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Abstract We discuss in this paper phase-field approximations of the Willmore func-
tional and the associated L2-flow. After recollecting known results on the approxima-
tion of theWillmore energy and its L1 relaxation, we derive the expression of the flows
associated with various approximations, and we show their behavior by formal argu-
ments based on matched asymptotic expansions. We introduce an accurate numerical
scheme, whose local convergence is proved, to describe with more details the behavior
of two flows, the classical and the flow associated with an approximation model due
to Mugnai. We propose a series of numerical simulations in 2D and 3D to illustrate
their behavior in both smooth and singular situations.
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1 Introduction

Phase-field approximations of theWillmore functional have raised quite a lot of interest
in recent years, both from the theoretical and the numerical viewpoints. In particular,
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116 E. Bretin et al.

attention has been given to understanding the continuous and numerical approxima-
tions of both smooth and singular sets with finite relaxed Willmore energy. Various
approximation models have been proposed so far, whose properties are known only
partially. Our main motivation in this paper is a better understanding of these models,
and more precisely:

1. Exhibiting algebraic differences/similarities between the various approximations;
2. Deriving the L2-flows associated with these models;
3. Studying the asymptotic behavior of the flows, at least in smooth situations;
4. Simulating numerically these flows, and observing whether and how singularities

may appear.

We focus on fourmodels due, respectively, toDeGiorgi,Bellettini, andPaolini [14,30],
Bellettini [8], Mugnai [65], and Esedoḡlu, Rätz, and Röger [41]. The paper is orga-
nized as follows: Sect. 2 is an introductory section where we collect known results on
the diffuse approximation of the perimeter, the diffuse approximation of the Willmore
energy, and the critical issue of approximating singular sets with finite relaxed Will-
more energy. We also recall the definitions of the above mentioned approximations. In
Sect. 2.5, wemake new observations on the differences between these different diffuse
energies. Section 3 is devoted to the derivation of the L2-flows associated with, respec-
tively, Bellettini’s,Mugnai’s, and Esedoḡlu-Rätz-Röger’s models (actually a variant of
the latter), and, for every flow,we use the formalmethod ofmatched asymptotic expan-
sions to derive the asymptotic velocity of the limit interface as the diffuse approxima-
tion becomes asymptotically sharp. We show in particular that, in dimensions 2 and 3
for all flows, and in any dimension for some of them, they correspond asymptotically to
the continuousWillmore flow as long as the interface is smooth. In Sect. 4, we focus on
the numerical simulation of De Giorgi–Bellettini–Paolini’s flow (which we shall refer
to as the classical flow) and Mugnai’s flow, and we propose a fixed-point algorithm
whose local convergence is established.We illustrate with various numerical examples
the behavior of both flows in space dimensions 2 and 3, both in smooth and singular
situations.We show in particular that our scheme can capture with good accuracywell-
known singular configurations yielded by the classical flow, and that these configura-
tions evolve as if the parametric Willmore flow were used. We also illustrate with sev-
eral simulations that, in contrast, Mugnai’s flow prevents the creation of singularities.

2 What is known?

2.1 Genesis: the van der Waals–Cahn–Hilliard interface model and the diffuse
approximation of perimeter

In his 1893 paper on the thermodynamic theory of capillary (see an English translation,
with interesting comments, in [75]), van der Waals studied the free energy of a liquid-
gas interface. Arguing that the density of molecules at the interface can be modeled as
a continuous function of space u, he used thermodynamic and variational arguments
to derive an expression of the free energy, in a small volume V enclosing the interface,
as

∫
V ( f0(u) + λ|∇u|2)dx , where f0(u) denotes the energy of a homogeneous phase

at density u and λ is the capillarity coefficient. The same expression was derived

123



Phase-field approximations of the Willmore functional and flow 117

by Cahn and Hilliard in 1958 in their paper [23] on the interface energy, to a first
approximation, of a binary alloy with u denoting the mole fraction of one component.
Cahn and Hilliard argued that both terms in the energy have opposite contributions:
if the transition layer’s size increases, then the gradient term diminishes, but this
is possible only by introducing more material of nonequilibrium composition, and
thus at the expense of increasing

∫
V f0(u)dx . Rescaling the energy, and changing the

notations in the obvious way, yields the general form

Fε(u) =
∫

V

(
ε

2
|∇u|2 + W (u)

ε

)

dx . (1)

In the original papers of van derWaals, Cahn andHilliard, f0 was a smooth double-well
function, yet with a slope between the local minima. For simplicity, since it does not
modify the mathematical analysis, W will denote in the sequel a smooth double-well
function with no slope (we will take in general W (s) = 1

2 s2(1 − s)2).
Two equations are usually associatedwith the van derWaals–Cahn–Hilliard energy,

and will be used in this paper: the Allen–Cahn and the Cahn–Hilliard equations. The
evolution Allen–Cahn equation is the L2-gradient descent associated with (1) and is
written

ut = Δu − 1

ε2
W ′(u).

We shall also refer to the stationary Allen–Cahn equation

Δu − 1

ε2
W ′(u) = 0.

The Cahn–Hilliard evolution equation is derived in a different manner: from a math-
ematical viewpoint, it is the H−1-gradient flow associated with the van der Waals–
Cahn–Hilliard energy [21,44]. The physical derivation of the equation is also instruc-
tive [22,23]: since∇u Fε(u) = −εΔu+ W ′(u)

ε
quantifies how the energy changes when

molecules change position, it coincides with the chemical potential μ. Fick’s first law
states that the flux of particles is proportional to the gradient of μ, i.e. J = −α∇μ.
Finally, the conservation law ut +div J = 0 yields the Cahn–Hilliard evolution equa-
tion

ut = αΔ

(

−εΔu + W ′(u)

ε

)

.

To summarize, the Allen–Cahn equation describes the motion of phase boundaries
driven by surface tension, whereas the Cahn–Hilliard equation is a conservation law
that characterizes the motion induced by the chemical potential, which is the gradient
of the surface tension.

Let us now recall the asymptotic behavior of Fε(u), as ε → 0+, that has been
exhibited by Modica and Mortola [62] following a conjecture of De Giorgi. We first
fix some notations. Let Ω ⊂ R

n be open, bounded and with Lipschitz boundary.
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118 E. Bretin et al.

W ∈ C3(R, R
+) is a double-well potential with two equal minima (in the sequel we

will work, unless specified, with W (s) = 1
2 s2(1 − s)2). Modica and Mortola have

shown that the Γ -limit in L1(Ω) of the family of functionals

Pε(u) =
⎧
⎨

⎩

∫

Ω

(
ε

2
|∇u|2 + W (u)

ε

)

dx if u ∈ W1,2(Ω)

+∞ otherwise in L1(Ω),

is c0P(u) where c0 = ∫ 1
0

√
2W (s)ds and

P(u) =
{ |Du|(Ω) if u ∈ BV(Ω, {0, 1}),

+∞ otherwise in L1(Ω).

Here, |Du|(Ω) denotes the total variation of u defined by

|Du|(Ω) = sup

{∫

Ω

u(x) div (φ(x))dx;φ ∈ C1
c (Ω, R

N ), ‖φ‖L∞(Ω) ≤ 1

}

.

In particular, if E ⊂ R
N and u := 1E ∈ BV(Ω, {0, 1}) (E is said to have finite

perimeter in Ω), one can build a sequence of functions (uε) ∈ W1,2(Ω) such that
uε → u ∈ L1(Ω) and Pε(uε) → c0|Du|(Ω) = c0P(E,Ω) with P(E,Ω) :=
|D1E |(Ω) the perimeter of E in Ω .

To prove it, it is enough by density to restrict to smooth sets. Being E smooth,

a good approximating sequence is given by uε = q
(

d(x)
ε

)
(actually a variant of

this expression, but we shall skip the details for the moment) where d is the signed
distance function at ∂ E , i.e. d(x) = −d(x, ∂ E) if x ∈ E and d(x, ∂ E) else, and
q(t) = 1−tanh(t)

2 is the unique decreasing minimizer of

∫

R

( |ϕ′(t)|2
2

+ W (ϕ(t))

)

dt, (2)

under the assumptions limt→−∞ ϕ(t) = 1, limt→∞ ϕ(t) = 0 and ϕ(0) = 1
2 . In other

words, the approximation of u = 1E is done by a suitable rescaling of the level lines
of the distance function to ∂ E . Such rescaling is optimal, in the sense that it minimizes
the transversal energy (2) and forces the concentration as ε → 0+.

Observe now that
∫

Ω

(
ε

2
|∇u|2 + W (u)

ε

)

dx ≥
∫

Ω

√
2|∇u|√W (u),

and the equality holds if ε
2 |∇u|2 = W (u)

ε
. Therefore, by lower semicontinuity argu-

ments, the quality of an approximation depends on the so-called discrepancy measure

ξε =
(

ε

2
|∇u|2 − W (u)

ε

)

L2,
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Phase-field approximations of the Willmore functional and flow 119

that will play an even more essential role for some diffuse approximations of the
Willmore functional.

2.2 De Giorgi–Bellettini–Paolini’s approximation of the Willmore energy

Based on a conjecture of De Giorgi [30], several authors [11,14,64,66,74,78] have
investigated the diffuse approximation of the Willmore functional, which is for a set
E ⊂ R

N with smooth boundary in a given reference open set Ω ⊂ R
N :

W (E,Ω) = 1

2

∫

∂ E∩Ω

|H∂ E (x)|2 dHN−1

where H∂ E (x) is the classical mean curvature vector at x ∈ ∂ E . The approximation
functionals are defined as

Wε(u) =
⎧
⎨

⎩

1

2ε

∫

Ω

(

εΔu − W ′(u)

ε

)2

dx if u ∈ L1(Ω) ∩ W2,2(Ω),

+∞ otherwise in L1(Ω).

. (3)

Introduced byBellettini and Paolini in [14], they differ from the original DeGiorgi’s
conjecture in the sense that the perimeter is not explicitly encoded in the expression.
They have however the advantage to be directly related to the Cahn–Hilliard equation,
whose good properties [25] play a key role in the approximation. In the sequel, we
shall refer to these functionals as the classical approximation model.

The reason why εΔu − W ′(u)
ε

is related to the mean curvature can be simply under-
stood at a formal level: it suffices to observe that the mean curvature of a smooth
surface is associated with the first variation of its area, and that −εΔu + W ′(u)

ε
is the

L2 gradient of ε
2 |∇u|2 + W (u)

ε
that appears in the approximation of the surface area.

The results on the asymptotic behavior of Wε as ε → 0+ have started with the
proof by Bellettini and Paolini [14] of a Γ -lim sup property, i.e. the Willmore energy
of a smooth hypersurface E is the limit of Wε(uε), up to a multiplicative constant,
where uε is defined exactly as for the approximation of the perimeter.

The Γ -lim inf property is much harder to prove. The contributions on this
point [11,64,66,74,78] culminated with the proof by Röger and Schätzle [74] in space
dimensions N = 2, 3 and, independently, by Nagase and Tonegawa [66] in dimension
N = 2, that the result holds true for smooth sets. More precisely, given u = 1E with
E ∈ C2(Ω), and uε converging to u in L1 with a uniform control of Pε(uε), then

c0 (W (E,Ω) + P(E,Ω)) ≤ lim inf
ε→0+ (Wε(uε) + Pε(u)).

The proof is based on a careful control of the discrepancy measure ξε = ( ε
2 |∇u|2

− W (u)
ε

)L2 that guarantees good concentration properties, i.e. the varifolds
vε = |∇uε|L2 ⊗δ∇u⊥

ε
(whose mass is related naturally to the variations of the approx-

imating functions uε) concentrate to a limit integer varifold that has generalized mean
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120 E. Bretin et al.

Fig. 1 Top a set E1 such that Γ -limWε(E1) < ∞ and W (E1) = +∞. Bottom, from left to right, a
set E2, the limit configuration whose energy coincides with Γ -limWε(E2), a configuration whose energy
coincides with W (E2)

curvature in L2 and that is supported on a supset of ∂ E . Then, in Röger and Schätzle’s
proof, a lower semicontinuity argument and the locality of integer varifolds’ mean cur-
vature yields the result. It holds in dimensions N = 2, 3 at most due to dimensional
requirements for Sobolev embeddings and for the control of singular terms used in
the proof. The result in higher dimension is still open.

What about unsmooth sets?Can the approximation results be extended to the relaxed
Willmore functional? The answer is negative in general, as discussed below.

2.3 The approximation does not hold in general for unsmooth limit sets

Let us introduce the L1(Ω)-lower-semicontinuous envelope of W (·,Ω) defined for
any set E of finite perimeter in Ω by

W (E,Ω)= inf

{

lim inf
h→∞ {W (Eh,Ω)}; Eh ⊂ Ω, ∂ Eh ∈C2, Eh −→

h→∞ E in L1(Ω)

}

.

The properties of this relaxation are fully known in dimension 2 [9,10,12,59] and
partially known in higher dimension [3,55,60]. It is natural to ask whether the Γ -
convergence ofWε to W can be extended to W . Unfortunately, this is not the case as it
follows from the following observations (for simplicitywe denoteΓ -limWε(E) = Γ -
limWε(1E )) that are illustrated in Fig. 1:

1. There exists a bounded set E1 ⊂ R
2 of finite perimeter such that

Γ - limWε(E1) < ∞ and W (E1) = +∞.
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Phase-field approximations of the Willmore functional and flow 121

2. There exists a bounded set E2 ⊂ R
2 of finite perimeter such that

Γ - limWε(E2) < W (E2) < +∞.

The reason why W (E1) = +∞ is a result by Bellettini, Dal Maso and Paolini [9]
according to which a non oriented tangent must exist everywhere on the boundary.
Besides, W (E2) < +∞ because, still by a result of Bellettini, Dal Maso and Paolini,
the boundary is smooth out of evenly many cusps. Let us now explain why, in both
cases,Γ -limWε(E1,2) < +∞. The reason for this is the existence of smooth solutions
with singular nodal sets for the Allen–Cahn equation

Δu − W ′(u) = 0.

According to Dang, Fife and Peletier [29], there exists for such equation in R
2 a

unique saddle solution u with values in (−1, 1) when the double well potential equals
W (s) = 1

8 (1 − s2)2. By saddle solution, it is meant that u(x, y) > 0 in quadrants I
and III, and u(x, y) < 0 in quadrants II and IV, in particular u(x, y) = 0 on the nodal
set xy = 0. Considering now uε(x) = 1+u(x/ε)

2 , we immediately get that

ε2Δuε − W ′(uε) = 0,

for the new choice W (s) = 1
2 s2(1−s)2. Therefore,Wε(uε) vanishes, and since Pε(uε)

is obviously bounded, it follows from the lower semicontinuity of the Γ -limit that Γ -
limWε(E1,2) < +∞. Furthermore, the approximation of E2 can be made so as to
create a cross in the limit, as in bottom-middle figure. The limit energy is therefore
lower than the energy obtained by pairwise connection without crossing of the cusps
(bottom-right figure). Thus, Γ -limWε(E2) < W (E2) < +∞.

For the reader not familiar with varifolds, it must be emphasized that this is not in
contradiction with the results described in the previous section, and more precisely
with the fact that the discrepancy measure guarantees the concentration of the dif-
fuse varifolds at a limit integer varifold with generalized curvature in L2. Indeed, the
boundary curves of E1 and of the bottom-middle set can be canonically associated
with a varifold having L2 generalized curvature because, by compensation between the
half-tangents associated with each branch meeting at the cross, there is no singularity.

We end this section with the question that follows naturally from the discussion
above: is it possible to find a diffuse approximation that Γ -converges to W (up to a
multiplicative constant) whenever W (E) < +∞?

2.4 Diffuse approximations of the relaxed Willmore functional

2.4.1 Bellettini’s approximation in dimension N ≥ 2

In [8], Bellettini proposed a diffuse model for approximating the relaxations of
geometric functionals of the form

∫
∂ E (1 + f (x,∇dE , D2dE ))dHN−1 where E is

smooth and dE is the signed distance function from ∂ E . Such functionals include
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122 E. Bretin et al.

the Willmore energy since, on ∂ E , H∂ E = (ΔdE )∇dE = tr(D2dE )∇dE thus
|H∂ E |2 = | tr(D2dE )|2. Particularizing Bellettini’s approximation model to this case
yields the smooth functionals

WBe
ε (u)=

⎧
⎨

⎩

1

2

∫

Ω\{|∇u|=0}

(

| div ∇u

|∇u| |
2
)(

ε

2
|∇u|2+ W (u)

ε

)

dx if u ∈C∞(Ω)

+∞ otherwise in L1(Ω)

.

(4)
Then, according to Bellettini [8, Theorems 4.2,4.3], in any space dimension,

(

Γ - lim
ε→0

Pε + WBe
ε

)

(E) = c0(P(E) + W (E)),

for every E of finite perimeter such that W (E) < +∞. The constructive part of the

proof is based, as usual, on using approximating functions of the form uε = q
(

dE
ε

)
.

As for the lower semicontinuity part, it is facilitated by the explicit appearance of the
mean curvature vector in the expression. Recall indeed that, u being smooth, for almost

every t , Hu(x) :=
(
div ∇u

|∇u|
) ∇u

|∇u| (x) is the mean curvature vector at a point x of the

isolevel {y, u(y) = t}. Let (uε) be a sequence of smooth functions that approximate
u = 1E in L1(RN ) and has uniformly bounded total variation. Then, by the coarea
formula,

WBe
ε (uε) ≥ 1

2

∫

{|∇uh |�=0}
|∇uε|

√
2W (uε)|Huε |2dx

= 1

2

∫ 1

0

√
2W (t)

∫

{uε=t}∩{|∇uε |�=0}
|Huε |2dHN−1 dt.

The last inequality is important: it guarantees a control of the Willmore energy of the
isolevel surfaces of uε. This is a major difference with the classical approximation,
for which such control does not hold.

Then, it suffices to observe that, by Cavalieri’s formula and for a suitable sub-
sequence, |{uε ≥ t}Δ{u ≥ t}| → 0 for almost every t (here, AΔB denotes
the set symmetric difference, that is, AΔB = (A\B) ∪ (B\ A)). In addition,
{u ≥ t} = E for almost every t , and by the lower semicontinuity of the relaxation
W (E) ≤ lim infε→0 W ({uε < t}). Fatou’s Lemma finally gives

lim inf
ε→0

WBe
ε (uε) ≥ W (E)

∫ 1

0

√
2W (t)dt = c0W (E).

Bellettini’s approximation has however a drawback that will be explained with more
details later: when one computes the flow associated with the functional, the 4th order
term is nonlinear, which raises difficulties at the numerical level.
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Phase-field approximations of the Willmore functional and flow 123

2.4.2 Mugnai’s approximation in dimension N = 2

In the regular case and in dimensions 2,3, it follows from the results of Bellettini
and Mugnai [13] that, up to a uniform control of the perimeter, the Γ -limit of the
functionals defined by

WMu
ε (u) =

⎧
⎨

⎩

1

2ε

∫

Ω

∣
∣
∣
∣εD2u − W ′(u)

ε
νu ⊗ νu

∣
∣
∣
∣

2

dx if u ∈ C2(Ω)

+∞ otherwise in L1(Ω),

(5)

where νu = ∇u
|∇u| when |∇u| �= 0, and νu = constant unit vector on {|∇u| = 0},

coincides with

c0

∫

Ω∩∂ E
|A∂ E (x)|2dx,

for every smooth E , with A∂ E (x) the second fundamental form of ∂ E at x . Again,
this approximation allows a control of the mean curvature of the isolevel surfaces of
an approximating sequence uε, thus prevents from the creation of saddle solutions to
the Allen–Cahn equation since, by [13, Lemma 5.3] and [65, Lemma 5.2],

|∇u|
∣
∣
∣
∣div

∇u

|∇u|
∣
∣
∣
∣ ≤ 1

ε

∣
∣
∣
∣εD2u − W ′(u)

ε
νu ⊗ νu

∣
∣
∣
∣ .

In dimension 2, the second fundamental form along a curve coincides with the cur-
vature. Therefore, by identifying the limit varifold obtained when uε converges to
u = 1E , and using the representation results of [12], Mugnai was able to prove in [65]
that, in dimension 2, the Γ -limit of WMu

ε (with uniform control of the perimeter)
coincides with W (E) for any E with finite perimeter.

2.4.3 Esedoḡlu–Rätz–Röger’s approximation in dimension N ≥ 2

The model of Esedoḡlu, Rätz, and Röger in [41] is a modification of the classical
energy that aims to preserve the “parallelity” of the level lines of the approximating
functions, and avoids the formation of saddle points, by constraining the level lines’
mean curvature using a term à la Bellettini. More precisely, one can calculate that

εΔu − W ′(u)

ε
= ε|∇u| div ∇u

|∇u| −
〈

∇ξε,
∇u

|∇u|2
〉

.

with ξε =
(

ε
2 |∇u|2 − W (u)

ε

)
the discrepancy function (with a small abuse of notation,

we use the same notation for the discrepancy measure and its density).
Therefore, εΔu − W ′(u)

ε
approximates correctly the mean curvature (up to a mul-

tiplicative constant) if the projection of ∇ξε on the orthogonal direction ∇u is small.
Equivalently, it can be required that
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124 E. Bretin et al.

εΔu − W ′(u)

ε
− ε|∇u| div ∇u

|∇u|

be small, therefore a natural profile-forcing approximation model is (with α ≥ 0 a
parameter):

WEsRäRö
ε (u) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1

2ε

∫

Ω

(

εΔu − W ′(u)

ε

)2

dx

+ 1

2ε1+α

∫

Ω

(εΔu− W ′(u)

ε
− ε|∇u| div ∇u

|∇u| )
2dx if u ∈ C∞(Ω),

+∞ otherwise in L1(Ω).

To simplify the theoretical analysis, the model proposed by Esedoḡlu, Rätz, and Röger
is slightly different. It uses the fact that, if a phase field uε resembles q( d

ε
), one has

ε|∇u| ∼ √
2W (u), which leads Esedoḡlu, Rätz, and Röger to penalize

εΔu − W ′(u)

ε
− (ε|∇u|(2W (u))

1
2 )

1
2 div

∇u

|∇u| .

Finally, they propose the following approximating functional

ŴEsRäRö
ε (u) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1

2ε

∫

Ω

(

εΔu − W ′(u)

ε

)2

dx

+ 1

2ε1+α

∫

Ω

(εΔu− W ′(u)

ε
− (ε|∇u|√2W (u))

1
2 div

∇u

|∇u| )
2dx if u ∈ C∞(Ω)

+∞ otherwise in L1(Ω).

This energy controls themean curvature of the level lines of an approximating function
since (see [41])

ŴEsRäRö
ε (u) ≥ ε−α

2 + 2ε−α

∫ 1

0

√
2W (t)

∫

{u=t}∩{∇u �=0}

(

div
∇u

|∇u|
)2

dHN−1 dt,

which, once again, excludes saddle-shaped solutions of Allen–Cahn equation. With
the control above, the authors prove with the same argument as Bellettini [8] that, for
any α > 0,

Γ - lim
ε→0

Pε + ŴEsRäRö
ε = c0

(
P + W

)
in L1(Ω).

With α = 0 the Γ -convergence result does not hold anymore, but instead, with a
uniform control of the perimeter,
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Phase-field approximations of the Willmore functional and flow 125

Γ - lim
ε→0

ŴEsRäRö
ε ≥ c0

2
W .

which still guarantees a control of W .
For the sake of numerical simplicity, another version is tackled numerically in [41],

based again on the approximation ε|∇u| ∼ √
2W (u):

̂ŴEsRäRö
ε (u)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1

2ε

∫

Ω

(

εΔu − W ′(u)

ε

)2

dx

+ 1

2ε1+α

∫

Ω

(

εΔu− W ′(u)

ε
−√

2W (u) div
∇u

|∇u|
)2

dx if u ∈ C∞(Ω),

+∞ otherwise in L1(Ω).

We will focus in the sequel onWEsRäRö
ε , whose flow will be derived, as well as its

asymptotic behavior as ε goes to 0.

2.5 Few remarks on the connections between the different approximations

2.5.1 From Mugnai’s model to Esedoḡlu–Rätz–Röger’s

We saw previously that the phase-field approximations WBe
ε and WEsRäRö

ε Γ -
converge, up to a uniform control of perimeter, to c0W in any dimension, and the
same holds true in dimension 2 for WMu

ε . We will now emphasize the connections
between these approximations. More precisely, we will see that Mugnai’s approxi-
mation WMu

ε can be viewed as the sum of a geometric-type approximation of the
Willmore energy plus a profile penalization term of the same kind as in Esedoḡlu,
Rätz, Röger’s model (or, more precisely, the initial modelWEsRäRö

ε ). Indeed we have,
denoting νu = ∇u

|∇u| when |∇u| �= 0, and νu = constant unit vector on {|∇u| = 0},

WMu
ε (u) = 1

2ε

∫

Ω

∣
∣
∣
∣εD2u − W ′(u)

ε
νu ⊗ νu

∣
∣
∣
∣

2

dx,

= 1

2ε

∫

Ω

(

εD2u : νu ⊗ νu − W ′(u)

ε

)2

dx

+
∫

Ω

ε

2

(
|D2u|2 − (D2u : νu ⊗ νu)2

)
dx .

where, being A, B two matrices, we denote as A : B = ∑
i, j Ai j Bi j the usual

matrix scalar product. Using A : e1 ⊗ e2 = 〈Ae2, e1〉, we observe that D2u : νu ⊗
νu = Δu − |∇u| div ∇u

|∇u| , therefore the first term of WMu
ε coincides with the second

term ofWEsRäRö
ε for α = 0. The second term ofWMu

ε can be splitted as
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∫

Ω

ε

2

(
|D2u|2−(D2u : νu ⊗ νu)2

)
dx = 1

2

∫

Ω

∣
∣
∣
∣D

( ∇u

|∇u|
)∣∣
∣
∣

2 (
ε|∇u|2

)
dx,

+
∫

Ω

ε

2

(
|D2u νu |2−|D2u : νu ⊗ νu |2

)
dx .

Note that
∫

Ω

ε

(

|D2u νu |2 −
(

D2u : νu ⊗ νu

)2)

dx ≥ 0,

is non negative and vanishes for all functions u of the general form u = η (d(x)) with
η smooth. It is therefore a soft profile-penalization term that forces the approximating
function to be a profile, yet not necessarily the optimal profile q. As for the term
∫

Ω

∣
∣
∣
∣D

( ∇u

|∇u|
)∣∣
∣
∣

2 (
ε|∇u|2

)
dx , it is purely geometric and constrains the approximat-

ing function’s level lines mean curvature. It would therefore be worth addressing the
Γ -convergence of the new functional

WNew
ε (u) = 1

2ε

∫

Ω

(εΔu − 1

ε
W ′(u))2dx

+ 1

2εα

∫
ε

(

|D2u νu |2 −
(
∇u2 : νu ⊗ νu

)2)

dx .

The reason why such approximation would be interesting is that, if it indeeds Γ -
converges, the associated flow would not be influenced by the asymptotic behavior of
the penalization term, since it vanishes for approximating functions that are profiles.
More precisely, the Willmore flow could be captured at low order of ε, and not at the
numerically challenging order ε3 as for the Esedoḡlu–Rätz–Röger model with α = 0
or 1.

2.5.2 Towards a modification of Mugnai’s energy that forces the Γ -convergence in
dimension ≥ 3

Obviously, we cannot expect that Mugnai’s energy Γ -converges to the Willmore
energy in dimension greater than 2, since for E smooth

|A∂ E |2 = |H∂ E |2 −
∑

i �= j

κiκ j ,

where κ1, κ2 . . . κN−1 are the principal curvatures. This identity suggests however that
a suitable correction could force the Γ -convergence, i.e. by subtracting to WMu

ε an
approximation of

J (E,Ω) =
∫

∂ E∩Ω

∑

i �= j

κiκ j dHN−1.
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Recalling our assumptions that d < 0 in E , and as an easy consequence of Lemma
14.17 in [46] (see also [1]), we obtain in a small tubular neighborhood of ∂ E :

div (Δd(x)∇d(x)) = (Δd(x))2 + ∇Δd(x) · ∇d(x),

=
(
∑

i

κi (π(x))

1 + d(x)κi (π(x))

)2

−
∑

i

κi (π(x))2

(1 + d(x)κi (π(x)))2
,

�
∑

i �= j

κiκ j on ∂ E,

where π(x) is the projection of x on Γ . Thus, a possible approximation of c0 J (E,Ω)

is

J 1
ε (u) = −2

ε

∫

Ω

(

εΔu − 1

ε
W ′(u)

)
W ′(u)

ε
dx .

Indeed, with u = q(d/ε) and with a suitable truncation of q so that q ′(d/ε) vanishes
on ∂Ω , integrating by parts yields:

J 1
ε (u) = − 2

ε2

∫

Ω

Δdq ′
(

d

ε

)

q ′′
(

d

ε

)

dx = −1

ε

∫

Ω

〈Δd∇
(

q ′
(

d

ε

)2
)

,∇d〉dx,

= 1

ε

∫

Ω

div (Δd∇d) q ′
(

d

ε

)2

dx � c0

∫

∂ E∩Ω

∑

i �= j

κiκ j dHN−1.

Remark also that since a profile function u = q(d/ε) satisfies 1
ε

W ′(u) = εD2u : N(u)

where N(u) = ν ⊗ ν = ∇u
|∇u| ⊗ ∇u

|∇u| , the following energies

⎧
⎪⎨

⎪⎩

J 2
ε (u) = − 2

ε2

∫
Ω

(
εΔu − εD2u : N(u)

)
W ′(u)dx,

J 3
ε (u) = −2

∫
Ω

(
εΔu − 1

ε
W ′(u)

)
D2u : N(u)dx,

J 4
ε (u) = −2

∫
Ω

(
εΔu − εD2u : N(u)

)
D2u : N(u)dx,

approximate also c0 J (E,Ω). In particular, as a modified version of Mugnai’s energy,
we can consider

W̃Mu
ε = WMu

ε + 1

2
(J 1

ε (u) − J 3
ε (u) + J 4

ε (u)).

We have indeed

J 1
ε (u) − J 3

ε (u) − J 2
ε (u) + J 4

ε (u) = 2

ε

∫

Ω

(

εD2u : ν ⊗ ν − W ′(u)

ε

)2

dx .
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and

WMu
ε = Wε(u) − 1

2
J 2
ε (u),

since
∫
Ω

|D2u|2dx = ∫
Ω

(Δu)2dx , N(u) : N(u) = 1,

|εD2u−ε−1W ′(u)N(u)|2=ε2|D2u|2−2W ′(u)D2u : N(u)+ε−2W ′(u)2N(u) : N(u),

and

(εΔu − ε−1W ′(u))2 = ε2(Δu)2 − 2W ′(u)Δu + ε−2(W ′(u))2.

Therefore

W̃Mu
ε = Wε(u) + 1

ε

∫

Ω

(

εD2u : ν ⊗ ν − W ′(u)

ε

)2

dx,

which resembles Esedoḡlu–Rätz–Röger’s approximation with α = 0 since, in both
approximations, the second term forces u to be a “profile” function, and vanishes at the
limit. In view of the approximation result of Esedoḡlu, Rätz, andRöger, it is reasonable

to expect that W̃Mu
ε Γ -converges to the relaxed Willmore energy in any dimension.

3 The Willmore flow and its approximation by the evolution of a diffuse
interface

This section is devoted to the approximation of theWillmore flow byL2-gradient flows
associated with the approximating energies introduced above. In particular, we shall
derive explicitly each approximating gradient flow and, using the matched asymptotic
expansion method [15,20,56,72], we will show that, at least formally and for smooth
interfaces, there is convergence to the Willmore flow, at least in dimensions 2 and
3 for all flows, and in any dimension for some of them. The general question “if a
sequence of functionals Γ -converges to a limit functional, is there also convergence of
the associated flows?” is rather natural, since Γ -convergence implies convergence of
minimizers, up to the extraction of a subsequence.However, the question is difficult and
remains open for the Willmore functional. Our results below give formal indications
that the convergence holds. Serfaty discussed in [77] a general theorem on the Γ -
convergence of gradient flows, provided that the generalized gradient of the associated
functional can be controled (see in particular the discussion on theCahn–Hilliard flow).
Such control is so far out of reach for the Willmore functional.

3.1 On the Willmore flow

Let E(t), 0 ≤ t ≤ T , denote the evolution by the Willmore flow of smooth domains,
i.e. the outer normal velocity V (t) is given at x ∈ ∂ E(t) by
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V = Δ∂ E H − 1

2
H3 + H‖A‖2,

where Δ∂ E is the Laplace–Beltrami operator on ∂ E(t), H the scalar mean curvature,
A the second fundamental form, and ‖A‖2 is the sum of the squared coefficients of A.

In the plane, the Willmore flow coincides with the flow of curves associated with
the Bernoulli–Euler elastica energy, i.e., denoting by κ the scalar curvature

V = Δ∂ Eκ + 1

2
κ3.

The long time existence of a single curve evolving by this flow is established in [39],
and any curve with fixed length converges to an elastica.

In higher dimension, Kuwert and Schätzle give in [52,53] a long time existence
proof of the Willmore flow and the convergence to a round sphere for sufficiently
small initial energy. Singularities may appear for larger initial energies, as indicated
by numerical simulations [61].

3.2 Approximating the Willmore flow with the classical approach

The L2-gradient flow of the approximating energy Wε defined at (3) is equivalent to
the evolution equation

∂t u = −Δ

(

Δu − 1

ε2
W ′(u)

)

+ 1

ε2
W ′′(u)

(

Δu − 1

ε2
W ′(u)

)

,

that can be rewritten as the phase field system

{
ε2∂t u = Δμ − 1

ε2
W ′′(u)μ,

μ = W ′(u) − ε2Δu.
(6)

Existence and well-posedness Thewell-posedness of the phase fieldmodel (6) at fixed
parameter ε has been studied in [27] with a volume constraint fixing the average of u,
and in [28] with both volume and area constraints.

Convergence to the Willmore flow Loreti and March showed in [56] (see also [79]),
by using the formal method of matched asymptotic expansions, that if ∂ E is smooth
and evolves by Willmore flow, it can be approximated by level lines of the solution
uε of the phase field system (6) as ε goes to 0. In addition, uε and με are expected to
take the form

⎧
⎨

⎩

uε(x, t) = q
(

d(x,E(t))
ε

)
+ ε2

(‖A‖2 − 1
2 H2

)
η1

(
d(x,E(t))

ε

)
+ O(ε3),

με(x, t) = −εHq ′
(

d(x,E(t))
ε

)
+ ε2H2η2

(
d(x,E(t))

ε

)
+ O(ε3),
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where η1 and η2 are two functions depending only of the double well potential W ,
and defined as the solutions of

{
η′′
1(s) − W ′′(q(s))η1(s) = sq ′(s), with lims→±∞ η1(s) = 0,

η′′
2(s) − W ′′(q(s))η2(s) = q ′′(s), with lims→±∞ η2(s) = 0.

An important point is that the second-order term in the asymptotic expansion of uε

has an influence on the limit law as ε goes to zero [56]. This is a major difference with
the Allen–Cahn equation, for which the velocity law follows from the expansion at
zero and first orders only [15]. As a consequence, addressing numerically theWillmore
flow is more delicate and requires using a high accuracy approximation in space to
guarantee a sufficiently good approximation of the expansion of uε.

3.3 Approximating the Willmore flow with Bellettini’s model

We focus now on the approximation model WBe
ε defined in (4)

Proposition 1 The L2-gradient flow of Bellettini’s model is equivalent to

∂t u = K (u)2

2

(

Δu − 1

ε2
W ′(u)

)

+ 1

2
〈∇[K (u)2],∇u〉 − 1

ε
div

(

Pu ∇ [K (u)hε(u)]

|∇u|
)

,

(7)

where Pu = I − ∇u
|∇u| ⊗ ∇u

|∇u| with I the identity operator, hε(u) = (
ε
2 |∇u|2 + 1

ε
W (u)

)

and K (u) = div
( ∇u

|∇u|
)

.

Existence and well-posedness of this equation are open questions. Numerical simula-
tions performed with this flow are shown in [41]. Note that the fourth-order nonlinear
term makes numerics harder.

Using the formal method of matched asymptotic expansions, we show below that
the phase fieldmodel (7) converges in any dimension, at least formally, to theWillmore
flow as ε goes to 0. More precisely, we observe an asymptotic expansion of uε of the
form

uε(x, t) = q

(
d(x, E(t))

ε

)

+ O(ε2),

where the second-order term does not have any influence on the limit velocity law as
ε goes to zero, in contrast with the classical approximation of the previous section.

Proof of Proposition 1 The differential of K at u satisfies

K ′(u)(w) = lim
t→0

K (u + tw) − K (u)

t
= div

( ∇w

|∇u| − ∇u.∇w∇u

|∇u|3
)

,
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therefore

(WBe
ε (u))′(w) =

∫

Ω

[K (u)hε(u)] div

( ∇w

|∇u| − ∇u.∇w∇u

|∇u|3
)

dx,

+1

2

∫

Ω

K (u)2
(

ε∇u∇w + 1

ε
W ′(u)w

)

dx .

It follows that the L2-gradient of WBe
ε reads as

∇WBe
ε (u) = div

(∇ [K (u)hε(u)]

|∇u|
)

− div

(

〈∇ [K (u)hε(u)]

|∇u| ,
∇u

|∇u| 〉
∇u

|∇u|
)

−1

2

(

ε div
(

K (u)2∇u
)

− 1

ε
K (u)2W ′(u)

)

.

hence the L2-gradient flow of WBe
ε (u) follows. ��

3.3.1 Asymptotic analysis

In this section, we compute the formal expansions of the solution uε(x, t) to the phase
field model (7).

Preliminaries We assume without loss of generality that the isolevel set Γ (t) =
{uε = 1

2 } is a smooth N − 1 dimensional boundary Γ (t) = ∂ E(t) = ∂{x ∈
R

N ; uε(x, t) ≥ 1/2}. We follow the method of matched asymptotic expansions pro-
posed in [15,20,56,72]. We assume that the so-called outer expansion of uε, i.e. the
expansion far from the front Γ , is of the form

uε(x, t) = u0(x, t) + εu1(x, t) + ε2u2(x, t) + O(ε3).

In a small neighborhood of Γ , we define the stretched normal distance to the front,
z = d(x,t)

ε
, where d(x, t) denotes the signed distance to E(t) such that d(x, t) < 0 in

E(t). We then focus on inner expansions of uε(x, t), i.e. expansions close to the front,
of the form

uε(x, t) = U (z, x, t) = U0(z, x, t) + εU1(z, x, t) + ε2U2(z, x, t) + O(ε3).

Let us define a unit normal m to Γ and the normal velocity Vε to the front as

Vε = −∂t d(x, t), m = ∇d(x, t), x ∈ Γ,

where ∇ refers to spatial derivatives only (the same holds for higher-order derivatives
used in the sequel). Morevover, we focus on an expansion of Vε of the form

Vε = V0 + εV1 + O(ε2).
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Following [56,72] we assume thatU (z, x, t) does not change when x varies normal
to Γ with z held fixed, or equivalently ∇xU.m = 0. This amounts to requiring that
the blow-up with respect to the parameter ε is coherent with the flow.

Claim 1 In a suitable regime provided by the method of matched asymptotic expan-
sions, the normal velocity of the 1

2 -front Γ (t) = ∂ E(t) associated with a solution
uε(x, t) to Bellettini’s phase field model (7) is related to the Willmore velocity, as ε

goes to zero, through the relation:

Vε = ΔΓ H + ‖A‖2H − H3

2
+ O(ε).

In addition,

uε(x, t) = q

(
d(x, E(t))

ε

)

+ O(ε2),

where q(t) = 1−tanh(t)
2 .

Following [56,72], it is easily seen that

⎧
⎪⎨

⎪⎩

∇u = ∇xU + ε−1m∂zU,

Δu = ΔxU + ε−1Δd∂zU + ε−2∂2zzU,

∂t u = ∂tU − ε−1Vε∂zU.

Recall also that in a sufficiently small neighborhood of Γ , according to Lemma 14.17
in [46] (see also [1]), we have

Δd(x, t) =
n−1∑

i=1

κi (π(x))

1 + κi (π(x))d(x, t)
=

n−1∑

i=1

κi (π(x))

1 + κi (π(x))εz
, (8)

where π(x) is the projection of x on Γ , and κi are the principal curvatures on Γ .
In particular this implies that on Γ at π(x), we have

Δd(x, t) = H − εz‖A‖2 + O(ε2).

Outer solution: We now compute the solution uε in the outer region. By Eq. (7), u0
satisfies W ′(u0) = 0 and

u0(x, t) =
{
1 if x ∈ E(t)

0 otherwise
.

We also see that u1 = 0 is a possible solution at the first order.
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Matching condition: The inner and outer expansions are related by the following
matching condition

u0(x, t) + εu1(x, t) + · · · = U0(z, x, t) + εU1(z, x, t) + · · · ,

with x near the front Γ and εz between O(ε) and o(1). With the notation

u±
i (x, t) = lim

s→0± ui (x + sm, t), for x ∈ Γ,

one has that

{
u±
0 (x, t) = limz→±∞ U0(z, x, t),

limz→±∞ u±
1 (x, t) + zm · ∇u±

0 (x, t) = limz→±∞ U1(z, x, t).

In particular, for the phase field model (7), it follows that

lim
z→+∞ U0(z, x, t) = 0, lim

z→−∞ U0(z, x, t) = 1 and lim
z→±∞ U1(z, x, t) = 0.

Inner solution: Note that

∇u

|∇u| = m − ε∇xU/∂zU
√
1 + ε2|∇xU |2/(∂zU )2

,

therefore, using the orthogonality condition ∇xU · m = 0:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

K (u) = Δd + O(ε),

hε(u) = 1
ε

[ 1
2 (∂zU )2 + W (U )

] + O(1),
1
2 〈∇

[
K (u)2

]
,∇u〉 = 1

ε
(Δd∇(Δd) · ∇d) ∂zU + O(1),

1
ε
div

(
Pu ∇[K (u)hε(u)]

|∇u|
)

= 1
ε
div (∇(Δd) − 〈∇(Δd),∇d〉∇d)

(
1
2 (∂zU )2+W (U )

|∂zU |
)

+O(1).

Recall also that in a sufficiently small neighborhood of Γ , Eq. (8) shows that

{
Δd〈∇(Δd),∇d〉 = −‖A‖2H + O(ε),

div (∇(Δd) − ∇(Δd) · ∇d∇d) = ΔΓ H + O(ε).

Then, the first order in ε−2 of Eq. (7) reads

H2

2

(
∂2zzU0 − W ′(U0)

)
= 0.
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Adding the boundary condition obtained from the matching condition, and using
U0(0, x, t) = 1/2 leads to

U0 = q(z).

Moreover, the second order in ε−1 of (7) shows that

−V0∂zU0 = H2

2

(
∂2zzU1 − W ′′(U0)U1

)
+ H3

2
∂zU0 − ‖A‖2H∂zU0

−ΔΓ H

(
1
2 (∂zU0)

2 + W (U0)

|∂zU0|

)

.

As U0(z, x, t) = q(z) and q ′ = −√
2W (q), we obtain

−V0q ′ = H2

2

(
∂2zzU1 − W ′′(q)U1

)
+
(

H3

2
− ‖A‖2H − ΔΓ H

)

q ′.

Then, multiplying by q ′ and integrating over R, it follows that

V0 = ΔΓ H + ‖A‖2H − H3

2
,

thus the sharp interface limit ∂ E(t) as ε goes to zero evolves, at least formally, as the
Willmore flow. In addition, we have U1 = 0, therefore

uε(x, t) = q

(
d(x, E(t))

ε

)

+ O(ε2).

and the second-order term does not appear in the expression of V0. This explains the
numerical stability, despite the use of an explicit Euler scheme, observed by Esedoḡlu,
Rätz and Röger in [41].

3.4 Approximating the Willmore flow with Mugnai’s model

The aimof this section is the derivation and the study of the L2-gradient flow associated
with Mugnai’s energy WMu

ε (5). We will first prove the following result:

Proposition 2 The L2-gradient flow of Mugnai’s model is equivalent to

{
ε2∂t u = Δμ − 1

ε2
W ′′(u)μ + W ′(u)B(u)

μ = 1
ε2

W ′(u) − Δu,
(9)

where

B(u) = div

(

div

( ∇u

|∇u|
) ∇u

|∇u|
)

− div

(

D

( ∇u

|∇u|
) ∇u

|∇u|
)

.
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Note that this system coincides with the classical one, up to the addition of a penalty
term L(u) = W ′(u)B(u).

The well-posedness of the phase field model (9) at fixed parameter ε is open, and
requires presumably a regularization of the term B(u) as done numerically in the next
section. Moreover, using the formal method of matched asymptotic expansions, we
derive in any dimension the sharp interface limit of the phase field model (9):

Claim 2 In a suitable regime provided by the method of matched asymptotic expan-
sions, the normal velocity of the 1

2 -front Γ (t) = ∂ E(t) associated with a solution
(uε, με) to Mugnai’s phase field model (9) is, as ε goes to 0,

Vε = ΔΓ H +
∑

i

κ3
i − 1

2
‖A‖2H + O(ε). (10)

In addition,

⎧
⎨

⎩

uε(x, t) = q
(

d(x,E(t))
ε

)
+ ε2

‖A‖2
2 η1

(
d(x,E(t)

ε

)
+ O(ε3),

με(x, t) = −εHq ′
(

d(x,E(t)
ε

)
+ ‖A‖2ε2η2

(
d(x,E(t)

ε

)
O(ε3),

where η1 and η2 are profile functions.

Remark 1 The front velocity limit obtained in (10) as ε → 0, coincides, up to a multi-
plicative constant, with the velocity of the L2-flow of the squared second fundamental
form energy

∫
Γ

‖A‖2dHN−1. Indeed, according to [2, Sect. 5.3], the latter is

Ṽ = 2ΔΓ H + 2H‖A‖2 − H3 + 6
∑

i< j<�

κiκ jκ�.

Observing that H‖A‖2 = ∑
i κ3

i + ∑
i �= j κiκ

2
j and

H3 =
∑

κ3
i + 3

∑

i �= j

κiκ
2
j + 6

∑

i< j<�

κiκ jκ�,

one has

H‖A‖2 − 1

2
H3 + 3

∑

i< j<�

κiκ jκ� = 1

2

⎛

⎝
∑

i

κ3
i −

∑

i �= j

κiκ
2
j

⎞

⎠.

Since

∑

i

κ3
i − 1

2
H‖A‖2 = 1

2

⎛

⎝
∑

κ3
i −

∑

i �= j

κiκ
2
j

⎞

⎠ ,

we finally get that Ṽ = 2V .
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Remark 2 It is easily seen that, in dimensions 2 and 3, Mugnai’s flow coincides
(asymptotically) with the Willmore flow. It is obvious in dimension 2, whereas in
dimension 3 one has

∑
κ3

i − 1

2
H‖A‖2 = κ3

1 + κ3
2 − 1

2
(κ1 + κ2)(κ

2
1 + κ2

2 ) = ‖A‖2H − H3

2
.

Another explanation involves Gauss–Bonnet Theorem. InMugnai’s model, the energy
associated with the squared 2-norm of the second fundamental form prevents from
topological changes. By Gauss–Bonnet Theorem, this energy coincides with theWill-
more energy up to a topological additive constant, and thus both associated flows
coincide.

Proof of Proposition 2 Let V(u) = εD2u − 1

ε
W ′(u)

∇u

|∇u| ⊗ ∇u

|∇u| . The differential
of V in the direction w is

V
′(u)(w)= lim

t→0
(V(u + tw) − V(u))/t,

=εD2w− 1

ε
W ′′(u)w

∇u

|∇u| ⊗ ∇u

|∇u| −
1

ε
W ′(u)

(∇u ⊗ ∇w+∇w ⊗ ∇u

|∇u|2
)

,

+2

ε
W ′(u)

(∇u ⊗ ∇u

|∇u|4 〈∇u,∇w〉
)

.

Denoting N(u) = ∇u⊗∇u
|∇u|2 , we have

ε∇WMu
ε (u) = εD2 : V(u) − 1

ε
W ′′(u)N(u) : V(u)

+2

ε
div

(

W ′(u)
V(u)∇u

|∇u|2
)

− 2

ε
div

(

W ′(u) (V(u) : N(u))
∇u

|∇u|2
)

,

where D2 : V(u) = ∇ ⊗ ∇ : V(u) = ∑
i j ∂2i j Vi j (u) = div(divV(u)).

The gradient of WMu
ε can be also expressed as

ε∇WMu
ε (u) = εD2 : V(u) − 1

ε
W ′′(u)N(u) : V(u)

+2

ε
div

(

W ′(u)

(
V(u)∇u

|∇u|2 − 〈V(u)∇u/|∇u|2,∇u/|∇u|〉 ∇u

|∇u|
))

.

We now give an explicit expression of each previous term.

Evaluation of εD2 : V(u)

For any operator Λ and any real-valued function u �→ ρ(u), we have

D2 : (ρ(u)Λ(u)) = Λ(u) : D2ρ(u) + 2〈∇ρ(u), div(Λ(u))〉 + ρ(u)D2 : Λ(u).
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In particular, applying to Λ(u) = V(u)

εD2 : V(u) = ε2D2 : D2u − D2 : (W ′(u)N(u)
)
,

= ε2Δ2u −
(

W ′(u)D2 : N(u) + 2W ′′(u)〈∇u, div(N(u))〉
+(D2(W ′(u))) : N(u)

)
.

The last term reads as follows

D2(W ′(u)) : N(u) =
(

W (3)(u)∇u ⊗ ∇u + W ′′(u)D2u
)

: N(u),

= W (3)(u)|∇u|2 + W ′′(u)
〈D2u∇u,∇u〉

|∇u|2 ,

= Δ
(
W ′(u)

) − W ′′(u)

(

Δu − 〈D2u∇u,∇u〉
|∇u|2

)

,

where we used

ΔW ′(u) = W ′′(u)Δu + W (3)(u)|∇u|2.

Recalling that for all vector fields w1, w2,

div(w1 ⊗ w2) = div(w2)w1 + (∇w1)w2,

and applying to the estimation of div(N(u)), one gets that

div(N(u)) = div

( ∇u

|∇u|
) ∇u

|∇u| + D

( ∇u

|∇u|
) ∇u

|∇u| .

Note that

[

D

( ∇u

|∇u|
) ∇u

|∇u|
]

· ∇u =
[

D2u∇u

|∇u|2 −
〈

D2u∇u

|∇u|2 ,
∇u

|∇u|
〉 ∇u

|∇u|
]

· ∇u = 0.

Therefore

2W ′′(u)〈∇u, div(N(u))〉 = 2W ′′(u)|∇u| div
( ∇u

|∇u|
)

= 2W ′′(u)

(

Δu − 〈D2u∇u,∇u〉
|∇u|2

)

.
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Lastly,

W ′(u)D2 : N(u) = W ′(u) div (div (N(u))),

= W ′(u) div

(

div

( ∇u

|∇u|
) ∇u

|∇u| + D

( ∇u

|∇u|
) ∇u

|∇u|
)

,

= W ′(u)

[

div

(

div

( ∇u

|∇u|
) ∇u

|∇u|
)

+ div

(

D

( ∇u

|∇u|
) ∇u

|∇u|
)]

,

therefore

εD2 : V(u) = ε2Δ2u − ΔW ′(u) − W ′′(u)

(

Δu − 〈D2u∇u,∇u〉
|∇u|2

)

,

−W ′(u)

[

div

(

div

( ∇u

|∇u|
) ∇u

|∇u|
)

+ div

(

D

( ∇u

|∇u|
) ∇u

|∇u|
)]

.

Sum of the first two terms of ε∇WMu
ε (u)

Let I1 = εD2 : V(u) − 1

ε
W ′′(u)N(u) : V(u). Remark that

1

ε
W ′′(u)N(u) : V(u)= 1

ε
W ′′(u)N(u) :

(

εD2u − 1

ε
W ′(u)N(u)

)

,

= W ′′(u)

( 〈D2u∇u,∇u〉
|∇u|2 − 1

ε2
W ′(u)

)

,

= W ′′(u)

(

Δu− 1

ε2
W ′′(u)

)

−W ′′(u)

(

Δu− 〈D2u∇u,∇u〉
|∇u|2

)

.

Combining with the previous estimation of εD2 : V(u), we obtain

I1 = εD2 : V(u) − 1

ε
W ′′(u)N(u) : V(u),

= εΔ

[

εΔu − 1

ε
W ′(u)

]

− 1

ε
W ′′(u)

[

εΔu − 1

ε
W ′(u)

]

,

−W ′(u)

[

div

(

div

( ∇u

|∇u|
) ∇u

|∇u|
)

+ div

(

D

( ∇u

|∇u|
) ∇u

|∇u|
)]

.

Estimation of the divergence term

Let I2 = 2

ε
div W ′(u)

(
V(u)∇u

|∇u|2 − W ′(u)(V(u) : N)
∇u

|∇u|2
)

. On the one hand,

with

V(u)
∇u

|∇u|2 = εD2u
∇u

|∇u|2 − 1

ε
W ′(u)

∇u

|∇u|2 ,
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we see that

div

(

W ′(u)V(u)
∇u

|∇u|2
)

= W ′(u)

[

ε div

(
D2u∇u

|∇u|2
)

− 1

ε
div

(

W ′(u)
∇u

|∇u|2
)]

,

+W ′′(u)

(

ε
〈D2u∇u,∇u〉

|∇u|2 − 1

ε
W ′(u)

)

.

On the other hand,

W ′(u)(V(u) : N)
∇u

|∇u|2 = W ′(u)

(

ε
〈D2u∇u,∇u〉

|∇u|2
∇u

|∇u|2 − 1

ε
W ′(u)

∇u

|∇u|2
)

,

and

div

(

W ′(u)(V(u) : N)
∇u

|∇u|2
)

= W ′′(u)

[

ε
〈D2u∇u, ∇u〉

|∇u|2 − 1

ε
W ′(u)

]

,

+W ′(u) div

[

ε
〈D2u∇u, ∇u〉

|∇u|2
∇u

|∇u|2 − 1

ε
W ′(u)

∇u

|∇u|2
]

.

Finally,

I2 = 2W ′(u) div

(
D2u∇u

|∇u|2 − 〈 D2u∇u

|∇u| ,
∇u

|∇u| 〉
∇u

|∇u|2
)

,

= 2W ′(u) div

(

D

( ∇u

|∇u|
) ∇u

|∇u|
)

.

Evaluation of the energy gradient

ε∇WMu
ε (u) = I1 + I2,

= εΔμ − 1

ε
W ′′(u)μ − W ′(u)

[

div

(

div

( ∇u

|∇u|
) ∇u

|∇u|
)

− div

(

D

( ∇u

|∇u|
) ∇u

|∇u|
)]

,

where

μ = εΔu − 1

ε
W ′(u).

whence the L2-gradient flow associated with Mugnai’s model follows. ��
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3.4.1 Formal asymptotic expansions

We apply in this section the formal method of matched asymptotic expansions to the
solution (uε, με) of (9)

{
ε2∂t u = Δμ − 1

ε2
W ′′(u)μ + W ′(u)B(u),

μ = W ′(u) − ε2Δu.

Again, we assume without loss of generality that the isolevel set Γ (t) = {uε = 1
2 } is

a smooth N − 1 dimensional boundary Γ (t) = ∂ E(t) = ∂{x ∈ R
N ; uε(x, t) ≥ 1/2}.

In addition, we assume that there exist outer expansions of uε and με far from the
front Γ of the form

{
uε(x, t) = u0(x, t) + εu1(x, t) + ε2u2(x, t) + O(ε3),

με(x, t) = μ0(x, t) + εμ1(x, t) + ε2μ2(x, t) + O(ε3).

Considering the stretched variable z = d(x,t)
ε

on a small neighborhood of Γ , we also
look for inner expansions of uε(x, t) and με(x, t) of the form

{
uε(x, t) = U (z, x, t) = U0(z, x, t) + εU1(z, x, t) + ε2U2(z, x, t) + O(ε3),

με(x, t) = W (z, x, t) = W0(z, x, t) + εW1(z, x, t) + ε2W2(z, x, t) + O(ε3).

As before, we define a unit normal m to Γ and the normal velocity Vε to the front as

Vε = −∂t d(x, t), m = ∇d(x, t), x ∈ Γ,

with

Vε = V0 + εV1 + O(ε2).

Let us now expand uε and με.

Outer expansion: Analogously to [56], we obtain

u0(x, t) =
{
1 if x ∈ E(t)

0 otherwise
, and u1 = u2 = u3 = μ0 = μ1 = μ2 = 0.

Matching conditions: The matching conditions (see [56] for more details) imply in
particular that

lim
z→+∞ U0(z, x, t) = 0, lim

z→−∞ U0(z, x, t) = 1, lim
z→±∞ U1(z, x, t) = 0 and

lim
z→±∞ U2(z, x, t) = 0,
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and

lim
z→±∞ W0(z, x, t) = 0, lim

z→±∞ W1(z, x, t) = 0 and lim
z→±∞ W2(z, x, t) = 0.

Penalization term B(u):
With

∇u

|∇u| = m − ε∇xU/∂zU
√
1 + ε2|∇xU |2/(∂zU )2

,

and using ∇xU · m = 0, it follows that

B(u) =
[

div

(

div

( ∇u

|∇u|
) ∇u

|∇u|
)

− div

(

D

( ∇u

|∇u|
) ∇u

|∇u|
)]

,

= div (Δd∇d) − div
(

D2d∇d
)

+ O(ε)

=
(
∑

i

κi (π(x))

1 + zεκi (π(x)

)2

−
∑

i

κi (π(x))2

(1 + zεκi (π(x)))2
+ O(ε),

=
(

H2 − ‖A‖2
)

+ O(ε).

Inner expansion: We can derive the asymptotic of the second equation of system (9),
i.e. μ = W ′(u) − ε2Δu, as follows

⎧
⎪⎨

⎪⎩

W0 = W ′(U0) − ∂2z U0,

W1 = W ′′(U0)U1 − ∂2z U1 − κ∂zU0,

W2 = W ′′(U0)U2 − ∂2z U2 + 1
2W (3)(U0)U 2

1 − H∂zU1 + z‖A‖2∂zU0 − ΔxU0.

As for the first equation ε2∂t u = Δμ − 1
ε2

W ′′(u)μ + W ′(u)B(u), one has

{
0 = ∂2z W0 − W ′′(U0)W0,

0 = ∂2z W1 + H∂z W0 − (
W ′′(U0)W1 + W (3)(U0)U1W0

)
,
.

and

0 = ∂2z W2 + H∂zμ̃1 − ‖A‖2z∂z W0 + Δx W0 + W ′(U0)
(

H2 − ‖A‖2
)
,

−
(

W ′′(U0)W2 + W (3)(U0)U1W1 + W (3)(U0)U2W0 + 1

2
W (4)(U0)U

2
1 W0

)

.

First order:
The two following equations

∂2z W0 − W ′′(U0)W0 = 0, and W0 = W ′(U0) − ∂2z U0,
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associated with the boundary conditions

lim
z→−∞ U0(z, x, t) = 1, lim

z→+∞ U0(z, x, t) = 0, and lim
z→±∞ W0(z, x, t) = 0,

admit as solution pair

U0(z, x) = q(z), and W0 = 0.

Second order:
The second order gives

∂2z W1 − W ′′(q)W1 = 0, W1 = W ′′(q)U1 − ∂2z U1 − Hq ′(z),

which has the solution

U1 = 0, and W1 = −Hq ′(z).

Third order:
Using U0 = q, W0 = U1 = 0 and W1 = −Hq ′, the first equation can be rewritten

as

∂2z W2 − W ′′(q)W2 = −H∂z W1 −
(

H2 − ‖A‖2
)

W ′(q),

= H2q ′′(z) −
(

H2 − ‖A‖2
)

q ′′(z) = ‖A‖2q ′′(z),

and implies that

W2 = ‖A‖2η2(z) + c(x, t)q ′(z),

where η2 is defined as the solution of

η′′
2(z) − W ′′(q(z))η2(z) = q ′′(z), with lim

z→±∞ η2(z) = 0.

Remark that η2 can be expressed as

η2(z) = 1

2
zq ′(z).

Note that the second equation also reads as

∂2z U2 − W ′′(q)U2 = z‖A‖2q ′(z) − W2 = 1

2
z‖A‖2q ′(z) − c(x, t)q ′(z).

In particular, multiplying by q ′ and integrating over R in z shows that c(x, t) = 0. We
then deduce that

U2 = 1

2
‖A‖2η1(z),
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where η1 is defined as the solution of

η′′
1(s) − W ′′(q(s))η1(s) = sq ′(s), with lim

s→±∞ η1(s) = 0.

In conclusion, we have

W2 = 1

2
‖A‖2zq ′(z) and U2 = 1

2
‖A‖2η1(z).

Fourth order and estimation of the velocity V0:
We can now explicit the term of order 1 in ε of B(u). Indeed we have U (z, x, t) =

q(z) + O(ε2), and as ∇x q(z) = 0, we have

B(u) =
[

div

(

div

( ∇u

|∇u|
) ∇u

|∇u|
)

− div

(

D

( ∇u

|∇u|
) ∇u

|∇u|
)]

= div (Δd∇d) − div
(

D2d∇d
)

+ O(ε2) =
(
∑

i

κi (π(x))

1 − zεκi (π(x))

)2

−
∑

i

κi (π(x))2

(1 − zεκi (π(x)))2
+ O(ε2)

=
(

H2 − ‖A‖2
)

− ε2z
(

H‖A‖2 − Θ3
)

+ O(ε2),

where Θ3 = ∑
i ki (π(x))3.

The fourth order of the first equation now reads

−V0q ′ =
[
∂2z W3 − W ′′(q)W3

]
− W (3)(q)U2W1 +

(
H∂z W2 − ‖A‖2z∂z W1

)

+Δx W1 − zW ′(q)2
(

H‖A‖2 − Θ3
)

,

=
[
∂2z W3 − W ′′(q)W3

]
+ 1

2
W (3)(q)H‖A‖2η1q ′ + 1

2
‖A‖2H

(
3zq ′′ + q ′)

− (ΔΓ H) q ′ − 2
(

H‖A‖2 − Θ3
)

zq ′′,

=
[
∂2z W3 − W ′′(q)W3

]
+ 1

2
W (3)(q)H‖A‖2η1q ′+

(

−1

2
‖A‖2H +2B3

)

zq ′′

+1

2
‖A‖2Hq ′ − (ΔΓ H) q ′.

Multiplying by q ′ and integrating over R leads to

V0 = − 1

S

[(
1

2
‖A‖2H S +

(

−1

2
‖A‖2H + 2Θ3

)∫

R

zq ′′q ′dz

+1

2
‖A‖2H

∫

R

W (3)(q)η1(q
′)2dz

)

− ΔΓ H S

]

,

where S = ∫
R

q ′(z)2dz.
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Remark also that

∫

R

zq ′′q ′dz = 1

2

∫

R

z((q ′)2)′dz = −1

2

∫

R

(q ′)2dz = −1

2
S.

Moreover, recall that η1 satisfies

{
η

′′
1 − W ′′(q)η1 = zq ′,

η
′′′
1 − W ′′(q)η′

1 − W (3)(q)q ′η1 = (zq ′)′,

then we have

∫

R

W (3)(q)η1(q
′)2dz =

∫

R

(
η

′′′
1 − W ′′(q)η′

1

)
q ′dz −

∫

R

(zq ′)′q ′dz = −1

2
S,

and we conclude that

Vε = ΔΓ H + Θ3 − 1

2
‖A‖2H + O(ε).

3.5 Approximating the Willmore flow with Esedoḡlu–Rätz–Röger’s energy

We now consider the following variant of the Esedoḡlu–Rätz–Röger’s energy, which
we introduced in Sect. 2.4.3:

WEsRäRö
ε (u) = 1

2ε

∫

Ω

(

εΔu − W ′(u)

ε

)2

dx + β Jε(u),

where the penalization term Jε(u) reads

Jε(u) = 1

ε1+α

∫

Ω

(

εD2u : N(u) − W ′(u)

ε

)2

dx, and N(u) = ∇u

|∇u| ⊗ ∇u

|∇u| .

We first derive the PDE obtained as the L2-gradient flow of WEsRäRö
ε (u) and prove

the following result:

Proposition 3 The L2-gradient flow of Esedoḡlu-Rätz-Röger’s model is equivalent to

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ε2∂t u = Δμ − 1
ε2

W ′′(u)μ − β L̃(u),

μ = W ′(u) − ε2Δu,

ξε = εD2u : N(u) − W ′(u)
ε

,

L̃(u) = 2ε1−α
[(

N(u) : D2ξε− 1
ε2

W ′′(u)ξε

)
+2〈div

( ∇u
|∇u|

) ∇u
|∇u| ,∇ξε〉+B(u)ξε

]
,

B(u) = div
(
div

( ∇u
|∇u|

) ∇u
|∇u|

)
− div

(
D
( ∇u

|∇u|
) ∇u

|∇u|
)

.

(11)
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Note that this system coincides with the classical one, up to the addition of a penalty
term −β L̃(u).

The well-posedness of the phase field model (11) at fixed parameter ε is open, and
requires presumably a regularization as done numerically in [41].

By formal arguments involvingmatched asymptotic expansions again,wewill show
that this approximating flow is expected to converge, as ε goes to zero, to theWillmore
flow in dimension N ≥ 2, at least whenever α = 0 or α = 1. More precisely we will
show the

Claim 3 In a suitable regime provided by the method of matched asymptotic expan-
sions, the normal velocity of the 1

2 -front Γ (t) = ∂ E(t) associated with a solution
(uα

ε , μα
ε , ξα

ε ) to Esedoḡlu–Rätz–Röger’s phase field model (11) in both cases α = 0
and α = 1 is related to the Willmore velocity through the relation:

Vε = ΔΓ H + ‖A‖2H − H3

2
+ O(ε).

In addition, for α = 0:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u0
ε(x, t) = q

(
d(x,E(t))

ε

)
+ ε2

‖A‖2−H2

1+2β η1

(
d(x,E(t)

ε

)
+ O(ε3),

μ0
ε(x, t)=−εHq ′

(
d(x,E(t)

ε

)
+ε2

(
H2 − 2β

[
2‖A‖2−H2

1+2β
])

η2

(
d(x,E(t)

ε

)
+ O(ε3),

ξ0ε (x, t)=ε
(
2‖A‖2−H2

1+2β
)

η2

(
d(x,E(t)

ε

)
+O(ε2).

where η2(z) = zq ′(z) is a profile function. For α = 1:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u1
ε(x, t) = q

(
d(x,E(t))

ε

)
+ O(ε3),

μ1
ε(x, t) = −εHq ′

(
d(x,E(t)

ε

)
+ 2ε2‖A‖2η2

(
d(x,E(t)

ε

)
+ O(ε3),

ξ1ε (x, t) = ε2
(2‖A‖2−H2)

4β η2

(
d(x,E(t)

ε

)
+ O(ε3).

Remark 3 The previous claim gives indications on the design of a numerical scheme
for simulating the Esedoḡlu–Rätz–Röger’s flow in the cases α = 0, 1. Clearly, the
flow acts at the second order for u in the case α = 0, and not less than at the third
order (at least) whenever α = 1. This implies that capturing with accuracy the motion
of the interface should be much more delicate when α = 1.

Proof of Proposition 3 Since

ξε(u) = εD2u : N(u) − W ′(u)

ε
= ε

〈

D2u
∇u

|∇u| ,
∇u

|∇u|
〉

− 1

ε
W ′(u),
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one has that

ξ ′
ε(u)(w) = ε

(

D2w : N(u) + 2
D2u : ∇w ⊗ ∇u

|∇u|2 − 2D2u : N(u)
〈∇u,∇w〉

|∇u|2
)

−1

ε
W ′′(u)w.

The gradient of Jε(u) follows, recalling that Pu = I − N(u):

∇ Jε(u) = 2

εα

[

D2 : [N(u)ξε] − 1

ε2
W ′′(u)ξε − 2 div

(
ξε(u)D2u∇u

|∇u|2
)

+ 2 div

(
D2u : N(u)ξε∇u

|∇u|2
)]

,

= 2

εα

[

D2 : [N(u)ξε] − 1

ε2
W ′′(u)ξε − 2 div

(
ξε(u)Pu D2u∇u

|∇u|2
)]

.

More precisely, using

D2 : [N(u)ξε] = (D2 : N(u))ξε + 2 div(N(u)) · ∇ξε + N(u) : D2ξε,

div(N(u)) =
(

div

( ∇u

|∇u|
) ∇u

|∇u| + D

[ ∇u

|∇u|
] ∇u

|∇u|
)

,

=
(

div

( ∇u

|∇u|
) ∇u

|∇u| + Pu D2u∇u

|∇u|2
)

,

and

(D2 : N(u)) = div(divN(u)) = div

(

div

( ∇u

|∇u|
) ∇u

|∇u| + Pu D2u∇u

|∇u|2
)

,

one gets

∇ Jε(u)= 2

εα

[(

N(u) : D2ξε− 1

ε2
W ′′(u)ξε

)

+2〈div
( ∇u

|∇u|
) ∇u

|∇u| ,∇ξε〉+B(u)ξε

]

,

from which the L2-gradient flow of Esedoḡlu–Rätz–Röger’s ’s model follows. ��

3.5.1 Asymptotic analysis of phase field system (11)

We only consider the case α = 0 and α = 1. As previously, we assume that the
1/2-isolevel set of uε is a smooth (N − 1)−dimensional interfaces Γ (t) defined as
the boundary of a set E(t) = {

x ∈ R
N ; uε(x, t) ≥ 1/2

}
.
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We assume that there exist outer expansions of uε, με and ξε far from the front Γ
of the form

⎧
⎪⎨

⎪⎩

uε(x, t) = u0(x, t) + εu1(x, t) + ε2u2(x, t) + O(ε3),

με(x, t) = μ0(x, t) + εμ1(x, t) + ε2μ2(x, t) + O(ε3),

ξε(x, t) = 1
ε
ξ−1(x, t) + ξ0(x, t) + εξ1(x, t) + ε2ξ2(x, t) + O(ε3).

Considering the stretched variable z = d(x,t)
ε

on a small neighborhood of Γ , we also
look for inner expansions of uε(x, t), με(x, t) and ξε(x, t) of the form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

uε(x, t) = U (z, x, t) = U0(z, x, t) + εU1(z, x, t) + ε2U2(z, x, t) + O(ε3),

με(x, t) = W (z, x, t) = W0(z, x, t) + εW1(z, x, t) + ε2W2(z, x, t) + O(ε3),

ξε(x, t) = Φ(z, x, t) = ε−1Φ−1(z, x, t) + Φ0(z, x, t)

+εΦ1(z, x, t) + ε2Φ2(z, x, t) + O(ε3).

In particular, remark that the third equation of (11) yields

Φ(z, x, t)= 1

ε

⎛

⎝ ∂2zzU
(
1+ε2

|∇x U |2
(∂zU )2

)−W ′(U )

⎞

⎠+ε

(
∂z
(|∇xU |2)
∂zU

)(

1+ε2
|∇xU |2
(∂zU )2

)−1

.

As before, it can be observed for the outer expansions that

u0(x, t)=
{
1 if x ∈ E(t)

0 otherwise
, and u1=u2=u3=μ0=μ1=μ2=ξ−1=ξ0=ξ2=0.

Thematching conditions imply the following boundary conditions on the inner expan-
sions:

{
limz→+∞ U0(z, x, t) = 0

limz→−∞ U0(z, x, t) = 1
, lim

z→±∞ Ui (z, x, t) = 0 for i ∈ {1, 2},

and

lim
z→±∞ Wi (z, x, t)=0, for i ∈{0, 1, 2}, and lim

z→±∞ Φi (z, x, t)=0,

for i ∈{−1, 0, 1, 2}.

Inner expansion with α = 0:
This paragraph is devoted to the derivation of the expression of the inner expansion

in the special case α = 0.
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First order:
We have the following system

⎧
⎪⎨

⎪⎩

0 = ∂2z W0 − W ′′(U0)W0 − 2β
[
∂zzΦ−1 − W ′′(U0)Φ−1

]
,

W0 = W ′(U0) − ∂2z U0,

Φ−1 = ∂2z U0 − W ′(U0),

which admits the solution triplet

U0 = q(z), W0 = 0, and Φ−1 = 0.

Second order:
At second order, we obtain

⎧
⎪⎨

⎪⎩

0 = ∂2z W1 − W ′′(q)W1 − 2β
[
∂zzΦ0 − W ′′(q)Φ0

]
,

W1 = W ′′(q)U1 − ∂2z U1 − Hq ′,
Φ0 = ∂2z U1 − W ′′(q)U1,

whose solution is given by

U1 = 0, W1 = −Hq ′, and Φ0 = 0.

Third order:
At third order,

⎧
⎪⎨

⎪⎩

0 = ∂2z W2 − W ′′(U0)W2 + H∂z W1 − 2β
[
∂zzΦ1 − W ′′(q)Φ1

]
,

W2 = W ′′(q)U2 − ∂2z U2 + ‖A‖2zq ′,
Φ1 = ∂2z U2 − W ′′(q)U2,

and we are now looking for a system of solutions of the form

W2 = cW (x, t)η2(z), U2 = cU (x, t)η1(z), and Φ1 = cΦ(x, t)η2(z),

where the two profiles η1 and η2 are solutions, respectively, of

η′′
1 − W ′′(q)η1 = zq ′ and η′′

2 − W ′′(q)η2 = q ′′.

Furthermore, the first equation gives

0=cW
(
η′′
2 − W ′′(q)η2

)−H2q ′′−2cΦ

(
η′′
2 − W ′′(q)η2

)=
(

cW −H2−2βcΦ

)
q ′′,

the second equation implies that

1

2
cW zq ′ = −cU

(
η′′
1 − W ′′(q)η1

) + ‖A‖2zq ′ = (−cU + ‖A‖2)zq ′.
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and the third equation shows that

1

2
cΦ zq ′ = cU

(
η′′
1 − W ′′(q)η1

) = (cU )zq ′.

This provides a linear system

cW − β2cΦ = H2, cW + 2cU = 2‖A‖2 and cΦ = 2cU ,

which admits as solutions

cW = H2 − 2β

[
2‖A‖2 − H2

1 + 2β

]

, cU = ‖A‖2 − H2/2

1 + 2β
, and cΦ = 2‖A‖2 − H2

1+2β
.

Therefore,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

W2 =
(

H2 − 2β
[
2‖A‖2−H2

1+2β

])
η2,

U2 =
( ‖A‖2−H2/2

1+2β

)
η1,

Φ1 =
(
2‖A‖2−H2

1+2β

)
η2.

Fourth order and estimation of the velocity Vε:
The fourth order reads as follows

−V0q ′ =
[
∂2z W3 − W ′′(q)W3

]
−W (3)(q)U2W1+

(
H∂z W2 − ‖A‖2z∂z W1

)
+Δx W1

−2β
([

∂zzΦ2 − W ′′(q)Φ2
] + 2H∂zΦ1

)
,

=
[
∂2z (W3 − 2βΦ2) − W ′′(q)(W3 − 2βΦ2)

]

+
(

H‖A‖2 − H3/2

1 + 2β

)

W (3)(q)η1q ′

−ΔΓ Hq ′ +
(

H3/2 + ‖A‖2H − Hβ

(
2‖A‖2 − H2

1 + 2β

))

zq ′′

+
(

H3/2 − Hβ

(
2‖A‖2 − H2

1 + 2β

))

q ′.

Recalling that

⎧
⎪⎨

⎪⎩

∫
R
(q ′(z))2dz = S,

∫
R

zq ′′q ′dz = − 1
2 S,

∫
R

W (3)(q)η1(q ′)2dz = − 1
2 S,
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multiplying the last equation by q ′ and integrating over R leads to

Vε = ΔΓ H + ‖A‖2H

2
− H3

4
+ H‖A‖2 − H3/2

2(1 + 2β)
(1 + 2β) + O(ε),

= ΔΓ H + ‖A‖2H − 1

2
H3 + O(ε).

Inner expansion with α = 1:
We are now looking for the inner expansion of the PDE system (11) in the special

case α = 1:
First order:
We have the following system

⎧
⎪⎨

⎪⎩

0 = −2β
[
∂zzΦ−1 − W ′′(U0)Φ−1

]
,

W0 = W ′(U0) − ∂2z U0,

Φ−1 = ∂2z U0 − W ′(U0),

whose solution is given by

U0 = q(z), W0 = 0, and Φ−1 = 0.

Second order:

At second order

⎧
⎪⎨

⎪⎩

0 = ∂2zz W0 − W ′′(q)W0 − 2β
[
∂2zzΦ0 − W ′′(q)Φ0

]
,

W1 = W ′′(q)U1 − ∂2zzU1 − Hq ′,
Φ0 = ∂2zzU1 − W ′′(q)U1,

which admits as solution

U1 = 0, W1 = −Hq ′, and Φ0 = 0.

Third order:
At third order

⎧
⎪⎨

⎪⎩

0 = ∂2zz W1 − W ′′(q)W1 − 2β
[
∂zzΦ1 − W ′′(q)Φ1

]
,

W2 = W ′′(q)U2 − ∂2zzU2 + ‖A‖2zq ′,
Φ1 = ∂2z U2 − W ′′(q)U2,

whose solution triplet is

U2 = 0, W2 = ‖A‖2zq ′, and Φ1 = 0.
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Fourth order:
From

0 = ∂2z W2 − W ′′(q)W2 + H∂z W1 − 2β
[
∂zzΦ2 − W ′′(q)Φ2

]
,

we deduce that

[
∂zzΦ2 − W ′′(q)Φ2

] = (2‖A‖2 − H2)

2β
q ′′,

and then

Φ2 = (2‖A‖2 − H2)

2β
η2 = (2‖A‖2 − H2)

4β
zq ′.

Last order and estimation of the velocity Vε:
We have

−V0q ′ =
[
∂2z W3 − W ′′(q)W3

]
−W (3)(q)U2W1+

(
H∂z W2 − ‖A‖2z∂z W1

)
+Δx W1

−2β
([

∂zzΦ3 − W ′′(q)Φ3
] + 2H∂zΦ2

)
,

=
[
∂2z (W3 − 2βΦ3) − W ′′(q)(W3 − 2βΦ3)

]
− ΔΓ Hq ′

+
(

2‖A‖2H − Hβ

(
2‖A‖2 − H2

β

))

zq ′′

+
(

‖A‖2H − Hβ

(
2‖A‖2 − H2

β

))

q ′,

=
[
∂2z (W3 − 2βΦ3) − W ′′(q)(W3 − 2βΦ3)

]
− ΔΓ Hq ′

+H3zq ′′ +
(
−‖A‖2H + H3

)
q ′.

As previously, this shows that the velocity Vε of the interfaces is related to the
Willmore velocity through the relation:

Vε = ΔΓ H + ‖A‖2H − H3

2
+ O(ε).

Remark 4 The analysis of the asymptotic behavior for α non integer is more delicate
because it requires studying non integer orders of ε and it is far from being clear how
integer and non integer scales may combine. As for integer values of α > 1, a careful
study at higher orders of ε should be possible but is out of the scope of the present
paper.
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4 2D and 3D numerical simulations for the classical and Mugnai’s diffuse flows

There is an important literature on numerical methods for the approximation of inter-
faces evolving by a geometric law. They can be roughly classified into three cate-
gories: parametric methods [5,7,31,32,49,73,76], level-set formulations [26,43,68–
70], phase-field approaches [16,24,63,71]. See for instance [32] for a complete review
(with a particular emphasis on the mean curvature flow, but fourth-order flows are
also addressed) and a comparison between the different strategies. In the context of
fourth order geometric evolution equations, in particular the Willmore flow, para-
metric approaches have been proposed in [4,6,38] for curves and surfaces using a
semi-implicit finite element method. In [67], a fully implicit approach via a varia-
tional formulation is also analyzed for the approximation of anisotropic Willmore
flow. The level set methods have been applied for the first time in [34]. Concerning the
phase field approach, semi-implicit schemes including standard finite element differ-
ences, finite elements, and Fourier spectral methods are developed in [35,36,41] and
analyzed in [37]. A fully implicit scheme coupled with a finite element method has
been more recently introduced in [45] via a variational formulation. An adaptation to
fourth order geometric evolution equations of the Bence-Merriman-Osher algorithm
[17] is also proposed in [42]. Let us finally mention the discrete methods involving
surface triangulations and discrete curvature operators [18,49,80].

In this paper, we will consider a quite different and new scheme to solve both
the classical and Mugnai’s phase field systems (6) and (9). The simulations can be
compared with those obtained by Esedoḡlu, Rätz and Röger in [41] for their phase
field system (11) (actually a variant of it, see Sect. 2.4.3), and for Bellettini’s phase
field system (7).

Here, we use an implicit scheme to ensure the decreasing of the diffuse Willmore
energy, and a Fourier spectral method in order to get high accuracy approximation
in space. At each step time, it is necessary to solve a nonlinear equation. A Newton
algorithm like in [45] appears to be very efficient in practice, but not in accordance
with a Fourier spectral discretization, so we opted for a fixed point approach.

4.1 New numerical schemes for the approximation of classical and Mugnai’s flows

4.1.1 Classical diffuse approximation flow

We introduce a new scheme to approximate numerically some solutions to the phase
field system

⎧
⎨

⎩
∂t u = 1

αε2
Δμ − 1

αε4
W ′′(u)μ,

μ = αW ′(u) − αε2Δu,

where α is a positive constant. Of course, α does not play any role at the continuous
level, since by linearity of the system, it is always equivalent (up to time rescaling)
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to take α = 1, for which one gets exactly the formulation of the classical diffuse
Willmore flow that we mentioned earlier. As we shall see later, however, α plays a
role for the convergence of the discrete approximation scheme because it weights the
respective contributions of the two variables u and μ.

We compute the solution for any time t ∈ [0, T ] in a box Ω = [− 1
2 ,

1
2 ]N with

periodic boundary conditions. We use an Euler implicit discretization in time:

{
un+1 = δt

[
1

αε2
Δμn+1 − 1

αε4
W ′′(un+1)μn+1

]
+ un,

μn+1 = αW ′(un+1) − αε2Δun+1,

where δt is the time step, un and μn are the approximations of the solutions u and μ,
respectively, evaluated at time tn = n δt . The system can be written as

{
un+1 − δt

αε2
Δμn+1 = E,

μn+1 + αε2Δun+1 = F,

with E = un − δt
αε4

W ′′(un+1)μn+1, F = αW ′(un+1). Therefore,

{
un+1 + δtΔ

2un+1 = E + δt
αε2

ΔF,

μn+1 + δtΔ
2μn+1 = F − αε2ΔE .

Thus, (un+1, μn+1) is the solution of the nonlinear equation

(
un+1

μn+1

)

= φ

(
un+1

μn+1

)

, (12)

where

φ

(
un+1

μn+1

)

=
(

I + δtΔ
2
)−1

(
I δt

αε2
Δ

−αε2Δ I

)(
un − δt

αε4
W ′′(un+1)μn+1

αW ′(un+1)

)

.

Anatural way to approximate the solution (un+1, μn+1) to (12) is a fixed point iterative
method.

The space discretization is built with Fourier series. It has the advantage of preserv-
ing a high order approximation in space while allowing a fast and simple processing
of the homogeneous operator

G =
(

I + δtΔ
2
)−1

(
I δt

αε2
Δ

−αε2Δ I

)

=
(

I − δt
αε2

Δ

αε2Δ I

)−1

.

In practice, the solutions u(x, tn) and μ(x, tn) at time tn = nδt are approximated by
the truncated Fourier series:

un
Pmax

(x) =
∑

‖p‖∞≤Pmax

un
pe2iπx ·p, and μn

Pmax
(x) =

∑

‖p‖∞≤Pmax

μn
pe2iπx ·p,
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where p ∈ Z
N , ‖p‖∞ = max1≤i≤N |pi |, Pmax is the maximal number of Fourier

modes in each direction, and the coefficients un
p, μ

n
p are derived from a prior Fourier

decomposition of

(
un − δt

αε4
W ′′(un+1)μn+1

αW ′(un+1)

)

combined with an application in the

Fourier domain of the operator G. More precisely, the fixed point algorithm that we
propose reads as follows:

Algorithm 1 Initialization: v0 = un , ν0 = μn , Estab = 1,
While Estab > 10−8, perform the loop on k:
1) Compute

hk =un − δt

αε4
W ′′(vk)νk, and h̃k =αW ′(vk)

2) Using the Fast Fourier Transform, compute the truncated Fourier series of hk

and h̃k :

hk
Pmax

(x) =
∑

‖p‖∞≤Pmax

hk
p e2iπx ·p, and h̃k

Pmax
(x) =

∑

‖p‖∞≤Pmax

h̃k
p e2iπx ·p

3) Compute

vk+1(x)=
∑

‖p‖∞≤Pmax

vk+1
p e2iπx ·p, and νk+1(x)=

∑

‖p‖∞≤Pmax

νk+1
p e2iπx ·p,

where

⎧
⎨

⎩

vk+1
p = 1

1+δt (4π2|p|)2
(

hn
p − δt

αε2
4π2|p|2h̃k

p

)

νk+1
p = 1

1+δt (4π2|p|)2
(

h̃k
p + αε24π2|p|2hk

p

)

4) Compute

Estab = ‖vk+1 − vk‖ + ‖νk+1 − νk‖

End
Return

un+1 = vk+1 and μn+1 = νk+1.

Note that the implicit scheme

{
un+1 = δt

[
1

ε2α
Δμn+1 − 1

ε4α
W ′′(un)μn

]
+ un,

μn+1 = αW ′(un) − αε2Δun+1,
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implies the following scheme on un

un+1 =
(

I + δtΔ
2
)−1

[

un + δt

ε2
ΔW ′(un) + δt

ε2
W ′′(un)

(

Δun − 1

ε2
W ′(un−1)

)]

,

which is expected to be stable under a condition of the form

δt ≤ C min
{
ε2δx2, ε4

}
.

where δx = 1/(2Pmax) and C is a constant depending only the double-well potential
W . In practice, using fixed point iterations instead of an implicit Euler scheme appears
more accurate numerically. This can be justified with the following proposition:

Proposition 4 Algorithm 1 converges locally under the assumptions

max

{

[αM2]2 + 2[ δt

ε4
M3(M1 + N 3/2π2 ε2

δ
5/2
x

)]2, 2[ δt

αε4
M2]2

}

< 1, (13)

where Mi = sups∈[0,1] |W (i)(s)|.
Proof We look for the conditions such that

‖Dφ(un+1, μn+1)(δu, δμ)‖2 < ‖(δu, hμ)‖2,

where the differential of φ is such that

Dφ(un+1, μn+1)(δu, δμ) =
(

I − δt
αε2

Δ

αε2Δ I

)−1

×
(− δt

αε4

(
W (3)(un+1)μn+1δu + W (2)(un+1)δμ

)

αW (2)(un+1)δu

)

.

Note that the eigenvalues of the operator

(
I − δt

αε2
Δ

αε2Δ I

)

,

are

λp = 1 ± 4π2i
√

δt |p|2, for ‖p‖∞ ∈ [0,Pmax].

In particular, this implies that

∥
∥
∥
∥
∥

(
I − δt

αε2
Δ

αε2Δ I

)−1
∥
∥
∥
∥
∥

≤ 1.
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Moreover, remark also that

|μn+1| = |αW ′(un+1) − αε2Δun+1| ≤ α

(

M1 + N 3/2π2 ε2

δ
5/2
x

)

.

It follows that

⎧
⎨

⎩

|αW (2)(un+1)δu | ≤ αM2|δu |,
∣
∣W (3)(un+1)μn+1δu +W (2)(un+1)δμ

∣
∣≤

(

αM3(M1+N 3/2π2 ε2

δ
5/2
x

)|δu |+M2|δμ|
)

,

and then

∥
∥
∥
∥

(− δt
αε4

(
W (3)(un+1)μn+1δu + W (2)(un+1)δμ

)

αW (2)(un+1)δu

)∥∥
∥
∥

2

≤ max

{

[αM2]2 + 2[ δt

ε4
M3(M1 + N 3/2π2 ε2

δ
5/2
x

)]2, 2[ δt

αε4
M2]2

}

‖(δu, δμ)‖2,

which concludes the convergence proof of the fixed-point iteration procedure if con-
ditions (13) above are fulfilled. ��

Moreover, this proposition shows the role of the coefficient α which should satisfy
α < M−1

2 to guarantee the convergence of this fixed-point iteration procedure. Equiv-
alently, one could define an anisotropic vector norm in R

2, depending on α, to weight
differently the two variables u and μ.

4.1.2 Mugnai’s flow

We now use a similar scheme for the following generalization of Mugnai’s phase field
system:

⎧
⎨

⎩
∂t u = 1

ε2α
Δμ − 1

ε4α
W ′′(u)μ + B̃(u),

μ = αW ′(u) − αε2Δu,

with B̃(u) = W ′(u)B(u)

αε4
. Again, any non zero value of α can be chosen at the contin-

uous level due to system linearity (up to time rescaling). We use now a semi-implicit
discretization in time:

{
un+1 = δt

[
1

ε2α
Δμn+1 − 1

αε4
W ′′(un+1)μn+1 + B̃(un)

]
+ un,

μn+1 = αW ′(un+1) − ε2αΔun+1,
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where the penalization term B̃(·) is treated explicitly. We use a fixed point iteration to
approximate the solution pair (un+1, μn+1) to the system:

(un+1, μn+1) = φ̃(un+1, μn+1) =
(

I + δtΔ
2
)−1

(
I δt

αε2
Δ

−αε2Δ I

)

×
(

un − δt
αε4

W ′′(un+1)μn+1 + δt B̃(un)

αW ′(un+1)

)

.

For it is highly singular, the penalization term B̃(·) needs to be regularized to avoid
numerical errors. Observing that

B̃(u) = W ′(u)

[(∣
∣
∣
∣∇

( ∇u

|∇u|
)∣∣
∣
∣

2

−
∣
∣
∣
∣div

( ∇u

|∇u|
)∣∣
∣
∣

2
)

− curl

(

curl

( ∇u

|∇u|
))

· ∇u

|∇u|

]

,

we consider the regularized penalization term

B̃σ (u) = W ′(u)
[(∣
∣∇νu,σ

∣
∣2 − ∣

∣div νu,σ

∣
∣2
)

− curl
(
curl

(
νu,σ

)) · νu,σ

]
,

where νu,σ = ∇u√
|∇u|2+σ 2

with σ a small regularization parameter. In particular, the

positivity

(∣
∣∇νu,σ

∣
∣2 − ∣

∣div νu,σ

∣
∣2
)

≥ 0,

is ensured, which is in accordance with the continuous case. Finally, Algorithm 1 can
be equally used up to replacing step 1) with the new step:

1) Compute

hk = un − δt

αε4
W ′′(vk)νk + δt B̃σ (un), and h̃k = αW ′(vk),

where the term B̃σ (un) is evaluated using finite differences. Because this term is
evaluated explicitly, such modified algorithm converges under the same conditions as
in Proposition 4.

4.2 Numerical simulations of the classical flow

The following simulations have been realized using Matlab. The isolevel sets Γ (t) =
{x : u(x, t) = 1

2 } are computed and drawn using the Matlab functions contour in
2D and isosurface in 3D. We use the double-well potential W (s) = 1

2 s2(1 − s)2

and consider the PDE system

{
∂t u = Δμ − 1

ε2
W ′′(u)μ,

μ = 1
ε2

W ′(u) − Δu,
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Fig. 2 Left Sampling of Γ (t) at different times t ; Right the graphs of t → Rε(t) for ε = 2
P and ε = 3

P ,
compared with the exact solution

with initial conditions u(x, 0) and μ(x, 0) of the form

⎧
⎨

⎩

u(x, 0) = γ
(

d(x,E)
ε

)
,

μ(x, 0) = − 1
ε
Δd(x, E)γ ′

(
d(x,E)

ε

)
.

Evolution of a disk The first test plotted in Fig. 2 illustrates the good behavior of
our scheme with respect to the exact solution. The initial set E is a disk of radius
R0 = 0.15. The continuous Willmore flow preserves the radiality yet increases the
radius according the law

R(t) =
(

R4
0 + 2t

)1/4
.

The left picture in Fig. 2 represents the interfaces Γ (t) at different times t obtained
with the following numerical parameters: Pmax = 27, ε = 2/Pmax and δt = ε2

2Pmax
2 .

The right picture in Fig. 2 depicts the error between the numerical radius Rε(t) and
the theoretical radius R(t), at different times and for two different values of ε (the
other parameters are kept unchanged). It is reasonable to believe that this experiment
illustrates the numerical convergence of Rε(t) to R(t) as ε goes to zero.

Remark 5 Note that in practice, the parameters should satisfy Pmax � 1
ε
to keep a

sufficiently good approximation of the profile function which appear in the asymptotic
expansion of uε and thus to approximate the Willmore flow.

Evolution of two disjoint disks and formation of singularities One of our motivations
in this study is to understand and observe the behavior of the diffuseWillmore solution
in the situations where singularities appear. As it was discussed in Sect. 2.3, this may
happen for instancewith the classical approximation flow.We consider as initial setΩ0
the union of two disjoint disks of radius R = 0.15. Each disk should have its radius
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Fig. 3 Evolution by the classical approximation of the Willmore flow of two disjoint disks, for various
values of ε. First line: ε = 5/Pmax; second line: ε = 3/Pmax; third line: ε = 1.5/Pmax; The curve Γ (t)
is observed at times: t = 0 (left), t = 0.0004 (middle), t = 0.0008 (right)

increasing, up to the contact occurs. To the best of our knowledge, the theoretical
Willmore flow is not clearly defined after this critical collision time. Therefore, the
asymptotic limit of the solution t �→ uε(·, t) as ε goes to 0 could be a good candidate for
the definition of a weak Willmore flow. However, different behaviors of t �→ uε(·, t)
have been observed in the literature. For instance, the two disks merge in [45] whereas
a crossing of interfaces appears at collision time in [41].

We plot on Fig. 3 the graph of t �→ uε(·, t) computed for different values of ε.
We choose for the other parameters: Pmax = 27, δt = 1/P−4

max. In the first experiment
obtained with ε = 5/Pmax, the two disks merge. In contrast, a crossing of interfaces
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Fig. 4 Left Two examples of saddle-shaped Allen–Cahn solutions with 4 and 8 ends. Right Allen–Cahn
solution without dihedral symmetry (thus without saddle point, the 1/2-isolevel line is shown in black)

appear for the cases ε = 3/Pmax and ε = 1.5/Pmax.More precisely,we can distinguish
three different periods in the last two experiments: in the first period, both disks evolve
independently one from the other (remark that in thefirst two rows the diffuse interfaces
of the two circles already overlap at initial times). The second period begins when the
distance between the two disks is about the size of the diffuse interfaces and the
formation of a crossing is observed. This corresponds to a solution of the Allen–Cahn
equation with unsmooth nodal set. After contact, the interfaces continues to evolve
while the crossing seems to be numerically stable and does not influence the interface
evolution. More precisely, the interface Γ (t) seems to converge to a growing eight,
which is one of the closed planar elasticae described in Langer and Singer’s work [54].

Numerical examples of saddle-shaped solutions of Allen–Cahn equation We already
mentioned in Sect. 2.3 the existence result due to Dang, Fife, and Peletier [29] of an
entire solution in the plane to the Allen-Cahn equation whose nodal set coincides with
{(x, y), xy = 0} (it can be generalized to every even dimension [19]). By restricting to
a sector and using consecutive reflections, it is possible to build solutions whose nodal
set has an arbitrary number of branches with the property of dihedral symmetry, i.e. of
equal angle between two consecutive branches [47]. Actually, by a result of Hartman
and Wintner [48], saddle-shaped solutions must satisfy the equal angle property. To
be complete, let us mention that 2k-ended solutions, i.e. solutions whose nodal set
coincides outside any compact set with the union of 2k straight lines which cross at
the origin, do exist without the dihedral symmetry requirement [33]. In the particular
case of 4-ended solutions, the result can even be proved for arbitrary angles between
the lines [50]. Of course, by Hartman and Wintner’s result, the nodal set itself cannot
self-intersect at the origin if the dihedral symmetry does not hold, but remains smooth
instead.

We illustrate in Fig. 4 examples of 2k-ended solutions of Allen–Cahn equation
obtained numerically as stationary solutions to the classical approximation model
(6). These examples are classical, and have been previously obtained by various
authors [40,41,57] using phase-field approximations as well.

Comparison between phase field and parametric approaches We observed previously
that the evolution of two disjoint disks after contact and creation of a crossing is similar
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Fig. 5 Two different choices of a smooth parametric initial curve Γ (0) forming either two or three circles

Fig. 6 Comparison between the classical phase field flow and the parametric Willmore flow (black line)
starting from the initial curves of Fig. 5; Left t = 0 ; middle t = 5.10−5; right t = 5.10−4. Both flows
yield the same numerical solution

to the evolution of an eight-like single curve. To highlight this point, we tested on the
same configurations both the evolution provided by the classical diffuse flow and the
evolution of the disks boundaries with respect to a discrete parametric Willmore flow.
In particular, we consider two different initial conditions corresponding, respectively,
to the union of two or three contiguous circles. The parametric choice of Γ (0) is
illustrated on Fig. 5 and corresponds to using a single smooth C1,1 curve that covers
two or three circles, respectively. The discrete parametric Willmore flow is computed
with a finite element method as proposed and analyzed by Dziuk in [38]. The phase
field simulations are donewith the set of parameters:Pmax = 27, ε = 1/Pmax and δt =
εPmax

−2/10. Numerical results are shown on Fig. 6. As expected, these two different
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Fig. 7 Two exampleswhere the evolution of either one or two disks is not altered by an additional separating
line

approaches give very similar results. This suggests that the interface obtained by a
phase field approximation converges, after apparition of a singularity, to an interface
which evolves as a regular parametric Willmore flow. This is actually very much in
favor of a varifold interpretation, at least on this example, of both flows. What really
cares is the support, and its geometry, and not the fact that it is seen either as an isolevel
set or as a parametrized set.

The experiments on Fig. 7 are in the same spirit. On the first line, we illustrate the
evolution of two phases forming a disk cut by a straight line. Note that the disk seems
to evolve independently of the line. The second situation is quite similar with two
disjoint disks cut by a line, and the same conclusion holds.

Evolution by the parametric Willmore flow of two contiguous circles Wenow compare
in Fig. 8 the evolution by a discrete parametric Willmore flow of the different curves
obtained from three different initial parameterizations of two contiguous circles. In
the first parametrization (in black), both circles are parametrized independently. The
second parameterization (in blue) corresponds to the covering of the two circles by a
unique smooth parametric curve that self-crosses at the origin. The third parameteri-
zation (in magenta) corresponds to the singular curve that does not cross the horizontal
axis at the origin (thus forming a double cusp point). The first two pictures in Fig. 8
show the three interfaces obtained at different times. The third one depicts the evolu-
tion of the Willmore energy associated to each evolving interface. It is interesting to
compare the second and the third parameterization. The energy of the second parame-
terization (i.e. passing from two circles to the eight-type curve after contact) decreases
smoothly, therefore the parameterization seems to relate naturally to a continuous evo-
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Fig. 8 Parametric evolution of two contiguous circles associated to three different initial parametrizations;
Left interfaces at t = 10−5; middle interfaces at t = 5.10−5; right evolution of the Willmore energy of
each curve

lution. In contrast, the energy of the third parameterization explodes at contact, and
then decreases strongly to become the lowest (after time t > 10−5) with respect to
the other parameterizations. This experiment illustrates clearly the bifurcation at con-
tact, and justifies why different configurations have been observed in the literature.
For instance, there is no crossing observed in [45] because the authors used a large
time step δt and therefore ignored the contact. However, after a while, the energy of
the non-crossing configuration is indeed the best. It may be argued that a continuous
flow should go up to contact, and therefore a numerical flow that is accurate enough
to capture the singularity should be the best. On the other hand, once the crossing
configuration has been chosen, there is no way to have an energy as low as the non
crossing configuration’s energy.

Experiments in space dimension 3 For the 3D simulations presented hereafter, we
used the parameters: Pmax = 27, ε = 1.5/Pmax and δt = 1/10 Pmax

−2 ε2.
The first simulation illustrates the evolution of a torus. According to the Willmore

conjecture, which seems to have been proved in [58], the torus that minimizes the
Willmore energy is Clifford’s, whose ratio between both radii equals

√
2. In the first

line of Fig. 9, we plot for different values of t , a Clifford torus (in blue) and the
interface Γ (t) (in red) obtained numerically by the classical diffuse Willmore flow.
As expected, the interface Γ (t) converges to the Clifford torus. The second line of
Fig. 9 shows the evolution of a parallelepiped with two holes. The interface converges
to a Lawson-Kusner surface of genus 2, that is conjectured to minimize the Willmore
energy among surfaces with genus 2 [49,51]. The same experiment is done for a genus
4 surface on the last line, and there is again convergence to a Lawson–Kusner surface.
We believe that these simulations illustrate the good quality of our numerical scheme
and its ability to recover some critical points for the Willmore energy.

We present additional experiments in Fig. 10 which illustrate the formation of
singularities in dimension 3.On thefirst line, two spheres evolve by the classical diffuse
Willmore flow.As the distance between the two spheres is about ε, theymerge.We take
in the second experiment the initial setΓ (0) as the union of two parallel cylinders. The
two cylinders grow up until collision time, at which a crossing arises. The last example
shows the evolution of a cube cut by a plane (more precisely, both the plane and the
cube’s boundary separate the two phases, as in the 2D situation of Fig. 7). The cube
seems to evolve to a sphere without being disturbed by the presence of the plane. All
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Fig. 9 Smooth evolution of Γ (t) by the classical diffuseWillmore flow in 3 D. First line: approximation of
the Clifford torus (in blue). Second and third lines: approximations of Lawson–Kusner’s surfaces of genus
2 and 4, respectively

these experiments show that the classical diffuse flowmay yield singularities, although
the comprehension of singular solutions to the Allen–Cahn equation in dimension 3
remains incomplete.

Conclusion In view of the above simulations, the following observations can be made
on the classical diffuse approximation flow:

– It is possible to simulate the crossings of more than two interfaces;
– The evolution, by the classical diffuse flow, of two interfaces after crossing seems
to be similar to the evolution by a smooth parametric approach. This is in favor of
a varifold interpretation of the Willmore flow.
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Fig. 10 3D-examples of evolutions by the classical diffuse flow yielding singularities

4.3 Numerical simulations of Mugnai’s flow

We now consider the PDE system associated with Mugnai’s flow in the form that we
introduced in Sect. 4.1.2:

{
∂t u = Δμ − 1

ε2
W ′′(u)μ + B̃σ (u),

μ = 1
ε2

W ′(u) − Δu,

where

B̃σ (u) = W ′(u)
[(∣
∣∇νu,σ

∣
∣2 − ∣

∣div νu,σ

∣
∣2
)

− curl
(
curl

(
νu,σ

)) · νu,σ

]
.
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Fig. 11 Left Evolution of a circle by Mugnai’s flow; right graphs of t �→ Rε(t) for different values of ε

Fig. 12 Smooth evolution by Mugnai’s flow of a torus in 3D. The blue torus is the target Clifford torus

with νu,σ = ∇u√
|∇u|2+σ 2

. The initial conditions u(x, 0) and μ(x, 0) have the form

⎧
⎨

⎩

u(x, 0) = γ
(

d(Γ0)
ε

)
,

μ(x, 0) = − 1
ε
Δd(Γ0)γ

′
(

d(Γ0)
ε

)
.

We set the approximation parameter σ = 10−3 and we solve numerically the system
using the modified algorithm of Section 4.1.2.

Convergence of Mugnai’s approximation Thefirst example illustrated inFig. 11 shows
the evolution of a circle taken as initial set Γ0, and the comparison with the exact
solution. The numerical parameters are Pmax = 27, ε = 2/Pmax or 3//Pmax, and
δt = 1/2ε21/Pmax

2. The smaller is ε, the closer the numerical flow is with respect
to the continuous flow. This may indicate that the penalization term B̃σ (u) does not
influence the evolution of smooth interfaces.

This is also illustrated in Fig. 12 where an initial torus in 3D evolves to the Clifford
torus.

We present two experiments in Fig. 13 obtained with the set of parameters Pmax =
27, ε = 2/Pmax and δt = 1/8ε2Pmax

−2. The simulations indicate that the additional
penalization term B̃σ (u) prevents the interfaces from colliding (on the other hand,
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Fig. 13 Illustrations in 2D that Mugnai’s flow prevents from colliding

Fig. 14 Illustrations in 3D that Mugnai’s flow prevents from colliding. The interfaces preferably deform
themselves rather than merging

the explicit treatment of B̃σ (u) induces an anisotropic bias, which should be reduced
with a more careful treatment). This is coherent with what we argued in Sect. 2.5, i.e.
that Mugnai’s energy equals the classical energy plus a functional that penalizes non
profile functions.
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The same observation is illustrated in 3D on Fig. 14. Both cylinders grow up, but
deform themselves rather than colliding.

Conclusion To conclude this experimental section on Mugnai’s flow, let us observe
that

– As long as the interfaces are smooth, Mugnai’s and the classical flow behave in
the same way, which was of course expected from the theoretical properties of the
associated functionals. In particular, the penalization term B̃σ (u) has no critical
influence on the evolution of a smooth interface, as long as the evolution remains
smooth as well with the classical flow.

– Since Mugnai’s energyWMu
ε Γ -converges in dimension 2 to the relaxation of the

Willmore energy, the associated flow prevents from crossing, which is confirmed
by the simulations. In 3D as well, our simulations indicate that no crossing should
occur. This indicates that the Γ -convergence property should also be true in 3D for
Mugnai’s energy, which is so far an open question that requires a better understand-
ing of the diffuse approximation of the genus (having in mind the Gauss–Bonnet
Theorem).

Acknowledgments The authors thank Luca Mugnai, Selim Esedoḡlu, Petru Mironescu, and Giovanni
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