is well known in, for
example, the time-domain boundary-integral-equation literature; see [23, Proposition
1].

Note that (with ε � k2) the bound (3.2) is sharp in its k- and ε-dependence. Indeed,
if u j is a Dirichlet eigenfunction of −� on � with eigenvalue λ j , then

aε(u j , u j )∥∥u j
∥∥2
1,k,�

= λ j − (k2 + iε)

λ j + k2
.

Therefore, if k = k j := √
λ j then

aε(u j , u j )∥∥u j
∥∥2
1,k j ,�

= −iε

2k2j
∼ ε

k2j
.
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3.2 Abstract conditions for quasi-optimality

To state the main result of this section, we need to introduce the solution operator of
the adjoint problem. Given f ∈ L2(�), define S∗

k,ε f as the solution of the variational
problem

aε(v, S∗
k,ε f ) = (v, f )L2(�) for all v ∈ H1(�). (3.4)

This is the variational formulation of the adjoint problem (2.3) with g = 0; i.e., if
w = S∗

k,ε f satisfies (3.4) then w is a solution of the weak form of (2.3) with g = 0,
and vice versa.

Lemma 3.3 (Quasi-optimality for aε(·, ·)) Assume that ε � k2 and |η| � k. Let Cc

and α be the constants in Lemma 3.1. Let uN denote the Galerkin solution defined by
(1.6). Let

η(VN ) := sup
f ∈L2(�)

inf
vN∈VN

‖S∗
k,ε f − vN‖1,k,�

‖ f ‖L2(�)

. (3.5)

If

√
|k2 − ε|Cc η(VN ) ≤

√
α

2
(3.6)

then

‖u − uN‖1,k,� ≤ 2Cc

α
inf

vN∈VN
‖u − vN‖1,k,� . (3.7)

The analogue of this result for the Helmholtz equation (i.e. ε = 0) first appeared
in the form above as [46, Theorem 2.5], although the argument goes back to Schatz
[47] and has been used by several authors since then (see, e.g., the discussion in
[19, §4] and the references therein). The only difference in our use of this argument
(compared to previous uses) is that, instead of using the fact that aε(·, ·) satisfies a
Gårding inequality, we use the fact that when ε = k2 it is coercive with constant
independent of k. Note that η(VN ) in (3.5) is not related to the η in the impedance
boundary condition (2.1b); we use this notation to be consistent with the other uses of
this argument in the literature.

Proof We first prove the bound (3.7) under the assumption that uN exists. Choosing
v = vN ∈ VN in (1.3) and subtracting this from (1.6), we haveGalerkin orthogonality:

aε(u − uN , vN ) = 0 for all vN ∈ VN . (3.8)

Coercivity (3.2) and the triangle inequality imply that, for any v ∈ H1(�),

α ‖v‖21,k,� ≤ ∣∣ak2(v, v)
∣∣ ≤ ∣∣aε(v, v) − i(k2 − ε) ‖v‖2L2(�)

∣∣
≤ ∣∣aε(v, v)

∣∣ + ∣∣k2 − ε
∣∣ ‖v‖2L2(�)

. (3.9)
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We now apply this last inequality with v = eN := u − uN and use that fact that, by
Galerkin orthogonality, a(eN , eN ) = a(eN , u − vN ) for any vN ∈ VN . This yields

α ‖eN‖21,k,� ≤ ∣∣aε(eN , u − vN )
∣∣ + ∣∣k2 − ε

∣∣ ‖eN‖2L2(�)
(3.10)

≤ Cc ‖eN‖1,k,� ‖u − vN‖1,k,� + ∣∣k2 − ε
∣∣ ‖eN‖2L2(�)

(3.11)

(where we have used the continuity of aε(·, ·) to obtain the second inequality). If we
can show that

∣∣k2 − ε
∣∣ ‖eN‖2L2(�)

≤ α

2
‖eN‖21,k,� (3.12)

then we obtain the result (3.7).
Now, using the definition of S∗

k,ε (3.4), Galerkin orthogonality (3.8), continuity of
aε(·, ·), and the definition of η(VN ) (3.5), we have

‖eN‖2L2(�)
= aε(eN , S∗

k,εeN ) = aε(eN , S∗
k,εeN − vN )

≤ Cc ‖eN‖1,k,�
(
η(VN ) ‖eN‖L2(�)

)
,

for some vN ∈ VN . Therefore

‖eN‖L2(�) ≤ Cc η(VN ) ‖eN‖1,k,� , (3.13)

and the condition (3.6) is sufficient to ensure that (3.12) holds.
Up to now, we have assumed that uN [the solution of the variational problem (1.6)]

exists. The fact that uN exists can be established using [33, Theorem 3.9], but here we
follow the simpler approach found in, e.g., [4, Theorem 5.7.6]. Since (1.6) is a system
of N equations with N unknowns, existence for all right-hand sides is equivalent
to uniqueness. Therefore, we only need to show that if F = 0 and N is such that
the condition (3.6) holds, then (1.6) only has the trivial solution uN = 0. Seeking
a contradiction, suppose that aε(uN , vN ) = 0 for all vN ∈ VN for some uN �= 0.
Remark 2.2 implies that u = 0, and then (3.7) implies that uN = 0 when N is such
that (3.6) holds. Therefore, the solution to (1.6) exists and is unique when N satisfies
(3.7). ��
Remark 3.4 (Using coercivity for ε = γ k2, for some γ > 0, instead of for ε = k2.)
In the proof of Lemma 3.3 we used the coercivity of ak2(·, ·). Instead, we could have
used the coercivity of aγ k2(·, ·), with γ any positive constant. If we had done this, then
the mesh threshold for quasi-optimality would be

√
|γ k2 − ε|Cc η(VN ) ≤

√
γα

2
(3.14)

and the constant of quasi-optimality in (3.7) would be 2Cc/(γ α).
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3.3 Quasi-optimality: smooth domains and convex polygons

In this subsection we consider the case when � is either a C1,1 2- or 3-d domain that
is star-shaped with respect to a ball or a convex polygon. We also assume that VN has
the property that, for all w ∈ H2(�),

inf
vN∈VN

‖w − vN‖1,k,� � h ‖w‖H2(�) + hk ‖w‖H1(�) ; (3.15)

this is true, for example, for continuous piecewise-polynomial elements on a simplicial
mesh by properties of the quasi-interpolant given in [48, Theorem 4.1].

We now use Lemma 3.3 to prove the following result.

Lemma 3.5 (Quasi-optimality for aε(·, ·) for smooth domains and convex polygons)
Suppose that the variational problem (1.3) is solved using the Galerkin method with
VN ⊂ H1(�). Assume that ε � k2, ηR ∼ k, and ηI � k. Then, given k0 > 0, there
exists C1 > 0 (with C1 independent of h, k, and ε) such that if k ≥ k0 and

hk
√

|k2 − ε| ≤ C1 (3.16)

then (3.7) holds.

Proof Given f ∈ L2(�), let w := S∗
k,ε f . By Remark 2.5, given k0 > 0, ‖w‖H1(�) �

‖ f ‖L2(�) for all k ≥ k0. Moreover, Lemma 2.12 then implies that ‖w‖H2(�) �
k‖ f ‖L2(�) for all k ≥ k0. Combining these bounds with (3.15) yields

inf
vN∈VN

‖w − vN‖1,k,� � hk ‖ f ‖L2(�) .

Therefore, from the definition of η(VN ),

√
|k2 − ε|Cc η(VN ) ≤ Cchk

√
|k2 − ε|,

and the result follows from Lemma 3.3. ��
Remark 3.6 For arbitrary curved C1,1 domains it is not always possible to fit the
domain boundary exactly with polynomial elements, and some analysis of non-
conforming error is then necessary; since this is very standard, we do not give it
here.

3.4 Quasi-optimality: non-smooth domains

In obtaining Lemma 3.5 from Lemma 3.3 we used a bound on the H2-norm of the
solution of the adjoint problem to estimate η(VN ) and get a mesh-threshold for quasi-
optimality. We now consider domains in which the solution to the adjoint problem
is not in H2(�). In this case we can still estimate η(VN ) (and thus get conditions
for quasi-optimality) under assumptions on the solution and the mesh that we now
explain.
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Assumption 3.7 Let � be a bounded Lipschitz polyhedron in Rd (d = 2, 3).

1. Let w = S∗
k,ε f and let Csol(k, ε) be such that

‖w‖1,k,� � Csol(k, ε) ‖ f ‖L2(�) (3.17)

for all f ∈ L2(�) and for all 0 ≤ ε � k2. Assume that there exists a weight
function � ∈ C(�) such that, for any f ∈ L2(�),

sup
|α|=2

∥∥�Dαw
∥∥
L2(�)

� k Csol(k, ε) ‖ f ‖L2(�) . (3.18)

2. With � as in Part 1, assume that if v ∈ H1(�) and supα=2 ‖�Dαv‖L2(�) < ∞
then there exists a shape-regular simplicial mesh sequence so that the corre-
sponding finite element space VN has dimension N, has largest element diameter
(1/N )1/d , and satisfies

inf
vN∈VN

{(
1

N

)1/d

|v − vN |H1(�) + ‖v − vN‖L2(�)

}

�
(
1

N

)2/d

sup
|α|=2

∥∥�Dαv
∥∥
L2(�)

. (3.19)

Remark 3.8 Part 2 of Assumption 3.7 holds by results in [1], and Part 1 of Assumption
3.7 holds when � is a polygon in R2 and ε = 0 by [19, Theorem 3.2] (and we expect
similar arguments to apply when 0 < ε � k2). We now discuss both these sets of
results when � is a polygon. The result [19, Theorem 3.2] proves that there exists a
weight function � ∈ C(�) such that the soluton u = S∗

k,0 f of (2.3) with f ∈ L2(�),
g = 0, and ε = 0 has a decomposition u = uH2 + uA, where

∥∥uH2

∥∥
H2(�)

� Csol(k, 0) ‖ f ‖L2(�), (3.20)∑
|α|=2

∥∥�DαuA
∥∥
L2(�)

� k Csol(k, 0) ‖ f ‖L2(�). (3.21)

The weight function � can be taken to be one at convex corners, but at a non-convex
corner �(x) ∼ rβ as r → 0 for x in a neighbourhood of a corner point x0 with
exterior angle ω, where r := |x − x0| and β > 1 − π/ω; see [19, Equation (24)
and Lemma 3.11] (this decay of the weight function compensates for singularities in
the second derivatives of uA). The subsequent verification of (3.19) can be obtained
from several references, e.g. [1] and the references therein. Indeed, the existence of a
suitably refined shape-regular mesh and corresponding vN ∈ VN satisfying

|v − vN |H1(�) �
(
1

N

)1/d

sup
|α|=2

∥∥�Dαv
∥∥
L2(�)

(3.22)
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follows from [1, Theorems 3.2 and 3.3] and particularly the estimate [1, Equation
(3.19)]. Note that [1] uses very different notation to ours; the weighted norm on the
right-hand side of [1, Equation (3.19)] coincides with that on the right-hand side of our
Eq. (3.19), and H0 in [1] equals π/ω in our notation (the statement that H0 = π/(2ω0)

on [1, Page 68] is a typo). The required complexity of the mesh follows from the
discussion in [1, Remark 3.1] and the shape-regularity is [1, Condition (d) on Page
71]. The estimate on ‖v−vN‖L2(�) in (3.19) is not proved explicitly in [1] but follows
using similar arguments.

Remark 3.9 (How does Csol(k, ε) depend on k and ε?) By combining Theorems 2.7
and 2.9 (and using Remark 2.5) we see that if � is Lipschitz and star-shaped with
respect to a ball, 0 ≤ ε � k2, ηR ∼ k, and 0 < ηI � k, then (3.17) holds with
Csol(k, ε) ∼ 1; in what follows we only consider this situation.

The following is the analogue of Lemma 3.5 for non-smooth domains.

Lemma 3.10 (Quasi-optimality for aε(·, ·) for non-smooth domains) Suppose that �
is such that Assumption 3.7 holds with Csol(k, ε) ∼ 1, and suppose that the variational
problem (1.3) is solved using the Galerkin method in the space VN . If ε � k2, ηR ∼ k,
and ηI � k then, given k0 > 0, there exists a C1 > 0 (independent of N , k, and ε)
such that, if k ≥ k0 and

N−1/dk
√

|k2 − ε| ≤ C1, (3.23)

then (3.7) holds.

Proof By Lemma 3.3 we only need to estimate η(VN ) and ensure that (3.6) holds.
With w = S∗

k f , Assumption 3.7 implies that there exists a vN ∈ VN such that

|w − vN |H1(�) �
(
1

N

)1/d

k ‖ f ‖L2(�) and

‖w − vN‖L2(�) �
(
1

N

)2/d

k ‖ f ‖L2(�) ,

from which it follows that

‖w − vN‖1,k,� �
(
1

N

)1/d

k

[
1 +

(
1

N

)1/d

k

]
‖ f ‖L2(�) .

Therefore,

√
|k2 − ε| η(VN ) �

(
1

N

)1/d

k
√

|k2 − ε|
[
1 +

(
1

N

)1/d

k

]
,

and this implies that, given k0 > 0, there exists aC1 > 0 such that the condition (3.23)
is sufficient to ensure that (3.6) holds. ��
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3.5 The truncated sound-soft scattering problem with absorption

The variational formulation of Problem 2.4 is almost identical to that of Problem 2.1
except that the Hilbert space is now V = {v ∈ H1(�) : v = 0 on �D}, and the
integrals over � in aε(·, ·) and F(·) defined in (1.4) and (1.5) respectively are replaced
by integrals over�R . Lemma 3.1 (continuity and coercivity of aε(·, ·)) holds as before.
Lemma 3.5 holds if� isC1,1 and satisfies the geometric assumptions in Theorem 2.18.
Similarly, if Assumption 3.7 is satisfied with � = �R\�D and �R and �D are as in
Theorem 2.18, then Lemma 3.10 holds.

4 Proofs of Theorem 1.4 and its analogue for non-quasi-uniform meshes

In Sect. 4.1 we consider the interior impedance problem, and in Sect. 4.2 we consider
the truncated sound-soft scattering problem.

4.1 Results about the interior impedance problem

4.1.1 Smooth domains and quasi-uniform meshes (i.e., Proof of Theorem 1.4)

As discussed in Sect. 1.3, we prove Theorem 1.4 by obtaining bounds on ‖A−1
ε M‖2,

‖A−1
ε N‖2, ‖MA−1

ε ‖2 and ‖NA−1
ε ‖2.

Lemma 4.1 Under the same conditions as in Theorem 1.4, given k0 > 0, there exist
C1,C2 > 0,C3 > 0 (independent of h, k, and ε but depending on k0) such that if
hk

√|k2 − ε| ≤ C1 then

(i) max
{∥∥∥A−1

ε M
∥∥∥
2
,

∥∥∥MA−1
ε

∥∥∥
2

}
≤ C2

k
and

(ii) max
{∥∥∥A−1

ε N
∥∥∥
2
,

∥∥∥NA−1
ε

∥∥∥
2

}
≤ C3

h1/2k
. (4.1)

Proof of Lemma 4.1 We prove below the estimates on ‖A−1
ε M‖2 and ‖A−1

ε N‖2; the
analogous estimates for ‖MA−1

ε ‖2 and ‖NA−1
ε ‖2 are obtained as outlined in Remark

1.7 (and also using the fact that a result analogous to Lemma 3.5 holds for the adjoint
problem).

Given vN ∈ VN , let v denote the vector of the nodal values of vN . A standard
scaling argument for the mass matrixM yields

‖vN‖2L2(�)
= (Mv, v)2 ∼ hd ‖v‖22 . (4.2)

Therefore,

hdk2 ‖v‖22 ∼ k2 ‖vN‖2L2(�)
� ‖vN‖21,k,� . (4.3)

We first prove the bound (i) in (4.1) (i.e., the bound on ‖A−1
ε M‖2). Given f ∈ C

N ,
we create a variational problem whose Galerkin discretisation leads to the equation
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Aεũ = Mf . Indeed, let f̃ := ∑
j f jφ j and note that f̃ ∈ L2(�). Define ũ to be the

solution of the variational problem

aε(̃u, v) = ( f̃ , v)L2(�) for all v ∈ H1(�), (4.4)

let ũN be the solution of the finite element approximation of (4.4), i.e.,

aε(̃uN , vN ) = ( f̃ , vN )L2(�) for all vN ∈ VN , (4.5)

and let ũ be the vector of nodal values of ũN . The definition of f̃ then implies that
(4.5) is equivalent to Aεũ = Mf , and so to obtain a bound on ‖A−1

ε M‖2 we need to
bound ‖̃u‖2 in terms of ‖f‖2. Note that the hypotheses imply that the bound on the
solution operator (2.8) holds (by Corollary 2.11), and also that if hk

√|k2 − ε| ≤ C1
then quasi-optimality (3.7) holds (by Lemma 3.5). Starting with (4.3) we then have

hd/2k ‖̃u‖2 � ‖ũN‖1,k,� ≤ ‖ũ − ũN‖1,k,� + ‖ũ‖1,k,�
� ‖ũ‖1,k,� + ‖ũ‖1,k,� (by quasi-optimality),

� ‖ f̃ ‖L2(�) (using the bound on the solution operator). (4.6)

Finally, (4.2) implies that ‖ f̃ ‖L2(�) ∼ hd/2‖f‖2, and using this in (4.6) yields ‖̃u‖2 �
k−1‖f‖2, which implies the bound (i) in (4.1).

To prove the bound (ii) in (4.1), given g ∈ C
N we create a variational problem

whose Galerkin discretisation leads to the equation Aεũ = Ng. Indeed, let

g̃ :=
∑

j : x j∈�

g jφ j ,

where x j is the j th node of the mesh (note that g̃ ∈ L2(�)). Define ũ to be the solution
of the variational problem

aε(̃u, v) = (g̃, v)L2(�) for all v ∈ H1(�), (4.7)

let ũN be the solution of

aε(̃uN , vN ) = (g̃, vN )L2(�) for all vN ∈ VN , (4.8)

and let ũ be the vector of nodal values of ũN . Similar to before, Aεũ = Ng, and
then, as in (4.6), hd/2k‖̃u‖2 � ‖g̃‖L2(�). Imitating the proof of (4.2) we find that
‖g̃‖L2(�) ∼ h(d−1)/2‖g‖2, and then combining these last two inequalities we obtain
‖̃u‖2 � h−1/2k−1‖g‖2, implying (ii) in (4.1). ��
Proof of Theorem 1.4 using Lemma 4.1 When η = k the bound (1.13) follows imme-
diately from (1.17) using the bound on ‖A−1

ε M‖2 in (4.1). When η = √
k2 + iε it is

straightforward to show that |η − k| � ε/k, and then (1.13) follows from inserting

123



600 M. J. Gander et al.

both the bounds in (4.1) into (1.17) and using the hypothesis that hk2 ≥ C . Identical
arguments can be used to prove (1.14). ��
Proof of Lemma 1.6 If in the proof of Lemma 4.1 we use the bound (2.5) instead of
the bound (2.8) then we obtain

∥∥∥A−1
ε M

∥∥∥
2

� 1

ε
and

∥∥∥A−1
ε N

∥∥∥
2

� 1

ε1/2kh1/2
, (4.9)

(and analogous estimates in the right preconditioning case). Repeating the proof of
Theorem 1.4 but using (4.9) instead of (4.1) (and recalling the hypotheses that ε � k2

and hk2 ≥ C), we obtain (1.16). ��
Remark 4.2 (Stability as opposed to quasi-optimality) Inspecting the proof of Lemma
4.1 we see that all it really requires is that the Galerkin solutions to the variational
problems (4.4) and (4.7) exist and satisfy

k ‖ũN‖L2(�) � ‖ f̃ ‖L2(�) and k ‖ũN‖L2(�) � ‖g̃‖L2(�) (4.10)

respectively. To obtain (4.10) we used quasi-optimality (from Lemma 3.5) and the
bound on the solution operator (from Corollary 2.11). For the standard variational
formulation of theHelmholtz equation (1.3) (with ε = 0), when VN ⊂ H1(�) consists
of piecewise-linear polynomials, existence and uniqueness of the Galerkin solution
uN and the bound (4.10) (but not quasi-optimality) were established under the mesh
threshold hk3/2 � 1 in [56, Theorem 6.1]. This result was proved by establishing the
corresponding result for a class of interior penalty methods, and then taking the limit
as the penalty parameter tends to zero (and relying on the fact that the stability bound
in Theorem 2.9 holds when ε = 0). If this result could be extended to the problem
with absorption then we could establish the bounds (4.1) under the mesh threshold
hk3/2 � 1.

The condition hk3/2 � 1 has appeared in other investigations of fixed-order finite
element methods for the Helmholtz equation. In particular, Ihlenburg and Babuška
[29], [28, Chapter 4] proved that in 1–d this condition is sufficient to keep the relative
error in both the H1-semi-norm and the L2-norm bounded independently of k (but is
not sufficient for the method to be quasi-optimal); see [20, §1.2.2] for a review of both
this and other related work.

4.1.2 Non-smooth domains and shape-regular meshes

We now consider non-smooth domains satisfying Assumption 3.7. Let T be any mesh
in the sequenceofmeshes inPart 2 ofAssumption3.7, and let τ denote a typical simplex
in T . For each node xi of the mesh T , introduce a representative mesh diameter hi
which can be chosen to be the diameter of any of the simplices τ that touch xi . It
is a property of shape-regular meshes that (with the hidden constants independent of
the mesh) hτ ∼ hi for all τ that touch node xi . Then let D be the diagonal matrix
with diagonal entries Di i = hdi . Furthermore, let D� be the diagonal matrix with
(D�)i i = hd−1

i if xi ∈ � and (D�)i i = 0 otherwise.
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The following result follows from standard scaling arguments using shape-
regularity.

Lemma 4.3 For all x ∈ C
N ,

(i) (Mx, x)2 ∼ (Dx, x)2, and (ii) (Nx, x)2 ∼ (D� x, x)2.

The next theorem is the analogue of Theorem 1.4 for non-smooth domains.

Theorem 4.4 (Sufficient conditions for A−1
ε to be a good preconditioner when �

is non-smooth) Suppose that � is Lipschitz and star-shaped with respect to a ball,
and suppose further that Assumption 3.7 is satisfied. Suppose that both the interior
impedance problem and its shifted counterpart are solved using the Galerkin method
with VN corresponding to amesh satisfying Assumption 3.7. Define h� := minp∈� h p.
Assume that ε � k2 and either η = k or η = √

k2 + iε. Then, given k0 > 0 andC > 0,
there exist C1 and C2 (independent of N , k, and ε) such that if k ≥ k0, h�k2 ≥ C, and

N−1/dk
√

|k2 − ε| ≤ C1 (4.11)

then
∥∥∥I − D1/2A−1

ε AD−1/2
∥∥∥
2

≤ C2
ε

k
. (4.12)

and
∥∥∥I − D−1/2AA−1

ε D1/2
∥∥∥
2

≤ C2
ε

k
. (4.13)

Recalling Corollary 1.9, we therefore see that (4.12) implies that, after a simple
diagonal scaling on the left withD1/2 and on the right withD−1/2, equations involving
the left-preconditioned matrix A−1

ε A can be solved with GMRES in a k-independent
number of iterations when ε/k is sufficiently small. The same statement is true for
right preconditioning by (4.13), but the diagonal scalings should be performed in the
opposite order.

Proof of Theorem 4.4 Similar to (1.17), we write

I − D1/2A−1
ε AD−1/2 = D1/2(I − A−1

ε A)D−1/2 = D1/2A−1
ε (Aε − A)D−1/2

= −iεD1/2A−1
ε MD−1/2 − i(η − k)D1/2A−1

ε ND−1/2.

The proof of (4.12) then consists of showing that

∥∥D1/2A−1
ε MD−1/2

∥∥
2 � 1

k
and

∥∥D1/2A−1
ε ND−1/2

∥∥
2 � 1

h1/2� k
, (4.14)

following the proof of the analogous bounds (4.1) in the smooth case.
Once we have proved (4.14), the proof of (4.13) is similar since
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∥∥D−1/2MA−1
ε D1/2

∥∥
2 = ∥∥D1/2(A∗

ε)
−1MD−1/2

∥∥
2,

and

∥∥D−1/2NA−1
ε D1/2

∥∥
2 = ∥∥D1/2(A∗

ε)
−1ND−1/2

∥∥
2,

and A∗
ε is just the Galerkin matrix arising from the adjoint problem (2.3). Therefore,

the argument used below to prove the bounds in (4.14) can also be used to prove
analogous bounds on

∥∥D1/2A−1
ε MD−1/2

∥∥
2 and

∥∥D1/2A−1
ε ND−1/2

∥∥
2.

Returning to the proof of (4.14), given f ∈ C
N , we define f̃ , and ũ as in the first

part of the proof of Lemma 4.1. Then the nodal values ũ of ũN satisfy the linear system
Aεũ = Mf . Moreover, using Lemma 4.3

k
∥∥D1/2ũ

∥∥
2 = k (D ũ, ũ)

1/2
2 ∼ k (Mũ, ũ)

1/2
2 = k ‖ũN‖L2(�) ≤ ‖ũN‖1,k,�

≤ ‖ũ − ũN‖1,k,� + ‖ũ‖1,k,� . (4.15)

By quasi-optimality (Lemma 3.10), the bound on the solution of the continuous prob-
lem (Corollary 2.11), the definition of f̃ , and Part (i) of Lemma 4.3 we have

k
∥∥D1/2ũ

∥∥
2 � ‖ũ‖1,k,� � ‖ f̃ ‖L2(�) = (Mf, f)1/22 ∼ (D f, f)1/22 ∼ ∥∥D1/2f

∥∥
2.

Remembering that Aεũ = Mf , we have

∥∥D1/2A−1
ε Mf

∥∥
2 � 1

k

∥∥D1/2f
∥∥
2,

and since f was arbitrary, this implies the first bound in (4.14).
Given g ∈ C

N , we define g̃ and ũ as in the second part of the proof of Lemma
4.1; thus Aεũ = Ng. The inequalities in (4.15) hold as before, and then (using
quasi-optimality and the bound on the solution of the continuous problem) we have
k‖D1/2ũ‖2 � ‖g̃‖L2(�). By Part (ii) of Lemma 4.3, ‖g̃‖L2(�) = (Ng, g)1/22 ∼
(D�g, g)

1/2
2 = ‖D1/2

� g‖2, so

k
∥∥∥D1/2A−1

ε Ng
∥∥∥
2

�
∥∥∥D1/2

� g
∥∥∥
2
.

Since g was arbitrary this implies that

k
∥∥∥D1/2A−1

ε ND−1/2g
∥∥∥
2

�
∥∥∥D1/2

� D−1/2g
∥∥∥
2
. (4.16)

Now, the definitions of D, D� , and h� imply that

∥∥∥D1/2
� D−1/2g

∥∥∥
2

≤ max
p∈�

(
h(d−1)/2
p h−d/2

p
) ‖g‖2 = max

p∈�

(
h−1/2
p

) ‖g‖2 = h−1/2
� ‖g‖2 ,

and using this in (4.16) we find the second bound in (4.14). ��
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4.2 Results about the truncated sound-soft scattering problem

Repeating the proof of Lemma 4.1, but now using the bounds on the continuous
problem in Theorems 2.17 and 2.18 and the results in Sect. 3.5, we obtain the following
result.

Theorem 4.5 (Sufficient conditions for A−1
ε to be a good preconditioner for the trun-

cated sound-soft scattering problem) Suppose that �D and �R are both C1,1, �D is
star-shapedwith respect the origin, and�R is star-shapedwith respect to a ball centred
at the origin. Suppose that theGalerkin discretisations of both the truncated sound-soft
scattering problem and its shifted counterpart are formed with the finite dimensional
subspaces consisting of piecewise polynomials on aquasi-uniform sequence ofmeshes.
If ε � k2 and either η = k or η = √

k2 + iε, then, given k0 > 0 and C > 0, there exist
C1 and C2 (independent of h, k, and ε) such that if hk

√|k2 − ε| ≤ C1 and hk2 ≥ C
then

max
{∥∥∥I − A−1

ε A
∥∥∥
2
,

∥∥∥I − AA−1
ε

∥∥∥
2

}
≤ C2

ε

k
(4.17)

for all k ≥ k0.

Recalling Corollary 1.9, we see that equations involving the matrices A−1
ε A and

AA−1
ε can then be solved with GMRES in a k-independent number of iterations when

ε/k is sufficiently small.
In the non-smooth case, if � satisfies Assumption 3.7 (along with the geometric

conditions in Theorem 4.5) then the analogue of Theorem 4.4 holds and, after a simple
diagonal scaling on the left withD1/2 and on the right withD−1/2, problems involving
the matrix A−1

ε A can be solved with GMRES in a k-independent number of iterations
when ε/k is sufficiently small (an analogous statement also holds for AA−1

ε , with the
diagonal scalings performed in the opposite order).

5 Numerical experiments

In this sectionwe display the results of five numerical experiments. The first two exper-
iments concern the interior impedance problem (Problem 2.1), the next two concern
the truncated sound-soft scattering problem (Problem 2.4), and the final experiment
concerns the Helmholtz equation in an inhomogeneous medium.

The purpose of these experiments is to investigate the choices of ε under which
the property (P1) of Sect. 1 holds (i.e., choices of ε under which A−1

ε is a good
preconditioner forA in the sense thatGMRES forA−1

ε A converges independently of k).
We emphasise that we do not consider the time taken to construct good approximations
of A−1

ε (i.e., the question of choosing ε and Bε so that the property (P2) holds); in this
sense, the investigation in this section is purely theoretical.

Recall from Theorem 1.8 that sufficient conditions for the number of GMRES
iterations, nGMRES, needed solve the equation

A−1
ε Au = A−1

ε f (5.1)
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to be independent of k are

(i) That
d := dist(0,W (A−1

ε A)) (5.2)

is bounded away from the origin, independently of k, and
(ii) That ‖A−1

ε A‖2 is bounded above, independently of k.

Theorem 1.4 shows that these two conditions are satisfied when (for the interior
impedance problem) � is star-shaped with respect to a ball and ε/k is sufficiently
small. Furthermore, Lemma 1.6 shows that (ii) is satisfied if ε � k2 (if � is still star-
shaped with respect to a ball). Since these results indicate that (i) is a more restrictive
condition on ε than (ii), in the experiments below we do not compute ‖A−1

ε A‖2, and
we instead concentrate on exploring the behaviour of d.

In all five experiments we compute d, and in all but the first one we compute
nGMRES. For the computation of nGMRES, the vector f on the right-hand side of (5.1)
is taken to be the vector of ones, the initial guess is taken to be zero, and the stopping
criterion is the reduction of the initial residual by six orders of magnitude.

All meshes start with an initial mesh, possibly locally refined, but then the meshes
are refined uniformly by dividing triangles into four smaller ones, possibly several
times over. Finally some mesh smoothing is applied, which modifies the elements
slightly. The maximum mesh diameter h is a key indicator of mesh density. However,
with hmin denoting the diameter of the smallest element, some meshes have rather
large ratio h/hmin, in which case the effect of diagonal scaling is also investigated
(cf. Theorem 4.4). For mesh refinement as k increases, we explore two choices: (1)
hk ∼ 1 (i.e., a fixed number of grid points per wavelength) and (2) h ∼ k−3/2,
where the hidden constants are specified below. Although neither of these choices
are covered by the theory, recall that there is some prospect of extending the theory
to cover the choice h ∼ k−3/2; see Remark 4.2. Furthermore, Table 1 shows almost
identical results arising from the choices h ∼ k−3/2 and h ∼ k−2. We study seven
choices for ε, namely ε = k/4, k/2, k, 2k, 4k, k3/2, and k2.

Example 5.1 In this first example we study the finite-difference approximation of the
interior impedance problem (with the 5-point Laplacian), on the unit square on a
uniform n × n grid (so h = 1/n), where either (1) n = 2k (so that the number of
grid points per wavelength is 2k(2π/k) = 4π ≈ 12.57) or (2) n = ⌈

k3/2
⌉
(so that

the number of grid points per wavelength is approximately 2πk1/2). The values of d
obtained for these two choices of n are given in Tables 2 and 3 respectively.

We observe that as long as ε � k, the value of d remains approximately constant
as k increases. However, as soon as ε grows faster than k, d tends to zero.

Example 5.2 Here we study the linear finite-element approximation of the interior
impedance problem on a uniform triangular n × n grid on the unit square, with the
same two regimes for h as in Example 5.1. Tables 4 and 5 give the values of d and
(in parentheses) nGMRES. The values of d are similar to those in Example 5.1. The
number of iterations, nGMRES, remains constant as k increases in all the cases when ε

is proportional to k, but grows in all other cases; this is in line with Theorem 1.5.
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Table 2 The values of d for Example 5.1 when n = 2k

k ε = k/4 ε = k/2 ε = k ε = 2k ε = 4k ε = k3/2 ε = k2

5 0.9288 0.8626 0.7450 0.5633 0.3441 0.5289 0.2778

10 0.9288 0.8641 0.7520 0.5808 0.3701 0.4434 0.1384

20 0.9234 0.8550 0.7384 0.5650 0.3581 0.3256 0.0512

40 0.9202 0.8492 0.7289 0.5519 0.3438 0.2194 0.0142

80 0.9181 0.8455 0.7226 0.5426 0.3338 0.1380 0.0054

160 0.9175 0.8442 0.7201 0.5386 0.3288 0.0842 0.0028

Table 3 The values of d for Example 5.1 when n =
⌈
k3/2

⌉

k ε = k/4 ε = k/2 ε = k ε = 2k ε = 4k ε = k3/2 ε = k2

5 0.9297 0.8642 0.7477 0.5670 0.3478 0.5326 0.2812

10 0.9307 0.8677 0.7579 0.5888 0.3743 0.4482 0.1391

20 0.9252 0.8582 0.7436 0.5720 0.3652 0.3326 0.0516

40 0.9221 0.8525 0.7342 0.5593 0.3514 0.2256 0.0150

80 0.9199 0.8485 0.7276 0.5494 0.3406 0.1422 0.0057

Table 4 The values of d (and in parentheses nGMRES) for Example 5.2 when n = 2k

k ε = k/4 ε = k/2 ε = k ε = 2k ε = 4k ε = k3/2 ε = k2

10 0.9328 (4) 0.8714 (5) 0.7641 (6) 0.5971 (7) 0.3861 (9) 0.4594 (8) 0.1466 (13)

20 0.9272 (4) 0.8618 (5) 0.7493 (6) 0.5797 (8) 0.3729 (10) 0.3413 (11) 0.0538 (25)

40 0.9246 (4) 0.8569 (5) 0.7411 (6) 0.5675 (8) 0.3590 (11) 0.2311 (13) 0.0156 (47)

80 0.9230 (4) 0.8540 (5) 0.7360 (6) 0.5610 (7) 0.3525 (10) 0.1477 (16) 0.0039 (84)

160 0.9223 (4) 0.8525 (5) 0.7336 (6) 0.5547 (7) 0.3439 (10) 0.0870 (19) 0.0030 (148)

Table 5 The values of d (and in parentheses nGMRES) for Example 5.2 when n =
⌈
k3/2

⌉

k ε = k/4 ε = k/2 ε = k ε = 2k ε = 4k ε = k3/2 ε = k2

10 0.9323 (4) 0.8706 (5) 0.7627 (6) 0.5943 (7) 0.3812 (9) 0.4550 (8) 0.1432 (13)

20 0.9260 (4) 0.8595 (5) 0.7458 (6) 0.5749 (8) 0.3704 (11) 0.3367 (11) 0.0525 (24)

40 0.9226 (4) 0.8535 (5) 0.7358 (6) 0.5609 (8) 0.3529 (11) 0.2275 (14) 0.0150 (48)

80 0.9201 (4) 0.8490 (5) 0.7283 (6) 0.5504 (8) 0.3417 (10) 0.1443 (16) 0.0056 (86)

Example 5.3 In this example we study the influence of local mesh refinement. We
solve the truncated sound-soft scattering problem (Problem 2.4) when the domain
is the region between a unit square and a square obstacle of side length 1/2 placed
symmetrically inside; see Fig. 3.
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Fig. 3 Meshes for scattering problem of Example 5.3

Table 6 The values of d (and in parentheses nGMRES) for Example 5.3 without diagonal scaling

k ε = k/4 ε = k/2 ε = k ε = 2k ε = 4k ε = k3/2 ε = k2

10 0.9595 (3) 0.9214 (4) 0.8519 (4) 0.7346 (5) 0.5614 (6) 0.6259 (6) 0.2845 (8)

20 0.9464 (4) 0.8960 (4) 0.8041 (5) 0.6487 (6) 0.4181 (8) 0.3749 (8) 0 (15)

40 0.9308 (3) 0.8655 (4) 0.7452 (5) 0.5383 (6) 0.2228 (8) 0 (10) 0 (30)

80 0.9096 (3) 0.8236 (4) 0.6632 (5) 0.3828 (6) 0 (8) 0 (12) 0 (54)

160 0.8790 (3) 0.7636 (4) 0.5480 (5) 0.1702 (6) 0 (8) 0 (14) 0 (95)

Table 7 The values of d (and in parentheses nGMRES) for Example 5.3 with diagonal scaling

k ε = k/4 ε = k/2 ε = k ε = 2k ε = 4k ε = k3/2 ε = k2

10 0.9612 (3) 0.9247 (3) 0.8579 (4) 0.7450 (5) 0.5792 (6) 0.6407 (5) 0.3255 (8)

20 0.9528 (4) 0.9089 (4) 0.8298 (5) 0.6995 (6) 0.5165 (8) 0.4840 (8) 0.1042 (14)

40 0.9450 (4) 0.8942 (4) 0.8035 (5) 0.6582 (6) 0.4600 (8) 0.3224 (11) 0.0258 (31)

80 0.9433 (4) 0.8909 (4) 0.7973 (5) 0.6466 (7) 0.4443 (9) 0.2119 (13) 0.0024 (60)

160 0.9420 (4) 0.8885 (4) 0.7931 (5) 0.6405 (7) 0.4380 (9) 0.1337 (16) 0 (116)

In order to deal with irregularity near reentrant corners we perform local refinement
to obtain an initial mesh with 288 nodes. The ratio h/hmin in this mesh is about 160.
We use this mesh for computations with the wave number k = 10 and then perform
one uniform refinement of this mesh for each doubling of k; thus we are working
essentiallywith a quasi-uniform sequence but with a rather highmesh ratio. After three
refinements and smoothing h/hmin is about 240. The mesh for k = 20 is depicted in
Fig. 3 (left). We also perform computations on the uniform mesh depicted in Fig. 3
(right), which contains initially 240 nodes, and is shown without refinement.

Tables 6 and 7 show the computed values of d (and nGMRES) without and then with
diagonal scaling (note that a 0 in the table indicates that the numerical range contains
the origin).
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Table 8 The values of d (and in parentheses nGMRES) for Example 5.3 with a uniform mesh

k ε = k/4 ε = k/2 ε = k ε = 2k ε = 4k ε = k3/2 ε = k2

10 0.9624 (3) 0.9272 (4) 0.8630 (4) 0.7550 (5) 0.5964 (6) 0.6554 (6) 0.3457 (8)

20 0.9491 (4) 0.9021 (4) 0.8179 (5) 0.6818 (7) 0.4953 (8) 0.4627 (8) 0.1059 (17)

40 0.9401 (4) 0.8852 (4) 0.7881 (5) 0.6345 (7) 0.4337 (9) 0.2972 (11) 0.0230 (35)

80 0.9378 (4) 0.8810 (5) 0.7810 (5) 0.6231 (7) 0.4200 (9) 0.1973 (14) 0.0061 (69)

160 0.9371 (4) 0.8794 (4) 0.7780 (5) 0.6186 (7) 0.4139 (9) 0.1236 (17) 0.0014 (121)

Whereas diagonal scaling produces values of d that behave similarly to those for the
uniform mesh (as, in some sense, predicted by the theory), without diagonal scaling
d decreases as ε increases, and this even happens when ε ∼ k. It is interesting to note
that the values of nGMRES are not substantially altered by the presence of the diagonal
scaling, despite the fact that without the diagonal scaling the numerical range often
contains the origin. For comparison, we show in Table 8 the results obtained on a
uniform mesh sequence, with the initial mesh illustrated in Fig. 3 (right), having 240
nodes for the case k = 10. The values of d and nGMRES in this case are similar to
those in the case of diagonal scaling (in Table 7).

Example 5.4 Our next example involves a non-star-shaped scatterer, which is not
covered by the theory. This domain is depicted in Fig. 4 (top left pane). The outer
boundary is a square of size 2L × 2L . The obstacle is a square of size 2R × 2R
placed symmetrically inside, with an 2a × 2a square removed from one side. The
configuration is symmetric about the centre vertical line. For the experiments we use
L = 6, R = 3 and a = 1. We solve the truncated sound soft scattering problem
(Problem 2.4), with an incident plane wave coming from the bottom left corner of the
picture, with the direction of propagation at 45 degrees with the positive x−axis.

The scatterer in this example is trapping, since there exist closed paths of rays in its
exterior (see, e.g., [6, Definition 5.4] for the definition of trapping and nontrapping).
In such a domain we cannot expect the solution operator to be bounded independently
of k, as Theorem 2.18 proves is the case for star-shaped scatterers. Indeed, when
k = mπ/a form ∈ Z there exist quasimodes (in some sense, approximate eigenvalues
of the operator), and these show that if the bound on the solution operator

‖∇u‖2L2(�)
+ k2 ‖u‖2L2(�)

� C(k)2
[
‖ f ‖2L2(�)

+ ‖g‖2L2(�)

]

holds, then C(k) must grow at least linearly with k; see [6, Equation 5.38].
Tables 9 and 10 give the values of d and nGMRES for meshes obtained by uniform

refinement of the initial mesh depicted in Fig. 4, with h ∼ k−1 as k is increased.
The corresponding rows of Tables 9 and 10 use the same meshes, so that in Table 10
the waves are considerably less well-resolved. The resulting total wave (incident plus
scattered) for several choices of k is depicted in Fig. 4 (top right and bottom panes)
for the well-resolved case corresponding to Table 9. The symbol (>) indicates that
GMRES did not converge in fewer than 1,000 iterations. It is interesting to compare
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Fig. 4 Initial mesh (top left) and three converged solutions for Example 5.4, corresponding to the last three
lines in Table 9

Table 9 The values of d (and in parentheses nGMRES) for Example 5.4 with n ∼ k

k ε = k/4 ε = k/2 ε = k ε = 2k ε = 4k ε = k3/2 ε = k2

5π/8 0.3902 (8) 0.1932 (12) 0.0624 (17) 0 (27) 0 (41) 0.0227 (21) 0 (26)

10π/8 0.4385 (8) 0.2211 (12) 0.0612 (18) 0 (29) 0 (48) 0 (29) 0 (47)

20π/8 0.3878 (9) 0.1764 (13) 0.0319 (19) 0 (32) 0 (55) 0 (41) 0 (95)

40π/8 0.3069 (9) 0.1137 (13) 0 (21) 0 (34) 0 (61) 0 (60) 0 (198)

80π/8 0.2478 (9) 0.0762 (14) 0 (22) 0 (37) 0 (66) 0 (89) 0 (418)

rows 3–5 of Table 9, with rows 1–3 of Table 10, since these are problems with the
same values of k. We are therefore solving the same physical problem with the same
preconditioner, but in the second table we are largely underresolved, while in the
first one the resolution is substantially higher (while still being at a fixed number of
points per wave length). We see that the preconditioner works much better when the
discretization is finer, which is natural since the theory in the rest of the paper is based
on continuous (as opposed to discrete) arguments.

Comparing Table 9 with Tables 6, 7 and 8, we see that the behaviour of d and
nGMRES for the trapping domain is quite different to the behaviour of d and nGMRES
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Table 10 The values of d (and in parentheses nGMRES) for Example 5.4 with n ∼ k and a different range
of k

k ε = k/4 ε = k/2 ε = k ε = 2k ε = 4k ε = k3/2 ε = k2

5π/2 0.1610 (15) 0.0798 (21) 0.0246 (32) 0 (54) 0 (91) 0 (70) 0 (123)

10π/2 0.1199 (20) 0.0374 (32) 0.0227 (53) 0 (94) 0 (177) 0 (176) 0 (475)

20π/2 0 (35) 0 (57) 0 (100) 0 (185) 0 (355) 0 (491) (>)

40π/2 0.0266 (48) 0 (86) 0 (160) 0 (306) 0 (594) 0 (>) 0 (>)

80π/2 0.0197 (75) 0 (140) 0 (267) 0 (515) 0 (>) 0 (>) 0 (>)
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Fig. 5 Inhomogeneous medium example on the left (chicken in a microwave) with an initial mesh of 597
nodes for k = 10. Solution on the right for k = 40

for the square. Indeed, whereas 0 is never in the numerical range for the square, it
is for the trapping domain for the larger values of ε. Furthermore, whereas for the
square nGMRES is fairly constant (as k increases) when ε ∼ k, for the trapping domain
nGMRES unequivocally grows for some cases when ε ∼ k, e.g. ε = k, 2k, and 4k,
(although for ε = k/4 the number of iterations is still constant for the trapping domain
in the well-resolved case).

Example 5.5 Our final experiment involves an inhomogeneous medium, which is also
not covered by the theory. Let� be the rectangular domain shown in Fig. 5 on the left,
which represents a 2d cross section of a model of a microwave oven with a chicken in
it. We consider the interior Helmholtz problem

�u + (k2/c2)u = 0 in �,

∂nu − iku = g on the right boundary,
u = 0 on the remaining boundaries,

with a renormalised wave speed of c = 1 in air, and c = 1/
√
5 in the chicken. The

source on the right is as in a classical microwave oven, and modeled by a Robin
condition with g = 1. This is a synthetic problem, since the frequency in a microwave
oven is given, and we vary it here only for illustrative purposes. The ratio between the
two values of c is roughly what one expects physically, and we choose k = 10, 20, 40
as in the earlier experiments (with this parameter now corresponding to the frequency).

Table 11 shows the values of d and nGMRES, both for themicrowavewith the chicken
in, and also for an empty microwave (corresponding to c = 1 everywhere). We clearly
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Table 11 Chicken in a microwave problem, and also for comparison the corresponding empty microwave
oven, but using the same mesh

k ε = k/4 ε = k/2 ε = k ε = 2k ε = 4k ε = k3/2 ε = k2

Microwave oven with chicken

10 0.9423 (5) 0.8769 (6) 0.7352 (7) 0.4671 (8) 0.1323 (10) 0.2387 (9) 0 (14)

20 0.2725 (6) 0.0910 (8) 0 (10) 0 (13) 0 (18) 0 (19) 0 (40)

40 0 (7) 0 (9) 0 (13) 0 (18) 0 (27) 0 (37) 0 (132)

Empty microwave oven

10 0.9656 (3) 0.9309 (4) 0.8621 (4) 0.7333 (5) 0.5308 (6) 0.6062 (6) 0.2402 (7)

20 0.9141 (4) 0.8365 (5) 0.7019 (6) 0.4956 (7) 0.2386 (9) 0.1974 (9) 0 (18)

40 0.8477 (4) 0.7268 (5) 0.5477 (7) 0.3299 (9) 0.1249 (13) 0.0182 (17) 0 (53)

see that the inhomogeneous medium causes difficulties for the preconditioner, and
at k = 40 the numerical range contains zero for every choice of ε considered. The
number of iterations, nGMRES, grows with k in all cases, but this growth gets faster
as ε increases. The preconditioner works much better in the empty microwave oven,
although in this case d decreases with k even when ε ∼ k; this decrease is probably
caused by the fact that we used the same irregular mesh as in the inhomogeneous
case. Despite this decrease in d, the number of iterations remain roughly constant as
k increases when ε = k/4 and ε = k/2.

6 Concluding remarks

The results of this paper show that the shifted Laplacian is a good preconditioner for
finite-element discretisations of the Helmholtz equation, in the sense that (P1) of Sect.
1 is satisfied, if ε/k is sufficiently small. We emphasise again that this is not the end of
the story, since for practical computations we need both (P1) and (P2) to be satisfied
(or at least a compromise reached between the two); this paper, however, contains the
first rigorous results on how to achieve one of (P1) or (P2).

In this conclusion we show that the requirement “ε/k is sufficiently small” natu-
rally appears when one considers howwell the solution of the problemwith absorption
approximates the solution of the problemwithout absorption (independently of anydis-
cretisation). We focus on Problem 2.1 (the interior impedance problem), but note that
analogous results hold for Problem 2.4 (the truncated sound-soft scattering problem).

Theorem 6.1 (Approximating u by uε) Let � be a Lipschitz domain that is star-
shaped with respect to a ball (see Definition 1.2). Given f ∈ L2(�) and g ∈ L2(�),
let u be the solution of Problem 2.1 with ε = 0 and η = k (i.e., u satisfies (1.1)) and
let uε be the solution of Problem 2.1 with ε �= 0 and η = k (i.e., u satisfies (1.2) with
η = k).

If ε � k2 then, given k0 > 0, there exists C1 (independent of k and ε) such that

‖u − uε‖1,k,� ≤ C1
ε

k

(‖ f ‖L2(�) + ‖g‖L2(�)

)
(6.1)

123



The shifted Laplacian preconditioner for the Helmholtz equation 611

for all k ≥ k0. Furthermore, given k0 > 0 there exist C2 and C3 (independent of k
and ε) such that if ε ≤ C2k then

‖u − uε‖L2(�)

‖u‖L2(�)

≤ C3
ε

k
(6.2)

for all k ≥ k0.

Therefore, if ε/k is sufficiently small then both the relative L2-error in approxi-
mating u by uε and the error relative to the data are small.

Note that the principle of limited absorption states that, with k fixed, uε → u as
ε → 0 (for a proof of this result for the exterior Dirichlet problem see [53, Chapter
9, Theorem 1.3]). In contrast, here we consider fixing ε as a function of k and then
approximating u by uε for arbitrarily large k.

Proof of Theorem 6.1 By subtracting (1.2a) from (1.1a) and (1.2b) from (1.1b) we
have that

(� + k2)(u − uε) = iεuε in � and ∂n(u − uε) − ik(u − uε) = 0 on �.

By using the bound (2.8) with ε = 0 on u − uε, we have that, given k0 > 0,

‖u − uε‖1,k,� � ε ‖uε‖L2(�) (6.3)

for all k ≥ k0. The bound (2.8) applied to uε then implies that if ε � k2 then

ε ‖uε‖L2(�) � ε

k

(‖ f ‖L2(�) + ‖g‖L2(�)

)
,

and then using this in (6.3) we obtain (6.1).
Using the triangle inequality ‖uε‖L2(�) ≤ ‖u − uε‖L2(�) + ‖u‖L2(�) in (6.3), we

find that there exist C2 and C3 such that if ε ≤ C2k then

‖u − uε‖1,k,� ≤ C3 ε ‖u‖L2(�) ,

which implies the result (6.2). ��
Remark 6.2 (The choice of η) In Theorem 6.1 we considered the case that η = k, i.e.,
the impedance parameter in the shifted problem is that in the unshifted problem. If
η = √

k2 + iε then it is straightforward to show that (6.1) holds, but we have not been
able to prove that (6.2) holds in this case.

Remark 6.3 (The case k � ε � k2) If k � ε � k2 then one can obtain a bound
analogous to (6.1), but one cannot obtain a bound analogous to (6.2) (at least, not with
the results in the rest of this paper). Indeed, if k � ε � k2 then we can apply the bound
(2.5) [instead of the bound (2.8)] to u − uε and obtain that

‖u − uε‖1,k,� � ε

(
k

ε

)
‖uε‖L2(�) . (6.4)
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Since uε itself satisfies the bound (2.5), we then have that

‖u − uε‖1,k,� �
(
k

ε
‖ f ‖L2(�) +

(
k

ε

)1/2

‖g‖L2(�)

)
,

which is analogous to (6.1). If we seek to prove an analogous bound to (6.2), however,
we find from (6.4) that

‖u − uε‖1,k,� � k ‖u − uε‖L2(�) + k ‖u‖L2(�) . (6.5)

One cannot get a bound on the relative L2-error from (6.5), unless the omitted constant
is < 1. (In principle we could check if this is ever the case, but doing so would be
difficult.)
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