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Abstract This note proposes a novel approach to derive a worst-case O(1/k) con-
vergence rate measured by the iteration complexity in a non-ergodic sense for the
Douglas–Rachford alternating direction method of multipliers proposed by Glowin-
ski and Marrocco.

Mathematics Subject Classification 90C25 · 90C30

1 Introduction

There has been an impressive development on operator splitting methods in the area of
partial differential equations, and among them are some alternating direction methods
of multipliers (ADMMs for short). In this note, we focus on the Douglas–Rachford
ADMM scheme proposed by Glowinski and Marrocco in [7] (see also [5]) and we
restrict our discussion into the context of a convex minimization problem with linear
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constraints and a separable objective function:

min
{
θ1(x) + θ2(y) | Ax + By = b, x ∈ X , y ∈ Y}

, (1.1)

where A ∈ �m×n1 , B ∈ �m×n2 , b ∈ �m , X ⊂ �n1 and Y ⊂ �n2 are closed convex
sets, θ1 : �n1 → � and θ2 : �n2 → � are convex functions (not necessarily smooth).
The solution set of (1.1) is assumed to be nonempty, and we refer to [4,8] for some
convergence results without this assumption.

As in [10], in order to treat the original ADMM in [7] and the split inexact Uzawa
method in [13] uniformly, we study the following ADMM scheme for (1.1):

xk+1 = argmin
{
θ1(x) + β

2
‖(Ax + Byk − b) − 1

β
λk‖2 + 1

2
‖x − xk‖2G

∣
∣ x ∈ X }

,

(1.2a)

yk+1 = argmin
{
θ2(y) + β

2
‖(Axk+1 + By − b) − 1

β
λk‖2 ∣

∣ y ∈ Y}
, (1.2b)

λk+1 = λk − β(Axk+1 + Byk+1 − b), (1.2c)

where λk ∈ �m is the Lagrange multiplier, β > 0 is a penalty parameter, and G ∈
�n1×n1 is a symmetric and positive semidefinite matrix. In fact, the original ADMM
scheme in [7] and the split inexact Uzawa method in [13] are recovered by taking
G = 0 and G = (r In1 − βAT A) with r > β‖AT A‖ (where ‖ · ‖ denotes a matrix
norm such as the spectrum norm) in (1.2a), respectively. We refer to review papers
[1,3,6] and references therein for the history of ADMMs, and in particular, some
efficient applications of ADMMs exploited recently.

Because of its impressive efficiency and wide applicability, it is interesting to inves-
tigate the convergence rate of the ADMMscheme (1.2). A first-step work is [10] where
we showed a worst-case O(1/k) convergence rate measured by the iteration complex-
ity, where k denotes the iteration counter, for the ADMM scheme (1.2)1. With this
first-step result, it becomes possible to investigate more intensive results on the con-
vergence rate of the scheme (1.2). Recall that the convergence rate derived in [10] is
in the ergodic sense because the approximate solution with an accuracy of O(1/k) is
found based on all k iterates generated by (1.2). One may ask if we can establish the
same convergence rate directly in a non-ergodic sense for the sequence generated by
the scheme (1.2). The main purpose of this note is to answer this question affirma-
tively. We expect the new technique to be used to analyze convergence rates for other
important numerical algorithms of the same kind.

2 Preliminaries

In this section, we provide some preliminaries which are useful in later analysis.

1 As [11,12] and many others, a worst-case O(1/k) convergence rate measured by the iteration complexity
means the accuracy to a solution under certain criterion is of the order O(1/k) after k iterations of an
iterative scheme; or equivalently, it requires at most O(1/ε) iterations to achieve an approximate solution
with an accuracy of ε.
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On non-ergodic convergence rate of ADMM 569

2.1 Notations

We first define some matrices which will simplify the notations in our analysis. More
specifically, let

H =
⎛

⎝
G 0 0
0 βBT B 0
0 0 1

β
Im

⎞

⎠, M =
⎛

⎝
In1 0 0
0 In2 0
0 −βB Im

⎞

⎠, Q =
⎛

⎝
G 0 0
0 βBT B 0
0 −B 1

β
Im

⎞

⎠.

(2.1)
Without further assumption on B, the matrix H defined above can only be guaran-
teed as symmetric and positive semidefinite. But we still use the notation ‖w‖2H to
represent the non-negative number wT Hw in our analysis. Based on these matrices,
some relationship can be easily derived and we summarize them in the following
proposition.

Proposition 2.1 Let the matrices H, M and Q be defined in (2.1). Then we have

(1) Q = HM;
(2) The symmetric matrix (QT + Q) − MT HM is positive semidefinite: (QT + Q)

− MT HM � 0.

Proof The first conclusion is trivial, and we omit it. For the second one, we notice
that

(QT + Q) − MT HM = (QT + Q) − MT Q

=
⎛

⎝
2G 0 0
0 2βBT B −BT

0 −B 2
β
Im

⎞

⎠ −
⎛

⎝
In1 0 0
0 In2 −βBT

0 0 Im

⎞

⎠

⎛

⎝
G 0 0
0 βBT B 0
0 −B 1

β
Im

⎞

⎠

=
⎛

⎝
2G 0 0
0 2βBT B −BT

0 −B 2
β
Im

⎞

⎠ −
⎛

⎝
G 0 0
0 2βBT B −BT

0 −B 1
β
Im

⎞

⎠

=
⎛

⎝
G 0 0
0 0 0
0 0 1

β
Im

⎞

⎠ � 0.

Thus, the proposition is proved. �	

2.2 Variational inequality characterization of (1.1)

It is easy to see that (1.1) is characterized by a variational inequality (VI) problem:
Find w∗ = (x∗, y∗, λ∗) ∈ � := X × Y × �m such that

VI(�, F, θ) : θ(u) − θ(u∗) + (w − w∗)T F(w∗) ≥ 0, ∀w ∈ �, (2.2a)
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where

u =
(
x
y

)
, w =

⎛

⎝
x
y
λ

⎞

⎠, F(w) =
⎛

⎝
−AT λ

−BT λ

Ax + By − b

⎞

⎠ and θ(u) = θ1(x) + θ2(y).

(2.2b)
Note that the mapping F(w) is monotone because it is affine with a skew-symmetric
matrix. We denote by �∗ the solution set of VI(�, F, θ). Then, �∗ is nonempty under
the nonempty assumption on the solution set of (1.1).

3 Sketch of Proof

To establish a worst-case O(1/k) convergence rate for the sequence {wk} generated
by (1.2) in a non-ergodic sense, we need the assertion in the following lemma.

Lemma 3.1 Let the sequence {wk} be generated by (1.2) and H be given in (2.1).
Then, we have

θ(u) − θ(uk+1) + (w − wk+1)T
{
F(wk+1) + η(yk, yk+1) + H(wk+1 − wk)

}
≥ 0,

∀w ∈ �, (3.1)

where

η(yk, yk+1) := β

⎛

⎝
AT

BT

0

⎞

⎠ B (yk − yk+1). (3.2)

Proof First, deriving the optimality condition of the minimization problem (1.2a), we
have

θ1(x)−θ1(x
k+1)+(x − xk+1)T

{
AT

[
β(Axk+1+Byk − b)−λk

]
+G(xk+1 − xk)

}

≥ 0,∀ x ∈ X .

By using (1.2c), it can be written as

θ1(x) − θ1(x
k+1) + (x − xk+1)T {−AT λk+1 + βAT B(yk − yk+1)

+G(xk+1 − xk)} ≥ 0,∀ x ∈ X . (3.3)

It follows from (1.2) that

(Axk+1 + Byk+1 − b) + 1

β
(λk+1 − λk) = 0. (3.4)

Combining (3.3), (4.2) and (3.4) together, we get wk+1 = (xk+1, yk+1, λk+1) ∈ �,
such that

123



On non-ergodic convergence rate of ADMM 571

θ(u) − θ(uk+1) +
⎛

⎝
x − xk+1

y − yk+1

λ − λk+1

⎞

⎠

T ⎧
⎨

⎩

⎛

⎝
−AT λk+1 + βAT B(yk − yk+1)

−BT λk+1

Axk+1 + Byk+1 − b

⎞

⎠

+
⎛

⎝
G(xk+1 − xk)
0
1
β
(λk+1 − λk)

⎞

⎠

⎫
⎬

⎭
≥ 0, ∀w ∈ �,

which can be rewritten as

θ(u) − θ(uk+1) +
⎛

⎝
x − xk+1

y − yk+1

λ − λk+1

⎞

⎠

T ⎧
⎨

⎩

⎛

⎝
−AT λk+1

−BT λk+1

Axk+1 + Byk+1 − b

⎞

⎠

+ β

⎛

⎝
AT B(yk − yk+1)

BT B(yk − yk+1)

0

⎞

⎠ +
⎛

⎝
G(xk+1 − xk)
βBT B(yk+1 − yk)
1
β
(λk+1 − λk)

⎞

⎠

⎫
⎬

⎭
≥ 0,∀w ∈ �.

Using the notations of F(w), η(yk, yk+1) and H , we get the assertion (3.1) immedi-
ately. �	

Lemma 3.1 indicates that the quantity ‖wk − wk+1‖2H can be used to measure
the accuracy of the iterate wk+1 to a solution point of VI(�, F, θ). More specifi-
cally, since H is positive semidefinite, we conclude that H(wk+1 − wk) = 0 and
η(yk, yk+1) = 0 if ‖wk − wk+1‖2H = 0. In other words, because of the variational
inequality characterization (2.2), when ‖wk − wk+1‖2H = 0, we have

θ(u) − θ(uk+1) + (w − wk+1)T F(wk+1) ≥ 0, ∀w ∈ �,

which means wk+1 is a solution of VI(�, F, θ). Therefore, ‖wk − wk+1‖2H can be
viewed as an error measurement after k iterations of the ADMM scheme (1.2), and it
is reasonable to seek an upper bound of ‖wk −wk+1‖2H in term of the quantity O(1/k)
for the purpose of investigating the convergence rate of ADMM. Based on this fact,
our proof follows the following steps:

1. To show that {wk} is strictly contractive with respect to �∗, i.e.,

‖wk+1 − w∗‖2H ≤ ‖wk − w∗‖2H − ‖wk − wk+1‖2H ∀w∗ ∈ �∗; (3.5)

2. To show that {‖wk − wk+1‖2H } is monotonically non-increasing, i.e.,

‖wk − wk+1‖2H ≤ ‖wk−1 − wk‖2H ∀ k ≥ 1; (3.6)

3. To derive a worst-case O(1/k) convergence rate in a non-ergodic sense based on
(3.5) and (3.6), i.e.,

‖wk − wk+1‖2H ≤ 1

(k + 1)
‖w0 − w∗‖2H ∀w∗ ∈ �∗. (3.7)
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In the following, our analysis is thus divided into three sections to address these three
tasks.

4 Strict Contraction

We prove the conclusion (3.5) in this section, and our proof is inspired by Theorem 1
in [9]. We first present several lemmas.

Lemma 4.1 Let the sequence {wk} be generated by (1.2). Then, we have

(yk − yk+1)T BT (λk − λk+1) ≥ 0, ∀ k ≥ 0. (4.1)

Proof Deriving the optimality conditions of the minimization problem (1.2b), we
have

yk+1 ∈ Y, θ2(y) − θ2(y
k+1)+(y − yk+1)T

{
BT [β(Axk+1 + Byk+1 − b) − λk]

}

≥ 0,∀ y ∈ Y .

Substituting (1.2c) into the last inequality, we obtain

yk+1 ∈ Y, θ2(y) − θ2(y
k+1) + (y − yk+1)T (−BT λk+1) ≥ 0, ∀ y ∈ Y . (4.2)

Obviously, analogous to (4.2), we have

yk ∈ Y, θ2(y) − θ2(y
k) + (y − yk)T (−BT λk) ≥ 0, ∀ y ∈ Y . (4.3)

Setting y = yk and y = yk+1 in in (4.2) and (4.3), respectively, and then adding the
two resulting inequalities, we get (4.1) immediately. �	
Lemma 4.2 Let the sequence {wk} be generated by (1.2) and H be given in (2.1).
Then, we have

(wk+1 − w∗)T H(wk − wk+1) ≥ 0, ∀w∗ ∈ �∗. (4.4)

Proof Setting w∗ in (3.1), we obtain

(wk+1 − w∗)T H(wk − wk+1)

≥ θ(uk+1) − θ(u∗) + (wk+1 − w∗)T F(wk+1)

+(wk+1 − w∗)T η(yk, yk+1),∀w∗ ∈ �∗. (4.5)

In the following we show that the right-hand side of (4.5) is non-negative. First, since
wk+1 ∈ � and w∗ ∈ �∗, it follows from (2.2a) that

θ(uk+1) − θ(u∗) + (wk+1 − w∗)T F(w∗) ≥ 0.
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On non-ergodic convergence rate of ADMM 573

Because of the monotonicity of F , we have

(wk+1 − w∗)T F(wk+1) ≥ (wk+1 − w∗)T F(w∗).

Thus, we obtain

θ(uk+1) − θ(u∗) + (wk+1 − w∗)T F(wk+1) ≥ 0. (4.6)

On the other hand, by using the notation of η(yk, yk+1) [see (3.2)], Ax∗ + By∗ = b
and (1.2c), we have

(wk+1 − w∗)T η(yk, yk+1)

= (yk − yk+1)T BTβ{(Axk+1 + Byk+1) − (Ax∗ + By∗)}
= (yk − yk+1)T BTβ(Axk+1 + Byk+1 − b)

= (yk − yk+1)T BT (λk − λk+1).

Combining with (4.1), we get

(wk+1 − w∗)T η(yk, yk+1) ≥ 0. (4.7)

Substituting (4.6) and (4.7) into the right-hand side of (4.5), the lemma is proved. �	
With the proved lemmas, we are now ready to show the assertion (3.5).

Theorem 4.1 Let the sequence {wk} be generated by (1.2) and H be given in (2.1).
Then (3.5) is satisfied for any k ≥ 0.

Proof Using (4.4), we have

‖wk − w∗‖2H = ‖(wk+1 − w∗) + (wk − wk+1‖2H
= ‖wk+1−w∗‖2H +2(wk+1−w∗)T H(wk−wk+1) + ‖wk − wk+1‖2H
≥ ‖wk+1 − w∗‖2H + ‖wk − wk+1‖2H ,

and thus the assertion (3.5) is proved. �	

5 Monotonicity

This section shows the assertion (3.6), i.e, the sequence {‖wk+1−wk+2‖2H } ismonoton-
ically non-increasing. Again, we need to prove several lemmas for this purpose.

First of all, for the convenience of analysis, we introduce an auxiliary variable w̃k

defined as

w̃k =
⎛

⎝
x̃ k

ỹk

λ̃k

⎞

⎠ =
⎛

⎝
xk+1

yk+1

λk − β(Axk+1 + Byk − b)

⎞

⎠, (5.1)
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where wk is generated by (1.2). Then, we have the relationship

wk+1 = wk − M(wk − w̃k), (5.2)

where the matrix M is given in (2.1).

Lemma 5.1 Let {wk} be the sequence generated by (1.2), the associated sequence
{w̃k} be defined by (5.1) and Q be given in (2.1). Then, we have

w̃k ∈ �, θ(u) − θ(ũk) + (w − w̃k)T
{
F(w̃k) + Q(w̃k − wk)

}
≥ 0, ∀w ∈ �.

(5.3)

Proof By using the notation w̃k in (5.1), and the facts

1

β
(λk − λ̃k) = (Ax̃k + B ỹk − b) − B(ỹk − yk) and � = X × Y × �m,

the inequality (3.1) can be rewritten as

w̃k ∈ �, θ(u) − θ(ũk) +
⎛

⎝
x − x̃ k

y − ỹk

λ − λ̃k

⎞

⎠

T

×
⎧
⎨

⎩

⎛

⎝
−AT λ̃k

−Bλ̃k

Ax̃k + B ỹk − b

⎞

⎠ +
⎛

⎝
G(x̃ k − xk)
βBT B(ỹk − yk)
−B(ỹk − yk) + 1

β
(λ̃k − λk)

⎞

⎠

⎫
⎬

⎭
≥ 0, ∀w ∈ �.

The assertion (5.3) thus follows immediately from the definition of Q. �	
Lemma 5.1 enables us to establish an important inequality in the following lemma.

Lemma 5.2 Let {wk} be the sequence generated by (1.2), the associated sequence
{w̃k} be defined by (5.1) and Q be given in (2.1). Then, we have

(w̃k − w̃k+1)T Q{(wk − wk+1) − (w̃k − w̃k+1)} ≥ 0. (5.4)

Proof Setting w = w̃k+1 in (5.3), we have

θ(ũk+1) − θ(ũk) + (w̃k+1 − w̃k)T {F(w̃k) + Q(w̃k − wk)} ≥ 0. (5.5)

Note that (5.3) is also true for k := k + 1 and thus we have

θ(u) − θ(ũk+1) + (w − w̃k+1)T {F(w̃k+1) + Q(w̃k+1 − wk+1)} ≥ 0, ∀w ∈ �.

Setting w = w̃k in the above inequality, we obtain

θ(ũk) − θ(ũk+1) + (w̃k − w̃k+1)T {F(w̃k+1) + Q(w̃k+1 − wk+1)} ≥ 0. (5.6)
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Adding (5.5) to (5.6) and using the monotonicity of F , we get (5.4) immediately. �	
Lemma 5.3 Let {wk} be the sequence generated by (1.2), the associated sequence
{w̃k} be defined by (5.1), the matrices H, M and Q be given in (2.1). Then, we have

(wk − w̃k)T MT HM
{
(wk − w̃k) − (wk+1 − w̃k+1)

}
≥ 1

2
‖(wk − w̃k)

−(wk+1 − w̃k+1)‖2
(QT +Q)

. (5.7)

Proof First, adding the term

{
(wk − wk+1) − (w̃k − w̃k+1)

}T
Q

{
(wk − wk+1) − (w̃k − w̃k+1)

}

to the both sides of (5.4), and using wT Qw = 1
2w

T (QT + Q)w, we get

(wk − wk+1)T Q
{
(wk − wk+1) − (w̃k − w̃k+1)

}

≥ 1

2
‖(wk − wk+1) − (w̃k − w̃k+1)‖2

(QT +Q)
.

Reordering (wk −wk+1)−(w̃k −w̃k+1) in the above inequality to (wk −w̃k)−(wk+1

− w̃k+1) , we get

(wk − wk+1)T Q
{
(wk − w̃k) − (wk+1 − w̃k+1)

}

≥ 1

2
‖(wk − w̃k) − (wk+1 − w̃k+1)‖2

(QT +Q)
.

Substituting the term (wk − wk+1) into the left-hand side of the last inequality, and
using the relationship in (5.2) and the fact Q = HM in Proposition 2.1, we obtain
(5.7). �	

Finally, we are ready to show the assertion (3.6) in the following theorem.

Theorem 5.1 Let {wk} be the sequence generated by (1.2) and H be given in (2.1).
Then, (3.6) is satisfied for any k ≥ 0.

Proof Setting a = M(wk − w̃k) and b = M(wk+1 − w̃k+1) in the identity

‖a‖2H − ‖b‖2H = 2aT H(a − b) − ‖a − b‖2H,

we obtain

‖M(wk − w̃k)‖2H − ‖M(wk+1 − w̃k+1)‖2H
= 2(wk − w̃k)T MT HM{(wk − w̃k) − (wk+1 − w̃k+1)}

−‖M{(wk − w̃k) − (wk+1 − w̃k+1)}‖2H.
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Inserting (5.7) into the first term of the right-hand side of the last equality, we obtain

‖M(wk − w̃k)‖2H − ‖M(wk+1 − w̃k+1)‖2H
≥ ‖(wk − w̃k)−(wk+1−w̃k+1)‖2

(QT +Q)
−‖M{(wk − w̃k)−(wk+1 − w̃k+1)}‖2H

= ‖(wk − w̃k) − (wk+1 − w̃k+1)‖2{(QT +Q)−MT HM}
≥ 0,

where the last inequality is because of the positive definiteness of the matrix (QT +
Q) − MT HM proved in Proposition 2.1. In other words, we derive

‖M(wk+1 − w̃k+1)‖2H ≤ ‖M(wk − w̃k)‖2H. (5.8)

Recall the relationship in (5.2). The assertion (3.6) follows immediately from (5.8). �	

6 Non-ergodic convergence rate

With Theorems 4.1 and 5.1, we can prove the assertion (3.7). That is, a worst-case
O(1/k) convergence rate in a non-ergodic sense for the ADMM scheme (1.2) is
established.

Theorem 6.1 Let {wk} be the sequence generated by (1.2). Then, the assertion (3.7)
is satisfied.

Proof First, it follows from (3.5) that

∞∑

t=0

‖wt − wt+1‖2H ≤ ‖w0 − w∗‖2H , ∀w∗ ∈ �∗. (6.1)

According to Theorem 5.1, the sequence {‖wt − wt+1‖2H } is monotonically non-
increasing. Therefore, we have

(k + 1)‖wk − wk+1‖2H ≤
k∑

t=0

‖wt − wt+1‖2H . (6.2)

The assertion (3.7) follows from (6.1) and (6.2) immediately. �	
Notice that�∗ is convex and closed (see Theorem 2.1 in [10]). Let d := inf{‖w0 −

w∗‖H | w∗ ∈ �∗}. Then, for any given ε > 0, Theorem 6.1 shows that the ADMM
scheme (1.2) needs at most �d2/ε� iterations to ensure that ‖wk−wk+1‖2H ≤ ε. Recall
that wk+1 is a solution of VI(�, F, θ) if ‖wk − wk+1‖2H = 0 (see Lemma 3.1). A
worst-case O(1/k) convergence rate in a non-ergodic sense for the ADMM scheme
(1.2) is thus established in Theorem 6.1.

Finally, we remark that because of the monotonicity of the sequence {‖wk −
wk+1‖2H } and the fact (6.1), and using Lemma 1.2 in [2], we can immediately refine
the worst-case convergence rate in Theorem 6.1 from O(1/k) to o(1/k).
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