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Abstract The Lanczos method is often used to solve a large scale symmetric matrix
eigenvalue problem. It is well-known that the single-vector Lanczos method can only
find one copy of any multiple eigenvalue (unless certain deflating strategy is incorpo-
rated) and encounters slow convergence towards clustered eigenvalues. On the other
hand, the block Lanczos method can compute all or some of the copies of a multiple
eigenvalue and, with a suitable block size, also compute clustered eigenvalues much
faster. The existing convergence theory due to Saad for the block Lanczos method,
however, does not fully reflect this phenomenon since the theory was established to
bound approximation errors in each individual approximate eigenpairs. Here, it is
argued that in the presence of an eigenvalue cluster, the entire approximate eigenspace
associated with the cluster should be considered as a whole, instead of each individ-
ual approximate eigenvectors, and likewise for approximating clusters of eigenvalues.
In this paper, we obtain error bounds on approximating eigenspaces and eigenvalue
clusters. Our bounds are much sharper than the existing ones and expose true rates
of convergence of the block Lanczos method towards eigenvalue clusters. Further-
more, their sharpness is independent of the closeness of eigenvalues within a cluster.
Numerical examples are presented to support our claims.
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1 Introduction

The Lanczos method [15] is widely used for finding a small number of extreme eigen-
values and their associated eigenvectors of a symmetric matrix (or Hermitian matrix
in the complex case). It requires only matrix-vector products to extract enough infor-
mation to compute the desired solutions, and thus is very attractive in practice when
the matrix is sparse and its size is too large to be solved by, e.g., the QR algorithm
[8,21] or the matrix does not exist explicitly but in the form of a procedure that is
capable of generating matrix-vector multiplications.

Let A be an N × N Hermitian matrix. Given an initial vector v0, the single-
vector Lanczos method begins by recursively computing an orthonormal basis
{q1, q2, . . . , qn} of the nth Krylov subspace of A on v0:

Kn(A, v0) = span{v0, Av0, . . . , An−1v0} (1.1)

and at the same time the projection of A onto Kn(A, v0): Tn = QH
n AQn , where

Qn = [q1, q2, . . . , qn] and usually n � N . Afterwards some of the eigenpairs (λ̃, w)

of Tn :

Tnw = λ̃w,

especially the extreme ones, are used to construct approximate eigenpairs (λ̃, Qnw)

of A. The number λ̃ is called a Ritz value and Qnw a Ritz vector. This procedure of
computing approximate eigenpairs is not limited to Krylov subspaces but in general
works for any given subspace. It is called the Rayleigh–Ritz procedure.

The single-vector Lanczos method may have difficulty in computing all copies of
a multiple eigenvalue of A. In fact, only one copy of the eigenvalue can be found
unless certain deflating strategy is incorporated. On the other hand, a block Lanczos
method with a block size that is no smaller than the multiplicity of the eigenvalue can
compute all copies of the eigenvalue at the same time. But perhaps the biggest prob-
lem for the single-vector Lanczos method is its effectiveness in handling eigenvalue
clusters—slow convergence to each individual eigenvalue in the cluster. The closer
the eigenvalues in the cluster are, the slower the convergence will be. It is well-known
that a block version with a big enough block size will perform much better.

There are a few block versions, e.g., the ones introduced by Golub and Underwood
[9], Cullum and Donath [5], and, more recently, by Ye [25] for an adaptive block
Lanczos method (see also Cullum and Willoughby [6], Golub and van Loan [10]).
The basic idea is to use an N × nb matrix V0, instead of a single vector v0, and
accordingly an orthonormal basis of the nth Krylov subspace of A on V0:

Kn(A, V0) = span{V0, AV0, . . . , An−1V0} (1.2)

will be generated, as well as the projection of A ontoKn(A, V0). Afterwards the same
Rayleigh-Ritz procedure is applied to compute approximate eigenpairs of A.
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Convergence of the block Lanczos method 85

There has been a wealth of development, in both theory and implementation, for the
Lanczos methods, mostly for the single-vector version. The most complete reference
up to 1998 is Parlett [21]. This paper is concerned with the theoretical convergence
theory of the block Lanczos method. Related past works include Kaniel [12], Paige
[20], Saad [22], Li [18], as well as the potential-theoretic approach inKuijlaars [13,14]
who, from a very different perspective, investigated which eigenvalues are found first
according to the eigenvalue distribution as N → ∞, and what are their associated
convergence rates as n goes to ∞ while n/N stays fixed. Results from these papers
are all about the convergence of an individual eigenvalue and eigenvector, even in the
analysis of Saad on the block Lanczos method.

The focus in this paper is, however, on the convergence of a cluster of eigenvalues,
including multiple eigenvalues, and their associated eigenspace for the Hermitian
eigenvalue problem. Our results distinguish themselves from those of Saad [22] in
that they bound errors in approximate eigenpairs belonging to eigenvalue clusters
together, rather than separately for each individual eigenpair. The consequence ismuch
sharper bounds as our later numerical examples will demonstrate. These bounds are
also independent of the closeness of eigenvalues within a cluster.

One of the key steps in analyzing the convergence of Lanczos methods is to pick
(sub)optimal polynomials to minimize error bounds. For any eigenpair other than the
first one, it is often the standard practice, as in [22], that each chosen polynomial
has a factor to annihilate vector components in all proceeding eigenvector directions,
resulting in a “bulky” factor in the form of the product involving all previous eigen-
values/Ritz values in the error bound. The factor can be big and likely is an artifact
of the analyzing technique. We propose also a new kind of error bounds that do not
have such a “bulky” factor, but require knowledge of the distance from the interested
eigenspace to a Krylov subspace Ki of a lower order as a tradeoff.

The rest of this paper is organized as follows. Section 2 collects some necessary
results on unitarily invariant norms and canonical angles between subspaces for our
later use. Section 3 presents the (simplest) block Lanczos method whose convergence
analysis that results in error bounds of the eigenspace/eigenvalue cluster type is done
in Sect. 4 for eigenspaces and Sect. 5 for eigenvalues. In Sect. 6, we perform a brief
theoretical comparison between our results and related results derived from those of
Saad [22] and point out when Saad’s bounds will overestimate the true rate of conver-
gence. Numerical examples are given in Sect. 7 to support our comparison analysis.
Section 8 establishes more bounds, based on the knowledge of Krylov subspaces of
lower orders. Finally, we present our conclusion in Sect. 9.

Throughout this paper, A is an N × N Hermitian matrix, and has

eigenvalues: λ1 ≥ λ2 ≥ · · · ≥ λN , and
Λ = diag(λ1, λ2, . . . , λN ),

orthonormal eigenvectors: u1, u2, . . . , uN , and
U = [u1, u2, . . . , uN ],

eigen-decomposition: A = UΛUH and UHU = IN .

(1.3)

C
n×m is the set of all n × m complex matrices, Cn = C

n×1, and C = C
1. Pk is the

set of polynomial of degree no bigger than k. In (or simply I if its dimension is clear
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86 R.-C. Li, L.-H. Zhang

from the context) is the n ×n identity matrix, and e j is its j th column. The superscript
“·H” takes the complex conjugate transpose of a matrix or vector. We shall also adopt
MATLAB-like convention to access the entries of vectors andmatrices. Let i : j be the
set of integers from i to j inclusive. For a vector u and a matrix X , u( j) is u’s j th entry,
X(i, j) is X ’s (i, j)th entry; X ’s submatrices X(k:�,i : j), X(k:�,:), and X(:,i : j) consist of
intersections of row k to row � and column i to column j , row k to row �, and column
i to column j , respectively.R(X) is the column space of X , i.e., the subspace spanned
by the columns of X , and eig(X) denotes the set of all eigenvalues of a square matrix
X . For matrices or scalars Xi , both diag(X1, . . . , Xk) and X1 ⊕ · · · ⊕ Xk denote the
same block diagonal matrix with the i th diagonal block Xi .

2 Preliminaries

2.1 Unitarily invariant norm

A matrix norm |||·||| is called a unitarily invariant norm on Cm×n if it is a matrix norm
and has the following two properties [1,23]

1.
∣
∣
∣
∣
∣
∣XHBY

∣
∣
∣
∣
∣
∣ = |||B||| for all unitary matrices X and Y of apt sizes and B ∈ C

m×n .
2. |||B||| = ‖B‖2, the spectral norm of B, if rank(B) = 1.

Two commonly used unitarily invariant norms are

the spectral norm: ‖B‖2 = max j σ j ,

the Frobenius norm: ‖B‖F =
√
∑

j σ 2
j ,

where σ1, σ2, . . . , σmin{m,n} are the singular values of B. The trace norm

|||B|||trace =
∑

j

σ j

is a unitarily invariant norm, too. In what follows, |||·||| denotes a general unitarily
invariant norm.

In this article, for convenience, any |||·|||we use is generic to matrix sizes in the sense
that it applies to matrices of all sizes. Examples include the matrix spectral norm ‖·‖2,
the Frobenius norm ‖ · ‖F, and the trace norm. One important property of unitarily
invariant norms is

|||XY Z ||| ≤ ‖X‖2 · |||Y ||| · ‖Z‖2
for any matrices X , Y , and Z of compatible sizes.

Lemma 2.1 Let H and M be two Hermitian matrices, and let S be a matrix of a
compatible size as determined by the Sylvester equation HY − Y M = S. If eig(H) ∩
eig(M) = ∅, then the equation has a unique solution Y , and moreover

|||Y ||| ≤ c

η
|||S|||,
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Convergence of the block Lanczos method 87

where η = min |μ − ω| over all μ ∈ eig(M) and ω ∈ eig(H), and the constant c
lies between 1 and π/2, and it is 1 for the Frobenius norm, or if either eig(H) is in a
closed interval that contains no eigenvalue of M or vice versa.

This lemma for the Frobenius norm and for the case when either eig(H) is in a
closed interval that contains no eigenvalue of M or vice versa is essentially in [7] (see
also [23]), and it is due to [2,3] for the most general case: eig(H) ∩ eig(M) = ∅ and
any unitarily invariant norm.

2.2 Angles between subspaces

Consider two subspaces X and Y of CN and suppose

k := dim(X) ≤ dim(Y) =: �. (2.1)

Let X ∈ C
N×k and Y ∈ C

N×� be orthonormal basis matrices ofX and Y, respectively,
i.e.,

XHX = Ik, X = R(X), and YHY = I�, Y = R(Y ),

and denote by σ j for 1 ≤ j ≤ k in ascending order, i.e., σ1 ≤ · · · ≤ σk , the singular
values of YHX . The k canonical angles θ j (X,Y) from1 X to Y are defined by

0 ≤ θ j (X,Y) := arccos σ j ≤ π

2
for 1 ≤ j ≤ k. (2.2)

They are in descending order, i.e., θ1(X,Y) ≥ · · · ≥ θk(X,Y). Set

Θ(X,Y) = diag(θ1(X,Y), . . . , θk(X,Y)). (2.3)

It can be seen that angles so defined are independent of the orthonormal basis matrices
X and Y , which are not unique. A different way to define these angles is through the
orthogonal projections onto X and Y [24].

When k = 1, i.e., X is a vector, there is only one canonical angle from X to Y and
so we will simply write θ(X,Y).

In what follows, we sometimes place a vector or matrix in one or both arguments
of θ j ( · , · ), θ( · , · ), and Θ( · , · ) with the understanding that it is about the subspace
spanned by the vector or the columns of the matrix argument.

Proposition 2.1 Let X and Y be two subspaces in C
N satisfying (2.1).

(a) For any Ŷ ⊆ Y with dim(̂Y) = dim(X) = k, we have θ j (X,Y) ≤ θ j (X, Ŷ) for
1 ≤ j ≤ k.

(b) There exist an orthonormal basis {x1, x2, . . . , xk} for X and an orthonormal basis
{y1, y2, . . . , y�} for Y such that

1 If k = �, we may say that these angles are between X and Y.
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88 R.-C. Li, L.-H. Zhang

θ j (X,Y) = θ(x j , y j ) for 1 ≤ j ≤ k, and

xHi y j = 0 for 1 ≤ i ≤ k, k + 1 ≤ j ≤ �.

In particular, Θ(X,Y) = Θ(X, Ŷ), where Ŷ = span{y1, y2, . . . , yk}, and the
subspace Ŷ is unique if θ1(X,Y) < π/2.

Proof Let X ∈ C
N×k and Y ∈ C

N×� be orthonormal basis matrices of X and Y,
respectively. If Ŷ ⊆ Y with dim(̂Y) = dim(X) = k, then there is W ∈ C

�×k with
orthonormal columns such that Ŷ = Y W is an orthonormal basis matrix of Ŷ. Since
cos θ j (X, Ŷ) for 1 ≤ j ≤ k are the singular values of XHY W which are no bigger
than the singular values of XHY , i.e., cos θ j (X, Ŷ) ≤ cos θ j (X,Y) individually, or
equivalently, θ j (X, Ŷ) ≥ θ j (X,Y) for 1 ≤ j ≤ k. This is item (a).

For item (b), let XHY = V ΣWH be the SVD of XHY , where

Σ = [diag(σ1, σ2, . . . , σk), 0k×(�−k)].

Then X V and Y W are orthonormal basis matrices of X and Y, respectively, and their
columns, denoted by xi and y j , respectively, satisfy the specified requirements in the
theorem. If also θ1(X,Y) < π/2, then all σi > 0 and the first k columns of W spans
R(YHX) which is unique; so Ŷ is unique for each given basis matrix Y . We have to
prove that Ŷ is independent of the choosing of Y . Let Ỹ be another orthonormal basis
matrix of Y. Then Ỹ = Y Z for some � × � unitary matrix Z . Following the above
construction for Ŷ, we will have a new Ŷnew = R(Ỹ W̃(:,1:k)), where W̃ is from the
SVD XHỸ = Ṽ ΣW̃H. Notice

XHỸ = XHY Z = V Σ(WHZ)

which is yet another SVD of XHỸ . Thus the columns of (ZHW )(:,1:k) = ZHW(:,1:k)

span the column space of ỸHX which is also spanned by the columns of W̃(:,1:k).
Hence W̃(:,1:k) = ZHW(:,1:k)M for some nonsingular matrix M , and

Ỹ W̃(:,1:k) = Y W(:,1:k)M

which implies Ŷnew = R(Ỹ W̃(:,1:k)) = R(Y W(:,1:k)) = Ŷ, as expected. �
Proposition 2.2 Let X and Y be two subspaces in C

N satisfying (2.1), and let X ∈
C

N×k be an orthonormal basis matrix of X, i.e., XHX = Ik . Then

max
1≤ j≤k

sin θ(X(:, j),Y) ≤ |||sinΘ(X,Y)||| ≤
k
∑

j=1

sin θ(X(:, j),Y), (2.4)

max
1≤ j≤k

sin θ(X(:, j),Y) ≤ ‖sinΘ(X,Y)‖F =
√
√
√
√

k
∑

j=1

sin2 θ(X(:, j),Y), (2.5)

|||sinΘ(X,Y)||| ≤ |||tanΘ(X,Y)||| ≤ |||sinΘ(X,Y)|||
√

1 − sin2 θ1(X,Y)
. (2.6)
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Proof Let Y⊥ ∈ C
N×(N−�) be an orthonormal basis matrix of the orthogonal com-

plement of Y in C
N . We observe that sin θ j (X,Y) for 1 ≤ j ≤ k are the singular

values of XHY⊥ and thus |||sinΘ(X,Y)||| = ∣∣∣∣∣∣XHY⊥
∣
∣
∣
∣
∣
∣. Observe also sin θ(X(:, j),Y) =

∣
∣
∣

∣
∣
∣

∣
∣
∣XH

(:, j)Y⊥
∣
∣
∣

∣
∣
∣

∣
∣
∣ = ‖XH

(:, j)Y⊥‖2. Therefore

max
1≤ j≤k

∣
∣
∣

∣
∣
∣

∣
∣
∣XH

(:, j)Y⊥
∣
∣
∣

∣
∣
∣

∣
∣
∣ ≤ |||sinΘ(X,Y)||| =

∣
∣
∣

∣
∣
∣

∣
∣
∣XHY⊥

∣
∣
∣

∣
∣
∣

∣
∣
∣ ≤

k
∑

j=1

‖XH
(:, j)Y⊥‖2,

max
1≤ j≤k

∥
∥
∥XH

(:, j)Y⊥
∥
∥
∥
F

≤ ‖sinΘ(X,Y)‖F = ‖XHY⊥‖F =
√
√
√
√

k
∑

j=1

∥
∥
∥XH

(:, j)Y⊥
∥
∥
∥

2

F
.

They yield both (2.4) and (2.5). For (2.6), we notice

sin θ j (X,Y) ≤ tan θ j (X,Y) = sin θ j (X,Y)

cos θ j (X,Y)
≤ sin θ j (X,Y)

cos θ1(X,Y)

for 1 ≤ j ≤ k. �
Proposition 2.3 LetXandYbe two subspaces inCN with equal dimension:dim(X) =
dim(Y) = k, and let X ∈ C

N×k be an orthonormal basis matrix of X, i.e., XHX = Ik ,
and Y be a (not necessarily orthonormal) basis matrix of Y such that each column of
Y is a unit vector, i.e., ‖Y(:, j)‖2 = 1 for all j . Then

‖ sinΘ(X,Y)‖2F ≤ ‖(YHY )−1‖2
k
∑

j=1

sin2 θ(X(:, j), Y(:, j)). (2.7)

Proof Since sin2 θ j (X,Y) for 1 ≤ j ≤ k are the eigenvalues of

Ik −
[

XHY (YHY )−1/2
]H [

XHY (YHY )−1/2
]

= (YHY )−1/2
[

YHY − (XHY )H(XHY )
]

(YHY )−1/2,

we have

‖ sinΘ(X,Y)‖2F =
k
∑

j=1

sin2 θ j (X,Y)

=
∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣
Ik −

[

XHY (YHY )−1/2
]H [

XHY (YHY )−1/2
]
∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣
trace

≤ ‖(YHY )−1/2‖2
∣
∣
∣

∣
∣
∣

∣
∣
∣YHY − (XHY )H(XHY )

∣
∣
∣

∣
∣
∣

∣
∣
∣
trace

‖(YHY )−1/2‖2
= ‖(YHY )−1‖2 trace

(

YHY − (XHY )H(XHY )
)
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= ‖(YHY )−1‖2
k
∑

j=1

[

1 − YH
(:, j) X XHY(:, j)

]

≤ ‖(YHY )−1‖2
k
∑

j=1

[

1 − YH
(:, j) X(:, j) XH

(:, j)Y(:, j)

]

= ‖(YHY )−1‖2
k
∑

j=1

sin2 θ(X(:, j), Y(:, j)), (2.8)

as was to be shown. In obtaining (2.8), we have used

YH
(:, j) X XHY(:, j) = ‖XHY(:, j)‖22 ≥ YH

(:, j) X(:, j) XH
(:, j)Y(:, j)

because XH
(:, j)Y(:, j) is the j th entry of the vector XHY(:, j). �

Remark 2.1 The inequality (2.7) is about controlling the subspace angle Θ(X,Y) by
the individual angles between corresponding basis vectors. These individual angles
depend on the selection of the basis vectors as well as their labelling. By Propo-
sition 2.1(b), it is possible to find basis vectors for both X and Y and match them
perfectly such that θ j (X,Y) collectively is the same as all individual angles between
corresponding basis vectors. But, on the other hand, it is possible that for two close
subspaces in the sense thatΘ(X,Y) is tiny there are unfortunately chosen and labelled
basis vectors to make one or more individual angles between corresponding basis vec-
tors near or even π/2. In fact, this can happen even when X = Y. Therefore in general
the collection {θ(X(:, j), Y(:, j)), 1 ≤ j ≤ k} cannot be controlled by Θ(X,Y) without
additional information.

Proposition 2.4 LetXandYbe two subspaces inCN with equal dimension:dim(X) =
dim(Y) = k. Suppose θ1(X,Y) < π/2.

(a) For any Ŷ ⊆ Y of dimension k1 = dim(̂Y) ≤ k, there is a unique X̂ ⊆ X of
dimension k1 such that PYX̂ = Ŷ, where PY is the orthogonal projection onto Y.
Moreover

θ j+k−k1(X,Y) ≤ θ j (X̂, Ŷ) ≤ θ j (X,Y) for 1 ≤ j ≤ k1 (2.9)

which implies

||| sinΘ(X̂, Ŷ)||| ≤ |||sinΘ(X,Y)|||.

(b) For any set {y1, y2, . . . , yk1} of orthonormal vectors in Y, there is a set
{x1, x2, . . . , xk1} of linearly independent vectors in X such that PYx j = y j

for 1 ≤ j ≤ k1. Moreover (2.9) holds for X̂ = span{x1, x2, . . . , xk1} and
Ŷ = span{y1, y2, . . . , yk1}.
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Proof Let X ∈ C
N×k and Y ∈ C

N×k be orthonormal basis matrices of X and Y,
respectively. Ŷ ⊆ Y can be represented by its orthonormal basis matrix Y Ŷ , where
Ŷ ∈ C

k×k1 satisfies ŶHŶ = Ik1 . We need to find a X̂ ⊆ X with the desired property.
X̂ ⊆ X can be represented by its basis matrix (not necessary orthonormal) X X̂ , where
X̂ ∈ C

k×k1 is nonsingular and to be determined. The equation PYX̂ = Ŷ is the same
as

Y YHX X̂ = Y Ŷ ⇔ YHX X̂ = Ŷ ⇔ X̂ = (YHX)−1Ŷ (2.10)

because θ1(X,Y) < π/2 implies YHX is nonsingular. This proves the existence of
X̂ = R(X X̂). Following the argument, one can also prove that this X̂ is independent
of how the orthonormal basis matrices X and Y are chosen, and thus unique. To prove
(2.9), we note that σ̂ j := cos θ j (X̂, Ŷ) for 1 ≤ j ≤ k1 are the singular values of

(Y Ŷ )H(X X̂)[(X X̂)H(X X̂)]−1/2 = ŶHYHX X̂ [X̂H X̂ ]−1/2

=
[

ŶH(YHX)−H(YHX)−1Ŷ
]−1/2

.

So the eigenvalues of ŶH(YHX)−H(YHX)−1Ŷ are σ̂−2
j for 1 ≤ j ≤ k1. On the

other hand, σ j := cos θ j (X,Y) for 1 ≤ j ≤ k are the singular values of YHX . So the
eigenvalues of (YHX)−H(YHX)−1 are σ−2

j for 1 ≤ j ≤ k. Use the Cauchy interlacing
inequalities [21] to conclude that

σ−2
j ≥ σ̂−2

j ≥ σ−2
j+k−k1

for 1 ≤ j ≤ k1

which yield (2.9). This proves item (a).
To prove item (b), we pick the orthonormal basis matrix Y above in such a way

that its first k1 columns are y1, y2, . . . , yk1 . In (2.10), let Ŷ = [e1, e2, . . . , ek1 ], i.e.,
Ŷ = span{y1, y2, . . . , yk1}, and let X̂ = (YHX)−1Ŷ . Then [x1, x2, . . . , xk1 ] := X X̂
gives what we need because of (2.10). �
Remark 2.2 The part of Proposition 2.4 on the existence of X̂ in the case of k1 = 1 is
essentially taken from [22, Lemma 4].

Remark 2.3 The canonical angles are defined under the standard inner product
〈x, y〉 = xHy in C

N . In a straightforward way, they can be defined under any given
M-inner product 〈x, y〉M = xHMy, where M ∈ C

N×N is Hermitian and positive
definite. We will call these angles the M-canonical angles. All results we have proved
in this section are valid in slightly different forms for the M-canonical angles. Details
are omitted.

3 Block Lanczos method

Given V0 ∈ C
N×nb with rank(V0) = nb, the block Lanczos process [5,9] of Algo-

rithm 1 is the simplest version and will generate an orthonormal basis of the Krylov
subspace Kn(A, V0) as well as a projection of A onto the Krylov subspace. It is
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92 R.-C. Li, L.-H. Zhang

Algorithm 1 Simple Block Lanczos Process

Given Hermitian A ∈ C
N×N and V0 ∈ C

N×nb with rank(V0) = nb , this generic block Lanczos process
performs a partial tridiagonal reduction on A.

1: perform orthogonalization on given V0 ∈ C
N×nb (rank(V0) = nb) to obtain V0 = V1B0 (e.g., via

modified Gram-Schmit), where V1 ∈ C
N×nb satisfying VH

1 V1 = Inb , and B0 ∈ C
nb×nb ;

2: Z = AV1, A1 = VH
1 Z ;

3: Z = Z − V1A1;
4: perform orthogonalization on Z to obtain Z = V2B1, where V2 ∈ C

N×nb satisfying VH
2 V2 = Inb and

B1 ∈ C
nb×nb ;

5: for j = 2 to n do
6: Z = AVj , A j = VH

j Z ;

7: Z = Z − Vj A j − Vj−1BH
j−1;

8: perform orthogonalization on Z to obtain Z = Vj+1B j , Vj+1 ∈ C
N×nb satisfying VH

j+1Vj+1 = Inb

and B j ∈ C
nb×nb ;

9: end for

simplest because we assume all Z at Lines 4 and 8 there have full column rank nb

for all j . Then Vj ∈ C
N×nb , and

Kn := Kn(A, V0) = R(V1) ⊕ · · · ⊕ R(Vn), (3.1)

the direct sum of R(Vj ) for j = 1, 2, . . . , n.
A fundamental relation of the process is

AQn = QnTn + [0N×nnb , Vn+1Bn], (3.2)

where

Qn = [V1, V2, . . . , Vn] ∈ C
N×nnb , and (3.3a)

Tn = QH
n AQn =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

A1 BH
1

B1 A2 BH
2

. . .
. . .

. . .

Bn−2 An−1 BH
n−1

Bn−1 An

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ C
nnb×nnb . (3.3b)

Tn = QH
n AQn is the so-called Rayleigh quotient matrix with respect toKn and

it is the projection of A onto Kn , too. Let

Πn = Qn QH
n (3.4)

which is the orthogonal projection onto Kn . In particular Π1 = Q1QH
1 = V1VH

1 is
the orthogonal projection onto R(V0) = R(V1).

Basically the block Lanczos method is this block Lanczos process followed by
solving the eigenvalue problem for Tn to obtain approximate eigenpairs for A: any
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eigenpair (λ̃ j , w j ) of Tn gives an approximate eigenpair (λ̃ j , Qnw j ) for A. The num-
ber λ̃ j is called a Ritz value and ũ j := Qnw j a Ritz vector.

We introduce the following notation for Tn that will be used in the next two sections:

eigenvalues (also Ritz values): λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃nnb , and
Ω = diag(λ̃1, λ̃2, . . . , λ̃nnb ),

orthonormal eigenvectors: w1, w2, . . . , wnnb , and
W = [w1, w2, . . . , wnnb ],

eigen-decomposition: TnW = WΩ and WHW = Innb ,
Ritz vectors: ũ j = Qnw j for 1 ≤ j ≤ nnb, and

Ũ = [ũ1, ũ2, . . . , ũnnb ].

(3.5)

Note the dependency of λ̃ j , w j ,W on n is suppressed for convenience.
As in Saad [22], there is no loss of generality in assuming that all eigenvalues of A

are of multiplicity not exceeding nb. In fact, let Pj be the orthogonal projections onto
the eigenspaces corresponding to the distinct eigenvalues of A. Then

U :=
⊕

j

R(Pj V0)

is an invariant subspace of A, and A|U, the restriction of A ontoU, has the same distinct
eigenvalues as A and the multiplicity of any distinct eigenvalue of A|U is no bigger
than nb. SinceKn(A, V0) ⊆ U, what the block Lanczos method does is essentially to
approximate some of the eigenpairs of A|U.

When nb = 1, Algorithm 1 reduces to the single-vector Lanczos process.

4 Convergence of eigenspaces

Recall Πn in (3.4), and in particular, Π1 = Q1QH
1 = V1VH

1 . For the rest of this and
the next section, each of i , k, and � will be reserved for one assignment only: we
are considering the i th to (i + nb − 1)st eigenpairs of A among which the kth to �th
eigenvalues may form a cluster as in

where

1 ≤ i < n, i ≤ k ≤ � ≤ i + nb − 1.

Recall (1.3). We are interested in bounding

1. the canonical angles from the invariant subspaceR(U(:,k:�)) to theKrylov subspace
Kn ≡ Kn(A, V0),

2. the canonical angles between the invariant subspace R(U(:,k:�)) and
span{ũk, . . . , ũ�} (which we call a Ritz subspace),
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94 R.-C. Li, L.-H. Zhang

3. the differences between the eigenvalues λ j and the Ritz values λ̃ j for k ≤ j ≤ �.

In doing so, we will use the j th Chebyshev polynomial of the first kind T j (t):

T j (t) = cos( j arccos t) for |t | ≤ 1, (4.1a)

=1

2

[(

t +
√

t2 − 1
) j +

(

t +
√

t2 − 1
)− j
]

for t ≥ 1. (4.1b)

It frequently shows up in numerical analysis and computations because of its numerous
nice properties, for example |T j (t)| ≤ 1 for |t | ≤ 1 and |T j (t)| grows extremely fast2

for |t | > 1. We will also need [17]

∣
∣
∣
∣
T j

(
1 + t

1 − t

)∣
∣
∣
∣
=
∣
∣
∣
∣
T j

(
t + 1

t − 1

)∣
∣
∣
∣
= 1

2

[

Δ
j
t + Δ

− j
t

]

for 1 �= t > 0, (4.2)

where

Δt :=
√

t + 1

|√t − 1| for t > 0. (4.3)

In the rest of this section and the entire next section, we will always assume

rank(VH
0 U(:,i :i+nb−1)) = rank(VH

1 U(:,i :i+nb−1)) = nb, (4.4)

and Xi,k,� ∈ C
N×(�−k+1) is to be defined by (4.5) below. Consider an application of

Proposition 2.4(b) with k1 = � − k + 1,

X=R(V0)=R(V1), Y=R(U(:,i :i+nb−1)), [y1, y2, . . . , yk1 ]=[uk, uk+1, . . . , u�].

The application yields a unique

Xi,k,� := [x1, x2, . . . , xk1 ] (4.5)

such that R(Xi,k,�) ⊆ R(V0) and

U(:,i :i+nb−1)U
H
(:,i :i+nb−1) Xi,k,� = U(:,k:�) ≡ [uk, uk+1, . . . , u�]. (4.6)

Moreover, by Proposition 2.4(a),

∣
∣
∣
∣
∣
∣sinΘ(U(:,k:�), Xi,k,�)

∣
∣
∣
∣
∣
∣ ≤ ∣∣∣∣∣∣sinΘ(U(:,i :i+nb−1), V0)

∣
∣
∣
∣
∣
∣, (4.7)

∣
∣
∣
∣
∣
∣tanΘ(U(:,k:�), Xi,k,�)

∣
∣
∣
∣
∣
∣ ≤ ∣∣∣∣∣∣tanΘ(U(:,i :i+nb−1), V0)

∣
∣
∣
∣
∣
∣. (4.8)

They show that the chosen R(Xi,k,�) has a significant component in the eigenspace
R(U(:,k:�)) of interest if the initialR(V0) has a significant component in the eigenspace
R(U(:,i :i+nb−1)).

2 In fact, a result due to Chebyshev himself says that if p(t) is a polynomial of degree no bigger than j and
|p(t)| ≤ 1 for −1 ≤ t ≤ 1, then |p(t)| ≤ |T j (t)| for any t outside [−1, 1] [4, p. 65].

123



Convergence of the block Lanczos method 95

Thematrix Xi,k,� defined in (4.5) obviously depends on nb aswell. This dependency
is suppressed because nb is reserved throughout this article. The idea of picking such
Xi,k,� is essentially borrowed from [22, Lemma 4] (see Remark 2.2).

Theorem 4.1 For any unitarily invariant norm |||·|||, we have

∣
∣
∣
∣
∣
∣tanΘ(U(:,k:�),Kn)

∣
∣
∣
∣
∣
∣ ≤ ξi,k

Tn−i (κi,�,nb )

∣
∣
∣
∣
∣
∣tanΘ(U(:,k:�), Xi,k,�)

∣
∣
∣
∣
∣
∣, (4.9)

∣
∣
∣
∣
∣
∣sinΘ(U(:,k:�), Ũ(:,k:�))

∣
∣
∣
∣
∣
∣ ≤ γ

∣
∣
∣
∣
∣
∣sinΘ(U(:,k:�),Kn)

∣
∣
∣
∣
∣
∣ (4.10)

≤ γ ξi,k

Tn−i (κi,�,nb )

∣
∣
∣
∣
∣
∣tanΘ(U(:,k:�), Xi,k,�)

∣
∣
∣
∣
∣
∣ , (4.11)

where Xi,k,� is defined by (4.5), Ũ by (3.5), and3

ξi,k =
i−1
∏

j=1

λ j − λN

λ j − λk
, δi,�,nb = λ� − λi+nb

λ� − λN
, κi,�,nb = 1 + δi,�,nb

1 − δi,�,nb

, (4.12)

γ = 1 + c

η
‖Πn A(I − Πn)‖2, (4.13)

and the constant c lies between 1 and π/2, and it is4 1 for the Frobenius norm or if
λ̃k−1 > λk , and

η = min
k≤ j≤�

p<k, or p>�

|λ j − λ̃p|. (4.14)

For the Frobenius norm, γ in (4.13) can be improved to

γ =
√

1 +
(
1

η
‖Πn A(I − Πn)‖2

)2

. (4.15)

Proof Write

U = [
i−1 nb N−nb−i+1

U1 U2 U3
]

, Λ =
⎡

⎣

i−1 nb N−nb−i+1

i−1 Λ1
nb Λ2

N−nb−i+1 Λ3

⎤

⎦, (4.16a)

Ǔ2 = U(:,k:�) = (U2)(:,k−i+1:�−i+1) = [uk, . . . , u�], (4.16b)

Λ̌2 = Λ(k:�,k:�) = (Λ2)(k−i+1:�−i+1,k−i+1:�−i+1) = diag(λk, . . . , λ�). (4.16c)

3 By convention,
∏0

j=1(· · · ) ≡ 1.
4 A by-product of this is that c = 1 if k = �.
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For convenience, let’s drop the subscripts to Xi,k,� because i, k, � do not change in
this proof. We have

X = UUHX = U1UH
1 X + U2UH

2 X + U3UH
3 X

= U1UH
1 X + Ǔ2ǓH

2 X + U3UH
3 X (4.17)

by (4.6). Let X0 = X (XHX)−1/2 which has orthonomal columns. We know that

R( f (A)X0) ⊂ Kn for any f ∈ Pn−1,

since R(X0) = R(X) ⊆ R(V0). By (4.17),

Y := f (A)X0 = U1 f (Λ1)U
H
1 X0 + Ǔ2 f (Λ̌2)Ǔ

H
2 X0 + U3 f (Λ3)U

H
3 X0. (4.18)

By (4.6), ǓH
2 X = I�−k+1 and thus ǓH

2 X0 is nonsingular. Now if also f (Λ̌2) is
nonsingular (which is true for the selected f later), then

Y
(

ǓH
2 X0

)−1 [ f (Λ̌2)]−1 = U1 f (Λ1)U
H
1 X0

(

ǓH
2 X0

)−1 [ f (Λ̌2)]−1

+Ǔ2 + U3 f (Λ3)U
H
3 X0

(

ǓH
2 X0

)−1 [ f (Λ̌2)]−1, (4.19)

and consequently by Proposition 2.1

∣
∣
∣

∣
∣
∣

∣
∣
∣tanΘ(Ǔ2,Kn)

∣
∣
∣

∣
∣
∣

∣
∣
∣ ≤
∣
∣
∣

∣
∣
∣

∣
∣
∣tanΘ(Ǔ2, Y )

∣
∣
∣

∣
∣
∣

∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

⎡

⎢
⎣

f (Λ1)UH
1 X0

(

ǓH
2 X0

)−1 [ f (Λ̌2)]−1

f (Λ3)UH
3 X0

(

ǓH
2 X0

)−1 [ f (Λ̌2)]−1

⎤

⎥
⎦

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

[

f (Λ1)

f (Λ3)

]

⎡

⎢
⎣

UH
1 X0

(

ǓH
2 X0

)−1

UH
3 X0

(

ǓH
2 X0

)−1

⎤

⎥
⎦ [ f (Λ̌2)]−1

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

≤ max
1≤ j≤i−1

i+nb≤ j≤N

| f (λ j )| × max
k≤ j≤�

1

| f (λ j )| ×
∣
∣
∣

∣
∣
∣

∣
∣
∣tanΘ(Ǔ2, X0)

∣
∣
∣

∣
∣
∣

∣
∣
∣ .

(4.20)

We need to pick an f ∈ Pn−1 to make the right-hand side of (4.20) as small as we
can. To this end for the case i = 1, we choose

f (t) = Tn−1

(
2t − (λnb+1 + λN )

λnb+1 − λN

)
/

Tn−1(κ1,�,nb ) (4.21)
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for which

min
k≤ j≤�

f (λ j ) = f (λ�) = 1, max
nb+1≤ j≤N

| f (λ j )| ≤ 1

Tn−1(κ1,�,nb)
. (4.22)

This, together with (4.20), concludes the proof of (4.9) for i = 1.
In general for i > 1, we shall consider polynomials of form

f (t) = (λ1 − t) · · · (λi−1 − t) × g(t), (4.23)

and search a g ∈ Pn−i such that maxi+nb≤ j≤N |g(λ j )| is made as small as we can
while mink≤ j≤� |g(λ j )| = g(λ�) = 1. To this end, we choose

g(t) = Tn−i

(
2t − (λi+nb + λN )

λi+nb − λN

)
/

Tn−i (κi,�,nb ), (4.24)

for which

min
k≤ j≤�

g(λ j ) = g(λ�) = 1, max
i+nb≤ j≤N

|g(λ j )| ≤ 1

Tn−i (κi,�,nb )
. (4.25)

This, together with (4.20) and (4.23), concludes the proof of (4.9) for i > 1.
Next we prove (4.10) with an argument influenced by [11]. Recall (4.16). Let

Q⊥ ∈ C
N×(N−nnb) such that [Qn, Q⊥] is unitary, and write

Ǔ2 = Qn Z + Q⊥Z⊥, (4.26)

where Z = QH
n Ǔ2, Z⊥ = QH⊥Ǔ2. Then

∣
∣
∣

∣
∣
∣

∣
∣
∣cosΘ(Ǔ2,Kn)

∣
∣
∣

∣
∣
∣

∣
∣
∣ = |||Z |||,

∣
∣
∣

∣
∣
∣

∣
∣
∣sinΘ(Ǔ2,Kn)

∣
∣
∣

∣
∣
∣

∣
∣
∣ = |||Z⊥|||. (4.27)

Keeping in mind that AǓ2 = Ǔ2Λ̌2, QH
n AQn = Tn , and TnW = WΩ from (3.5), we

have

QH
n A [Qn, Q⊥][Qn, Q⊥]HǓ2 = QH

n Ǔ2Λ̌2

⇒ [Tn, QH
n AQ⊥]

[

Z
Z⊥

]

= ZΛ̌2

⇒ Tn Z − ZΛ̌2 = −QH
n AQ⊥Z⊥. (4.28)

Similarly to (4.16), partition W and Ω as

W = [
k−1 �−k+1 nnb−�

W1 W2 W3
]

, Ω =
⎡

⎣

k−1 �−k+1 nnb−�

k−1 Ω1
�−k+1 Ω2
nnb−� Ω3

⎤

⎦,
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and set W1,3 := [W1, W3] and Ω1,3 := Ω1 ⊕ Ω3. Multiply (4.28) by WH from the
left to get ΩWHZ − WHZΛ̌2 = −WHQH

n AQ⊥Z⊥, and thus we have

Ω1,3WH
1,3Z − WH

1,3ZΛ̌2 = −WH
1,3QH

n AQ⊥Z⊥. (4.29)

By Lemma 2.1, we conclude that

∣
∣
∣

∣
∣
∣

∣
∣
∣WH

1,3Z
∣
∣
∣

∣
∣
∣

∣
∣
∣ ≤ c

η

∣
∣
∣

∣
∣
∣

∣
∣
∣WH

1,3QH
n AQ⊥Z⊥

∣
∣
∣

∣
∣
∣

∣
∣
∣ ≤ c

η
‖Πn A(I − Πn)‖2 |||Z⊥|||. (4.30)

Let Ũ1,3 = QnW1,3. It can be verified that

WH
1,3Z = (Ũ1,3)

H(Qn Z) = (Ũ1,3)
H(Ǔ2 − Q⊥Z⊥) = (Ũ1,3)

HǓ2

by (4.26). Therefore

∣
∣
∣

∣
∣
∣

∣
∣
∣sinΘ(Ǔ2, Ũ(:,k:�))

∣
∣
∣

∣
∣
∣

∣
∣
∣ =
∣
∣
∣

∣
∣
∣

∣
∣
∣[Ũ1,3, Q⊥]HǓ2

∣
∣
∣

∣
∣
∣

∣
∣
∣

≤
∣
∣
∣

∣
∣
∣

∣
∣
∣(Ũ1,3)

HǓ2

∣
∣
∣

∣
∣
∣

∣
∣
∣+
∣
∣
∣

∣
∣
∣

∣
∣
∣QH⊥Ǔ2

∣
∣
∣

∣
∣
∣

∣
∣
∣

=
∣
∣
∣

∣
∣
∣

∣
∣
∣WH

1,3Z
∣
∣
∣

∣
∣
∣

∣
∣
∣+ |||Z⊥||| (4.31)

which, for the Frobenius norm, can be improved to an identity

‖ sinΘ(Ǔ2, Ũ(:,k:�))‖F =
√

‖WH
1,3Z‖2F + ‖Z⊥‖2F.

The inequality (4.10) is now a consequence of (4.27), (4.30), and (4.31). �
Remark 4.1 Although the appearance of three integers, i , k, and �makes Theorem 4.1
awkward andmore complicated than simply taking i = k or i +nb −1 = �, it provides
the flexibility when it comes to apply (4.9) with balanced ξi,k (which should be made
as small as possible) and δi,�,nb (which should be made as large as possible). In fact,
for given k and �, both ξi,k and δi,�,nb increase with i . But the right-hand side of (4.9)
increases as ξi,k increases and decreases (rapidly) as δi,�,nb increases. So we would
like to make ξi,k as small as we can and δi,�,nb as large as we can. In particular, if
k ≤ � ≤ nb, one can always pick i = 1 so that (4.9) gets used with ξ1,k = 1; but then
if δ1,�,nb is tiny, (4.9) is better used with some i > 1. A general guideline is to make
sure {λ j }�j=k is a cluster and the rest of λ j are relatively far away.

5 Convergence of eigenvalues

In this section, we will bound the differences between the eigenvalues λ j and the Ritz
values λ̃ j for k ≤ j ≤ �.
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Theorem 5.1 Let k = i . For any unitarily invariant norm, we have

∣
∣
∣

∣
∣
∣

∣
∣
∣diag(λi − λ̃i , λi+1 − λ̃i+1, . . . , λ� − λ̃�)

∣
∣
∣

∣
∣
∣

∣
∣
∣

≤ (λi − λN )

[
ζi

Tn−i (κi,�,nb )

]2 ∣
∣
∣

∣
∣
∣

∣
∣
∣tan2 Θ(U(:,k:�), Xi,k,�)

∣
∣
∣

∣
∣
∣

∣
∣
∣ , (5.1)

where κi,�,nb is the same as the one in (4.12), and

ζi = max
i+1≤p≤N

i−1
∏

j=1

∣
∣
∣
∣
∣

λ̃ j − λp

λ̃ j − λi

∣
∣
∣
∣
∣
. (5.2)

In particular, if also λ̃i−1 ≥ λi , then

ζi =
i−1
∏

j=1

∣
∣
∣
∣
∣

λ̃ j − λN

λ̃ j − λi

∣
∣
∣
∣
∣
. (5.3)

Proof Upon shifting A by λi I to A −λi IN , we may assume λi = 0. Doing so doesn’t
change the Krylov subspace Kn(A, V0) = Kn(A − λi I, V0) and doesn’t change any
eigenvector and any Ritz vector of A, but it does shift all eigenvalues and Ritz values
of A by the same amount, i.e., λi , and thus all differences λp −λ j and λp − λ̃ j remain
unchanged. Suppose λi = 0 and thus λi−1 ≥ λi = 0 ≥ λi+1.

Recall (3.5), and adopt the proof of Theorem 4.1 up to (4.19). Take f as

f (t) = (λ̃1 − t) · · · (λ̃i−1 − t) × g(t), (5.4)

where g ∈ Pn−i . We claim YHQnw j = 0 for 1 ≤ j ≤ i − 1. This is because
Y can be represented by Y = (A − λ̃ j I )Ŷ for some matrix Ŷ ∈ C

N×(�−i+1) with
R(Ŷ ) ⊆ Kn which further implies Ŷ = QnY̌ for some matrix Y̌ ∈ C

nnb×(�−i+1).
Thus Y = (A − λ̃ j I )QnY̌ and

YHQnw j = Y̌HQH
n (A − λ̃ j I )Qnw j = Y̌H(Tn − λ̃ j I )w j = 0.

Set

Y0 = Y
(

ǓH
2 X0

)−1 [ f (Λ̌2)]−1 = U1R1 + Ǔ2 + U3R3, (5.5)

where R j = f (Λ j )UH
j X0

(

ǓH
2 X0

)−1 [ f (Λ̌2)]−1.

Let Z = Y0(YH
0 Y0)

−1/2, and denote by μ1 ≥ · · · ≥ μ�−i+1 the eigenvalues of
ZHAZ which depends on f in (5.4) to be determined for best error bounds. Note

ZHQn[w1, . . . , wi−1] = 0, R(Z) ⊆ Kn, ZHZ = I�−i+1. (5.6)
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Write Z = Qn Ẑ because R(Z) ⊆ Kn , where Ẑ has orthonormal columns. Apply
Cauchy’s interlace inequalities to ZH AZ = ẐH(QH

n AQn)Ẑ and QH
n AQn to get

λ̃i+ j−1 ≥ μ j for 1 ≤ j ≤ � − i + 1, and thus

0 ≤ λi+ j−1 − λ̃i+ j−1 ≤ λi+ j−1 − μ j for 1 ≤ j ≤ � − i + 1. (5.7)

In particular, this impliesμ j ≤ λi+ j−1 ≤ λi ≤ 0 and consequently YH
0 AY0 is negative

semidefinite. Therefore for any nonzero vector y ∈ C
�−i+1,

0 ≥ yHYH
0 AY0y = yHRH

1 Λ1R1y + yHΛ̌2y + yHRH
3 Λ3R3y

≥ yHΛ̌2y + yHRH
3 Λ3R3y,

yHYH
0 Y0y = yHRH

1 R1y + yHy + yHRH
3 R3y

≥ yHy,

wherewehaveused yHRH
1 Λ1R1y ≥ 0, yHRH

1 R1y ≥ 0, and yHRH
3 R3y ≥ 0.Therefore

0 ≥ yHYH
0 AY0y

yHYH
0 Y0y

≥ yHYH
0 AY0y

yHy
≥ yH(Λ̌2 + RH

3 Λ3R3)y

yHy
. (5.8)

Denote by μ̂1 ≥ · · · ≥ μ̂�−i+1 the eigenvalues of Λ̌2 + RH
3 Λ3R3. By (5.8), we know

μ j ≥ μ̂ j for 1 ≤ j ≤ � − i + 1 which, together with (5.7), lead to

0 ≤ λi+ j−1 − λ̃i+ j−1 ≤ λi+ j−1 − μ̂ j for 1 ≤ j ≤ � − i + 1. (5.9)

Hence for any unitarily invariant norm [16,23]

∣
∣
∣

∣
∣
∣

∣
∣
∣diag(λi − λ̃i , λi+1 − λ̃i+1, . . . , λ� − λ̃�)

∣
∣
∣

∣
∣
∣

∣
∣
∣

≤ ∣∣∣∣∣∣diag(λi − μ̂1, λi+1 − μ̂2, . . . , λ� − μ̂�−i+1)
∣
∣
∣
∣
∣
∣

≤
∣
∣
∣

∣
∣
∣

∣
∣
∣RH

3 Λ3R3

∣
∣
∣

∣
∣
∣

∣
∣
∣

≤ (λi − λN )

∣
∣
∣

∣
∣
∣

∣
∣
∣RH

3 R3

∣
∣
∣

∣
∣
∣

∣
∣
∣ , (5.10)

where the last inequality is true because (1) RH
3 Λ3R3 is negative semi-definite, (2)

we shifted A by λi I , and (3) the j th largest eigenvalue of RH
3 (λi I − Λ3)R3 which is

positive semi-definite is bounded by the j th largest eigenvalue of (λi − λN )RH
3 R3.

Denote byσ j (in descending order) for 1 ≤ j ≤ �−i+1 the singular values of R3 =
f (Λ3)UH

3 X0

(

ǓH
2 X0

)−1 [ f (Λ̌2)]−1, and by σ̂ j (in descending order) for 1 ≤ j ≤
�− i +1 the singular values of UH

3 X0

(

ǓH
2 X0

)−1
. Then σ̂ j is less than or equal to the

j th largest singular value of

⎡

⎢
⎣

UH
1 X0

(

ǓH
2 X0

)−1

UH
3 X0

(

ǓH
2 X0

)−1

⎤

⎥
⎦, which is tan θ j (Ǔ2, X). We have
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σ j ≤ max
i+nb≤ j≤N

| f (λ j )| × max
i≤ j≤�

1

| f (λ j )| × σ̂ j

≤ max
i+nb≤ j≤N

| f (λ j )| × max
i≤ j≤�

1

| f (λ j )| × tan θ j (Ǔ2, X). (5.11)

What remains to be done is to pick f ∈ Pn−1 to make the right-hand side of (5.11) as
small as we can.

For the case of i = 1, we choose f as in (4.21), and then (4.22) holds. Finally
combining (5.10) and (5.11) with (4.22) leads to (5.1) for the case i = 1.

In general for i > 1, we take f (t) as in (5.4) with g(t) given by (4.24) satisfying
(4.25), together again with (5.10) and (5.11), to conclude the proof. �
Remark 5.1 In Theorem 5.1, k = i always, unlike lin Theorem 4.1, because we need
the first equation in (5.6) for our proof to work.

6 A comparison with the existing results

The existing results related to our results in the previous two sections include those
by Kaniel [12], Paige [20], and Saad [22] (see also Parlett [21]). The most complete
and strongest ones are in Saad [22].

In comparing ours with Saad’s results, the major difference is that ours are
of the eigenspace/eigenvalue cluster type while Saad’s results are of the single-
vector/eigenvalue type. When specialized to an individual eigenvector/eigenvalue,
our results reduce to those of Saad. Specifically, for k = � = i the inequality (4.9)
becomes Saad [22, Theorem 5] and Theorem 5.1 becomes Saad [22, Theorem 6]. Cer-
tain parts of our proofs bear similarities to Saad’s proofs for the block case, but there
are subtleties in our proofs that cannot be handled in a straightforward way following
Saad’s proofs.

It is well-known [7] that eigenvectors associated with eigenvalues in a tight clus-
ter are sensitive to perturbations/rounding errors while the whole invariant subspace
associated with the cluster is not so much. Therefore it is natural to treat the entire
invariant subspace as a whole, instead of each individual eigenvectors in the invariant
subspace separately.

In what follows, we will perform a brief theoretical comparison between our results
and those of Saad, and point out when Saad’s bounds may be too large. Numerical
examples in the next section support this comparison.

As mentioned, Saad’s bounds are of the single-vector/eigenvalue type. So a
direct comparison cannot be done. But it is possible to derive some bounds for
eigenspaces/eigenvalue clusters from Saad’s bounds, except that these derived bounds
are less elegant and (likely) less sharp (which we will demonstrate numerically in
Sect. 7). One possible derivation based on [22, Theorem 5] may be as follows. By
Proposition 2.2,

max
k≤ j≤�

sin θ(u j ,Kn) ≤ ∣∣∣∣∣∣sinΘ(U(:,k:�),Kn)
∣
∣
∣
∣
∣
∣ ≤

�
∑

j=k

sin θ(u j ,Kn), (6.1)
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max
k≤ j≤�

sin θ(u j ,Kn) ≤ ‖ sinΘ(U(:,k:�),Kn)‖F ≤
√
√
√
√

�
∑

j=k

sin2 θ(u j ,Kn) . (6.2)

These inequalities imply that the largest sin θ(u j ,Kn) is comparable to
sinΘ(U(:,k:�),Kn), and thus finding good bounds for all sin θ(u j ,Kn) is comparably
equivalent to finding a good bound for sinΘ(U(:,k:�),Kn).

The right-most sides of (6.1) and (6.2) can be bounded, using [22, Theorem 5] (i.e.,
the inequality (4.9) for the case k = � = i). In the notation of Theorem 4.1, we have,
for k ≤ j ≤ �,

tan θ(u j ,Kn) ≤ ξ j, j

Tn− j (κ j, j,nb )
tan θ(u j , X j, j, j ) (6.3)

and use sin θ ≤ tan θ to get

∣
∣
∣
∣
∣
∣sinΘ(U(:,k:�),Kn)

∣
∣
∣
∣
∣
∣ ≤

�
∑

j=k

ξ j, j

Tn− j (κ j, j,nb )
tan θ(u j , X j, j, j ), (6.4)

‖ sinΘ(U(:,k:�),Kn)‖F ≤
√
√
√
√

�
∑

j=k

[
ξ j, j

Tn− j (κ j, j,nb )
tan θ(u j , X j, j, j )

]2

, (6.5)

where X j, j, j ∈ C
N are as defined right before Theorem 4.1, and κ j, j,nb are as defined

in Theorem 4.1. If θ1(U(:,k:�),Kn) is not too close to π/2 which we will assume, the
left-hand sides of (4.9), (6.4), and (6.5) are comparable by Proposition 2.2, but there
isn’t any easy way to compare their right-hand sides. Nevertheless, we argue that the
right-hand side of (4.9) is preferable. First it is much simpler; Second, it is potentially
much sharper for two reasons:

1. One or more ξ j, j for k ≤ j ≤ � in (6.4) and (6.5) may be much bigger than ξi,k in
(4.9).

2. By Proposition 2.3, Θ(U(:,k:�), [Xk,k,k, . . . , X�,�,�]) can be bounded in terms of
the angles in {θ(u j , X j, j, j ), k ≤ j ≤ �} but not the otherway around, i.e., together
{θ(u j , X j, j, j ), k ≤ j ≤ �} cannot be bounded by something in terms of

Θ(U(:,k:�), [Xk,k,k, . . . , X�,�,�])

in general as we argued in Remark 2.1.

For bounding errors between eigenvectors u j and Ritz vectors ũ j , the following
inequality was established in [22, Theorem3] (which is also true for the block Lanczos
method as commented there [22, p. 703]):

sin θ(u j , ũ j ) ≤ χ j sin θ(u j ,Kn) with χ j =
√
√
√
√1 +

(

‖Πn A(I − Πn)‖2
minp �= j |λ j − λ̃p|

)2

.

(6.6)
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This inequality can grossly overestimate sin θ(u j , ũ j ) even with the “exact” (i.e.,
computed) sin θ(u j ,Kn) for the ones associated with a cluster of eigenvalues due to
possibly extremely tiny gap minp �= j |λ j − λ̃p|, not to mention after using (6.3) to
bound sin θ(u j ,Kn). By Proposition 2.3, we have

‖ sinΘ(U(:,k:�), Ũ(:,k:�))‖F ≤
√
√
√
√

�
∑

j=k

sin2 θ(u j , ũ j )

≤
√
√
√
√

�
∑

j=k

χ2
j sin2 θ(u j ,Kn) (6.7)

≤
√
√
√
√

�
∑

j=k

[
χ jξ j, j

Tn− j (κ j, j,nb )
tan θ(u j , X j, j, j )

]2

. (6.8)

Inherently any bound derived from bounds for all sin2 θ(u j , ũ j ) likely very much
overestimates ‖ sinΘ(U(:,k:�), Ũ(:,k:�))‖2F because there is no simply way to bound
∑�

j=k sin
2 θ(u j , ũ j ) in terms of ‖ sinΘ(U(:,k:�), Ũ(:,k:�))‖2F, i.e., the former may

already be much bigger than the latter, as we argued in Remark 2.1. So we antici-
pate the bounds of (6.7) and (6.8) to be bad when λ j with k ≤ j ≤ � form a tight
cluster.

Saad [22, Theorem 6] provides a bound on λ j − λ̃ j individually. The theorem is the
same as our Theorem 5.1 for the case k = � = i . Concerning the eigenvalue cluster
{λk, . . . , λ�}, Saad’s theorem gives

√
√
√
√

�
∑

j=k

(λ j − λ̃ j )2 ≤
√
√
√
√

�
∑

j=k

(λ j − λN )2
[

ζ j

Tn− j (κ j, j,nb )
tan θ(u j , X j, j, j )

]4

. (6.9)

This bound, too, could be much bigger than the one of (5.1) because of one or more
ζ j with k = i ≤ j ≤ � are much bigger than ζi .

7 Numerical examples

In this section, we shall numerically test the effectiveness of our upper bounds on
the convergence of the block Lanczos method in the case of a cluster. In particular,
we will demonstrate that our upper bounds are preferable to those of the single-
vector/eigenvalue type inSaad [22], especially in the case of a tight cluster. Specifically,

(a) the subspace angle Θ(U(:,k:�), Xi,k,�) used in our bounds is more reliable than the
individual angles in {θ(u j , X j, j, j ), k ≤ j ≤ �} together to boundΘ(U(:,k:�),Kn)

(see remarks in Sect. 6), and
(b) our upper bounds are much sharper than those derived from Saad’s bounds in the

presence of tight clusters of eigenvalues.
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We point out that the worst individual bound of (6.3) or (6.6) or for λ j − λ̃ j is at
the same magnitude as the derived bound of (6.5) or (6.8) or (6.9), respectively. So
if a derived bound is bad, the worst corresponding individual bound cannot be much
better. For this reason, we shall focus on comparing our bounds to the derived bounds
in Sect. 6.

Our first example below is intended to illustrate the first point (a), while the second
example supports the second point (b). The third example is essentially taken from
[22], again to show the effectiveness of our upper bounds.

We implemented the block Lanczos method within MATLAB, with full reorthog-
onalization to simulate the block Lanczos method in exact arithmetic. This is the best
one can do in a floating point environment. In our tests, without loss of generality, we
take

A = diag(λ1, . . . , λN )

with special eigenvalue distributions to be specified later. Although we stated our
theorems in unitarily invariant norms for generality, our numerical results are presented
in terms of the Frobenius norm for easy understanding (and thus for Theorem 4.1, γ
by (4.15) is used). No breakdown was encountered during all Lanczos iterations.

We will measure the following errors: (in all examples, k = i = 1 and � = nb = 3)

ε1 =
√
√
√
√

�
∑

j=k

|λ̃ j − λ j |2, (7.1a)

ε2 = ‖ sinΘ(U(:,k:�), Ũ(:,k:�))‖F, (7.1b)

ε3 = ‖ sinΘ(U(:,k:�),Kn)‖F, (7.1c)

ε4 = ‖ tanΘ(U(:,k:�),Kn)‖F, (7.1d)

for their numerically observed values (considered as “exact”), bounds of Theorems 4.1
and 5.1, and derived bounds of (6.9), (6.8) and (6.5) considered as “Saad’s bounds”
for comparison purpose. Rigorously speaking, these are not Saad’s bounds.

For very tiny θ1(U(:,k:�),Kn), ε3 ≈ ε4 since

ε3 ≤ ε4 ≤ ε3/

√

1 − sin2 θ1(U(:,k:�),Kn).

Indeed in the examples that follows, the difference between ε3 and ε4 is so tiny that
we can safely ignore their difference. Therefore we will be focusing on ε1, ε2, and ε3,
but not ε4.

Example 7.1 We take N = 600, the number of Lanczos steps n = 20, and

λ1 = 3.5, λ2 = 3, λ3 = 2.5, λ j = 1 − 5 j

N
, j = 4, . . . , N ,

and set i = k = 1, � = 3 and nb = 3. There are two eigenvalue clusters:
{λ1, λ2, λ3} and {λ4, . . . , λN }. We are seeking approximations related to the first clus-
ter {λ1, λ2, λ3}. The gap 0.5 between eigenvalues within the first cluster is to ensure
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Table 1 Example 7.1: N = 600, n = 20, i = k = 1, � = 3, nb = 3, and V0 as in (7.2)

√
∑�

j=k |λ̃ j − λ j |2 ‖ sinΘ(U(:,k:�), Ũ(:,k:�))‖F ‖ sinΘ(U(:,k:�),Kn )‖F

Observed Bound of Saad bound Observed Bound of Saad bound Observed Bound of Saad bound
(5.1) of (6.9) (4.11) of (6.8) (4.9) of (6.5)

1.9 × 10−14 4.4 × 10−14 4.2 × 10−3 3.5 × 10−8 1.3 × 10−7 6.8 × 10−2 3.3 × 10−8 1.0 × 10−7 2.5 × 10−2

that our investigation for our point (a) will not be affected too much by the eigen-
value closeness in the cluster. The effect of the closeness is, however, the subject of
Example 7.2.

Our first test run is with a special V0 given by

V0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
0 1 0
0 0 1
1
N sin 1 cos 1
...

...
...

N−nb
N sin(N − nb) cos(N − nb)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (7.2)

Table 1 reports ε1, ε2, and ε3 and their bounds.Our bounds are very sharp—comparable
to the observed ones, but the ones by (6.9), (6.8) and (6.5) overestimate the true errors
toomuch to be ofmuch use. Looking at (6.5) carefully, we find two contributing factors
that make the resulting bound too big. The first contributing factor is the constants

ξ1,1 = 1, ξ2,2 = 15, ξ3,3 = 105. (7.3)

The second contributing factor is the angles θ(u j , X j, j, j ) for k ≤ j ≤ �:

j 1 2 3

θ j (U(:,k:�), Xi,k,�) 1.51299 1.51298 1.49976
θ(u j , X j, j, j ) 1.49976 1.57066 1.57069

What we see is that the canonical angles θ j (U(:,k:�), Xi,k,�) are bounded away from
π/2 but the last two of the angles θ(u j , X j, j, j ) are nearly π/2 = 1.57080. This of
course has something to do with the particular initial V0 in (7.2). But given the exact
eigenvectors are e1, e2, e3, this V0 should not be considered a deliberate choice so as
to simply make our bounds look good.

Similar reasons explain why the upper bounds of (6.9) and (6.8) are poor as well.
In fact, now the first contributing factor is

ζ1 = 1, ζ2 = 15 − 1.5 · 10−13 ≈ 15, ζ3 = 105 − 3.8 · 10−12 ≈ 105, (7.4)

χ1 ≈ χ2 ≈ χ3 ≈ 2.6860, (7.5)
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Table 2 Example 7.1: averages over 20 random V0

√
∑�

j=k |λ̃ j − λ j |2 ‖ sinΘ(U(:,k:�), Ũ(:,k:�))‖F ‖ sinΘ(U(:,k:�),Kn )‖F

Observed Bound of Saad bound Observed Bound of Saad bound Observed Bound of Saad bound
(5.1) of (6.9) (4.11) of (6.8) (4.9) of (6.5)

1.2 × 10−14 2.5 × 10−13 8.2 × 10−8 5.9 × 10−8 2.5 × 10−7 2.7 × 10−4 5.6 × 10−8 2.0 × 10−7 9.9 × 10−5

and then again the set of angles θ(u j , X j, j, j ) for k ≤ j ≤ � is the second contributing
factor.

Next we test random initial V0 as generated byrandn(N , nb) inMATLAB. Table 2
reports the averages of the same errors/bounds as reported before over 20 test runs.
The bounds of (6.9), (6.8) and (6.5) are much better now, but still about 1,000 times
bigger than ours. The following table displays the canonical angles θ j (U(:,k:�), Xi,k,�)

as well as θ(u j , X j, j, j ).

j 1 2 3

θ j (U(:,k:�), Xi,k,�) 1.5497 1.5183 1.4712
θ(u j , X j, j, j ) 1.5481 1.5359 1.5281

It shows that the randomness in V0 makes none of θ(u j , X j, j, j ) for k ≤ j ≤ �

as close to π/2 as V0 in (7.2) does. In fact, they are about at the same level as the
canonical angles θ j (U(:,k:�), Xi,k,�). Therefore, the sole contributing factor that makes
the bounds of (6.9), (6.8), and (6.5), worse than ours are the ξ ’s and ζ ’s in (7.3) and
(7.4).

Example 7.2 Let N = 1,000, n = 25, and

λ1 = 2 + δ, λ2 = 2, λ3 = 2 − δ, λ j = 1 − 5 j

N
, j = 4, . . . , N ,

and again set i = k = 1, � = 3, nb = 3. We will adjust the parameter δ > 0 to
control the tightness among eigenvalues within the cluster {λ1, λ2, λ3} and to see how
it affects the upper bounds and the convergence rate of the block Lanczos method. We
will demonstrate that our bounds which are of the eigenspace/eigenvalue cluster type
are insensitive to δ and barely change as δ goes to 0, while “Saad’s bounds” are very
sensitive and quickly become useless as δ goes to 0. We randomly generate initial V0
and investigate the average errors/bounds over 20 test runs. Since the randomness will
reduce the difference in contributions byΘ(U(:,k:�), Xi,k,�) and by θ(u j , X j, j, j ) as we
have seen in Example 7.1, the gap δ within the cluster and the gap between the cluster
and the rest of the eigenvalues are the only contributing factor for approximation errors
εi .

Table 3 reports the averages of the errors defined in 7.1 and the averages of their
bounds of Theorems 4.1 and 5.1 and “Saad’s bounds” of (6.9), (6.8) and (6.5) over 20
test runs. From the table, we observed that
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10−3

10−2

δ

Observed ε5, observed ε2, and our bound on ε2

observed ε5
observed ε2
bound on ε2

10−12 10−10 10 −8 10 −6 10 −4 10 −2 10 0
10−10

10−5

100

105

1010

1015

1020

1025

1030

δ

Observed ε5 and its Saad bounds

observed ε5
bound β1
bound β2

Fig. 1 Observed ε5 deteriorates as δ goes to 0 while ε2 seems to remain unchanged in magnitude. “Saad’s
bounds” on ε5 are not included in the left plot in order not to obscure the radical difference between ε2 and
ε5 for tiny δ

(i) all of our bounds which are of the eigenspace/eigenvalue cluster type are rather
sharp—comparable to the observed (“exact”) errors, and moreover, they seem to
be independent of the parameter δ as it becomes tinier and tinier;

(ii) as δ gets tinier and tinier, the “Saad’s bounds” of (6.9), (6.8), and (6.5) increase
dramatically and quickly contain no useful information for δ = 10−3 or smaller.

To explain the observation (ii), we first note that ξ j, j in (6.5) are given by

ξ1,1 = 1, ξ2,2 = 1 + 6

δ
, and ξ3,3 = 6

δ
+ 36

δ2
.

They grow uncontrollably to ∞ as δ goes to 0. Therefore, the “Saad’s bound” of (6.5)
is about O(δ−2) for tiny δ. Similarly, since ξ j, j and ζ j are almost of the same level,
it can be seen from (6.9) that the “Saad’s bound” for ε1 is about O(δ−4). For (6.8),
when n is moderate, χ j is aboutO(δ−1), and therefore, “Saad’s bound” for ε2 is about
O(δ−3) for tiny δ.

We argued in Sect. 6 that Saad’s bound on θ(u j , ũ j ) can be poor in a tight cluster
of eigenvalues. Practically, it is also unreasonable to expect it to go as tiny as the
machine’s unit roundoff u as the number of Lanczos steps increases. For this example,
by theDavis-Kahan sin θ theorem [7] (see also [23]), we should expect, for 1 ≤ j ≤ 3,

(observed) sin θ(u j , ũ j ) = O(Lanczos approximation error) + O(u/δ),

where O(u/δ) is due to machine’s roundoff and can dominate the Lanczos approxi-
mation error after certain number of Lanczos steps. To illustrate this point, we plot, in
Fig. 1,

ε5 =
√
√
√
√

�
∑

j=k

sin2 θ(u j , ũ j )
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Table 4 Example 7.3: N = 900, n = 12, i = k = 1, � = 3, nb = 3

√
∑�

j=k |λ̃ j − λ j |2 ‖ sinΘ(U(:,k:�), Ũ(:,k:�))‖F ‖ sinΘ(U(:,k:�),Kn )‖F

Observed Bound of Saad bound Observed Bound of Saad bound Observed Bound of Saad bound
(5.1) of (6.9) (4.11) of (6.8) (4.9) of (6.5)

9.4 × 10−10 1.5 × 10−8 4.8 × 10−4 3.9 × 10−5 1.3 × 10−4 3.0 × 10−2 3.7 × 10−5 1.1 × 10−4 1.9 × 10−2

as δ varies from 10−1 down to 10−11. Also plotted are its two upper bounds β1 and
β2 of (6.7) and (6.8)

ε5 ≤ β1 :=
√
√
√
√

�
∑

j=k

χ2
j sin

2 θ(u j ,Kn)

≤ β2 :=
√
√
√
√

�
∑

j=k

[
χ jξ j, j

Tn− j (κ j, j,nb )
tan θ(u j , X j, j, j )

]2

,

as well as the observed values of ε2 = ‖ sinΘ(U(:,k:�), Ũ(:,k:�))‖F defined in (7.1b) and
its upper bounds of (4.11). From the figure, we see that the observed ε5 is about 10−7

for δ ≥ 10−7 and then starts to deteriorate from about 10−7 up to 10−3 as δ goes down
to 10−8 or smaller. At the same time, the magnitudes of ε2 and its bound of (4.11)
remain unchanged around 10−7. This supports our point that one should measure
the convergence of the entire invariant subspace corresponding to tightly clustered
eigenvalues rather than their each individual eigenvector within the subspace.

Example 7.3 Our last example is from [22]:

λ1 = 2, λ2 = 1.6, λ3 = 1.4, λ j = 1 − j − 3

N
, j = 4, . . . , N ,

V0 =
⎡

⎣

1 1 1 · · · 1 1 1
1 0 −1 · · · 1 0 −1
1 −2 1 · · · 1 −2 1

⎤

⎦

H

.

Since the first three eigenvalues are in a cluster, we take i = k = 1, � = 3 and nb = 3.
Saad [22] tested this problem for N = 60 and n = 12. We ran our code with various
N , including N = 60 and saw little variations in observed errors and their bounds.
What we report in Table 4 is for N = 900 and n = 12.

The table shows that our bounds very much agree with the corresponding observed
values but “Saad’s bounds” are much bigger — about the square roots of the observed
values and our bounds. This is due mainly to the small gap between λ2 and λ3 since
we observed that θ j (U(:,k:�), Xi,k,�) ≈ θ(u j , X j, j, j ) ≈ 1.51303 for j = 1, 2, 3.
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8 More bounds

The numerical examples in the previous section indicate that ξi,k in Theorem 4.1
and ζi in Theorem 5.1 can worsen the error bounds, especially in the case of tightly
clustered eigenvalues. However, both can be made 1 if only the first nb eigenpairs are
considered (see Remark 4.1). To use Theorems 4.1 or 5.1 for eigenvalues/eigenvectors
involving eigenpairs beyond the first nb ones, we have to have ξi,k or ζi in the mix.
Thus potentially the resulting bounds may overestimate too much to be indicative.

Another situation in which the bounds of Theorems 4.1 or 5.1 would overestimate
the actual quantities (by too much) is when there are clustered eigenvalues with cluster
sizes bigger than nb, because then δi,�,nb is very tiny for any choices of i , k, and �. Ye
[25] proposed an adaptive strategy to use variable nb aiming at updating nb adaptively
so that it is bigger than or equal to the biggest cluster size of interest.

In what follows, we propose more error bounds with ξi,k and ζi always 1. However,
it requires the knowledge of the canonical angles from the interested eigenspace to
Ki (A, V0), where i < n is a positive integer. Roughly speaking, the new results show
that if the eigenspace is not too far from Ki (A, V0) for some i < n (in the sense
that no canonical angle is too near π/2), the canonical angles from the eigenspace
to Kn(A, V0) are reduced by a factor purely depending upon the optimal polynomial
reduction.

To proceed, we let i < n. Now we are considering the 1st to (inb)th eigenpairs of
A among which the kth to �th eigenvalues may form a cluster as in

where

1 ≤ k < � ≤ inb, 1 ≤ i < n.

Suppose θ1(U(:,1:inb), Qi ) = θ1(U(:,1:inb),Ki (A, V0)) < π/2, i.e.,

rank(QH
i U(:,1:inb)) = inb. (8.1)

Consider an application of Proposition 2.4(b) with k1 = � − k + 1,

X = R(Qi ), Y = R(U(:,1:inb)), [y1, y2, . . . , yk1 ] = [uk, uk+1, . . . , u�].

The application yields a unique

Zi,k,� := [x1, x2, . . . , xk1 ] (8.2)

such that R(Zi,k,�) ⊆ R(Qi ) and

U(:,1:inb)U
H
(:,1:inb)Zi,k,� = U(:,k:�) ≡ [uk, uk+1, . . . , u�]. (8.3)
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Moreover

∣
∣
∣
∣
∣
∣sinΘ(U(:,k:�), Zi,k,�)

∣
∣
∣
∣
∣
∣ ≤ ∣∣∣∣∣∣sinΘ(U(:,1:inb), Qi )

∣
∣
∣
∣
∣
∣ , (8.4)

∣
∣
∣
∣
∣
∣tanΘ(U(:,k:�), Zi,k,�)

∣
∣
∣
∣
∣
∣ ≤ ∣∣∣∣∣∣tanΘ(U(:,1:inb), Qi )

∣
∣
∣
∣
∣
∣ . (8.5)

Finally, we observe that

Kn−i+1(A, Qi ) = Kn(A, V0). (8.6)

The rest is the straightforward application of Theorems 4.1 and 5.1 toKn−i+1(A, Qi ).

Theorem 8.1 For any unitarily invariant norm |||·|||, we have

∣
∣
∣
∣
∣
∣tanΘ(U(:,k:�),Kn)

∣
∣
∣
∣
∣
∣ ≤ 1

Tn−i (κ̂i,�,nb )

∣
∣
∣
∣
∣
∣tanΘ(U(:,k:�), Zi,k,�)

∣
∣
∣
∣
∣
∣ , (8.7)

∣
∣
∣
∣
∣
∣sinΘ(U(:,k:�), Ũ(:,k:�))

∣
∣
∣
∣
∣
∣ ≤ γ

∣
∣
∣
∣
∣
∣sinΘ(U(:,k:�),Kn)

∣
∣
∣
∣
∣
∣ (8.8)

≤ γ

Tn−i (κ̂i,�,nb )

∣
∣
∣
∣
∣
∣tanΘ(U(:,k:�), Zi,k,�)

∣
∣
∣
∣
∣
∣ , (8.9)

where Zi,k,� is defined by (8.2), Ũ by (3.5), and

δ̂i,�,nb = λ� − λinb+1

λ� − λN
, κ̂i,�,nb = 1 + δ̂i,�,nb

1 − δ̂i,�,nb

, (8.10)

and γ takes the same form as in (4.13) with, again, the constant c lying between 1 and
π/2 and being 1 for the Frobenius norm or if λ̃k−1 > λk , and with η being the same
as the one in (4.14). For the Frobenius norm, γ can be improved to the one in (4.15).

Theorem 8.2 Let k = 1. For any unitarily invariant norm, we have

∣
∣
∣

∣
∣
∣

∣
∣
∣diag(λ1 − λ̃1, λ2 − λ̃2, . . . , λ� − λ̃�)

∣
∣
∣

∣
∣
∣

∣
∣
∣

≤ (λ1 − λN )

[
1

Tn−i (κ̂i,�,nb )

]2 ∣
∣
∣

∣
∣
∣

∣
∣
∣tan2 Θ(U(:,1:�), Zi,1,�)

∣
∣
∣

∣
∣
∣

∣
∣
∣ , (8.11)

where κ̂i,�,nb is the same as the one in (8.10).

9 Conclusions

We have established a new convergence theory for solving large scale Hermitian
eigenvalue problem by the block Lanczos method from a perspective of bounding
approximation errors in the entire eigenspace associated with all eigenvalues in a tight
cluster, in contrast to bounding errors in each individual approximate eigenvector as
was done in Saad [22]. In a way, this is a natural approach to follow because the block
Lanczos method is known to be capable of computing multiple/cluster eigenvalues
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much faster than the single-vector Lanczos method (which will miss all but one copy
of each multiple eigenvalue). The outcome is three error bounds on

1. the canonical angles from the eigenspace to the generated Krylov subspace,
2. the canonical angles between the eigenspace and its Ritz approximate subspace,
3. the total differences between the eigenvalues in the cluster and their corresponding

Ritz values.

These bounds are much sharper than the existing ones and expose true rates of con-
vergence of the block Lanczos method towards eigenvalue clusters, as illustrated by
numerical examples. Furthermore, their sharpness is independent of the closeness of
eigenvalues within a cluster.

As is well-known, the (block) Lanczos method favors the eigenvalues at both ends
of the spectrum. So far, we have only focused on the convergence of the few largest
eigenvalues and their associated eigenspaces, but as is usually done, applying what we
have established to the eigenvalue problem for −A will lead to various convergence
results for the few smallest eigenvalues and their associated eigenspaces.

All results are stated in terms of unitarily invariant norms for generality, but spe-
cializing them to the spectral norm and the Frobenius norm will be sufficient for all
practical purposes. Those results can also be extended to the generalized eigenvalue
problem without much difficulty [19, Sect. 9].
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