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Abstract In this paper, we present a new variational integrator for problems in
Lagrangian mechanics. Using techniques from Galerkin variational integrators, we
construct a scheme for numerical integration that converges geometrically, and is
symplectic and momentum preserving. Furthermore, we prove that under appropri-
ate assumptions, variational integrators constructed using Galerkin techniques will
yield numerical methods that are arbitrarily high-order. In particular, if the quadrature
formula used is sufficiently accurate, then the resulting Galerkin variational integra-
tor has a rate of convergence at the discrete time-steps that is bounded below by the
approximation order of the finite-dimensional function space. In addition, we show
that the continuous approximating curve that arises from the Galerkin construction
converges on the interior of the time-step at half the convergence rate of the solution
at the discrete time-steps. We further prove that certain geometric invariants also con-
verge with high-order, and that the error associated with these geometric invariants is
independent of the number of steps taken. We close with several numerical examples
that demonstrate the predicted rates of convergence.

Mathematics Subject Classification 37M15 · 65M70 · 65P10 · 70H25

1 Introduction

There has been significant recent interest in the development of structure-preserving
numerical methods for variational problems. One of the keypoints of interest is
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developing high-order symplectic integrators for Lagrangian systems. The general-
ized Galerkin framework has proven to be a powerful theoretical and practical tool
for developing such methods. This paper presents a high-order Galerkin variational
integrator for Lagrangian systems on vector spaces that exhibits geometric conver-
gence. In addition, this method is symplectic, momentum-preserving, and stable even
for very large time-steps.

Galerkin variational integrators fall into the general framework of discrete mechan-
ics. For a general and comprehensive introduction to the subject, the reader is referred
toMarsden andWest [35]. Discrete mechanics develops mechanics from discrete vari-
ational principles, and, asMarsden andWest demonstrated, gives rise to many discrete
structures which are analogous to structures found in classical mechanics. By taking
these structures into account, discrete mechanics suggests numerical methods which
often exhibit excellent long-term stability and qualitative behavior. Because of these
qualities, much recent work has been done on developing numerical methods from
the discrete mechanics viewpoint. See, for example, Hairer et al. [17] for a broad
overview of the field of geometric numerical integration, and Marsden and West [35];
Müller and Ortiz [38]; Patrick and Cuell [40] discuss the error analysis of variational
integrators. Various extensions have also been considered, including, Lall and West
[22]; Leok and Zhang [31] for Hamiltonian systems; Fetecau et al. [15] for nonsmooth
problems with collisions; Lew et al. [32]; Marsden et al. [36] for Lagrangian PDEs;
Cortés and Martínez [9]; Fedorov and Zenkov [14]; McLachlan and Perlmutter [37]
for nonholonomic systems; Bou-Rabee and Owhadi [5,6] for stochastic Hamiltonian
systems; Bou-Rabee and Marsden [4]; Lee et al. [25,26] for problems on Lie groups
and homogeneous spaces.

The fundamental object in discrete mechanics is the discrete Lagrangian Ld :
Q × Q × R → R, where Q is a configuration manifold. Denoting points in the
configuration manifold as q, and time dependent curves through the configuration
manifold as q(t), the discrete Lagrangian is chosen to be an approximation to the
action of a Lagrangian over the time-step [0, h],

Ld (q0, q1, h) ≈ ext
q∈C2([0,h],Q)

q(0)=q0,q(h)=q1

∫ h

0
L (q (t) , q̇ (t)) dt, (1)

or simply Ld(q0, q1) when h is assumed to be constant. Discrete mechanics is formu-
lated by finding stationary points of a discrete action sum based on the sum of discrete
Lagrangians,

S

(
{qk}N

k=1

)
=

N−1∑
k=1

Ld (qk, qk+1) ≈
∫ t2

t1
L (q (t) , q̇ (t)) dt. (2)

For Galerkin variational integrators specifically, the discrete Lagrangian is induced
by constructing a discrete approximation of the action integral over the interval [0, h]
based on an (n + 1)-dimensional function space Mn([0, h], Q), and quadrature rule,
h
∑m

j=1 b j f
(
c j h
) ≈ ∫ h

0 f (t)dt . Once this discrete action is constructed, the discrete
Lagrangian can be recovered by solving for stationary points of the discrete action sub-
ject to fixed endpoints, and then evaluating the discrete action at these stationary points,
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Spectral variational integrators 683

Ld (q0, q1, h) = ext
qn∈Mn([0,h],Q)

qn(0)=q0,qn(h)=q1

h
m∑

j=1

b j L
(
q
(
c j h
)
, q̇
(
c j h
))

. (3)

Because the rate of convergence of the approximate flow to the true flow is related to
how well the discrete Lagrangian approximates the true action, this type of construc-
tion gives a method for constructing and analyzing high-order methods. The hope is
that the discrete Lagrangian inherits the accuracy of the function space used to con-
struct it, much in the same way as standard finite-element methods. We will show that
for certain Lagrangians, Galerkin constructions based on high-order approximation
spaces do in fact result in correspondingly high-order methods.

Significant work has already been done constructing and analyzing high-order vari-
ational integrators. In Leok [28], a number of different possible constructions based on
the Galerkin framework are presented. In Leok and Shingel [29], piecewise Hermite
polynomials are used to construct high-order methods using a collocation method on
the prolongation of the Euler–Lagrange vector field. In Leok and Shingel [30], a gen-
eral construction is presented for converting a one-step method of a given order into a
variational integrator of the same order. What separates this work from the work that
precedes it is

(1) the use of the spectral approximation paradigm, which induces methods that
exhibit geometric convergence;

(2) theorems establishing lower bounds on the rate of convergence for a general class
of Galerkin variational integrators, and providing explicit conditions under which
convergence is guaranteed;

(3) an examination of the rate of convergence of continuous approximations on the
interior of the time-step;

(4) an examination of the behavior of geometric invariants along these continuous
approximations on the interior of the time-step.

We summarize our major results below:

(1) If Q is a vector space, for Lagrangians of the canonical form

L (q, q̇) = 1

2
q̇T Mq̇ − V (q),

Galerkin methods can be used to construct variational integrators of arbitrarily
high-order.

(2) If Q is a vector space, for an arbitrary Lagrangian L : T Q → R, if the Lagrangian
is sufficiently smooth and the stationary point of the action is aminimizer,Galerkin
methods can be used to construct variational integrators of arbitrarily high-order.

(3) If Q is a vector space, for Lagrangians of the form

L (q, q̇) = 1

2
q̇T Mq̇ − V (q),

spectral Galerkin methods can be used to construct variational integrators which
converge geometrically.
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(4) If Q is a vector space, for an arbitrary Lagrangian L : T Q → R, if the Lagrangian
is sufficiently smooth and the stationary point of the action is a minimizer, spectral
Galerkin methods can be used to construct variational integrators which converge
geometrically.

(5) If Q is a vector space, it is possible to recover a continuous approximation to the
flow on the interior of the time-step from a Galerkin variational integrator which
has error O(h

p
2 ) for a Galerkin variational integrator with local error O(h p), or

which converges geometrically for a spectral Galerkin variational integrator with
geometric convergence.

(6) If the Galerkin variational integrator shares a symmetry with the Lagrangian L ,
then the geometric invariant resulting from that symmetry is preserved up to a
fixed error along the continuous approximation on the interior of the time-step.
This error is independent of the number of time-steps taken.

We will present these results with greater precision once we have introduced the
necessary background and presented the construction of our methods. Furthermore,
we will present numerical evidence of our results with several examples, and discuss
possible extensions of this work.

1.1 Background: structure-preserving numeric integration,
Galerkin methods, and spectral methods

1.1.1 Structure-preserving numeric integration

Structure-preserving numeric integration has become an important tool in scientific
computing. Broadly speaking, structure-preserving methods are numerical methods
for differential equations which preserve or approximately preserve important invari-
ants of the underlying problem. Classic examples of invariants in a differential equa-
tion include the energy, linear, and angular momentum in certain mechanical systems.
However, the study of geometric mechanics has revealed structure in many impor-
tant mechanical systems which is much more subtle than these classical examples,
including the symplectic form for mechanical systems, which is particularly relevant
to the discussion here. One can think of the symplectic form as an area form in the
phase space of a mechanical system; it will not be discussed in great detail here but the
interested reader is referred to many of the classic texts on geometric integration and
geometric mechanics for a comprehensive overview, particularly Marsden and Ratiu
[34] and Hairer et al. [17]. Methods which preserve the symplectic form are known as
symplectic integrators, and they comprise a particularly important class of geometric
numerical methods.

The structure associated with differential equations is important because it reveals
much about the behavior of the system described by the differential equations. Invari-
ants of physical systems can be viewed as constraints on the evolution of the system.
Structure-preserving integrators tend to outperform classical methods for simulating
systems with structure over long time-scales because the evolution of the approximate
solutions is constrained in a similar way to the true solution.
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(a) (b) (c)

Fig. 1 The pendulum (a), is a classic example of a mechanical system with geometric structure. The level
sets of the Hamiltonian function, H , are plotted in b and c in black. The evolution of (θ, θ̇) produced by
two different numerical methods are plotted on these level sets. The classical numerical method (b) quickly
crosses the level sets, while the structure-preserving method (c) approximately follows them

As a simple illustrative example, consider a pendulum of length 1 and mass 1 under
the influence of gravity. The equations of motion for the pendulum can be given in
terms of an angle, θ , as illustrated in Fig. 1a, and are

θ̈ (t) = −g sin (θ (t)), (4)

where g is the gravitational constant. An example of an invariant for the pendulum is
its energy, or Hamiltonian. The Hamiltonian (which can be thought of as a generalized
energy function),

H
(
θ (t) , θ̇ (t)

) = 1

2
θ̇ (t)2 − g cos (θ (t)), (5)

remains constant for all time on the trajectory of the system. Because of this, if we
consider all possible positions and velocities of the pendulum, we know that the entire
trajectory of the pendulum is constrained to level sets of the Hamiltonian. When we
plot the evolution of the position and velocity of the approximations produced by
two different standard first-order numerical methods, we see that one of the methods
wanders away from these level sets, while one essentially follows it. The one that
wanders away from the level sets is a classical method, and the one that is constrained
is the structure-preserving symplectic Euler method. Because it is constrained in a
similar way to the true solution, the symplectic Euler method vastly outperforms the
classical method for long-term integration of this system (Figs. 1(b) and 1(c)).

Because of these favorable qualities, structure-preserving methods often perform
very well where standard methods do very poorly; for example, in numerical simu-
lations over very long time spans or for unstable systems. They facilitate numerical
simulations that are extremely difficult or impossible with classical numerical meth-
ods, and structure-preserving integrators have been applied with great success to a
number of different applications, including astrophysics, for example Laskar [24] or
Sussman and Wisdom [42], control theory, as in Leyendecker et al. [33] and Bloch et
al. [3], computational physics, as in Biesiadecki and Skeel [1] and Stern et al. [41],
and engineering as in Lew et al. [32] and Lee et al. [27].
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1.1.2 Galerkin methods

Galerkin methods, and their extensions, have become a standard tool in the numerical
solution of partial differential equations. At their core, Galerkin methods are meth-
ods where a variational principle is discretized by replacing the function space of
the problem with a finite-dimensional approximation space, and solving the resulting
finite-dimensional problem. Galerkin methods have become ubiquitous in a vast num-
ber of scientific and engineering applications, and as such the literature about them is
vast. The interested reader is referred to Larsson and Thomée [23] as a starting point.

This is not the first work that suggests a Galerkin approach to discretizing ordinary
differential equations. Both Hulme [20] and Estep and French [11] discuss using the
weak formulation of an ordinary differential equation as the foundation for Galerkin
type integration schemes. In the classic work on variational integrators, Marsden and
West [35] suggest a Galerkin approach for constructing structure-preserving methods.
However, this work is the first that establishes broad estimates on a variety of dif-
ferent possible Galerkin constructions from the discrete mechanics standpoint. While
the works that preceded this one have established error estimates for Galerkin con-
structions, they are either for very specific methods or non-geometric methods. Fur-
thermore, they do not consider the spectral approach to convergence, as we do here.
While we drew much of our inspiration for this work from these important works,
spectral variational integrators represent an important next step in the development of
structure-preserving numerical methods.

1.1.3 Spectral Methods

Like Galerkin methods, spectral methods have enjoyed great success in a variety of
applications. Spectral methods are a large class of methods that make use of high-
dimensional, global approximation spaces to achieve convergence. The works of Tre-
fethen [43] and Boyd [7] provide excellent introductions to both the theoretical and
practical aspects of spectral methods, as well as many of their applications.

One of the attractive characteristics of spectral methods is that they often achieve
geometric convergence, that is, convergence at a rate which is faster than any polyno-
mial order. Specifically, we say that a sequence of approximations { fn}∞n=1 converges
to f geometrically in a norm ‖ · ‖ if,

‖ f − fn‖ = O (K n) ,
for some K < 1 which is independent of n. This type of convergence is achieved
by enriching the function space on which the numerical method is constructed, as
opposed to standard methods, where convergence is achieved by shrinking the size
domain of each local function, often measured by h.

As far as we can tell, there has been little work done on the construction of structure-
preserving methods using the spectral paradigm. What makes this paradigm attractive
for structure-preserving methods is that highly accurate methods that do not require
changing the step-size can be constructed using spectral techniques. For symplectic
methods, development of accurate methods for fixed step-sizes is particularly impor-
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tant, as standard methods of error control through adaptive time-stepping can destroy
the structure-preserving qualities of a symplectic integrator, as discussed in Biesi-
adecki and Skeel [1], Gladman et al. [16], and Calvo and Sanz-Serna [8].

1.2 A brief review of discrete mechanics

Before discussing the construction and convergence of spectral variational integrators,
it is useful to review some of the fundamental results from discrete mechanics that
are used in our analysis. This is only a brief introduction, we recommend Marsden
and West [35] for a thorough introduction. We have already introduced the discrete
Lagrangian (1), which we recall here, Ld : Q × Q × R → R,

Ld (q0, q1, h) ≈ ext
q∈C2([0,h],Q)

q(0)=q0,q(h)=q1

∫ h

0
L (q, q̇) dt,

and the discrete action sum (2), which is

S

(
{qk}N

k=1

)
=

N−1∑
k=1

Ld (qk, qk+1) ≈
∫ t2

t1
L (q, q̇) dt.

Taking variations of the discrete action sum and using discrete integration by parts
leads to the discrete Euler–Lagrange equations,

D2Ld (qk−1, qk) + D1Ld (qk, qk+1) = 0, (6)

for k = 2, .., N − 1 and where D1 and D2 denote partial derivatives with respect to
the first and second variables, respectively, i.e.,

D1 f (x, y) = ∂ f (x, y)

∂x
,

D2 f (x, y) = ∂ f (x, y)

∂y
.

Given (qk−1, qk), these equations implicitly define an update map, known as the dis-
crete Lagrangian flow map, FLd : Q × Q → Q × Q, given by FLd (qk−1, qk) =
(qk, qk+1), where (qk−1, qk), (qk, qk+1) satisfy (6). This update map defines a numer-
ical method, as the pairs {(qk, qk+1)}N−1

k=1 can be viewed as samplings of an approxi-
mation to the flow of the Lagrangian vector field. Additionally, the discrete Lagrangian
defines the discrete Legendre transforms, F±Ld : Q × Q → T ∗Q:

F
+Ld : (q0, q1) → (q1, p1) = (q1, D2Ld (q0, q1)) ,

F
−Ld : (q0, q1) → (q0, p0) = (q0,−D1Ld (q0, q1)) .

Using the discrete Legendre transforms, we define the discrete Hamiltonian flow map,
F̃Ld : T ∗Q → T ∗Q,
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F̃Ld : (q0, p0) → (q1, p1) = F
+Ld

((
F

−Ld
)−1

(q0, p0)
)

.

The following commutative diagram illustrates the relationship between the discrete
Hamiltonian flowmap, discrete Lagrangian flowmap, and the discrete Legendre trans-
forms,

(qk, pk)
F̃Ld �� (qk+1, pk+1)

(qk−1, qk)

F
+Ld

������������������

FLd

�� (qk, qk+1)
FLd

��

F
+Ld

�������������������

F
−Ld

������������������
(qk+1, qk+2)

F
−Ld

�������������������

This diagram also describes how one converts initial conditions expressed in terms
of (q0, p0) ∈ T ∗Q into initial conditions (q0, q1) ∈ Q × Q, i.e., (q0, q1) =
(F−Ld)−1(q0, p0). Furthermore, if the initial conditions are given using initial posi-
tion and velocity, (q0, v0) ∈ T Q, then one can convert it into initial position and
momentum conditions by using the continuous Legendre transform, FL : T Q →
T ∗Q, (q0, v0) → (q0, p0) = (q0,

∂L
∂q̇ (q0, v0)).

We now introduce the exact discrete Lagrangian L E
d ,

L E
d (q0, q1, h) = ext

q∈C2([0,h],Q)
q(0)=q0,q(h)=q1

∫ h

0
L (q, q̇) dt.

An important theoretical result for the error analysis of variational integrators is that
the discrete Hamiltonian and Lagrangian flow maps associated with the exact discrete
Lagrangian produces an exact sampling of the true flow, as was shown inMarsden and
West [35]. Using this result, Marsden and West [35] show that there is a fundamen-
tal relationship between how well a discrete Lagrangian Ld approximates the exact
discrete Lagrangian L E

d and how well the corresponding discrete Hamiltonian flow
maps, discrete Lagrangian flow maps and discrete Legendre transforms approximate
their continuous analogues. This relationship is described in the following theorem,
found in Marsden and West [35], which is critical to the error analysis of our work:

Theorem 1.1 (Variational error analysis) Given a regular Lagrangian L and cor-
responding Hamiltonian H, the following are equivalent for a discrete Lagrangian
Ld:

(1) the discrete Hamiltonian flow map for Ld has error O(h p+1),
(2) the discrete Legendre transforms of Ld have error O(h p+1),
(3) Ld approximates the exact discrete Lagrangian with error O(h p+1).

In addition, in Marsden and West [35], it is shown that integrators constructed in
this way, which are referred to as variational integrators, have significant geomet-
ric structure. Most importantly, variational integrators always conserve the canonical

123



Spectral variational integrators 689

symplectic form, and a discrete Noether’s Theorem guarantees that a discrete momen-
tum map is conserved for any continuous symmetry of the discrete Lagrangian. The
preservation of these discrete geometric structures underlie the excellent long-term
behavior of variational integrators.

2 Construction

2.1 Generalized Galerkin variational integrators

The construction of spectral variational integrators falls within the framework of gen-
eralized Galerkin variational integrators, discussed in Leok [28] and Marsden and
West [35]. The motivating idea is to replace the generally non-computable exact
discrete Lagrangian L E

d (qk, qk+1) with a highly accurate computable discrete ana-
logue, Ld(qk, qk+1). Galerkin variational integrators are constructed by using a finite-
dimensional function space to discretize the action of a Lagrangian. Specifically, given
a Lagrangian L : T Q → R, to construct a Galerkin variational integrator:

(1) choose an (n + 1)-dimensional function space M
n([0, h], Q) ⊂ C2([0, h], Q),

with a finite set of basis functions {φi (t)}n
i=0,

(2) choose a quadrature rule G(·) : F([0, h],R) → R, so that G( f ) =
h
∑m

j=1 b j f (c j h) ≈ ∫ h
0 f (t)dt , where F is some appropriate function space,

and then construct the discrete actionSd ({qi
k}n

i=0) :∏n
i=0 Qi → R, (not to be confused

with the discrete action sum S({qk}N
k=1)),

Sd

({
qi

k

}n

i=0

)
= G

(
L

(
n∑

i=0

qi
kφi (t) ,

n∑
i=0

qi
k φ̇i (t)

))

= h
m∑

j=1

b j L

(
n∑

i=0

qi
kφi
(
c j h
)
,

n∑
i=0

qi
k φ̇i
(
c j h
))

,

where we use superscripts to index the weights associated with each basis function,
as in Marsden and West [35]. The reader should note that we have chosen the slightly
awkward notation of calling the (n + 1)-dimensional function space Mn([0, h], Q),
and have chosen to index the n +1 basis functions ofMn([0, h], Q) from 0 to n; this is
because wewill use polynomial spaces extensively in later sections, and following this
conventionMn([0, h], Q) will denote the polynomials of degree at most n. Likewise,
while we have made no assumption about the number of quadrature points m used
in our quadrature rule, we will later establish that the choice of quadrature rule has
significant implications for the accuracy of the method. An example of an element of
the (n + 1)-dimensional function space Mn([0, h], Q) is given in Fig. 2.

Once the discrete action has been constructed, a discrete Lagrangian can be induced
by finding stationary points q̃n(t) =∑n

i=0 qi
kφi (t) of the action under the conditions

q̃n(0) = qk and q̃n(h) = qk+1 for some given qk and qk+1,
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Q

t0 d1h d2h dn−2h dn−1h hc1h c2h cm−1h cmh

•

•

•
q1k×

×
..... . . . . .

. .
...
..
..
..
.•

•
•
qn−1
k

×

×

q0k
q2k

qn−2
k

qnk

Fig. 2 A visual schematic of the curve q̃n(t) ∈ M
n([0, h], Q). The points marked with crosses represent

the quadrature points, which may or may not be the same as interpolation points di h. In this figure we have
chosen to depict a curve constructed from interpolating basis functions, but this is not necessary in general

Ld (qk, qk+1, h) = ext
qn∈Mn([0,h],Q)

qn(0)=qk ,qn(h)=qk+1

h
m∑

j=1

b j L
(
qn
(
c j h
)
, q̇n
(
c j h
))

= h
m∑

j=1

b j L
(

q̃n
(
c j h
)
, ˙̃qn
(
c j h
))

.

A discrete Lagrangian flow map that results from this type of discrete Lagrangian is
referred to as a Galerkin variational integrator.

It should be noted that this construction is only valid if Q is a vector space. If Q is not
a vector space, there is no guarantee that the finite-dimensional approximation space,
M

n([0, h], Q), is contained inC2([0, h], Q), as the linear combinations of elements in
Q may not be elements of Q. Hence, for the remainder of the paper, wewill restrict our
attention to configuration spaces Q that are vector spaces. Our results are only valid
for such configuration spaces, and the construction of Galerkin variational integrators
for configuration spaces which are not vector spaces, and the extension of our error
analysis to such spaces, is still an area of active research. A generalization of our
approach to the setting of Lie groups is described in Hall and Leok [19].

2.2 Spectral variational integrators

There are two defining features of spectral variational integrators. The first is the choice
of function space Mn([0, h], Q), and the second is that convergence is achieved not
by shortening the time-step h, but by increasing the dimension n of the function space.

2.2.1 Choice of function space

Restricting our attention to the case where Q is a linear space, spectral variational
integrators are constructed using the basis functions φi (t) = li (t), where li (t) are
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Lagrange interpolating polynomials based on the points hi = h
2 cos(

(i+1)π
n ) + h

2

which are the Chebyshev points ti = cos( (i+1)π
n ), rescaled and shifted from [−1, 1]

to [0, h]. The resulting finite-dimensional function spaceMn([0, h], Q) is simply the
polynomials of degree at most n on Q. However, the choice of this particular set of
basis functions offer several advantages over other possible bases for the polynomials:

(1) the condition q̃n(0) = qk reduces to q0
k = qk and q̃n(h) = qk+1 reduces to

qn
k = qk+1,

(2) the induced numerical methods have generally better stability properties because
of the excellent approximation properties of the interpolation polynomials at the
Chebyshev points.

Using this choice of basis functions, for any chosen quadrature rule, the discrete
Lagrangian becomes

Ld (qk, qk+1, h) = ext
qn∈Mn([0,h],Q)

q0
k =qk ,qn

k =qk+1

h
m∑

j=1

b j L
(

q̃n
(
c j h
)
, ˙̃qn
(
c j h
))

.

Requiring the curve q̃n(t) to be a stationary point of the discretized action provides
n − 1 internal stage conditions:

h
m∑

j=1

b j

(
∂L

∂q

(
q̃n
(
c j h
)
, ˙̃qn
(
c j h
))

φr
(
c j h
)+ ∂L

∂ q̇

(
q̃n
(
c j h
)
, ˙̃qn
(
c j h
))

φ̇r
(
c j h
))=0,

r = 1, . . . , n − 1.

Combining these internal stage conditionswith the discrete Euler–Lagrange equations,

D2Ld (qk−1, qk) + D1Ld (qk, qk+1) = 0,

and the continuity condition q0
k = qk yields the following set of n + 1 nonlinear

equations:

q0
k = qk, (7)

0 = h
m∑

j=1

b j

(
∂L

∂q

(
q̃n
(
c j h
)
, ˙̃qn
(
c j h
))

φr
(
c j h
)

+∂L

∂ q̇

(
q̃n
(
c j h
)
, ˙̃qn
(
c j h
))

φ̇r
(
c j h
))

, r = 1, . . . , n − 1, (8)

pk = −h
m∑

j=1

b j

(
∂L

∂q

(
q̃n
(
c j h
)
, ˙̃qn
(
c j h
))

φ0
(
c j h
)

+∂L

∂ q̇

(
q̃n
(
c j h
)
, ˙̃qn
(
c j h
))

φ̇0
(
c j h
))

, (9)
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where pk = D2Ld(qk−1, qk) is obtained using the data from the previous time-step,
and the momentum condition,

pk+1 = h
m∑

j=1

b j

(
∂L

∂q

(
q̃n
(
c j h
)
, ˙̃qn
(
c j h
))

φn
(
c j h
)

+ ∂L

∂ q̇

(
q̃n
(
c j h
)
, ˙̃qn
(
c j h
))

φ̇n
(
c j h
))

, (10)

defines the right hand side of (9) for the next time-step. Evaluating qk+1 = q̃n (h)

defines the next step for the discrete Lagrangian flow map,

FLd (qk−1, qk) = (qk, qk+1) ,

and because of the choice of basis functions, this is simply qk+1 = qn
k .

In practice, the initial conditions for the Galerkin variational integrator are typi-
cally given directly in terms of position and momentum, (q0, p0) ∈ T ∗Q. By solv-
ing Eqs. (7)–(9) for q0

0 , . . . qn
0 , we obtain q1 = qn

0 . Then, p1 can be computed using
Eq. (10), and this yields the discreteHamiltonianflowmap, F̃Ld : (q0, p0) 	→ (q1, p1).
This procedure can then be iterated to time-march the discrete solution forward.
If instead, the initial conditions are expressed in terms of position and velocity,
(q0, v0) ∈ T Q, then one can use the continuous Legendre transform, FL : T Q →
T ∗Q, (q0, v0) → (q0, p0) = (q0,

∂L
∂q̇ (q0, v0)), to convert this into initial position and

momentum.

2.2.2 n-Refinement

As is typical for spectral numerical methods (see, for example, Boyd [7]; Trefethen
[43]), convergence for spectral variational integrators is achieved by increasing the
dimension of the function space, Mn([0, h], Q). Furthermore, because the order of
the discrete Lagrangian also depends on the order of the quadrature rule G, we must
also refine the quadrature rule as we refine n. Hence, for examining convergence,
we must also consider the quadrature rule as a function of n, Gn . Because of the
dependence on n instead of h, we will often examine the discrete Lagrangian Ld as a
function of Q × Q × N,

Ld (qk, qk+1, n) = ext
qn∈Mn([0,h],Q)

q0
k =qk ,qn

k =qk+1

Gn

(
L
(

q̃n (t) , ˙̃qn (t)
))

= ext
qn∈Mn([0,h],Q)

q0
k =qk ,qn

k =qk+1

h
mn∑
j=1

b jn L
(

q̃n
(
c jn h

)
, ˙̃qn
(
c jn h

))
,

as opposed to the more conventional
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Ld (qk, qk+1, h) = ext
qn∈Mn([0,h],Q)

q0
k =qk ,qn

k =qk+1

G
(

L
(

q̃n (t) , ˙̃qn (t)
))

= ext
qn∈Mn([0,h],Q)

q0
k =qk ,qn

k =qk+1

h
m∑

j=1

b j L
(

q̃n
(
c j h
)
, ˙̃qn
(
c j h
))

.

This type of refinement is the foundation for the exceptional convergence properties
of spectral variational integrators.

3 Existence, uniqueness and convergence

In this section, we will discuss the major important properties of Galerkin variational
integrators and spectral variational integrators. The first will be the existence of unique
solutions to the internal stage equations (7), (8), (9) for certain types of Lagrangians.
The second is the convergence of the one-step map that results from the Galerkin and
spectral variational constructions, which we will show can be either arbitrarily high-
order or have geometric convergence. The third and final is the convergence of contin-
uous approximations to the Euler–Lagrange flowwhich can easily be constructed from
Galerkin and spectral variational integrators, and the behavior of geometric invariants
associated with the approximate continuous flow. We will show a number of different
convergence results associated with these quantities, which demonstrate that Galerkin
and spectral variational integrators can be used to compute continuous approxima-
tions to the exact solutions of the Euler–Lagrange equations which have excellent
convergence and structure-preserving behavior.

3.1 Existence and uniqueness

In general, demonstrating that there exists a unique solution to the internal stage
equations for a spectral variational integrator is difficult, and depends on the properties
of the Lagrangian. However, assuming a Lagrangian of the form

L (q, q̇) = 1

2
q̇T Mq̇ − V (q) ,

it is possible to show the existence and uniqueness of the solutions to the implicit
equations for the one-step method under appropriate assumptions. We will estab-
lish existence and uniqueness using a contraction mapping argument, making several
assumptions about the Eqs. (7), (8), and (9), and then establish that these assumptions
hold for polynomial bases.

Theorem 3.1 (Existence and uniqueness of solutions to the internal stage equations)
Given a Lagrangian L : T Q → R of the form

L (q, q̇) = 1

2
q̇T Mq̇ − V (q),
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if ∇V is Lipschitz continuous, b j > 0 for every j and
∑m

i=1 b j = 1, and M is
symmetric positive-definite, then there exists an interval [0, h] where there exists a
unique solution to the internal stage equations for a spectral variational integrator.

Proof We will consider only the case where q(t) ∈ R, but the argument generalizes
easily to higher dimensions. To begin, we note that for a Lagrangian of the form

L (q, q̇) = 1

2
q̇T Mq̇ − V (q),

the internal stage Euler–Lagrange equations (8), momentum condition (9), and conti-
nuity condition (7) yield a set of equations of the form

Aqi − f
(

qi
)

= 0, (11)

where qi is the vector of internal weights, qi = (q0
k , q1

k , . . . , qn
k )T , A is an (n + 1) ×

(n + 1) matrix with entries defined by

An+1,1 = 1, (12)

An+1,i = 0, i = 2, . . . , n + 1, (13)

Ar,i = h
m∑

j=1

b j M φ̇i−1
(
c j h
)
φ̇r−1

(
c j h
)
, r = 1, . . . , n; i = 1, . . . , n + 1,

(14)

and f is a vector-valued function defined by

f
(

qi
)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

h
∑m

j=1 b j∇V
(∑n

i=0 qi
kφi
(
c j h
))

φ0
(
c j h
)− pk−1

h
∑m

j=1 b j∇V
(∑n

i=0 qi
kφi
(
c j h
))

φ1
(
c j h
)

...

h
∑m

j=1 b j∇V
(∑n

i=0 qi
kφi
(
c j h
))

φn−1
(
c j h
)

qk

⎞
⎟⎟⎟⎟⎟⎟⎠

.

It is important to note that the entries of A depend on h. For now we will assume A
is invertible, and that ‖A−1‖ < ‖A−1

1 ‖, where A1 is the matrix A generated on the
interval [0, 1]. Of course, the properties of A depend on the choice of basis functions
{φi }n

i=0, but we will establish these properties for a polynomial basis later. Defining
the map:

�
(

qi
)

= A−1 f
(

qi
)
,
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it is easily seen that (11) is satisfied if and only if qi = �
(
qi
)
, that is, qi is a fixed-point

of �(·). If we establish that �(·) is a contraction mapping,

∥∥∥�
(
wi
)

− �
(
vi
)∥∥∥∞ ≤ k

∥∥∥wi − vi
∥∥∥∞ ,

for some k < 1, we can establish the existence of a unique fixed-point, and thus
show that the steps of the one-step method are well-defined. Here, and throughout this
section, we use ‖·‖p to denote the vector or matrix p-norm, as appropriate.

To show that �(·) is a contraction mapping, we consider arbitrary wi and vi :

∥∥∥�
(
wi
)

− �
(
vi
)∥∥∥∞ =

∥∥∥A−1 f
(
wi
)

− A−1 f
(
vi
)∥∥∥∞

=
∥∥∥A−1

(
f
(
wi
)

− f
(
vi
))∥∥∥∞

≤
∥∥∥A−1

∥∥∥∞

∥∥∥ f
(
wi
)

− f
(
vi
)∥∥∥∞ .

Considering ‖ f (wi ) − f (vi )‖∞, we see that

∥∥∥ f
(
wi
)

− f
(
vi
)∥∥∥∞ =

∣∣∣∣∣∣h
m∑

j=1

b j

[
∇V

(
n∑

i=0

wi
kφi
(
c j h
))

−∇V

(
n∑

i=0

vi
kφi
(
c j h
))]

φr∗
(
c j h
)∣∣∣∣∣ , (15)

for some appropriate index r∗ ∈ {0, . . . , n}. Note that the first and last terms of∥∥ f (wi ) − f (vi )
∥∥∞ will vanish, so the maximum element must take the form of (15).

Let φi (t) = (φ0(t), φ1(t), . . . , φn(t)) and CL be the Lipschitz constant for ∇V (q).
Now,

∥∥∥ f
(
wi
)

− f
(
vi
)∥∥∥∞

=
∣∣∣∣∣∣h

m∑
j=1

b j

[
∇V

(
n∑

i=0

wi
kφi
(
c j h
))− ∇V

(
n∑

i=0

vi
kφi
(
c j h
))]

φr∗
(
c j h
)
∣∣∣∣∣∣

≤ h
m∑

j=1

∣∣b j
∣∣
∣∣∣∣∣
[
∇V

(
n∑

i=0

wi
kφi
(
c j h
))− ∇V

(
n∑

i=0

vi
kφi
(
c j h
))]∣∣∣∣∣

∣∣φr∗
(
c j h
)∣∣

≤ h
m∑

j=1

b j CL

∣∣∣∣∣
n∑

i=0

wi
kφi
(
c j h
)−

n∑
i=0

vi
kφi
(
c j h
)∣∣∣∣∣
∣∣φr∗

(
c j h
)∣∣

= h
m∑

j=1

b j CL

∣∣∣∣∣
n∑

i=0

(
wi

k − vi
k

)
φi
(
c j h
)∣∣∣∣∣
∣∣φr∗

(
c j h
)∣∣
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≤ h
m∑

j=1

b j CL

∥∥∥wi − vi
∥∥∥∞

∥∥∥φi (c j h
)∥∥∥

1

∣∣φr∗
(
c j h
)∣∣

≤ h
m∑

j=1

b j CL max
j

(∥∥∥φi (c j h
)∥∥∥

1

∣∣φr∗
(
c j h
)∣∣) ∥∥∥wi − vi

∥∥∥∞

= hCL max
j

(∥∥∥φi (c j h
)∥∥∥

1

∣∣φr∗
(
c j h
)∣∣) ∥∥∥wi − vi

∥∥∥∞ .

Hence, we derive the inequality

∥∥∥�
(
wi
)

− �
(
vi
)∥∥∥∞

≤ h
∥∥∥A−1

∥∥∥∞ CL max
j

(∥∥∥φi (c j h
)∥∥∥

1

∣∣φr∗
(
c j h
)∣∣) ∥∥∥wi − vi

∥∥∥∞ ,

and since by assumption
∥∥A−1

∥∥∞ ≤
∥∥∥A−1

1

∥∥∥∞,

∥∥∥�
(
wi
)

− �
(
vi
)∥∥∥∞

≤ h
∥∥∥A−1

1

∥∥∥∞ CL max
j

(∥∥∥φi (c j h
)∥∥∥

1

∣∣φr∗
(
c j h
)∣∣) ∥∥∥wi − vi

∥∥∥∞ .

Thus, if

h <

(∥∥∥A−1
1

∥∥∥∞ CL max
j

(∥∥∥φi (c j h
)∥∥∥

1

∣∣φr∗
(
c j h
)∣∣)
)−1

,

then
∥∥∥�
(
wi
)

− �
(
vi
)∥∥∥∞ ≤ k

∥∥∥wi − vi
∥∥∥∞ ,

where k < 1, which establishes that �(·) is a contraction mapping, and establishes
the existence of a unique fixed-point, and thus the existence of unique steps of the
one-step method. �

A critical assumption made during the proof of existence and uniqueness is that the
matrix A is nonsingular. This property depends on the choice of basis functions φi .
However, using a polynomial basis, like Lagrange interpolation polynomials, it can
be shown that A is invertible.

Lemma 3.1 (A is invertible) If {φi }n
i=0 is a polynomial basis of Pn, the space of

polynomials of degree at most n, M is symmetric positive-definite, and the quadrature
rule is order at least 2n − 1, then A defined by (12)–(14) is invertible.

Proof We begin by considering the equation

Aqi = 0.
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Let q̃n(t) =∑n
i=1 qi

kφi (t). Considering the definition of A, Aqi = 0 holds if and only
if the following equations hold:

q̃n (0) = 0,

h
m∑

j=1

b j M ˙̃qn
(
c j h
)
φ̇i
(
c j h
) = 0, i = 0, . . . , (n − 1). (16)

It can easily be seen that {φ̇i }n−1
i=0 is a basis of Pn−1. Using the assumption that the

quadrature rule is of order at least 2n − 1 and that M is symmetric positive-definite,
we can see that (16) implies

∫ h

0
M ˙̃qn (t) φ̇i (t) dt = 0, i = 0, . . . , (n − 1),

and this implies

〈 ˙̃qn, φ̇i

〉
= 0, i = 0, . . . , (n − 1),

where 〈·, ·〉 is the standard L2 inner product on [0, h]. Since {φ̇i }n−1
i=0 forms a basis for

Pn−1, ˙̃qn ∈ Pn−1, and 〈·, ·〉 is non-degenerate, this implies that ˙̃qn(t) = 0. Thus,

q̃n (0) = 0,

˙̃qn (t) = 0,

which implies that q̃n(t) = 0 and hence qi = 0. Thus, if Aqi = 0 then qi = 0, from
which it follows that A is non-singular. �

Another subtle difficulty is that thematrix A is a functionofh. Sinceweassumed that
‖A−1‖∞ is bounded to prove Theorem 3.1, we must show that for any choice of h, the

quantity ‖A−1‖∞ is bounded. We will do this by establishing ‖A−1‖∞ ≤
∥∥∥A−1

1

∥∥∥∞,

where A1 is A defined with h = 1. By Lemma 3.1, we know that
∥∥∥A−1

1

∥∥∥∞ < ∞,

which establishes the upper bound for
∥∥A−1

∥∥∞. This argument is easily generalized
for a higher upper bound on h.

Lemma 3.2 (‖A−1‖∞ ≤ ‖A−1
1 ‖∞) For the matrix A defined by (12)–(14), if h < 1,

‖A−1‖∞ < ‖A−1
1 ‖∞ where A1 is A defined on the interval [0, 1].

Proof We begin the proof by examining how A changes as a function of h. First,
let {φi }n

i=0 be the basis for the interval [0, 1]. Then for the interval [0, h], the basis
functions are

φh
i (t) = φi

(
t

h

)
,

and hence the derivatives are
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φ̇h
i (t) = 1

h
φ̇i

(
t

h

)
.

Thus, if A1 is thematrix defined by (12)–(14) on the interval [0, 1], then for the interval
[0, h],

A =
(
1 0
0 1

h I(n−1)×(n−1)

)
A1,

where In×n is the n × n identity matrix. This gives

A−1 = A−1
1

(
1 0
0 hI(n−1)×(n−1)

)
,

which gives

∥∥∥A−1
∥∥∥∞ =

∥∥∥∥A−1
1

(
1 0
0 hI(n−1)×(n−1)

)∥∥∥∥∞

≤
∥∥∥A−1

1

∥∥∥∞

∥∥∥∥
(
1 0
0 hI(n−1)×(n−1)

)∥∥∥∥∞
=
∥∥∥A−1

1

∥∥∥∞ , (17)

which proves the statement. The reader should note that we have used the fact that

∥∥∥∥
(
1 0
0 hI(n−1)×(n−1)

)∥∥∥∥∞
= 1,

when h ≤ 1 to obtain the rightmost equality in (17). �

3.2 Arbitrarily high-order and geometric convergence

To determine the rate of convergence for spectral variational integrators, wewill utilize
Theorem 1.1 and a simple extension of Theorem 1.1:

Theorem 3.2 (Extension of Theorem 1.1 to geometric convergence) Given a regular
Lagrangian L and corresponding Hamiltonian H, the following are equivalent for a
discrete Lagrangian Ld (q0, q1, n):

(1) there exist a positive constant K , where K < 1, such that the discrete Hamiltonian
map for Ld(q0, qh, n) has error O(K n),

(2) there exists a positive constant K , where K < 1, such that the discrete Legendre
transforms of Ld(q0, qh, n) have error O(K n),

(3) there exists a positive constant K , where K < 1, such that Ld(q0, qh, n) approx-
imates the exact discrete Lagrangian L E

d (q0, qh, h) with error O(K n).

This theorem provides a fundamental tool for the analysis of Galerkin variational
methods. Its proof is almost identical to that of Theorem 1.1, and can be found in the
appendix. The critical result is that the order of the error of the discrete Hamiltonian
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flowmap, fromwhich we construct the discrete flow, has the same order as the discrete
Lagrangian from which it is constructed. Thus, in order to determine the order of the
error of the flow generated by spectral variational integrators, we need only determine
how well the discrete Lagrangian approximates the exact discrete Lagrangian. This
is a key result which greatly reduces the difficulty of the error analysis of Galerkin
variational integrators. Furthermore,while this theoremdeals onlywith local error esti-
mates, this local estimate extends to a global error estimate so long as the Lagrangian
vector field is sufficiently well-behaved. This issue is addressed in both Marsden and
West [35] and Hairer et al. [18].

Naturally, the goal of constructing spectral variational integrators is constructing a
variational method that has geometric convergence. To this end, it is essential to estab-
lish that Galerkin type integrators inherit the convergence properties of the spaces
which are used to construct them. The arbitrarily high-order convergence result is
related to the problem of �-convergence (see, for example, Dal Maso [10]), as the
Galerkin discrete Lagrangians are given by extremizers of an approximating sequence
of variational problems, and the exact discrete Lagrangian is the extremizer of the lim-
iting variational problem. The �-convergence of variational integrators was studied in
Müller and Ortiz [38], and our approach involves a refinement of their analysis. We
now state our results, which establish not only the geometric convergence of spec-
tral variational integrators, but also order of convergence of all Galerkin variational
integrators under appropriate smoothness assumptions.

The general techniques for establishing these bounds are the same for both
n-refinement and h-refinement:we establish that as long as stationary points of both the
discrete and continuous actions are minimizers, then the difference between the value
of the exact discrete Lagrangian evaluated at any two points and the Galerkin discrete
Lagrangian evaluated at these points is controlled by the accuracy of the quadrature
rule and the quality of approximations in the approximation space. Hence, so long as
the quadrature rule is sufficiently accurate and the approximation space can produce
high-order approximations to the true solution, a Galerkin variational integrator will
produce a high-order approximation to the true dynamics. We then demonstrate that,
for the canonical Lagrangian, stationary points of both the true and discrete actions
are minimizers, up to a time-step restriction, which makes these bounds immediately
applicable to Galerkin variational integrators for systems with canonical Lagrangians.

Theorem 3.3 (Arbitrarily high-order Convergence of Galerkin variational integra-
tors) Given an interval [0, h] and a Lagrangian L : T Q → R, let q̄ be the exact
solution to the Euler–Lagrange equations subject to the conditions q̄(0) = q0 and
q̄(h) = q1, and let q̃n be the stationary point of a Galerkin variational discrete action,
i.e. if Ld : Q × Q × R → R,

Ld(q0, q1, h) = ext
qn∈Mn([0,h],Q)

qn(0)=q0,qn(h)=q1

Sd

({
qi
0

}n

i=1

)

= ext
qn∈Mn([0,h],Q)

qn(0)=q0,qn(h)=q1

h
m∑

j=1

b j L
(
qn
(
c j h
)
, q̇n
(
c j h
))

,
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then

q̃n = argmin
qn∈Mn([0,h],Q)

qn(0)=q0,qn(h)=q1

h
m∑

j=1

b j L
(
qn
(
c j h
)
, q̇n
(
c j h
))

.

If:

(1) there exists a constant CA independent of h, such that for each h, there exists a
curve q̂n ∈ M

n([0, h], Q), such that,

∥∥∥
(

q̂n (t) , ˙̂qn (t)
)

− (q̄ (t) , ˙̄q (t)
)∥∥∥

1
≤ CAhn, for all t ∈ [0, h],

(2) there exists a closed and bounded neighborhood U ⊂ T Q, such that (q̄(t), ˙̄q(t)) ∈
U, (q̂n(t), ˙̂qn(t)) ∈ U for all t , and all partial derivatives of L are continuous on
U,

(3) for the quadrature rule G( f ) = h
∑m

j=1 b j f (c j h) ≈ ∫ h
0 f (t)dt, there exists a

constant Cg, such that,

∣∣∣∣∣∣
∫ h

0
L (qn (t) , q̇n (t)) dt − h

m∑
j=1

b j L
(
qn
(
c j h
)
, q̇n
(
c j h
))
∣∣∣∣∣∣ ≤ Cghn+1,

for any qn ∈ M
n([0, h] , Q),

(4) and the stationary points q̄, q̃n minimize their respective actions,

then
∣∣∣L E

d (q0, qh, h) − Ld(q0, qh, h)

∣∣∣ ≤ Cophn+1,

for some constant Cop independent of h, i.e. discrete Lagrangian Ld has at most error
O(hn+1), and hence the discrete Hamiltonian flow map has at most error O(hn+1).

Proof First, we rewrite both the exact discrete Lagrangian and the Galerkin discrete
Lagrangian:

∣∣∣L E
d (q0, qh, h) − Ld(q0, qh, h)

∣∣∣
=
∣∣∣∣
∫ h

0
L
(
q̄ (t) , ˙̄q (t)

)
dt − G

(
L
(

q̃n (t) , ˙̃qn (t)
))∣∣∣∣

=
∣∣∣∣∣∣
∫ h

0
L
(
q̄ (t) , ˙̄q (t)

)
dt − h

m∑
j=1

b j L
(

q̃n
(
c j h
)
, ˙̃qn
(
c j h
))
∣∣∣∣∣∣

=
∣∣∣∣∣∣
∫ h

0
L
(
q̄, ˙̄q) dt − h

m∑
j=1

b j L
(

q̃n, ˙̃qn

)∣∣∣∣∣∣ ,
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where in the last line,we have suppressed the t argument, a conventionwewill continue
throughout the proof. Now we introduce the action evaluated on the q̂n curve, which
is an approximation with error O(hn) to the exact solution q̄:

∣∣∣∣∣∣
∫ h

0
L
(
q̄, ˙̄q) dt − h

m∑
j=1

b j L
(

q̃n, ˙̃qn

)∣∣∣∣∣∣

=
∣∣∣∣∣∣
∫ h

0
L
(
q̄, ˙̄q) dt −

∫ h

0
L
(

q̂n, ˙̂qn

)
dt +

∫ h

0
L
(

q̂n, ˙̂qn

)
dt − h

m∑
j=1

b j L
(

q̃n, ˙̃qn

)∣∣∣∣∣∣
(18a)

≤
∣∣∣∣
∫ h

0
L
(
q̄, ˙̄q) dt−

∫ h

0
L
(

q̂n, ˙̂qn

)
dt

∣∣∣∣+
∣∣∣∣∣∣
∫ h

0
L
(

q̂n, ˙̂qn

)
dt−h

m∑
j=1

b j L
(

q̃n, ˙̃qn

)∣∣∣∣∣∣ .
(18b)

Considering the first term (18a):

∣∣∣∣
∫ h

0
L
(
q̄, ˙̄q) dt −

∫ h

0
L
(

q̂n, ˙̂qn

)
dt

∣∣∣∣ =
∣∣∣∣
∫ h

0
L
(
q̄, ˙̄q)− L

(
q̂n, ˙̂qn

)
dt

∣∣∣∣
≤
∫ h

0

∣∣∣L (q̄, ˙̄q)− L
(

q̂n, ˙̂qn

)∣∣∣ dt.

By assumption, all partials of L are continuous on U , and since U is closed and
bounded, this implies L is Lipschitz on U . Let Lα denote that Lipschitz constant.
Since, again by assumption, (q̄, ˙̄q) ∈ U and (q̂n, ˙̂qn) ∈ U , we can rewrite:

∫ h

0

∣∣∣L (q̄, ˙̄q)− L
(

q̂n, ˙̂qn

)∣∣∣ dt ≤
∫ h

0
Lα

∥∥∥(q̄, ˙̄q)−
(

q̂n, ˙̂qn

)∥∥∥
1
dt

≤
∫ h

0
LαCAhndt

= LαCAhn+1,

where we have made use of the best approximation estimate. Hence,

∣∣∣∣
∫ h

0
L
(
q̄, ˙̄q) dt −

∫ h

0
L
(

q̂n, ˙̂qn

)
dt

∣∣∣∣ ≤ LαC1hn+1. (19)

Next, considering the second term (18b),

∣∣∣∣∣∣
∫ h

0
L
(

q̂n, ˙̂qn

)
dt − h

m∑
j=1

b j L
(

q̃n, ˙̃qn

)∣∣∣∣∣∣ ,
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since q̃n , the stationary point of the discrete action, minimizes its action and q̂n ∈
M

n([0, h], Q),

h
m∑

j=1

b j L
(

q̃n, ˙̃qn

)
≤ h

m∑
j=1

b j L
(

q̂n, ˙̂qn

)
≤
∫ h

0
L
(

q̂n, ˙̂qn

)
dt + Cghn+1, (20)

where the inequalities follow from the assumptions on the order of the quadrature rule.
Furthermore,

h
m∑

j=1

b j L
(

q̃n, ˙̃qn

)
≥
∫ h

0
L
(

q̃n, ˙̃qn

)
dt − Cghn+1

≥
∫ h

0
L
(
q̄, ˙̄q) dt − Cghn+1

≥
∫ h

0
L
(

q̂n, ˙̂qn

)
dt − LαCAhn+1 − Cghn+1, (21)

where the inequalities follow from (19), the order of the quadrature rule, and the
assumption that q̄ minimizes its action. Putting (20) and (21) together, we can conclude
that

∣∣∣∣∣∣
∫ h

0
L
(

q̂n, ˙̂qn

)
dt − h

m∑
j=1

b j L
(

q̃n, ˙̃qn

)∣∣∣∣∣∣ ≤
(
LαCA + Cg

)
hn+1. (22)

Now, combining the bounds (19) and (22) in (18a) and (18b), we can conclude that

∣∣∣L E
d (q0, qh, h) − Ld(q0, qh, h)

∣∣∣ ≤ (2LαCA + Cg
)

hn+1,

which, combined with Theorem 1.1, establishes the order of the error of the integrator.
�

The above proof establishes a significant convergence result forGalerkin variational
integrators, namely that for sufficiently well-behaved Lagrangians, one can construct
Galerkin variational integrators that will produce discrete approximate flows that con-
verge to the exact flow as h → 0, and that arbitrarily high order can be achieved
provided the quadrature rule is of sufficiently high-order.

We will discuss assumption 4 in Sect. 3.3. While in general we cannot assume that
stationary points of the action are minimizers, it can be shown that for Lagrangians of
the canonical form

L (q, q̇) = q̇T Mq̇ − V (q) ,

under somemild assumptions on the derivatives ofV and the accuracyof the quadrature
rule, there always exists an interval [0, h] over which stationary points are minimizers.
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Spectral variational integrators 703

In Sect. 3.3 we will show the result extends to the discretized action of Galerkin
variational integrators. A similar result was established in Müller and Ortiz [38].

Geometric convergence of spectral variational integrators is not strictly covered
under the proof of arbitrarily high-order convergence. While the above theorem estab-
lishes convergence of Galerkin variational integrators by shrinking h, the interval
length of each discrete Lagrangian, spectral variational integrators achieve conver-
gence by holding the interval length of each discrete Lagrangian constant and increas-
ing the dimension of the approximation spaceMn([0, h], Q). Thus, for spectral vari-
ational integrators, we have the following analogous convergence theorem:

Theorem 3.4 (Geometric convergence of spectral variational integrators) Given an
interval [0, h] and a Lagrangian L : T Q → R, let q̄ be the exact solution to the
Euler–Lagrange equations, and q̃n be the stationary point of the spectral variational
discrete action:

Ld(q0, q1, n) = ext
qn∈Mn([0,h],Q)

qn(0)=q0,qn(h)=q1

Sd

({
qi
0

}n

i=0

)

= ext
qn∈Mn([0,h],Q)

qn(0)=q0,qn(h)=q1

h
mn∑
j=0

b jn L
(
qn
(
c jn h

)
, q̇n
(
c jn h

))
.

If:

(1) there exists constants CA, K A, K A < 1, independent of n, such that for each n,
there exists a curve q̂n ∈ M

n([0, h], Q), such that,

∥∥∥
(

q̂n (t) , ˙̂qn (t)
)

− (q̄ (t) , ˙̄q (t)
)∥∥∥

1
≤ CA K n

A, for all t ∈ [0, h],

(2) there exists a closed and bounded neighborhood U ⊂ T Q, such that (q̄(t), ˙̄q(t)) ∈
U and (q̂n(t), ˙̂qn(t)) ∈ U for all t and n, and all partial derivatives of L are
continuous on U,

(3) for the sequence of quadrature rules Gn( f ) = ∑mn
j=1 b jn f (c jn h) ≈ ∫ h

0 f (t)dt,
there exists constants Cg, Kg, Kg < 1, independent of n, such that,

∣∣∣∣∣∣
∫ h

0
L (qn (t) , q̇n (t)) dt − h

mn∑
j=1

b jn L
(
qn
(
c jn h

)
, q̇n
(
c jn h

))
∣∣∣∣∣∣ ≤ Cg K n

g ,

for any qn ∈ M
n([0, h] , Q),

(4) and the stationary points q̄, q̃n minimize their respective actions,

then
∣∣∣L E

d (q0, q1) − Ld(q0, q1, n)

∣∣∣ ≤ Cs K n
s (23)

for some constants Cs, Ks, Ks < 1, independent of n, and hence the discrete Hamil-
tonian flow map has at most error O(K n

s ).
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The proof of the above theorem is very similar to that of arbitrarily high-order con-
vergence, and would be tedious to repeat here. It can be found in the appendix. The
main differences between the proofs are the assumption of the sequence of converging
functions in the increasingly high-dimensional approximation spaces, and the assump-
tion of a sequence of increasingly high-order quadrature rules. These assumptions are
used in the obvious way in the modified proof.

3.3 Minimization of the action

One of the major assumptions made in the convergence Theorems 3.3 and 3.4 is that
the stationary points of both the continuous and discrete actions are minimizers over
the interval [0, h]. This type of minimization requirement is similar to the one made
in the paper on �-convergence of variational integrators by Müller and Ortiz [38]. In
fact, the results in Müller and Ortiz [38] can easily be extended to demonstrate that
for sufficiently well-behaved Lagrangians of the form

L (q, q̇) = 1

2
q̇T Mq̇ − V (q) ,

where q ∈ C2([0, h], Q), there exists an interval [0, h], such that stationary points of
the Galerkin action are minimizers.

Theorem 3.5 Consider a Lagrangian of the form

L (q, q̇) = 1

2
q̇T Mq̇ − V (q) ,

where q ∈ C2([0, h], Q) and each component qd of q, qd ∈ C2([0, h], Q), is a
polynomial of degree at most n. Assume M is symmetric positive-definite and all
second-order partial derivatives of V exist, and are continuous and bounded. Then,
there exists a time interval [0, h], such that stationary points of the discrete action,

Sd

({
qi

k

}n

i=1

)
= h

m∑
j=1

b j

(
1

2
˙̃qn
(
c j h
)T

M ˙̃qn
(
c j h
)− V

(
q̃n
(
c j h
)))

,

on this time interval are minimizers if the quadrature rule used to construct the discrete
action is of order at least 2n + 1.

We quickly note that the assumption that each component of q, qd , is a polynomial
of degree at most n allows for discretizations where different components of the
configuration space are discretized with polynomials of different degrees. This allows
for more efficient discretizations where slower evolving components are discretized
with lower-degree polynomials than faster evolving ones.

Proof Let q̃n be a stationary point of the discrete action Sd(·), and let δq be an arbitrary
perturbation of the stationary point q̃n , under the conditions δq is a polynomial of the
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same degree as q̃n , δq(0) = δq(h) = 0. Any such arbitrary perturbation is uniquely
defined by a set {δqi

k}n
i=1 ⊂ Q. Then, perturbing the stationary point by δqi

k yields

Sd

({
qi

k + δqi
k

}n

i=1

)
− Sd

({
qi

k

}n

i=1

)

= h
m∑
j

b j

(
1

2

( ˙̃qn + δq̇
)T

M
( ˙̃qn + δq̇

)
− V (q̃n + δq)

)

− h
m∑
j

b j

(
1

2
˙̃qT
n M ˙̃qn − V (q̃n)

)

= h
m∑
j

b j

(
1

2

( ˙̃qn + δq̇
)T

M
( ˙̃qn + δq̇

)
− V (q̃n + δq) − 1

2
˙̃qT
n M ˙̃qn + V (q̃n)

)
.

Making use of Taylor’s remainder theorem, we expand:

V (q̃n + δq) = V (q̃n) + ∇V (q̃n)T δq + 1

2
δqT Rδq,

where |Rlm | ≤ supl,m | ∂2V
∂ql∂qm

|. Using this expansion, we rewrite

Sd

({
qi

k + δqi
k

}n

i=1

)
− Sd

({
qi

k

}n

i=1

)

= h
m∑
j

b j

(
1

2

( ˙̃qn + δq̇
)T

M
( ˙̃qn + δq̇

)
− V (q̃n) − ∇V (q̃n)T δq

− 1

2
δqT Rδq −

(
1

2
˙̃qT
n M ˙̃qn − V (q̃n)

))
,

which, given the symmetry in M , rearranges to:

Sd

({
qi

k + δqi
k

}n

i=1

)
− Sd

({
qi

k

}n

i=1

)

= h
m∑
j

b j

(
˙̃qT
n Mδq̇ − ∇V (q̃n)T δq + 1

2
δq̇T Mδq̇ − 1

2
δqT Rδq

)
.

Now, it should be noted that the stationarity condition for the discrete Euler–Lagrange
equations is

h
m∑

j=1

b j

( ˙̃qT
n Mδq̇ − ∇V (q̃n)T δq

)
= 0,
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for arbitrary δq, which allows us to simplify the expression to

Sd

({
qi

k + δqi
k

}n

i=1

)
− Sd

({
qi

k

}n

i=1

)
= h

m∑
j

b j

(
1

2
δq̇T Mδq̇ − 1

2
δqT Rδq

)
.

Now, using the assumption that the partial derivatives of V are bounded, |Rlm | ≤
| ∂2V
∂ql∂qm

| < CR , and standard matrix inequalities, we get the inequality:

δqT Rδq ≤ ‖Rδq‖2 ‖δq‖2 ≤ ‖R‖2 ‖δq‖22 ≤ ‖R‖F ‖δq‖22
≤ DCR ‖δq‖22 = DCRδqT δq, (24)

where D is the number of spatial dimensions of Q. Thus,

h
m∑
j

b j

(
1

2
δq̇T Mδq̇ − 1

2
δqT Rδq

)
≥ h

m∑
j

b j

(
1

2
δq̇T Mδq̇ − 1

2
DCRδqT δq

)
.

Because M is symmetric positive-definite, there exists m > 0, such that xT Mx ≥
mxT x for any x . Hence,

h
m∑
j

b j

(
1

2
δq̇T Mδq̇ − 1

2
DCRδqT δq

)
≥ h

m∑
j

b j

(
1

2
mδq̇T δq̇ − 1

2
DCRδqT δq

)
.

Now, we note that since each component of δq is a polynomial of degree at most n,
δqT δq and δq̇T δq̇ are both polynomials of degree less than or equal to 2n. Since our
quadrature rule is of order 2n + 1, the quadrature rule is exact, and we can rewrite

h
m∑
j

b j

(
1

2
mδq̇T δq̇ − 1

2
DCRδqT δq

)
= 1

2

∫ h

0
mδq̇T δq̇ − DCRδqT δqdt

= 1

2

(∫ h

0
mδq̇T δq̇dt−

∫ h

0
DCRδqT δqdt

)
.

From here, we note that δq ∈ H1
0 ([0, h], Q), and make use of the Poincaré inequality

to conclude that

1

2

(∫ h

0
mδq̇T δq̇dt −

∫ h

0
DCRδqT δqdt

)

≥ 1

2

(
m

π2

h2

∫ h

0
δqT δqdt − DCR

∫ h

0
δqT δqdt

)

= 1

2

(
mπ2

h2 − DCR

)∫ h

0
δqT δqdt.
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Since
∫ h
0 δqT δqdt > 0,

Sd

({
qi

k + δqi
k

}n

i=1

)
− Sd

({
qi

k

}n

i=1

)
≥ 1

2

(
mπ2

h2 − DCR

)∫ h

0
δqT δqdt > 0,

so long as h <

√
mπ2

DCR
. �

We conclude our discussion of the error associated with the one-step map with two
theorems that synthesize the results of Theorems 3.1, 3.3, 3.4, and 3.5 into unified
results that give a lower bound on the order of convergence for Galerkin variational
integrators for canonical Lagrangians.

Theorem 3.6 (Arbitrarily high order convergence of Galerkin variational integra-
tors for canonical Lagrangians) For a canonical Lagrangian and a sufficiently small
time-step h, a Galerkin variational integrator constructed from a basis {φi }n

i=0 or
polynomials of degree at most n and a quadrature rule of at least order 2n + 1 will
have error at most O(hn+1). The internal stage Euler–Lagrange equations needed to
construct the Galerkin variational integrator will also have a unique solution.

Theorem 3.7 (Geometric convergence of Galerkin variational integrators for canon-
ical Lagrangians) For a canonical Lagrangian and a sufficiently small time-step h, a
Galerkin variational integrator constructed from a basis {φi }n

i=0 or polynomials of
degree at most n and a quadrature rule of at least order 2n + 1 will have error at
most O(K n) for some K independent of n and less than 1. The internal stage Euler–
Lagrange equations needed to construct the Galerkin variational integrator will also
have a unique solution.

These results follow easily by combining Theorems 3.1, 3.3, 3.4, and 3.5. Fur-
thermore, while these theorems are more unified than our preceding results, they are
also less general; they establish convergence for a special set of Galerkin variational
integrators for a specific class of Lagrangians. We emphasize the constituent theorems
earlier because individually they are less restrictive in their assumptions and hence
may be used to expand error bounds to constructions based on approximation spaces
beyond the polynomials.

Furthermore, while Theorems 3.6 and 3.7 both provide lower bounds on the order
of the error, these bounds are not sharp for specific constructions. For example, in [35],
Galerkin variational integrators based on polynomials of degree n and n-order Gauss–
Legendre quadrature rules are shown to result in the collocation Gauss–Legendre
methods of order 2n, which is a rate of convergence significantly higher than our
bound. Also, when the n-order Lobatto quadrature rule is used instead, the Lobatto
IIIA–IIIB partitioned Runge–Kutta method of order 2n − 2 is obtained. However, our
results are general across different polynomial bases and different quadrature rules.
A deeper exploration of the precise order for other specific constructions, and the
relationship between different polynomial bases, quadrature rules, and the sharp order
of convergence of the resultingmethodwould be an interesting avenue of investigation,
but is beyond the scope of this paper.
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3.4 Convergence of Galerkin curves and Noether quantities

3.4.1 Galerkin curves

In order to construct the one-step method, spectral variational integrators determine a
curve

q̃n (t) =
n∑

i=1

qi
kφi (t) ,

which satisfies

q̃n (t) = argmin
qn∈Mn([0,h],Q)

qn(0)=qk ,qn(h)=qk+1

h
m∑

j=1

b j L
(

q̃n
(
c j h
)
, ˙̃qn
(
c j h
))

.

Evaluating this curve at h defines the next step of the one-step method, qk+1 = q̃n(h),
but the curve itself has many desirable properties which makes it a good continuous
approximation to the true solution of the Euler–Lagrange equations q̄(t). In this sec-
tion, we will examine some of the favorable properties of q̃n(t), hereafter referred to
as the Galerkin curve.

However, before discussing the properties of the Galerkin curve, it is useful to
review the different curves with which we are working. We have already defined the
Galerkin curve, q̃n(t), and we will also be making use of the local solution to the
Euler–Lagrange equations q̄(t), where

q̄ (t) = argmin
q∈C2([0,h],Q)

q(0)=qk ,q(h)=qk+1

∫ h

0
L (q (t) , q̇ (t)) dt.

However, while for each interval q̄ satisfies the Euler–Lagrange equations exactly, it is
not the exact solution of the Euler–Lagrange equations globally, as qk �= �kh(q0, q̇0),
where �t (q0, q̇0) is the flow of the Euler–Lagrange vector field. That is to say, while
the local solution is exact for the time interval [kh, (k + 1)h], since the qk at the
beginning of this interval only approximates the true global solution, the local exact
solution is not the same as the exact global solution. This is particularly importantwhen
discussing invariants, where the invariants of q̄ remain constant within a time-step,
but not from time-step to time-step.

The first property of the Galerkin curve that we will examine is its rate of con-
vergence to the true flow of the Euler–Lagrange vector field. There are two general
sources of error that affect the convergence of these curves, the first being the accuracy
to which the curves approximate the local solution to the Euler–Lagrange equations
over the interval [0, h] with the boundary conditions (qk, qk+1), and the second being
the accuracy of the boundary conditions (qk, qk+1) as approximations to a true sam-
pling of the exact flow. Numerical experiments will show that often the second source
of error dominates the first, causing the Galerkin curves to converge at the same rate
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as the one-step map. However, the accuracy to which the Galerkin curves approximate
the true minimizers independent of the error of the boundary can also be established
under appropriate assumptions about the action. Two theorems which establish this
convergence are presented below.

Our technique for determining the accuracy of the Galerkin curves is to establish
that, so long as the second Frechet derivative of the discrete action is coercive, the error
between the discrete action evaluated on the Galerkin curve and and the discrete action
on the local exact solution bounds the error between the curves. The error analysis of
the one-stepmap established bounds on the error between the discrete action evaluated
on the Galerkin curve and the discrete action on the local exact solution, and we apply
this to bound the error between the local exact solution and the Galerkin curve. We
then establish that the second Frechet derivative is coercive for an action based on the
canonical Lagrangian, which makes our result immediately applicable to problems
with canonical Lagrangians.

Before we state the theorems, we quickly recall the definitions of the Sobolev Norm
‖·‖W 1,p([0,h]),

‖ f ‖W 1,p([0,h]) =
(
‖ f ‖p

L p([0,h]) + ∥∥ ḟ
∥∥p

L p([0,h])

) 1
p =

(∫ h

0
| f |p dt +

∫ h

0

∣∣ ḟ
∣∣p dt

) 1
p

.

We will make extensive use of this norm when examining convergence of Galerkin
curves.

Theorem 3.8 (Geometric convergence of Galerkin curves with n-refinement) Under
the same assumptions as Theorem 3.4, if at q̄, the action is twice Frechet differen-
tiable, and if the second Frechet derivative of the action D2S(·)[·, ·] is coercive in a
neighborhood U of q̄, that is,

D2S (ν) [δq, δq] ≥ C f ‖δq‖2W 1,1([0,h]) ,

for all curves δq ∈ H1
0 ([0, h], Q) and all ν ∈ U, then the curves which minimize

the discrete action converge to the true solution geometrically with n-refinement with
respect to ‖·‖W 1,1([0,h]). Specifically, if the discrete Hamiltonian flow map has error

O(K n
s ), Ks < 1, then the Galerkin curves have error O(

√
Ks

n
).

Proof We start with the bound (23) given at the end of Theorem 3.4,

∣∣∣L E
d (qk, qk+1) − Ld(qk, qk+1, n)

∣∣∣ ≤ Cs K n
s ,

and expand using the definitions of L E
d (qk, qk+1) and Ld(qk, qk+1, n), as well as the

assumed accuracy of the quadrature rule Gn to derive

Cs K n
s ≥

∣∣∣L E
d (qk, qk+1) − Ld(qk, qk+1, n)

∣∣∣

=
∣∣∣∣∣∣
∫ h

0
L
(
q̄, ˙̄q) dt − h

mn∑
j=1

b jn L
(
q̃n
(
c jn h

)
, q̃n
(
c jn h

))
∣∣∣∣∣∣ (25)
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≥
∣∣∣∣
∫ h

0
L
(
q̄, ˙̄q) dt −

∫ h

0
L
(

q̃n, ˙̃qn

)
dt

∣∣∣∣− Cg K n
g

= |S (q̃n) − S (q̄)| − Cg K n
g , (26)

which implies:

(
Cs + Cg

)
K n

s ≥ |S (q̃n) − S (q̄)| ,

because Ks ≥ Kg , (see the proof of Theorem 3.4 in the appendix). Using this inequal-
ity, we make use of a Taylor expansion of S (q̃n),

S (q̃n) = S (q̄) + DS (q̄)
[
q̃n − q̄

]+ 1

2
D2S (ν)

[
q̃n − q̄, q̃n − q̄

]
,

for some ν ∈ U , to see that

(
Cs + Cg

)
K n

s ≥ |S (q̃n) − S (q̄)|
=
∣∣∣∣S (q̄)+DS (q̄)

[
q̃n − q̄

]+ 1

2
D2S (ν)

[
q̃n − q̄, q̃n − q̄

]− S (q̄)

∣∣∣∣ .

The reader should note that we have used DnS here to denote the n-th Frechet deriv-
ative of the functional S. Now, we see that

DS (q̄)
[
q̃n − q̄

] =
∫ h

0

∂L

∂q

(
q̄, ˙̄q) (q̃n − q̄) + ∂L

∂ q̇

(
q̄, ˙̄q) ( ˙̃qn − ˙̄q

)
dt

=
∫ h

0

∂L

∂q

(
q̄, ˙̄q) (q̃n − q̄) − d

dt

∂L

∂q̇

(
q̄, ˙̄q) (q̃n − q̄) dt

+ ∂L

∂ q̇

(
q̄, ˙̄q) (q̃n − q̄)

∣∣∣∣
h

0

=
∫ h

0

(
∂L

∂q

(
q̄, ˙̄q)− d

dt

∂L

∂q̇

(
q̄, ˙̄q)

)
· (q̃n − q̄) dt

= 0,

where the boundary term in the integration by parts vanished because q̃n(0) = q̄(0)
and q̃n(h) = q̄(h), by definition (note that this implies (q̃n − q̄) ∈ H1

0 ([0, h], Q)).
Then,

(
Cs + Cg

)
K n

s ≥ 1

2

∣∣∣D2S (ν)
[
q̃n − q̄, q̃n − q̄

]∣∣∣
≥ C f

2
‖q̃n − q̄‖2W 1,1([0,h]) ,

C
√

Ks
n ≥ ‖q̃n − q̄‖W 1,1([0,h]) ,

where C =
√

2(Cs+Cg)

C f
. �
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This result shows that Galerkin curves converge to the true solution geometrically
with n-refinement, albeit with a larger geometric constant, and hence a slower rate.
By simply replacing the bounds (25) and (26) from Theorem 3.4 with those from The-
orem 3.3 and the term Cs K n

s with Coph p, an identical argument shows that Galerkin
curves converge at half the rate with h-refinement.

Theorem 3.9 (Convergence of Galerkin curves with h-refinement) Under the same
assumptions as Theorem 3.3, if at q̄, the action is twice Frechet differentiable, and if
the second Frechet derivative of the action D2S(·)[·, ·] is coercive with a constant C f

independent of h in a neighborhood U of q̄, for all curves δq ∈ H1
0 ([0, h], Q),

then if the discrete Lagrange map has error O(h p+1), the Galerkin curves have

error at most O(h
p+1
2 ) in ‖·‖W 1,1([0,h]). If C f is a function of h, this bound becomes

O
(

C f (h)−1 h
p+1
2

)
.

Like the requirement that the stationary points of the actions are minimizers,
the requirement that the second Frechet derivative of the action is coercive may
appear quite strong at first. Again, the coercivity will depend on the properties of
the Lagrangian L , but we can establish that for Lagrangians of the canonical form

L (q, q̇) = 1

2
q̇T Mq̇ − V (q) ,

there exists a time-step [0, h] over which the action is coercive on H1
0 ([0, h], Q).

Theorem 3.10 (Coercivity of the action) For Lagrangians of the form

L (q, q̇) = 1

2
q̇T Mq̇ − V (q) ,

where M is symmetric positive-definite, and the second derivatives of V (q) are
bounded, there exists an interval [0, h] over which the action is coercive over
H1
0 ([0, h], Q), that is,

D2S (ν) [δq, δq] ≥ C f ‖δq‖2W 1,1([0,h]),

for any δq ∈ H1
0 ([0, h], Q) and any ν ∈ C2([0, h], Q).

Proof First, we note that if

S (ν) =
∫ h

0

1

2
ν̇T M ν̇ − V (ν) ,

then

D2S (ν) [δq, δq] =
∫ h

0
δq̇T Mδq̇ − δqT H (ν) δqdt
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712 J. Hall, M. Leok

=
∫ h

0
δq̇T Mδq̇dt −

∫ h

0
δqT H (ν) δqdt,

where H(ν) is the Hessian of V(·) at the point ν. Since M is symmetric positive-
definite, and the second derivatives of V (·) are bounded, then there exists Cr and m,
such that,

∫ h

0
δq̇T Mδq̇dt ≥

∫ h

0
mδq̇T δq̇dt,

∫ h

0
δqT H (ν) δqdt ≤

∫ h

0
DCrδqT δqdt, (27)

[see (24) for a derivation of (27)]. Hence,

D2S (ν) [δq, δq] ≥
∫ h

0
mδq̇T δq̇dt −

∫ h

0
DCrδqT δqdt

= 1

2
m
∫ h

0
δq̇T δq̇dt + 1

2
m
∫ h

0
δq̇T δq̇dt − DCr

∫ h

0
δqT δqdt.

(28)

Considering the last two terms in (28), and noting that δq ∈ H1
0 ([0, h], Q), we make

use of the Poincaré inequality to derive:

1

2
m
∫ h

0
δq̇T δq̇dt − DCr

∫ h

0
δqT δqdt ≥ mπ2

2h2

∫ h

0
δqT δqdt − DCr

∫ h

0
δqT δqdt

≥
(

mπ2

2h2 − DCr

)∫ h

0
δqT δqdt. (29)

Thus, substituting (29) in for the last two terms of (28), we conclude:

D2S (q, q̇) [δq, δq] ≥
(

mπ2

2h2 − DCr

)∫ h

0
δqT δqdt + m

2

∫ h

0
δq̇T δq̇dt

≥ min

(
m

2
,

(
mπ2

2h2 − DCr

))(∫ h

0
δqT δqdt +

∫ h

0
δq̇T δq̇dt

)

= min

(
m

2
,

(
mπ2

2h2 − DCr

))(
‖δq‖2L2([0,h]) + ‖δq̇‖2L2([0,h])

)
,

and making use of Hölder’s inequality, we see that ‖δq‖L2([0,h]) ≥ h
1
2 ‖δq‖L1([0,h]),

thus,

QD2S (q, q̇) [δq, δq]

≥ min

(
m

2
,

(
mπ2

2h2 − DCr

))(
h ‖δq‖2L1([0,h]) + h ‖δq̇‖2L1([0,h])

)
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Spectral variational integrators 713

≥ min

(
mh

2
,

(
mπ2

2h
− h DCr

))
1

2

(‖δq‖L1([0,h]) + ‖δq̇‖L1([0,h])
)2

= min

(
mh

4
,

(
mπ2

4h
− h DCr

))
‖δq‖2W 1,1([0,h]) ,

which establishes the coercivity result. �

3.4.2 Noether quantities

One of the great advantages of using variational integrators for problems in geometric
mechanics is that, by construction, they have a rich geometric structure which helps
lead to excellent long-term and qualitative behavior. An important geometric feature
of variational integrators is the preservation of discrete Noether quantities, which are
invariants that are derived from symmetries of the action. These are analogous to the
more familiar Noether quantities of geometric mechanics in the continuous case. We
quickly recall Noether’s theorem in both the discrete and continuous case, which will
also help define the notation used throughout the proofs that follow. The proofs of
both these theorems can be found in Hairer et al. [17].

Theorem 3.11 (Noether’s Theorem) Consider a system with Hamiltonian H(p, q)

and Lagrangian L(q, q̇). Suppose {gs : s ∈ R} is a one-parameter group of transfor-
mations which leaves the Lagrangian invariant. Let

a (q) = d

ds

∣∣∣∣
s=0

gs (q)

be defined as the vector field with flow gs(q), referred to as the infinitesimal generator,
and define the canonical momentum

p = ∂L

∂q̇
(q, q̇) .

Then

I (p, q) = pT a (q)

is a first integral of the Hamiltonian system.

Theorem 3.12 (Discrete Noether’s Theorem) Suppose the one-parameter group
of transformations leaves the discrete Lagrangian Ld(qk, qk+1) invariant for all
(qk, qk+1). Then:

pT
k+1a (qk+1) = pT

k a (qk)

where

pk = −D1Ld (qk, qk+1) ,
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Fig. 3 Conserved and approximately conserved Noether quantities and the resulting constrained solution
space. Suppose that both pT q = 1 and p2 + q2 = 5 were conserved quantities for a certain Lagrangian.
Then the solutions of the Euler–Lagrange equations would be constrained to the intersections of these two
constant surfaces in phase space; in the figure, this is the intersection of the dashed and solid lines. If these
quantities were conserved up to a fixed error along a numerical solution, then the numerical solution would
be constrained to the intersection of the shaded regions in the above figure. By construction, variational
integrators produce approximation solutions that automatically remain in these regions, which is what leads
to many of their excellent qualities

pk+1 = D2Ld (qk, qk+1) .

For the remainder of this section, we will refer to I (q, p) as the Noether quantity
and pT

k a(qk) = pT
k+1a(qk+1) as the discrete Noether quantity.

For Galerkin variational integrators, it is possible to bound the error of the Noether
quantities along theGalerkin curve from the behavior of the analogous discreteNoether
quantities of the discrete problem and, more importantly, this bound is independent of
the number of time-steps that are taken in the numerical integration. This is significant
because it offers insight into the excellent behavior of spectral variational integrators
even over long periods of integration. The significance of conservedNoether quantities
is illustrated in Fig. 3, as conserved quantities act as constraints on the evolution of
system.

The proof of convergence and near preservation of Noether quantities is broken
into three major parts. First, we note that on step k of a numerical integration, the
discrete Noether quantity arises from a function of the Galerkin curve and the initial
point of the one-step map (qk−1, qk), and that a bound exists for the difference of
this discrete Noether quantity evaluated on the Galerkin curve and evaluated on the
local exact solution to the Euler–Lagrange equations q̄ . Second, we show that a bound
exists for the difference of the discrete Noether quantity on the local exact solution
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Spectral variational integrators 715

of the Euler–Lagrange equations and the value of the Noether quantity of the local
exact solution, which is conserved along the flow of the Euler–Lagrange vector field.
Finally, we show that under certain smoothness conditions, there exists a point-wise
bound between the Noether quantity evaluated on the Galerkin curve and the Noether
quantity evaluated on the local exact solution. Thus, we establish a point-wise bound
between the Noether quantity evaluated on the Galerkin curve and the discrete Noether
quantity, and a bound between the discrete Noether quantity and the Noether quantity,
which leads to a point-wise bound between the Noether quantity evaluated on the
Galerkin curve, and the Noether quantity which is conserved along the global flow of
the Euler–Lagrange vector field.

Throughout this section we will make the simplifying assumptions that

q̃n =
n∑

i=0

qi
kφi ,

where q0
k = qk , and thus,

∂q̃n

∂qk
= φ0.

This assumption significantly simplifies the analysis.
We begin by bounding the discrete Noether quantity by a function of the local exact

solution of the Euler–Lagrange equations.

Lemma 3.3 (Bound on discrete Noether quantity) Define the Galerkin Noether map
as:

Id (q (t) , qk) = −
⎛
⎝h

n∑
j=1

b j

[
∂L

∂q
(q, q̇) φ0 + ∂L

∂ q̇
(q, q̇) φ̇0

]⎞
⎠

T

a (qk)

and note that the discrete Noether quantity is given by

Id (q̃n, qk) = pT
k a (qk) .

where pk is given by the standard definition of the discrete Legendre transform for a
variational integrator,

pk = −D1Ld (qk, qk+1) ,

which for a Galerkin variational integrator takes the form

pk = −
m∑

j=1

b j
∂L

∂q

(
q̃n, ˙̃qn

)
φ0 + ∂L

∂ q̇

(
q̃n, ˙̃qn

)
φ̇0.
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Assuming the quadrature accuracy of Theorem 3.4 with n-refinement and Theo-

rem 3.3 with h-refinement, if ∂L
∂q (q, q̇), ∂L

∂q̇ (q, q̇) and d
dt

∂L
∂q̇ are Lipschitz continuous,

‖φ0‖L∞([0,h]) is bounded with n-refinement, and ‖q̃n − q̄‖W 1,1([0,h]) is bounded below
by the quadrature error, then

|Id (q̃n, qk) − Id (q̄, qk)|
≤ C |a (qk)|

(
‖q̃n − q̄‖W 1,1([0,h]) + ‖q̃n − q̄‖L∞([0,h]) +

∥∥∥ ˙̃qn − ˙̄q
∥∥∥

L∞([0,h])

)

for some C independent of n and h.

Proof We begin by expanding the definitions of the discrete Noether quantity:

|Id (q̃n, qk) − Id (q̄, qk)|

=

∣∣∣∣∣∣∣
h

⎛
⎝ m∑

j=1

b j

[
∂L

∂q

(
q̃n, ˙̃qn

)
φ0 + ∂L

∂q̇

(
q̃n, ˙̃qn

)
φ̇0

]⎞
⎠

T

a (qk)

−
⎛
⎝h

m∑
j=1

b j

[
∂L

∂q

(
q̄, ˙̄q)φ0 + ∂L

∂q̇

(
q̄, ˙̄q) φ̇0

]⎞
⎠

T

a (qk)

∣∣∣∣∣∣∣

=
∣∣∣∣∣
(

h
∑

b j

[(
∂L

∂q

(
q̃n, ˙̃qn

)
− ∂L

∂q

(
q̄, ˙̄q)

)
φ0+

(
∂L

∂q̇

(
q̃n, ˙̃qn

)
− ∂L

∂q̇

(
q̄, ˙̄q)

)
φ̇0

])T

a (qk)

∣∣∣∣∣

≤
∣∣∣∣∣∣h

m∑
j=1

b j

[(
∂L

∂q

(
q̃n, ˙̃qn

)
− ∂L

∂q

(
q̄, ˙̄q)

)
φ0+

(
∂L

∂q̇

(
q̃n, ˙̃qn

)
− ∂L

∂q̇

(
q̄, ˙̄q)

)
φ̇0

]∣∣∣∣∣∣ |a (qk)| .

Now we introduce the function eq(·, ·) which gives the error of the quadrature rule,
and thus,

|Id (q̃n, qk) − Id (q̄, qk)| ≤
∣∣∣∣
∫ h

0

(
∂L

∂q

(
q̃n, ˙̃qn

)
− ∂L

∂q

(
q̄, ˙̄q)

)
φ0

+
(

∂L

∂q̇

(
q̃n, ˙̃qn

)
− ∂L

∂q̇

(
q̄, ˙̄q)

)
φ̇0dt + eq(q̃n − q̄, ˙̃qn − ˙̄q)

∣∣∣∣ |a (qk)| .

Integrating by parts, we get:

|Id (q̃n, qk) − Id (q̄, qk)| ≤
∣∣∣∣
∫ h

0

(
∂L

∂q

(
q̃n, ˙̃qn

)
− ∂L

∂q

(
q̄, ˙̄q)

)
φ0

− d

dt

(
∂L

∂q̇

(
q̃n, ˙̃qn

)
− ∂L

∂q̇

(
q̄, ˙̄q)

)
φ0dt

+
(

∂L

∂q̇

(
q̃n, ˙̃qn

)
− ∂L

∂ q̇

(
q̄, ˙̄q)

)
φ0

∣∣∣∣
h

0
+ eq(q̃n − q̄, ˙̃qn − ˙̄q)

∣∣∣∣∣ |a (qk)| .
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Introducing the Lipschitz constants L1 for ∂L
∂q , L2 for ∂L

∂q̇ , and L3 for d
dt

∂L
∂q̇ ,

|Id (q̃n, qk) − Id (q̄, qk)|

≤
(∫ h

0
(L1 + L3)

∥∥∥
(

q̃n, ˙̃qn

)
− (q̄, ˙̄q)

∥∥∥
1
|φ0| dt + 2L2

(‖φ0‖L∞([0,h])
)

×
(

‖q̃n − q̄‖L∞([0,h]) +
∥∥∥ ˙̃qn − ˙̄q

∥∥∥
L∞([0,h])

)
+ eq(q̃n − q̄, ˙̃qn − ˙̄q)

)
|a (qk)|

≤ (L1 + L3) ‖φ0‖L∞([0,h]) |a (qk)|
(∫ h

0

∥∥∥
(

q̃n, ˙̃qn

)
− (q̄, ˙̄q)

∥∥∥
1
dt

)

+ 2L2
(‖φ0‖L∞([0,h])

) |a (qk)|
(

‖q̃n − q̄‖L∞([0,h]) +
∥∥∥ ˙̃qn − ˙̄q

∥∥∥
L∞([0,h])

)

+ eq(q̃n − q̄, ˙̃qn − ˙̄q) |a (qk)| .

We now make the simplification that the quadrature error |eq(·, ·)| serves as a lower
bound for ‖q̃n − q̄‖W 1,1([0,h]). While this may not strictly hold, all of our estimates on
the convergence for q̃n imply this bound, and hence it is a reasonable simplification for
establishing convergence in this case. Now, note that ‖φ0‖L∞([0,h]) is invariant under
h rescaling, and let

C = max (L1 + L3, 2L2) ‖φ0‖L∞([0,h]) + 1

to get

|Id (q̃n, qk) − Id (q̄, qk)|
≤ C |a (qk)|

(
‖q̃n − q̄‖W 1,1([0,h]) + ‖q̃n − q̄‖L∞([0,h]) +

∥∥∥ ˙̃qn − ˙̄q
∥∥∥

L∞([0,h])

)

which establishes the result. �
Lemma3.3 establishes a boundbetween the discreteNoether quantity and Id (q̄, qk).

The next step is to establish a bound between Id(q̄, qk) and the Noether quantity.

Lemma 3.4 (Error between discrete Noether quantity and true Noether quantity)
Assume that φ0(0) = 1 and φ0(h) = 0, and that the sequence {|a(qk)|}N

k=1 is bounded
by a constant Ca which is independent of N . Let

p̄ (t) = ∂L

∂q̇

(
q̄ (t) , ˙̄q (t)

)
.

Once again, let the error of the quadrature rule be given by eq(·, ·). Then,

|Id (q̄, qk) − I ( p̄ (t) , q̄ (t))| ≤ Ca
∣∣eq(q̄, ˙̄q)

∣∣ ,
for any t ∈ [0, h].
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Proof First, we note that since q̄ solves the Euler–Lagrange equations exactly,
I ( p̄(t), q̄(t)) is a conserved quantity along the flow, so it suffices to show the inequality
holds for t = 0. We begin by expanding:

∣∣∣I d (q̄, qk) − I ( p̄ (0) , q̄ (0))
∣∣∣

=

∣∣∣∣∣∣∣
−h

⎛
⎝ m∑

j=1

b j
∂L

∂q

(
q̄, ˙̄q)φ0 + ∂L

∂q̇

(
q̄, ˙̄q) φ̇0

⎞
⎠

T

a (qk) − p̄ (0)T a (q̄ (0))

∣∣∣∣∣∣∣

=
∣∣∣∣∣−
(∫ h

0

∂L

∂q

(
q̄, ˙̄q)φ0 + ∂L

∂ q̇

(
q̄, ˙̄q) φ̇0dt + eq(q̄, ˙̄q)

)T

a (qk)

− p̄ (0)T a (q̄ (0))
∣∣∣

=
∣∣∣∣−
(∫ h

0

(
∂L

∂q

(
q̄, ˙̄q)− d

dt

∂L

∂q̇

(
q̄, ˙̄q)

)
φ0dt + ∂L

∂q̇

(
q̄ (h) , ˙̄q (h)

)
φ0 (h)

−∂L

∂q̇

(
q̄ (0) , ˙̄q (0)

)
φ0 (0) + eq(q̄, ˙̄q)

)T

a (qk) − p̄ (0)T a (q̄ (0))

∣∣∣∣∣ .

Since q̄(t) solves the Euler–Lagrange equations, φ0(0) = 1 and φ0(h) = 0, and
q̄(0) = qk ,

∣∣∣I d (q̄, qk) − I ( p̄ (0) , q̄ (0))
∣∣∣

=
∣∣∣∣∣
(

∂L

∂q̇

(
q̄ (0) , ˙̄q (0)

))T

a (qk) + (eq(q̄, ˙̄q)
)T

a (qk) − p̄ (0)T a (qk)

∣∣∣∣∣
=
∣∣∣( p̄ (0))T a (qk) + (eq(q̄, ˙̄q)

)T
a (qk) − ( p̄ (0))T a (qk)

∣∣∣
=
∣∣∣eq(q̄, ˙̄q)T a (qk)

∣∣∣
≤ ∣∣eq(q̄, ˙̄q)

∣∣ |a (qk)|
≤ Ca

∣∣eq(q̄, ˙̄q)
∣∣ ,

which yields the desired bound. �
Once again, if we assume that the quadrature error serves as a lower bound for the

Sobolev error, combining the bounds from Lemmata 3.3 and 3.4 yields:

|Id (q̃n, qk) − I ( p̄ (t) , q̄ (t))|
≤ 2CCa

(
‖q̃n − q̄‖W 1,1([0,h]) + ‖q̃n − q̄‖L∞([0,h]) +

∥∥∥ ˙̃qn − ˙̄q
∥∥∥

L∞([0,h])

)
.

This bound serves two purposes; the first is to establish a bound between the discrete
Noether quantity and the Noether quantity computed on the local exact solution q̄ . The
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second is to establish a bound between the discrete Noether quantity after one-step
and the Noether quantity computed on the initial data:

|Id (q̃n, q1) − I (p (0) , q (0))|
≤ 2CCa

(
‖q̃n − q̄‖W 1,1([0,h]) + ‖q̃n − q̄‖L∞([0,h]) +

∥∥∥ ˙̃qn − ˙̄q
∥∥∥

L∞([0,h])

)
,

since for (q1, q2), q̄ is the global exact flow of the Euler–Lagrange equations.
The difference between these two bounds is subtle but important; by establishing a

bound between the discrete Noether quantity and the Noether quantity associated with
the initial conditions, on any step of the method we can bound the error between the
discrete Noether quantity and the Noether quantity associated with the global exact
flow. By establishing the bound between the discrete Noether quantity and the Noether
quantity associated with q̄ at any step, we can bound the error between the Noether
quantity associated with the local exact flow q̄ and the true Noether quantity conserved
along the global exact flow:

|I ( p̄ (t), q̄ (t)) − I (p (0), q (0))|
≤ |I ( p̄ (t), q̄ (t)) − Id (q̃n, qk)| + |Id (q̃n, qk) − I (p (0), q (0))|
≤ 4CCa

(
‖q̃n − q̄‖W 1,1([0,h])+‖q̃n −q̄‖L∞([0,h])+

∥∥∥ ˙̃qn − ˙̄q
∥∥∥

L∞([0,h])

)
, (30)

for any t ∈ [0, h] on any time-step k. Because the local exact flow q̄ is generated from
boundary conditions (qk, qk+1) which only approximate the boundary conditions of
the true flow, there is no guarantee that the Noether quantity associated with q̄ will be
the same step to step, only that it will be conserved within each time-step. However,
because there is a bound between the Noether quantity associated with q̄ and the
discrete Noether quantity at every time-step, the discrete Noether quantity and the
Noether quantity associated with the exact flow, and because the Noether quantity
is conserved point-wise along q̄ on each time-step, there exists a bound between the
Noether quantity associated with each point of the local exact flow and the Noether
quantity associated with the true solution.

We finally arrive at the desired result, which is a theorem that bounds the error
between the Noether quantity along the Galerkin curve and the true Noether quantity.
It is significant because not only does it bound the error of the Noether quantity, but
the bound is independent of the number of steps taken, and hence will not grow even
for extremely long numerical integrations.

Theorem 3.13 (Convergence of conserved Noether quantities) Define

p̃n = ∂L

∂q̇

(
q̃n, ˙̃qn

)
.

Under the assumptions of Lemmata 3.3 and 3.4, if the Noether map I (p, q) is Lipschitz
continuous in both its arguments, then there exists a constant Cv independent of N ,
the number of method steps, such that,
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|I (p (0), q (0)) − I ( p̃n (t), q̃n (t))|
≤ Cv

(
‖q̃n − q̄‖W 1,1([0,h]) + ‖q̃n − q̄‖L∞([0,h]) +

∥∥∥ ˙̃qn − ˙̄q
∥∥∥

L∞([0,h])

)
,

for any t ∈ [0, Nh].
Proof We begin by introducing the Noether quantity evaluated at t on the local exact
flow, q̄:

|I (p (0), q (0)) − I ( p̃n (t), q̃n (t))|
≤ |I ( p̃n (t), q̃n (t)) − I ( p̄ (t), q̄ (t))|

+ |I ( p̄ (t), q̄ (t)) − I (p (0), q (0))| . (31)

Considering the first term in (31), let L4 be the Lipschitz constant for I (·, ·). Then,

|I ( p̃n (t), q̃n (t)) − I ( p̄ (t), q̄ (t))|
≤ L4 ‖( p̃n (t), q̃n (t)) − ( p̄ (t), q̄ (t))‖1
= L4 (| p̃n (t) − p̄ (t)| + |q̃n (t) − q̄ (t)|)
= L4

(∣∣∣∣∂L

∂q̇

(
q̃n (t), ˙̃qn (t)

)
− ∂L

∂ q̇

(
q̄ (t), ˙̄q(t)

)∣∣∣∣+ |q̃n (t) − q̄ (t)|
)

≤ L4

(
L2

∣∣∣ ˙̃qn (t) − ˙̄q (t)
∣∣∣+ (L2 + 1) |q̃n (t) − q̄ (t)|

)

≤ L4 (L2 + 1)

(
‖q̃n − q̄‖L∞([0,h]) +

∥∥∥ ˙̃qn − ˙̄q
∥∥∥

L∞([0,h])

)
. (32)

The second term in (31) is exactly the bound given by (30) and thus combining (32)
and (30) in (31) and defining Cv = 4CCa + L4(L2 + 1), we have:

|I (p (0), q (0)) − I ( p̃n (t), q̃n (t))|
≤ Cv

(
‖q̃n − q̄‖W 1,1([0,h]) + ‖q̃n − q̄‖L∞([0,h]) +

∥∥∥ ˙̃qn − ˙̄q
∥∥∥

L∞([0,h])

)
,

which completes the result. �
The convergence and bounds of the Noether quantity evaluated on the Galerkin

curve to that of the true solution is hampered by one issue. While Theorems 3.8
and 3.9 provide estimates for convergence in the Sobolev norm ‖·‖W 1,1([0,h]), The-
orem 3.13 requires estimates in the L∞ norm. We can establish a bound for
‖q̃n(t) − q̄(t)‖L∞([0,h]), but it is much more difficult to establish a general estimate

for
∥∥∥ ˙̃qn(t) − ˙̄q(t)

∥∥∥
L∞([0,h])

.

Lemma 3.5 (Bound on L∞ norm from Sobolev norm) For any t ∈ [0, h], the follow-
ing bound holds:
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|q (t)| ≤ max

(
1

h
, 1

)
‖q‖W 1,1([0,h]) ,

and thus,

‖q‖L∞([0,h]) ≤ max

(
1

h
, 1

)
‖q‖W 1,1([0,h]) .

Proof This is a basic extension of the arguments from Lemma A.1. in Larsson and
Thomée [23], generalizing the lemma from the interval [0, 1] to an interval of arbitrary
length, [0, h]. We note that for any t, s ∈ [0, h], q(t) = q(s) + ∫ t

s q̇(u)du. Thus:

|q (t)| ≤ |q (s)| +
∫ h

0
|q̇ (u)| du

≤ |q (s)| + ‖q̇‖L1([0,h]) .

Now, we integrate with respect to s:

∫ h

0
|q (t)| ds ≤

∫ h

0
|q (s)| ds +

∫ h

0
‖q̇‖L1([0,h]) ds,

h |q (t)| ≤ (‖q‖L1([0,h]) + h ‖q̇‖L1([0,h])
)
.

which yields the desired result. �

Under certain assumptions about the behavior of ˙̃qn − ˙̄q, it is possible to establish
bounds on the point-wise error of ˙̃qn from the Sobolev error ‖q̃n − q̄‖W 1,1([0,h]). For
example, if the length of time that the error is within a given fraction of the max error
is proportional to the length of the interval [0, h], i.e. there exists C1, C2 independent
of h: i.e.,

m

({
t

∣∣∣∣
∥∥∥
( ˙̃qn (t) − ˙̄q (t)

)∥∥∥
1

≥ C1

∥∥∥ ˙̃qn − ˙̄q
∥∥∥

L∞([0,h])

})
≥ C2h,

where m is the Lebesgue measure, then it can easily be seen that:

‖q̃n − q̄‖W 1,1([0,h]) ≥
∫ h

0

∥∥∥ ˙̃qn (t) − ˙̄q (t)
∥∥∥
1
dt ≥ C1C2h

∥∥∥ ˙̃qn − ˙̄q
∥∥∥

L∞([0,h])
.

While we will not establish here that the ˙̃qn converges in the L∞ norm with the same
rate that the Galerkin curve converges in the Sobolev norm, our numerical experiments
will show that the Noether quantities tend to converge at the same rate as the Galerkin
curve.
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4 Numerical experiments

To support the results in this paper, several numerical experiments were conducted
by applying spectral variational techniques to well-known mechanical problems. For
each problem, the spectral variational integrator was constructed using Lagrange inter-
polation polynomials at n Chebyshev points with the Gauss–Legendre quadrature rule
at 2n points. Convergence of both the one-step map and the Galerkin curves was mea-
sured using the �∞ and L∞ norms respectively, although we record them on the same
axis labeled L∞ error in a slight abuse of notation. The experiments strongly support
the results of this paper, and suggest topics for further investigation.

There are several remarks we wish to make regarding our numerical results. First,
we will omit a discussion of the efficiency of our results compared with other methods
for now. This is a large topic, and is highly implementation-dependent. In particular,
determining efficient and stable implementations of our proposed method is an area of
active research, and we will discuss this in greater detail in Sect. 5. On a similar note,
in many of our figures, the methods converge to a relatively high roundoff error. This
is almost certainly a product of the current implementation of the methods, and the
error tolerance of our nonlinear solver. We present our numerical experiments mainly
to provide supporting evidence for the error analysis of this paper. In practice, one
would use compensated summation techniques [21] to mitigate the effect of roundoff
errors.

4.1 Harmonic oscillator

The first and simplest numerical experiment conducted was the harmonic oscillator.
Starting from the Lagrangian,

L (q, q̇) = 1

2
q̇2 − 1

2
q2,

where q ∈ R, the corresponding spectral variational integrators have discrete Euler–
Lagrange equations that are linear. Choosing the large time-step h = 20 over 100
steps yields the expected geometric convergence as can be seen in Fig. 4. It should be
noted that the L∞ error, denoted by e, obeys the bound

e = O (0.21)n ,

which corresponds to geometric convergence with K = 0.21. The two different mark-
ers in the plot, © and ×, correspond to the error of the one-step map and along the
continuous Galerkin curve, respectively. While our theory predicts a possible lower
rate of convergence for the Galerkin curve, we do not observe it here. It will be appar-
ent in later numerical experiments. In addition, the max error of the energy also decays
geometrically, see Fig. 5. Here, and in all future plots, we measure the error of the
invariants along the Galerkin curve, and hence there will be some error in the invari-
ants even though they are conserved at the steps of the one-step map. That is, when
we examine the behavior of invariants, we are measuring the invariants of the original
continuous Lagrangian evaluated along the Galerkin curve, I ( ∂L

∂q (q̃n, ˙̃qn), q̃n). These
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Spectral variational integrators 723

Fig. 4 Geometric convergence of the spectral variational integration of the harmonic oscillator problem,
for 100 steps at step-size h = 20.0

Fig. 5 Geometric convergence of the energy error of the spectral variational integration of the harmonic
oscillator problem for 100 steps at step-size h = 20.0
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724 J. Hall, M. Leok

Fig. 6 Energy stability of the spectral variational integration of the harmonic oscillator problem. This
energy was computed for the integration using n = 14 for step-size h = 20.0

experiments illustrate that these errors are bounded, converge at the predicted rates,
and do not grow over the time of integration, as is illustrated in Fig. 6 for the harmonic
oscillator.

4.2 N-body problems

We now turn our attention towards Kepler N -body problems, which are both good
benchmark problems and are interesting in their own right. The general form of the
Lagrangian for these problems is

L (q, q̇) = 1

2

N∑
i=1

q̇T
i Mq̇i + G

N∑
i=1

i−1∑
j=0

mi m j∥∥qi − q j
∥∥ ,

where qi ∈ R
D is the center of mass for body i , G is a gravitational constant, and mi

is a mass constant associated with the body described by qi .

4.2.1 2-Body problem

The first experiment we will conduct has parameters D = 2, m1 = m2 = 1. Cen-
tering the coordinate system at q1, we choose q2(0) = (0.4, 0), q̇2(0) = (0, 2),
which has a known closed form solution which is a stable closed elliptical orbit with
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Fig. 7 Geometric convergence of the Kepler 2-body problem with eccentricity 0.6 over 100 steps of
h = 2.0. Note that around n = 32, the error for the Galerkin curves becomesO(0.74n), while the error for
the one-step map is always O(0.56n)

eccentricity 0.6. Knowing the closed form solution allows us to examine the rate
of convergence to the true solution, and when solved with the large time time-step
h = 2.0, over 100 steps, the error of the one-step map is O(0.56n) with n-refinement
and O(h2� n

2 �) with h-refinement, as can be seen in Figs. 7 and 8, respectively. The
numerical evidence suggests that our bound for the one-step map with h-refinement
is not sharp, as the convergence of the one-step map is always even. Interestingly, it
is also possible to observe the different convergence rates of the one-step map and
the Galerkin curves with n-refinement, as eventually the Galerkin curves have error
approximately O(0.74n) while the one-step map has error approximately O(0.56n),
and

√
0.56 ≈ 0.7483. However, it appears that the error from the one-step map dom-

inates until very high choices of n, and thus it is difficult to observe the error of the
Galerkin curves directly with h-refinement, roundoff error becomes a problem before
the error of the Galerkin curves does for smaller choices of n.

The N-body Lagrangian is invariant under the action of SO(D), which yields the
conserved Noether quantity of angular momentum. For the two-body problem, this is

I (q, q̇) = qx q̇y − qyq̇x ,

where q = (qx , qy). Numerical experiments show that the error of the angularmomen-
tum evaluated along the continuous Galerkin curve, I (q̃n, ˙̃qn), does not grow with the
number of steps taken in the integration, Fig. 9, but that the error is of the same order
as the error of Galerkin curve with n-refinement, as can be seen in Fig. 10. Numer-
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Fig. 8 Convergence of the Kepler 2-body problem with eccentricity 0.6 over 100 steps with h refinement.
Here we use N in the legend to denote the number of Chebyshev points used to construct the method. Note

our bound is not sharp, as the error is O(h2�
n
2 �

), where �·� is the ceiling function

Fig. 9 Stability of angular momentum for the Kepler 2-body problem

123



Spectral variational integrators 727

Fig. 10 Geometric convergence of the angular momentum of the Kepler 2-body problem with eccentricity
0.6 over 100 steps of h = 2.0. Again, the error is of the same order as it was the Galerkin curves

ical experiments show similar convergence for the energy error with n-refinement,
Fig. 11. With h-refinement, the angular momentum appears to have errorO(h

n
2+2) in

Fig. 12. This is interesting because the theoretical bound on the error of the Galerkin
curves isO(h

n
2 ), and the error of the Noether quantities is theoretically a factor C(h)

times the error of the Galerkin curves, where C is the factor that arises in the proof
of the convergence of the conserved Noether quantities. Numerical experiments sug-
gest C is O(h2) for this problem, but that the Galerkin curves do converge at a rate
of O(h

n
2 ), which is consistent with of the Galerkin curve error estimate. Numerical

experiments suggest similar convergence behavior for energy with h-refinement (Fig.
13), and likewise, the energy error does not grow with time (Fig. 14). While this evi-
dence is not conclusive, it is suggestive that the error analysis provides a plausible
bound. A careful analysis of the factor C would be an interesting direction for further
investigation.

4.2.2 The solar system

To illustrate a potential application of spectral variational integrators, we let D = 3,
N = 10, and use the velocities, positions, and masses of the sun, 8 planet, and the
dwarf planet Pluto on January 1, 2000 (as provided by the JPL Solar System ephemeris
[39]) as initial configuration parameters for the Kepler system. Taking 100 time-steps
of h = 100 days, the n = 25 spectral variational integrator produces a highly stable
flow in Fig. 15. It should be noted that orbits are closed, stable, and exhibit almost
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Fig. 11 Geometric convergence of the Energy Error of the Kepler 2-body problem with eccentricity 0.6
over 100 steps of h = 2.0. Note that the error is O(0.74n), the same as it was for the Galerkin curves

none of the “precession” effects that are characteristic of symplectic integrators (as
can be seen for a low-order symplectic integrator in Fig. 16), even though the time-step
is larger than the orbital period of Mercury. Additionally, considering just the outer
solar system (Jupiter, Saturn, Uranus, Neptune, Pluto), and aggregating the inner solar
system (Sun, Mercury, Venus, Earth, Mars) to a point mass, an N = 25 spectral
variational integrator taking 100 time-steps h = 1,825 days (5 year steps) produces
the orbital flow seen in Fig. 17. Again, these are highly stable, precession-free orbits.
As can be clearly seen, the spectral variational integrator produces extremely stable
flows, even for very large time-steps.

Because high-orderGalerkin integrators can take such large time-steps, it is possible
to use them to compute very high-order long-term integrations. In Fig. 18, we present a
10million year integration of the solar system using a 25 point numerical method. This
simulation was performed on a single processor in less than 72 h, and incorporates the
Sun and the 8 planets of the solar system.While the specifics of the implementation of
these high-order methods remains an area of investigation, our numerical experiments
suggest that with the proper implementation, spectral variational integrators could be
a valuable tool in scientific computing.

5 Conclusions and future work

In this paper, a new numerical method for variational problemswas introduced, specif-
ically a symplectic momentum-preserving integrator that exhibits geometric conver-
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Fig. 12 Convergence of the angular momentum of the Kepler 2-body problem with eccentricity 0.6 over
100 steps of h = 2.0. Here we use N in the legend to denote the number of Chebyshev points used to
construct the method

gence to the true flow of a system under the appropriate conditions. These integrators
were constructed under the general framework of Galerkin variational integrators, and
made use of the global function paradigm common tomany different spectral methods.

Additionally, a general convergence theoremwas established forGalerkin type vari-
ational integrators, establishing the important result that, under suitable hypotheses,
Galerkin variational integrators can be constructed of arbitrarily high-order. This result
provides a powerful tool for both constructing and analyzing variational integrators,
it provides a methodology for constructing methods of very high-order of accuracy,
and it also establishes order of convergence for methods that can be formulated as
Galerkin variational integrators. For example, the popular Störmer–Verlet method can
be formulated as a Galerkin variational integrator using a linear approximation space
and the trapezoidal rule for quadrature. It was shown that from the one-step map,
a continuous approximation to the solution of the Euler–Lagrange equations can be
easily recovered over each time-step. The error of these continuous approximations
was shown to be related to the error of the one-step map. Furthermore, the Noether
quantities along this continuous approximation approximate the true Noether quantity
up to a small error which does not grow with the number of steps taken. It was also
shown that the error of the Noether quantities converges to zero with n-refinement or
h-refinement at a predictable rate.

In addition to the convergence results, another interesting feature of spectral varia-
tional integrators is the construction of very high-order methods that remain accurate
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Fig. 13 Convergence of the Kepler 2-body problem energy with eccentricity 0.6 over 100 steps with h
refinement. Here we use N in the legend to denote the number of Chebyshev points used to construct the
method

using time-steps that are orders of magnitude larger than can be tolerated by tradi-
tional integrators. The trade-off is that the computational effort required to compute
each time-step is much greater than that of other methods. However, a mitigating
factor of this trade-off is that the approach of solving a short sequence of large prob-
lems, as opposed to a large sequence of small problems, lends itself much better to
parallelization and computational acceleration. The literature on methods for accel-
eration of the construction and solution of structured systems of linear and nonlinear
problems for PDE problems is extensive, and it is likely that such methods could
be applied to spectral variational integrators to greatly improve their computation
efficiency.

5.1 Future work

Future directions for this work are numerous. Because of generality of the construction
of Galerkin variational integrators, there exists many possible directions for further
exploration.

5.2 Efficient implementation

A common criticism of high-order variational integrators is that they often require
the solution of a large set of nonlinear equations at every time-step, which greatly
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Fig. 14 Stability of the energy for the Kepler 2-body problem

Fig. 15 Orbital diagram for the inner solar system produced by an n = 25 point spectral variational
integrator using all 8 planets, the sun, and Pluto with 100 time-steps with h = 100 days

curtails their efficiency. For Galerkin variational integrators, this problem is exasper-
ated by the fact that high-order quadrature rules must be used to construct high-order
methods. However, for Galerkin variational integrators applied to Lagrangians of the
canonical form, it is possible to solve the nonlinear system of equations efficiently
using a contraction mapping method inspired by the proof of existence and unique-
ness of solutions to the internal stage Euler–Lagrange equations. There are two major
advantages to this approach,
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Fig. 16 For comparison, orbital diagram for the inner solar system produced by the symplectic Euler
method (a first order method) using all 8 planets, the sun, and Pluto with 500 time-steps with h = 5 days.
Notice the precession of Mercury’s orbit

Fig. 17 Orbital diagram for the outer solar system produced by an n = 25 spectral variational integrator
using the 4 outer planets, Pluto, with the sun and 4 inner planets aggregated to a point with 100 time-steps
at h = 1,825 days

Fig. 18 A tenmillion year simulation of the solar system (the Sun and all planetsMercury throughNeptune)
using an n = 25 Galerkin variational integrator with 100 day time-steps. Note that 100 days is longer than
the orbital period of Mercury. The dots are samplings of the positions of the planets every 2,000 years

(1) there are many quantities used in the contraction mapping that can be pre-
computed, which reduces the computational cost of solving the nonlinear system
of equations to O(n2D2), where n is the order of the integrator and D is the
number of spatial dimensions of the problem,
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(2) applying the contraction mapping can be decomposed into several largely inde-
pendent subproblems, which can be efficiently solved in parallel.

Making use of these advantages in concert with the fact that high-order Galerkin
variational integrators are capable of taking time-steps that are orders of magnitude
larger than lower-order integrators, it may be possible to efficiently compute long-term
high-order integrations using Galerkin variational integrators. An in depth study of
efficient implementations and a comparison of computational costs is a critical future
direction of research.

5.2.1 Lie group spectral variational integrators

Following the approach of Leok and Shingel [30] or Bou-Rabee and Marsden [4], it
is relatively straight forward to extend spectral variational integrators to Lie groups
using natural charts. A systematic investigation of the resulting Lie group methods,
including convergence and near conservation of Noether quantities, would be a natural
extension of the work done here.

5.2.2 Multiple time-scale and small perturbation variational integrators

It is often very difficult to construct efficient numerical methods for problems where
different components are evolving at radically different time-scales, as quickly evolv-
ing dynamics severely restrict the maximum stable step-size of the numerical method.
One approach to alleviating this restriction is to construct integrators based on function
spaces that capture the fast dynamics over long intervals, as discussed in Leok [28].
This technique is even more effective when the fast dynamics only have a small influ-
ence on the other components, as was shown in Farr [12]. Such an approach naturally
extends to Galerkin variational integrators, through the choice of the approximation
space M([0, h], Q). Early work on constructing and analyzing Galerkin variational
integrators for multiple time-scales has been promising, and once a complete theory is
developed, such constructions could provide a critical tool in the behavior of long-term
dynamics of systems with multiple time-scale evolutions.

A particular problem of interest is the study of the long-term dynamics of the solar
system. In this system, Mercury’s rapid orbital period is currently the limiting factor
on the maximum step-size for many state of the art methods, see for example Blanes
et al. [2] or Farrés et al. [13]. By using Galerkin variational integrators as the basis
for a numerical averaging technique, in conjunction with specially developed high-
order splitting methods, it may be possible to alleviate the step-size restriction without
compromising the accuracy or efficiency of the numerical method.

5.2.3 Multisymplectic variational integrators

Multisymplectic geometry (see Marsden et al. [36]) has become an increasingly pop-
ular framework for extending much of the geometric theory from classical Lagrangian
mechanics to Lagrangian PDEs. The foundations for a discrete theory have been laid,
and there have been significant results achieved in geometric techniques for structured
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problems such as elasticity, fluid mechanics, nonlinear wave equations, and compu-
tational electromagnetism. However, there is still significant work to be done in the
areas of construction of numerical methods, analysis of discrete geometric structure,
and especially error analysis. Galerkin type methods have become a standard method
in classical numerical PDE methods, such as Finite-Element Methods, Spectral, and
Pseudospectral methods. The variational Galerkin framework could provide a natural
framework for extending these classical methods to structure-preserving geometric
methods for PDEs, and the analysis of such methods will rely on the notion of the
boundary Lagrangian (see Vankerschaver et al. [44]), which is the PDE analogue of
the exact discrete Lagrangian.
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Appendix: Proofs of geometric convergence of spectral variational integrators

As stated in Sect. 3.2, it can be shown that spectral variational integrators converge
geometrically to the true flow associated with a Lagrangian under the appropriate
conditions. The proof is similar to that of arbitrarily high-order convergence, and is
offered below.

However, before we offer a proof of the theorem, we must establish a result that
extends Theorem 1.1. Specifically, we must show:

Theorem 6.1 (Extension of Theorem 1.1 to geometric convergence) Given a regular
Lagrangian L and corresponding Hamiltonian H, the following are equivalent for a
discrete Lagrangian Ld(q0, q1, n):

(1) there exist a positive constant K , where K < 1, such that the discrete Hamiltonian
map for Ld(q0, qh, n) has error O(K n),

(2) there exists a positive constant K , where K < 1, such that the discrete Legendre
transforms of Ld(q0, qh, n) have error O(K n),

(3) there exists a positive constant K , where K < 1, such that Ld(q0, qh, n) approx-
imates the exact discrete Lagrangian L E

d (q0, qh, h) with error O(K n).

The proof of this theorem is a simple modification of the proof of Theorem 1.1,
and is included here for completeness. For details, the interested reader is referred to
[35].

Proof Since we are assuming that the time-step h is being held constant, we will
suppress it as an argument to the exact discrete Lagrangian, writing L E

d (q0, qh) for
L E

d (q0, qh, h). First, we will assume that Ld(q0, qh, n) approximates L E
d (q0, qh)with

errorO(K n) and show this implies the discreteLegendre transforms have errorO(K n).
By assumption, if Ld(q0, qh, n) has error O(K n), there exists a function which is
smooth in its first two arguments ev : Q × Q × N → R, such that,

Ld (q0, qh, n) = L E
d (q0, qh) + K nev (q0, qh, n) ,
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with |ev(q0, qh, n)| ≤ Cv on Uv . Taking derivatives with respect to the first argument
yields:

F
−Ln

d (q0, qh) = F
−L E

d (q0, qh) + K n D1ev (q0, qh, n) ,

and with respect to the second yields:

F
+Ln

d (q0, qh) = F
+L E

d (q0, qh) + K n D2ev (q0, qh, n) .

Since ev is smooth and bounded over the closed setU , so are D1ev and D2ev , yielding
that the discrete Legendre transforms have error O(K n). Now, to show that if the
discrete Legendre transforms have error O(K n), the discrete Lagrangian has error
O(K n), we write:

ev (q0, qh, n) = 1

K n

[
Ld (q0, qh, n) − L E

d (q0, qh)
]
,

D1ev (q0, qh, n) = 1

K n

[
F

−Ld (q0, qh, n) − F
−L E

d (q0, qh)
]
,

D2ev (q0, qh, n) = 1

K n

[
F

+Ld (q0, qh, n) − F
+L E

d (q0, qh)
]
.

Since D1ev and D2ev are smooth and bounded on a bounded set, this implies there
exists a function d(n), such that,

‖ev (q (0) , q (h) , n) − d (n)‖ ≤ Cv,

for some constantCv . This shows that the discreteLagrangian is equivalent to a discrete
Lagrangian with error O(K n). We note that the equivalence is a consequence of the
fact that one can add a function of h or n to any discrete Lagrangian and the resulting
discrete Euler–Lagrange equations and discrete Legendre Transforms are unchanged,
hence the function d(n).

To show the equivalence of the discrete Hamiltonian map having errorO(K n) and
the discrete Legendre transforms having error O(K n), we recall expressions for the
discreteHamiltonianmap for the discreteLagrangian Ld and exact discreteLagrangian
L E

d :

F̃Ld = F
+Ld ◦ (F−Ld

)−1
,

F̃L E
d

= F
+L E

d ◦
(
F

−L E
d

)−1
.

Now, we make use of the following consequence of the implicit function theorem: If
we have smooth functions g1, g2 and the sequences of functions { f1n }∞n=1, { f2n }∞n=1,{e1n }∞n=1 and {e2n }∞n=1, such that,

f1n (x) = g1 (x) + K ne1n (x) ,

f2n (x) = g2 (x) + K ne2n (x) ,
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where sup {‖e1n ‖}∞n=1 < C1 and sup {‖e2n ‖}∞n=1 < C2 on compact sets, then,

f2n

(
f1n (x)

) = g2 (g1 (x)) + K ne12n (x) , (33)

f −1
1n

(y) = g−1
1 (y) + K nē1n (y) , (34)

for some sequences of functions {e12n }∞n=1, {ē1n }∞n=1 where sup {‖e12n ‖}∞n=1 < C1 and
sup {‖ē1n ‖}∞n=1 < C2 on compact sets.

It follows from (33) and (34) that if the discrete Legendre transforms have error
O(K n), the discrete Hamiltonian map does as well. Finally, if we have a discrete
Hamiltonian map with error O(K n), we use the identity

(
F

−Ld
)−1

(q0, p0) =
(

q0, πQ ◦ F̃Ld (q0, p0)
)

,

where πQ is the projection map πQ : (q, p) → q and (34) to see that F−Ld has error
O(K n), and the identity:

F
+Ld = FLd ◦ F

−Ld ,

along with (33) to establish that F+Ld also has error O(K n), which completes the
proof. �

This simple extension is a critical tool for establishing the geometric convergence
of spectral variational integrators, and leads to the following theorem concerning the
accuracy of spectral variational integrators.

Theorem 6.2 (Geometric convergence of spectral variational integrators) Given an
interval [0, h] and a Lagrangian L : T Q → R, let q̄ be the exact solution to the
Euler–Lagrange equations, and q̃n be the stationary point of the spectral variational
discrete action

Ld(q0, qh, n) = ext
qn∈Mn([0,h],Q)

qn(0)=q0,qn(h)=qh

Sd
({qi }n

i=0

)

= ext
qn∈Mn([0,h],Q)

qn(0)=q0,qn(h)=qh

h
mn∑
j=0

b jn L
(
qn
(
c jn h

)
, q̇n
(
c jn h

))
.

If:

(1) there exists constants CA, K A, K A < 1, independent of n, such that for each n,
there exists a curve q̂n ∈ M

n([0, h], Q), such that,

∥∥∥
(

q̂n (t), ˙̂qn (t)
)

− (q̄ (t), ˙̄q (t)
)∥∥∥

1
≤ CA K n

A, for all t ∈ [0, h],

(2) there exists a closed and bounded neighborhood U ⊂ T Q, such that (q̄(t), ˙̄q(t)) ∈
U and (q̂n(t), ˙̂qn(t)) ∈ U for all t and n, and all partial derivatives of L are
continuous on U,
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(3) for the sequence of quadrature rules Gn( f ) = h
∑mn

j=1 b jn f (c jn h) ≈ ∫ h
0 f (t)dt,

there exists constants Cg, Kg, Kg < 1, independent of n, such that,

∣∣∣∣∣∣
∫ h

0
L (qn (t), q̇n (t)) dt − h

mn∑
j=1

b jn L
(
qn
(
c jn h

)
, q̇n
(
c jn h

))
∣∣∣∣∣∣ ≤ Cg K n

g ,

for any qn ∈ M
n([0, h], Q),

(4) and the stationary points q̄, q̃n minimize their respective actions,

then

∣∣∣L E
d (q0, q1) − Ld(q0, q1, n)

∣∣∣ ≤ Cs K n
s (35)

for some constants Cs, Ks, Ks < 1, independent of n, and hence the discrete Hamil-
tonian flow map has error O(K n

s ).

Proof As before, we rewrite both the exact discrete Lagrangian and the spectral dis-
crete Lagrangian:

∣∣∣L E
d (q0, q1) − Ld(q0, q1, n)

∣∣∣
=
∣∣∣∣
∫ h

0
L
(
q̄ (t) , ˙̄q (t)

)
dt − Gn

(
L
(

q̃n (t) , ˙̃qn (t)
))∣∣∣∣

=
∣∣∣∣∣∣
∫ h

0
L
(
q̄ (t) , ˙̄q (t)

)
dt − h

mn∑
j=1

b jn L
(

q̃n
(
c jn h

)
, ˙̃qn
(
c jn h

))
∣∣∣∣∣∣

=
∣∣∣∣∣∣
∫ h

0
L
(
q̄, ˙̄q) dt − h

mn∑
j=1

b jn L
(

q̃n, ˙̃qn

)∣∣∣∣∣∣ ,

with suppression of the t argument. We introduce the action evaluated on the curve
q̂n :

∣∣∣∣∣∣
∫ h

0
L
(
q̄, ˙̄q) dt − h

mn∑
j=1

b jn L
(

q̃n, ˙̃qn

)∣∣∣∣∣∣
=
∣∣∣∣
∫ h

0
L
(
q̄, ˙̄q) dt −

∫ h

0
L
(

q̂n, ˙̂qn

)
dt

+
∫ h

0
L
(

q̂n, ˙̂qn

)
dt − h

mn∑
j=1

b jn L
(

q̃n, ˙̃qn

)∣∣∣∣∣∣ (36)
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≤
∣∣∣∣
∫ h

0
L
(
q̄, ˙̄q) dt −

∫ h

0
L
(

q̂n, ˙̂qn

)
dt

∣∣∣∣ (37)

+
∣∣∣∣∣∣
∫ h

0
L
(

q̂n, ˙̂qn

)
dt − h

m∑
j=1

b jn L
(

q̃n, ˙̃qn

)∣∣∣∣∣∣ . (38)

Considering the first term in (36):

∣∣∣∣
∫ h

0
L
(
q̄, ˙̄q) dt −

∫ h

0
L
(

q̂n, ˙̂qn

)
dt

∣∣∣∣ =
∣∣∣∣
∫ h

0
L
(
q̄, ˙̄q)− L

(
q̂n, ˙̂qn

)
dt

∣∣∣∣
≤
∫ h

0

∣∣∣L (q̄, ˙̄q)− L
(

q̂n, ˙̂qn

)∣∣∣ dt.

By assumption, all partials of L are continuous on U , and since U is closed and
bounded, this implies L is Lipschitz on U , so let Lα denote the Lipschitz constant.
Since, again by assumption, (q̄, ˙̄q) ∈ U and (q̂n, ˙̂qn) ∈ U , we can obtain:

∫ h

0

∣∣∣L (q̄, ˙̄q)− L
(

q̂n, ˙̂qn

)∣∣∣ dt ≤
∫ h

0
Lα

∥∥∥(q̄, ˙̄q)−
(

q̂n, ˙̂qn

)∥∥∥
1
dt

≤
∫ h

0
LαCA K n

Adt = hLαCA K n
A.

Hence,

∣∣∣∣
∫ h

0
L
(
q̄, ˙̄q) dt −

∫ h

0
L
(

q̂n, ˙̂qn

)
dt

∣∣∣∣ ≤ hLαCA K n
A. (39)

Next, considering the second term in (36),∣∣∣∣∣∣
∫ h

0
L
(

q̂n, ˙̂qn

)
dt −

m∑
j=1

hb jn L
(

q̃n, ˙̃qn

)∣∣∣∣∣∣ ,

since q̃n minimizes its action,

h
mn∑
j=1

b jn L
(

q̃n, ˙̃qn

)
≤ h

mn∑
j=1

b jn L
(

q̂n, ˙̂qn

)
≤
∫ h

0
L
(

q̂n, ˙̂qn

)
dt + Cg K n

g , (40)

where the inequalities follow from the assumptions on the order of the quadrature rule
and (39). Furthermore,

h
mn∑
j=1

b jn L
(

q̃n, ˙̃qn

)
≥
∫ h

0
L
(

q̃n, ˙̃qn

)
dt − Cg K n

g ≥
∫ h

0
L
(
q̄, ˙̄q) dt − Cg K n

g

≥
∫ h

0
L
(

q̂n, ˙̂qn

)
dt − hLαCA K n

A − Cg K n
g , (41)
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where the inequalities follow from (39), the order of the sequence of quadrature rules,
and the assumption that q̄ minimizes its action. Putting (40) and (41) together, we can
conclude:∣∣∣∣∣∣

∫ h

0
L
(

q̂n, ˙̂qn

)
dt − h

mn∑
j=1

b jn L
(

q̃n, ˙̃qn

)∣∣∣∣∣∣ ≤
(
hLαCA + Cg

)
K −n

s . (42)

where Ks = max(K A, Kg). Now, combining the bounds (39) and (42) in (36), we can
conclude ∣∣∣L E

d (q0, q1) − Ld(q0, q1, n)

∣∣∣ ≤ (2hLαCA + Cg
)

K −n
s ,

which, combined with Theorem 6.1, establishes the rate of convergence. �
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