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Abstract A family of any order finite volume (FV) schemes over quadrilateralmeshes
is analyzed under the framework of Petrov–Galerkinmethod. By constructing a special
mapping from the trial space to the test space, a unified proof for the inf–sup condition
of any order FV schemes is provided under a weak condition that the underlying mesh
is an h1+γ , γ > 0 parallelogram mesh. The optimal convergence rate of FV solutions
is then obtained with well-known techniques.
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1 Introduction

Due to its local conservation property and other advantages, the finite volume method
(FVM) has awide range of applications in scientific and engineering computations see,
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e.g., [12,16,17,21–27]. Comparing to its wide applications, the mathematical theory
of FVM (cf., [1–7,9,11,13–15,18,19]) has not been fully developed, especially for
high order schemes.

Amain difficulty in the theoretical analysis is the establishment of the stability result
(or inf–sup condition in general) for higher order FV schemes. Earlier approaches (see,
e.g. [6,19,20,28]) in the literature often adopt the so-called element stiffness matrix
analysis by calculating eigenvalues of the stiffness matrix. The stability is established
if all eigenvalues of the stiffnessmatrix are positive. This technique has been successful
for linear, quadratic, and cubic elements under different triangular mesh conditions.
However, generalization to higher-order elements must be done case-by-case under
more and more restrictive mesh conditions. On the other hand, those mesh conditions
required for stability are usually sufficient but might not be necessary. Therefore, it is
necessary to develop a general framework in analyzing FV schemes of arbitrary order
with a common and yet less restrictive mesh condition.

In this paper, we provide a unified analysis for vertex-centered FV schemes of any
order over quadrilateral meshes, which is completely different from the classical ele-
ment stiffness matrix analysis. An essential idea behind our analysis is the following:
(1) construct a special mapping from the trial space to the test space. This mapping
transfers the bilinear form defined on the trial-test spaces to a bilinear form on the trial
space only, and thereby changes the the analysis framework from a Petrov–Galerkin
method to a Galerkin finite element method. (2) The transferred bilinear form can be
expressed on each element as a summation of function values with weights at those
discrete points of the dual partition. With some proper selection of the dual partition
points, e.g, the Gauss points, the summation can be viewed as a numerical quadra-
ture (such as the Gauss-quadrature) of a finite element bilinear form. Consequently,
coercivity proof of the transferred bilinear form becomes possible.

It is a challenging task to construct the from-trial-to-test-space mapping over an
arbitrary unstructured quadrilateral mesh. In this paper, to guarantee the FV bilinear
form to be expressed as the summation of function values at Gauss points, we establish
our mapping through constraining at all Gauss points. Since the total number of the
Gauss points is often greater than the dimension of the test space, it is necessary to
justify the existence and uniqueness of our construction. To this end, we first deter-
mine those redundant constraints and eliminate them to obtain linearly independent
constraints. Then by a discussion of the relation between the number of Gauss points
and the dimension of the test space, we prove that the number of linearly independent
constraints equals the dimension of the test space. In this way, our operator is uniquely
defined.

Another major difficulty in the analysis is: unlike the triangular mesh, the transfor-
mation from the reference square to an arbitrary quadrilateral is no longer an affine
mapping. As a consequence, the integrand in the transferred bilinear form are not poly-
nomials anymore.We have to take into account of residual of the numerical quadrature.
Special care and new design must be taken for the underlying FVM to overcome this
difficulty.

Our main result is: Under the shape regular assumption and h1+γ distortion (to
be specified in Sect. 2) of the mesh, the inf–sup condition is valid for sufficiently
small h, and hence the error under the H1-norm has the optimal rate of convergence.
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Vertex-centered finite volume schemes 365

Different from previous case-by-case works on FVM for linear, quadratic, and cubic
quadrilateral elements, our analysis is applicable to any order FVM. Furthermore, our
mesh-condition is more relaxed in two aspects: (1) We only require that the minimum
interior angle of any quadrilateral is bounded from below; and (2) the mesh distortion
parameter γ > 0 can be arbitrarily small. Note that γ = 0 implies an arbitrary
quadrilateral without any structure. Therefore, our mesh condition here is very much
similar to the most relaxed mesh condition in finite element methods.

The rest of the paper is organized as follows. In Sect. 2, we present the properties of
unstructured quadrilateral meshes. In Sect. 3, we present and analyze a family of FV
schemes over quadrilateral meshes under the inf–sup condition. In Sect. 4, we provide
a rigorous proof for the inf–sup condition. Several numerical examples illustrating our
theory is presented in Sect. 5. A brief conclusion is given in the final and sixth section.

In the rest of this paper, “A � B” means that A can be bounded by B multiplied
by a constant which is independent of the parameters which A and B may depend on.
“A ∼ B” means “A � B” and “B � A”.

2 Quadrilateral meshes

Let � ⊂ R2 be a simply connected polygon. We partition � into the union of a finite
number of convex quadrilaterals and denote this quadrilateral mesh by Th , where h is
the largest diameter of all quadrilaterals. We denote byNh and Eh respectively the set
of all vertices and all edges of Th . Moreover, letN ◦

h = Nh\∂�, E◦
h = Eh\∂�,N b

h =
Nh∩∂�, Eb

h = Eh\∂� be the set of interior vertices, internal edges, boundary vertices
and boundary edges, respectively.

We call Th conforming if different quadrilaterals in Th have no common interior
points and a vertex of any quadrilateral does not lie on the interior of a side of any
other quadrilateral. We call Th shape regular if there exist a positive constant c1 and
some angle 0 < θ0 < π/3 such that

hτ

ρτ

≤ c1, θτ ≥ θ0, ∀τ ∈ Th,

where ρτ , θτ are the maximum diameter of circles contained in τ and the minimal
interior angle of τ , respectively. For a quadrilateral τ ∈ Th , let dτ be the distance
between midpoints of two diagonals of τ . If dτ = O(h1+γ ), γ ≥ 0, we call τ an h1+γ

parallelogram (cf., [8,26]). If all quadrilaterals in Th are h1+γ -parallelograms, we call
Th an h1+γ -parallelogram mesh. Note that γ = 0 represents arbitrary quadrilateral
meshes, γ = ∞ represents parallelogram meshes.

For an arbitrary quadrilateral mesh, there exist some relations between the cardi-
nalities of vertices, edges and elements. First, we observe that for a quadrilateral mesh
Th ,

#N b
h = #Eb

h (2.1)

and #Eb
h must be an even integer, where #S is the cardinality of some set S. Moreover,

we have the followingrelationship
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#Th = 1

2
#E◦

h + 1

4
#Eb

h = #N ◦
h + 1

2
#N b

h − 1. (2.2)

In fact, since each quadrilateral in Th has four edges, each interior edge belongs to two
quadrilaterals while each boundary edge only belongs to one quadrilateral, we have

4#Th = 2#E◦
h + #Eb

h .

The first equality in (2.2) is verified. We next show the second equality of (2.2) by
induction. When #Th = 1, we have #N ◦

h = 0, #N b
h = 4. Therefore the second

equality of (2.2) is valid when #Th = 1. Now we suppose the above equality holds
for any mesh Th with #Th = k. Let T̃h be some quadrilateral mesh with #T̃h = k + 1.
The mesh T̃h can be obtained by adding a boundary quadrilateral τ to a mesh Th with
#Th = k. Since both the union of the elements in Th and T̃h are simply-connected,
there are only three cases: (1) One edge of τ coincides with a boundary edge of Th , in
this case, Ñ ◦

h = N ◦
h , Ñ b

h = N b
h + 2. (2) Two edges of τ coincide with two boundary

edges of Th , in this case, Ñ ◦
h = N ◦

h + 1, Ñ b
h = N b

h . (3) Three edges of τ coincide
with three boundary edges of Th , in this case, Ñ ◦

h = N ◦
h + 2, Ñ b

h = N b
h − 2. We find

that in all above 3 cases, we have #Ñ ◦
h + 1

2#Ñ
b
h = k + 2. In other words, we have

#T̃h = #Ñ ◦
h + 1

2
#Ñ b

h − 1.

Therefore, the second equality of (2.2) is also valid.
The mesh discussed in this paper maybe completely unstructured. We next explain

how to label the boundary edges and the four vertices of an element τ ∈ Th . If two edges
E1, E2 ∈ Eh belong to the same quadrilateral τ and they have no intersections, we call
E2 an opposite edge of E1 and denote E2 = op(E1, τ ). For two edges E, F ∈ Eh ,
if there exists a finite number of quadrilaterals τ1, . . . , τm−1 and associated edges
E1, . . . , Em ∈ Eh,m ≥ 2 such that E1 = E, Em = F, Ei+1 = op(Ei , τi ), i =
1, . . . ,m − 1, then we call F as a (far) opposite edge of E and we denote F =
op(E, τ1, . . . , τm−1) or simply denote F = op(E). If F1 = op(E), F2 = op(E),
the number of opposite edges between E and F1 is smaller than that between E and
F2, we say that F1 is closer to E than F2. The boundary edge set Eb

h can be split
into two subsets Eb1

h and Eb2
h such that Eb2

h = {F = op(E)|E ∈ Eb1
h }. We list edges

in Eb1
h by Eb1

h = {Ei |i = 1, . . . ,
#Eb

h
2 }, then Eb2

h = {Fi = op(Ei )|i = 1, . . . ,
#Eb

h
2 },

see Fig. 1 for an example in which Eb1
h = {E1, . . . , E6} and Eb2

h = {F1, . . . , F6}
with Fi = op(Ei ), i = 1, . . . , 6. For a quadrilateral τ ∈ Th , its four vertices should
be labeled such that: (1) P1, P2, P3, P4 are arranged in counter-clock order. (2) If
Ei , E j ∈ Eb1

h , are the boundary edges such that P1P2 = Ei or op(Ei ), P3P4 =
op(Ei ) and P1P4 = E j or op(E j ), P3P4 = op(E j ), we require that P1P2 is closer to
Ei than P3P4, P1P4 is closer to E j ∈ Eb1

h than P2P3. See also Fig. 1 for an example
where the four vertices of a τ are labeled.

It is well-known that the geometry of a quadrilateral τ = �P1P2P3P4 ∈ Th is
determined by a transformation from the reference square τ0 = [−1, 1]2 to τ (cf., e.g.
[29,30]). For all (ξ, η) ∈ τ0, let (x, y) = Fτ (ξ, η) be defined by
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Fig. 1 Labeling boundary edges
and 4 vertices of a quadrilateral
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x = x1 + ατ
2
1 + ξ

2
+ ατ

4
1 + η

2
+ ατ

3
(1 + ξ)(1 + η)

4
,

y = y1 + βτ
2
1 + ξ

2
+ βτ

4
1 + η

2
+ βτ

3
(1 + ξ)(1 + η)

4
,

where (xi , yi ) is the coordinate of the vertices Pi , i = 1, 2, 3, 4 and

ατ
2 = x2 − x1, α

τ
4 = x4 − x1, α

τ
3 = x1 − x2 + x3 − x4,

βτ
2 = y2 − y1, βτ

4 = y4 − y1, βτ
3 = y1 − y2 + y3 − y4.

Obviously, we have Fτ (−1,−1) = P1, Fτ (1,−1)= P2, Fτ (1, 1) = P3, Fτ (−1, 1) =
P4. Moreover, noticing dτ = 1

2

√
|ατ

3 |2 + |βτ
3 |2, we have ατ

3 = βτ
3 = 0 if τ is a

parallelogram; ατ
3 = βτ

3 = ατ
4 = βτ

2 = 0 if τ is a rectangle;
√

|ατ
3 |2 + |βτ

3 |2 =
O(h1+γ ), if τ is an h1+γ -parallelogram.

We next introduceGauss and Lobatto points in Th . For any integer n ≥ 1, we denote
Zn = {1, . . . , n}, Z

0
n = {0, 1, . . . , n}. Let {lm |m ∈ Z

0
r } be r + 1 Lobatto points of

degree r in the interval [−1, 1], that is, l0 = −1, lr = 1 and {lm |m ∈ Zr−1} are the
r − 1 zeros of L ′

r , where Lr is the Legendre polynomial of degree r in [−1, 1]. We
denote the set of Lobatto points in τ as

Nτ = {Lτ
i, j |i, j ∈ Z

0
r },

where Lτ
i, j = Fτ (li , l j ). Moreover let N = ∪τ∈ThNτ be the set of all Lobatto points

in Th . Let {gi |i ∈ Zr } be the r Gauss points, i.e., zeros of Lr , the Legendre polynomial
of degree r , on the interval [−1, 1]. We denote the set of Gauss points in τ by

Gτ = {Gτ
i, j |i, j ∈ Zr },
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Fig. 2 Gauss and Lobatto
points in a quadrilateral (r = 2)

whereGτ
i, j = Fτ (gi , g j ).We denote the set of all Gauss points in Th byG = ∪τ∈ThGτ .

As an example, theGauss and Lobatto points of a quadrilateral τ for r = 2 are depicted
in Fig. 2.

We next compare the cardinality of the set of Gauss points G and the cardinality of
the set of the interior Lobatto points N ◦ = N \∂�. Obviously

#G = #Thr2,

where #Th is the number of quadrilaterals in Th . We next calculate #N ◦. Since N ◦
consists of the interior vertices, the Lobatto points in the interior of quadrilaterals and
the Lobatto points in the interior of internal edges, we have

#N ◦ = #N ◦
h + #(E◦

h )(r − 1) + #Th(r − 1)2.

Substituting (2.2) and (2.1) into the above formula, we obtain

#N ◦ = (#Th)r2 − 1

2
(#Eb

h )r + 1. (2.3)

In other words,

#N ◦ = #G − 1

2
(#Eb

h )r + 1. (2.4)

We next study further properties of the transformation Fτ , τ ∈ Th . It is easy to
calculate the Jacobi matrix

DFτ (ξ, η) =
(

∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

)
=

(
ατ
2
2 + ατ

3 (1+η)

4
βτ
2
2 + βτ

3 (1+η)

4
ατ
4
2 + ατ

3 (1+ξ)

4
βτ
4
2 + βτ

3 (1+ξ)

4

)
,

and its inverse

DF−1
τ (ξ, η) = J−1

τ

(
∂y
∂η

− ∂y
∂ξ

− ∂x
∂η

∂x
∂ξ

)
,
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where the determinant of the Jacobi matrix DFτ is

Jτ = Jτ,p + Jτ,ξ (1 + ξ) + Jτ,η(1 + η),

with

Jτ,p = 1

4
(ατ

2β
τ
4 − ατ

4β
τ
2 ), Jτ,ξ = 1

8
(ατ

2β
τ
3 − ατ

3β
τ
2 ), Jτ,η = 1

8
(ατ

3β
τ
4 − ατ

4β
τ
3 ).

Since τ = �P1P2P3P4 is convex and its vertices P1, P2, P3, P4 are labeled counter-
clockwisely, we have

Jτ,p = 1

2
S
P1P2P4 > 0.

Since τ is a shape regular h1+γ parallelogram, we have

Jτ,p = O(h2), Jτ,ξ , Jτ,η = O(h2+γ ). (2.5)

We close this section by a study of the relationship of directional derivatives of
a function on τ and that on τ0. Let v be a differentiable function defined on τ and
v̂τ = v ◦ Fτ be a function defined on τ0. We denote the gradient of v on τ by

v = ( ∂v

∂x , ∂v
∂y )

T and the gradient of v̂τ on τ0 by 
̂v̂τ = ( ∂v̂τ

∂ξ
, ∂v̂τ

∂η
)T . A straightforward

calculation yields that


̂v̂τ = DFτ 
 v

Let n = (n1, n2) be a unit direction, we have the directional derivative

∂v

∂n
= n · 
v = n · DF−1

τ 
̂v̂τ

= J−1
τ

((
∂y

∂η
n1 − ∂x

∂η
n2

)
∂v̂τ

∂ξ
+

(
−∂y

∂ξ
n1 + ∂x

∂ξ
n2

)
∂v̂τ

∂η

)
. (2.6)

We next derive the directional derivatives for some specific n.
For all (ξ, η) ∈ τ0, Fτ ([−1, 1] × {η}) and Fτ ({ξ} × [−1, 1]}) are two segments in

τ which passing the point Fτ (ξ, η). We let

r τ,1
ξ,η = |Fτ ([−1, 1] × {η})|/2, r τ,2

ξ,η = |Fτ ({ξ} × [−1, 1]})|/2

be the length of two vectors 1
2
−−−−−−−−−−−−→
Fτ (−1, η)Fτ (1, η) and 1

2
−−−−−−−−−−−−→
Fτ (ξ,−1)Fτ (ξ, 1), respec-

tively. A straightforward calculation yields

(r τ,1
ξ,η)2 =

(
ατ
2

2
+ ατ

3 (1 + η)

4

)2

+
(

βτ
2

2
+ βτ

3 (1 + η)

4

)2

,
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and

(r τ,2
ξ,η )2 =

(
ατ
4

2
+ ατ

3 (1 + ξ)

4

)2

+
(

βτ
4

2
+ βτ

3 (1 + ξ)

4

)2

.

We also let

sτ
ξ,η =

(
ατ
2

2
+ ατ

3 (1 + η)

4

) (
ατ
4

2
+ ατ

3 (1 + ξ)

4

)

+
(

βτ
2

2
+ βτ

3 (1 + η)

4

) (
βτ
4

2
+ βτ

3 (1 + ξ)

4

)

be the inner product of two vectors 1
2
−−−−−−−−−−−−→
Fτ (−1, η)Fτ (1, η) and 1

2
−−−−−−−−−−−−→
Fτ (ξ,−1)Fτ (ξ, 1).

Since Th is shape regular, there exists a minimal angle θ0 such that each angle of the
quadrilateral τ is larger than θ0. Thus we have

|sτ
ξ,η| ≤ cos θ0r

τ,1
ξ,ηr

τ,2
ξ,η . (2.7)

For a fixed η, the normal direction on the edge
−−−−−−−−−−−−→
Fτ (−1, η)Fτ (1, η) is

n1ξ,η =
(

−βτ
2

2
− βτ

3 (1 + η)

4
,
ατ
2

2
+ ατ

3 (1 + η)

4

)/
r τ,1
ξ,η .

Similarly, for a fixed ξ , the normal direction on the edge
−−−−−−−−−−−−→
Fτ (ξ,−1)Fτ (ξ, 1) is

n2ξ,η =
(

βτ
4

2
+ βτ

3 (1 + ξ)

4
,−ατ

4

2
− ατ

3 (1 + ξ)

4

) /
r τ,2
ξ,η .

Therefore, on the edge
−−−−−−−−−−−−→
Fτ (−1, η)Fτ (1, η),

∂v

∂n
= ∂v

∂n1ξ,η

= 1

r τ,1
ξ,η Jτ

(
−sτ

ξ,η

∂v̂τ

∂ξ
+ (r τ,1

ξ,η)2
∂v̂τ

∂η

)
. (2.8)

And on the edge
−−−−−−−−−−−−→
Fτ (ξ,−1)Fτ (ξ, 1),

∂v

∂n
= ∂v

∂n2ξ,η

= 1

r τ,2
ξ,η Jτ

(
(r τ,2

ξ,η )2
∂v̂τ

∂ξ
− sτ

ξ,η

∂v̂τ

∂η

)
. (2.9)

From the above formulae, we find that even v̂τ is a polynomial, the directional deriva-
tive ∂v

∂n may not be a polynomial since Jτ is not a constant for an arbitrary quadrilateral.
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3 Finite volume schemes of any order

Weconsider finite volume schemes of any order for the elliptic boundary value problem

− 
 · (α
u) = f in �, (3.1)

u = 0 on �, (3.2)

where� ⊂ R
2 is a simply connected polygon,� = ∂�, α ∈ L∞(�) and it is bounded

from below: There exists a constant α0 > 0 such that α(x) ≥ α0 for almost all x ∈ �,
and f ∈ L2(�) is a real-valued function defined on �.

Wewill present our finite volume schemes under the framework of Petrov–Galerkin
method. We first choose the trial space as the standard FEM space of any degree r ≥ 1
defined by

Ur
h = {v ∈ C(�)|v̂τ = v ◦ Fτ ∈ Qr (τ0), ∀τ ∈ Th, and v|∂� = 0},

whereQr (τ0) is the set of all bi-polynomials of degree nomore than r . By the standard
approximation theory, we have

dim Ur
h = #N ◦,

where N ◦ = N \∂� is the set of all internal Lobatto points.
We next present the dual mesh and the corresponding test space. The dual mesh is

constructed as follows. For any segment E , we denote GE, j j ∈ Zr the Gauss points
on E . For a quadrilateral τ = �P1P2P3P4 ∈ Th , the dual mesh in τ is obtained by
connecting GP1P2, j

and GP4P3, j
, j ∈ Zr , GP1P4, j

and GP2P3, j
, j ∈ Zr with lines,

see Fig. 2 for an example r = 2. Since Fτ is a bilinear transformation, for a fixed
j ∈ Z

0
r+1, all Gauss points G

τ
i, j , i ∈ Z

0
r+1 are located on one same line and for a

fixed i ∈ Z
0
r+1, all points G

τ
i, j , j ∈ Z

0
r+1 are on another same line. In other words, we

construct a control volume Vp for each Lobatto point p ∈ N . The contribution from
a quadrilateral τ � p is

Vτ,p = �Gτ
i j G

τ
i+1 j G

τ
i+1 j+1G

τ
i j+1

where i, j is chosen such that p = Lτ
i j . Here, the notation of Gauss points has been

extended to all i, j ∈ Z
0
r+1 by letting g0 = −1, gr+1 = 1, see Fig. 3 for a simple

case where r = 2. Note that in this simple case, the generalized Gauss points Gτ
0,0 =

Lτ
0,0,G

τ
3,0 = Lτ

2,0,G
τ
3,3 = Lτ

2,2,G
τ
0,2 = Lτ

0,2.

The whole control volume surrounding P is then defined as

VP =
⋃

τ�P

Vτ,P .

For the simple case r = 2, whole control volumes surrounding Lobatto points in
a quadrilateral are plotted in Fig. 3. In this figure, each control volume is a polygon
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Fig. 3 Control volumes
associated with a quadrilateral τ
(r = 2)
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V
L
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V
L
2,1

V
L
2,2

surrounded by dash lines. The dualmeshT ′
h consists of all control volumes Vp, p ∈ N .

That is,

T ′
h = {Vp|p ∈ N }.

The corresponding test space is defined as

Vh = Span{ψVp |p ∈ N ◦},

where ψA is the characteristic function of some set A ⊂ �. Obviously, we have

dim Vh = #N0 = dim Ur
h .

We are now ready to present our finite volume schemes. The finite volume solution
of (3.1) and (3.2) is a function uh ∈ Ur

h which satisfies conservation laws

−
∫

∂Vp

α
∂uh
∂n

ds =
∫

Vp

f dxdy (3.3)

on each control volume Vp, p ∈ N ◦, where n is the unit outward normal on the
boundary curve ∂Vp. Let wh ∈ Vh , wh can be written as

wh =
∑

p∈N ◦
wpψVp

where the coefficients wp, p ∈ N ◦ are constants, ψS is the characteristic function of
the subset S ⊂ �. Multiplying (3.3) with wp and then summing up for all p ∈ N ◦,

123



Vertex-centered finite volume schemes 373

we obtain

−
∑

p∈N ◦
wp

∫

∂Vp

α
∂uh
∂n

ds =
∫

�

f whdxdy.

Defining the FVM bilinear form for all v ∈ H1
0 (�),wh ∈ Vh as

ah(v,wP ′) = −
∑

p∈N ◦
wp

∫

∂Vp

α
∂v

∂n
ds, (3.4)

the finite volume method for solving Eqs. (3.1) and (3.2) reads as: Find uh ∈ Ur
h such

that
ah(uh, wh) = ( f, wh), ∀wh ∈ Vh . (3.5)

We next study of the continuity of the bilinear form ah(·, ·) defined in (3.4). We
denote by E ′

h the set of interior edges of the dual partition T ′
h . Moreover, we define a

semi-norm in the test space Vh for all wh ∈ Vh by

|wh |′h =
⎛
⎝ ∑

E∈E ′
h

h−1
E

∫

E
[wh]

2 ds

⎞
⎠

1
2

,

where hE is the diameter of an edge E , and a semi-norm in the so-called broken H2

space

H2
h (�) = {v ∈ C(�) : v|τ ∈ H2, ∀τ ∈ Th}

for all v ∈ H2
h (�) by

|v|h =
⎛
⎝ ∑

τ∈Th
|v|21,τ + h2τ |v|22,τ

⎞
⎠

1
2

,

where hτ is the diameter of τ . The mesh dependent semi-norm | · |h has also been used
in [28].

The bilinear form ah(·, ·) can be rewritten for all v ∈ H1
0 (�), wh ∈ Vh as

ah(v,wh) =
∑

E∈E ′
h

[wh]E
∫

E
α

∂v

∂n
ds, (3.6)

where [wh]E = wh |V2 − wh |V1 denotes the jump of the wh across the common edge
E = V1 ∩ V2 of two volumes V1, V2 ∈ T ′

h and n denotes the normal vector on E
pointing from V1 to V2.
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Theorem 3.1 The finite volume bilinear form ah(·, ·) is variationally exact:

ah(u, wh) = ( f, wh) ∀ wh ∈ Vh (3.7)

and continuous: for all v ∈ H1
0 (�) ∩ H2

h (�), wh ∈ Vh,

|ah(v,wh)| � |v|h |wh |′h, (3.8)

where the hidden constant is independent of h.
Furthermore, let u be the solution of (3.1) and (3.2), uh the solution of (3.5). If

there holds the following inf–sup condition

inf
vh∈Ur

h

sup
wh∈V ′

h

ah(vh, wh)

|vh |h |wh |′h
� 1, (3.9)

then
|u − uh |h � inf

vh∈Ur
h

|u − vh |h . (3.10)

Consequently, if u ∈ Hr+1(�),

|u − uh |1 � hr |u|r+1. (3.11)

Proof First, (3.7) follows by multiplying (3.1) with an arbitrary functionwh ∈ Vh and
then using Green’s formula in each control volume τ ∈ T ′

h .
Secondly we prove (3.8). By the Cauchy–Schwartz inequality, for all v ∈ H1

0 (�)

and all wh ∈ Vh , there holds

ah(v,wh) ≤ ‖α‖∞|wh |′h
⎛
⎝ ∑

E∈E ′
h

hE

∫

E

(
∂v

∂n

)2

ds

⎞
⎠

1
2

.

By the trace inequality and the shape regularity of Th,

(
hE

∫

E∩τ

(
∂v

∂n

)2

ds

) 1
2

� |v|1,τ + hτ |v|2,τ
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where τ ∈ Th and τ ∩ E �= ∅. Since for any given E ∈ E ′
h , there are at most two

elements τ ∈ Th such that τ ∩ E �= ∅, we have

aP (v,wh) � |wh |′h
⎛
⎝ ∑

E∈Eh

∑

τ∈Th ,τ∩E �=∅
|v|21,τ + h2τ |v|22,τ

⎞
⎠

1
2

� |wh |′h
⎛
⎝ ∑

τ∈Th
|v|21,τ + h2τ |v|22,τ

⎞
⎠

1
2

.

Then there exists a positive M which depends only on α and r such that (3.8) holds.
We next show (3.10). By (3.7) and the inf–sup condition (3.9), for all vh ∈ Ur

h ,
there holds

|uh − vh |h � sup
wh∈V ′

h

ah(uh − vh, wh)

|wh |′h
= sup

wh∈V ′
h

ah(u − vh, wh)

|wh |′h
.

Then by the triangle inequality and the continuity (3.8), we have

|u − uh |h ≤ |u − vh |h + |vh − uh |h � |u − vh |h .

That is, (3.10) holds.
We conclude from the definition of | · |h and (3.10) that

|u − uh |1 ≤ |u − uh |h � inf
vh∈Ur

h

|u − vh |h .

Note that

inf
vh∈Ur

h

|u − vh |h ≤ |u − uI |1 + h|u − uI |2,

where uI ∈ Ur
h is the interpolation of u which will be introduced precisely in next

subsection. By the standard approximation theory, we obtain the estimate (3.11). ��
Remark 3.2 We observe from the above theorem that the inf–sup condition (3.9) plays
a critical role in the proof of the optimal convergence rates of the FV solutions. The
proof of (3.9) is the task of next section.

4 Inf–sup property

This section is devoted to a rigorous proof for (3.9) which is the core of the paper.
Since by the inverse inequality, we have the norm equivalence

|vh |h ∼ |vh |1, ∀vh ∈ Ur
h ,
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the inf–sup property (3.9) is equivalent to

inf
vh∈Ur

h

sup
wh∈V ′

h

ah(vh, wh)

|vh |1|wh |′h
� 1. (4.1)

We begin with a simple observation that we only need to prove (4.1) for the case
that α is piecewise constant with respect to the partition Th . In fact, for a piecewise
continuous coefficient α, let

ᾱ(x, y) = 1

|τ |
∫

τ

α(x, y)dxdy, ∀(x, y) ∈ τ ∈ Th

and denote its piecewise modulus of continuity by

mTh (α, h) = sup{|α(x1) − α(x2)| : |x1 − x2| ≤ h, ∀ x1, x2 ∈ τ,∀ τ ∈ Th}.

The fact that α is piecewise continuous implies that mTh (α, h) converges to 0 when h
goes to 0. We define a new bilinear form āh(·, ·) for all vh ∈ Ur

h , wh ∈ Vh by

āh(vh, wh) :=
∑

E∈E ′
h

[wh]
∫

E
ᾱ

∂vh

∂n
ds.

If (4.1) is valid for a piecewise constant coefficient, then for all vh ∈ Ur
h ,

sup
wh∈Vh

āh(vh, wh)

|wh |′h
� |vh |1.

On the other hand, by the same arguments in Theorem 3.1, we have

|ah(vh, wh) − āh(vh, wh)| � mTh (α, h)|vh |1|wh |′h,

Then when h is sufficiently small,

sup
wh∈Vh

ah(vh, wh)

|wh |′h
� (1 − mTh (α, h))|vh |1 ≥ 1

2
|vh |1

which implies the inf–sup condition (4.1) for arbitrary piecewise continuous α.
In the rest analysis of this section, unless specificallymentioned, we always suppose

that α is piecewise constant respect to Th .

4.1 An equivalent discrete form

In this subsection, we transfer the FV bilinear form (3.6) to a summation of function
values at Gauss points.
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To this end, we first describe the dual edges in a quadrilateral τ ∈ Th . Let

Eξ
i j = Gτ

i, j G
τ
i+1, j , ∀(i, j) ∈ Z

0
r × Zr ,

be the edges along ξ−direction and

Eη
i j = Gτ

i, j G
τ
i, j+1, ∀(i, j) ∈ Zr × Z

0
r ,

the edges along η-direction in τ . The set of dual edges in τ is the union of edges along
two directions, that is:

E ′
h ∩ τ = {Eη

i j : i ∈ Zr , j ∈ Z
0
r } ∪ {Eξ

i j , i ∈ Z
0
r , j ∈ Zr }.

Secondly, we define the jumps of a test function wh ∈ Vh . Note that a function
wh ∈ Vh can be represented as wh = ∑

p∈N ◦(wh)pψVp , where (wh)p ∈ R is a
constant. Letting (wh)p = 0 for all p ∈ N ∩ ∂�, we write wh = ∑

p∈N (wh)pψVp .

For all τ ∈ Th and all i, j ∈ Z
0
r , the contribution from τ to the control volume VLτ

i, j

is Fτ ([gi , gi+1] × [g j , g j+1)]. Therefore in the quadrilateral τ ,

wh =
∑

(i, j)∈Z0
r×Z0

r

wτ
i jψFτ ([gi ,gi+1]×[g j ,g j+1)],

where wτ
i, j = (wh)Lτ

i, j
. For all (i, j) ∈ Z

0
r × Zr , we denote the jump of wh on the

edge Eξ
i j by

[wh]τξ,i j = wτ
i j − wτ

i j−1,

and for all (i, j) ∈ Zr × Z
0
r , we denote the jump on the edge Eη

i j by

[wh]τη,i j = wτ
i j − wτ

i−1 j .

For all (i, j) ∈ Zr × Zr , we define the (double) jump of wh at Gauss point Gτ
i, j as

�wh�τ
i, j = wτ

i, j + wτ
i−1, j−1 − wτ

i−1, j − wτ
i, j−1.

Obviously, we have

�wh�τ
i, j = [wh]τξ,i j − [wh]τξ,i−1 j = [wh]τη,i j − [wh]τη,i j−1.

With these notations, for all v ∈ H1
0 (�), wh ∈ V ′

h , we have

ah(v,wh) =
∑

τ∈Th
ah,τ (v, wh)
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Fig. 4 A path starts from
P ∈ E4 and ends at Q ∈ F4.
The segment Qi Qi+1 is the
portion of this pass in the
element τi = �Pi

1 P
i
2 P

i
3 P

i
4. The

two points can be expressed as
Qi = Fτi (ξ,−1), Qi+1 =
Fτi (ξ, 1)
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where the element-wise bilinear form

ah,τ (v, wh) =
∑

E∈τ∩E ′
h

[wh]
∫

E
α

∂v

∂n
ds,

=
∑

(i, j)∈Z0
r×Zr

[wh]τξ,i j

∫

Eξ
i j

α
∂v

∂n
ds +

∑

(i, j)∈Zr×Z0
r

[wh]τη,i j

∫

Eη
i j

α
∂v

∂n
ds.

To transform the above formulae to a summation of function values at Gauss points,
we next introduce a primal function of the function α ∂v

∂n along a pathwhich is defined
as below. For a boundary edge E ∈ Eb1

h , let Ei , i = 1, . . . ,m,m ≥ 2 be the sequence
of edges in Eh satisfying: (1) E1 = E ∈ Eb1

h , Em = F ∈ Eb2
h , (2) The edges Ei , Ei+1

belong to the same quadrilateral τi and Ei+1 = op(Ei ), i = 1, . . . ,m − 1. Given
some point P ∈ E , let Qi ∈ Ei , i = 1, . . . ,m be a sequence of points such that: (1)
Q1 = P ∈ E = E1, (2) Let the four vertices of τi be labeled as Pi

j , j = 1, . . . , 4.

If Ei = Pi
1 P

i
2 , then Qi = Fτi (ξ,−1) and Pi+1 = Fτi (ξ, 1) for some −1 < ξ < 1;

If Ei = Pi
1 P

i
4 , then Qi = Fτi (−1, η) and Qi+1 = Fτi (1, η) for some −1 < η < 1,.

We connect Qi Qi+1, i = 1, . . .m−1 with segments, then we obtain the pass starting
from the point P ∈ E = E1 and ending at the point Q = Qm ∈ Em = F ∈ Eb2

h .
We denote this pass by SE,P , see Fig. 4 for a path (depicted by dash line) which starts
from P ∈ E4 and ends at a point Q in the opposite boundary edge F4.

For all E ∈ Eb1
h , P ∈ E and for any point Q ∈ SE,P , we define

VE,P (Q) =
∫

P̂Q
α

∂v

∂n
ds, (4.2)

where the curve P̂Q ⊂ SE,P is a portion of the path SE,P which starts from P and
ends at the point P̃ which belongs to the opposite boundary edge F ∈ Eb2

h .
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For τ = �P1P2P3P4 ∈∈ Th , let Eτ
1 , Eτ

2 ∈ Eb1
h be two boundary edges such that

P1P2 = op(Eτ
1 ), P1P4 = op(Eτ

2 ). We notice that for a fixed j ∈ Zr , all the Gauss
pointsGτ

i, j , i ∈ Z
0
r+1 are situated on the same pass derived from some point Q1

j ∈ Eτ
1 .

Similarly, for a fixed i ∈ Zr , all the Gauss points Gτ
i, j , j ∈ Z

0
r+1 are situated on the

same pass derived from some point Q2
i ∈ Eτ

2 . Therefore, for all j ∈ Zr , i ∈ Z
0
r ,

∫

Eξ
i j

α
∂v

∂n
= VEτ

1 ,Q1
j
(Gτ

i+1, j ) − VEτ
1 ,Q1

j
(Gτ

i, j );

and for all i ∈ Zr , j ∈ Z
0
r ,

∫

Eη
i j

α
∂v

∂n
= VEτ

2 ,Q2
i
(Gτ

i, j+1) − VEτ
2 ,Q2

i
(Gτ

i, j ).

Then, for all v ∈ H1
0 (�), wh ∈ V ′

h ,

ah,τ (v, wh) =
∑

(i, j)∈Z0
r×Zr

[wh]τξ,i j (VEτ
1 ,Q1

j
(Gτ

i+1, j ) − VEτ
1 ,Q1

j
(Gτ

i, j ))

+
∑

(i, j)∈Zr×Z0
r

[wh]τη,i j (VEτ
2 ,Q2

i
(Gτ

i, j+1) − VEτ
2 ,Q2

i
(Gτ

i, j ))

= aτ (v,wh) + bτ (v,wh),

where the element-wise bilinear form

aτ (v,wh) = −
∑

(i, j)∈Zr×Zr

�wh�τ
i, j (VEτ

1 ,Q1
j
(Gτ

i, j ) + VEτ
2 ,Q2

i
(Gτ

i, j )), (4.3)

and the boundary term

bτ (v,wh) =
∑

j∈Zr

([wh]τξ,r j VEτ
1 ,Q1

j
(Gτ

r+1, j ) − [wh]τξ,0 j VEτ
1 ,Q1

j
(Gτ

0, j ))

+
∑

i∈Zr

([wh]τη,ir VEτ
2 ,Q2

i
(Gτ

i,r+1) − [wh]τη,i0VEτ
2 ,Q2

i
(Gτ

i,0)).

Since the function VE,P is continuous across each internal edge in Th , we have
∑

τ∈Th
bτ (v,wh) = 0.

Finally, we obtain

ah(v,wh) =
∑

τ∈Th
aτ (v,wh)

with aτ (·, ·) defined by (4.3).
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4.2 A novel mapping from the trial space to test space

A key step to establish (4.1) is the construction of a novel mapping from the trial space
to the test space.

Let � be a mapping which maps vh ∈ Ur
h to wh ∈ Vh such that the coefficients of

wh satisfy

�wh�τ
i, j = Ai A j

∂2v̂τ

∂ξ∂η
(gi , g j ), ∀τ ∈ Th, (i, j) ∈ Zr × Zr , (4.4)

where v̂τ = vh ◦ Fτ ∈ Qr for all τ ∈ Th , and A j , j ∈ Zr are the weights of the Gauss

quadrature
∑r

j=1 A jv(g j ) for computing the integral
∫ 1
−1 v(x)dx .

We next explain that for a given vh ∈ Ur
h , (4.4) determine a unique wh ∈ Vh . First

if vh = 0, then ∀τ ∈ Th, (i, j) ∈ Zr × Zr ,

�wh�τ
i, j = wτ

i, j + wτ
i−1, j−1 − wτ

i−1, j − wτ
i, j−1 = 0.

Noticing the fact that wh = 0 on ∂�, we obtain that wh = 0 on the whole domain �.
The uniqueness of � is proved.

We next explain that there exists a wh which satisfies all constraints (4.4). Since
(4.4) is a linear system with #G = #Thr2 equations, while the degree of freedom of a
wh is dim Vh = #N ◦ = #G − 1

2#G
b
h + 1, one may doubt if the linear system is over-

determined. The following lemma explains there exists a lot of redundant equations
in (4.4).

Lemma 4.1 Let vh ∈ Ur
h , then for any Ei ∈ Eb1

h and any j ∈ Z
r , we have

m∑

l=1

∑

k∈Zr

Ak
∂2v̂τl

∂ξ∂η
(gk, g j ) = 0, (4.5)

where τl , l = 1, . . .m are quadrilaterals which begin at Ei ∈ Eb1
h and end at Fi =

op(Ei ) ∈ Eb2
h . Consequently, for all Ei ∈ Eb1

h and all j ∈ Z
r and all wh ∈ Vh,

m∑

l=1

∑

k∈Zr

�wh�τl
k, j =

m∑

l=1

∑

k∈Zr

Ak A j
∂2v̂τl

∂ξ∂η
(gk, g j ). (4.6)

Proof For fixed l ∈ Zm, j ∈ Zr , the function
∂2v̂τl
∂ξ∂η

(·, g j ) ∈ Pr−1(−1, 1). Therefore,
by the property of a Gauss quadrature

∑

k∈Zr

Ak
∂2v̂τl

∂ξ∂η
(gk, g j ) =

∫ 1

−1

∂2v̂τl

∂ξ∂η
(ξ, g j )dξ = ∂v̂τl

∂η
(1, g j ) − ∂v̂τl

∂η
(−1, g j ).

123



Vertex-centered finite volume schemes 381

Now since vh ∈ C(�), we have for all l = 1, . . . ,m − 1,

∂v̂τl

∂η
(1, g j ) = ∂v̂τl+1

∂η
(−1, g j ).

Therefore,

m∑

l=1

∑

k∈Zr

Ak
∂2v̂τl

∂ξ∂η
(gk, g j ) = ∂v̂τm

∂η
(1, g j ) − ∂v̂τ1

∂η
(−1, g j ).

Note that Ei , Fi ⊂ ∂�, then vh = 0 on Ei and Fi . That is v̂τ1(−1, η) = 0 =
v̂τm (1, η),∀η ∈ (−1, 1). Consequently, (4.5) hold for all Ei ∈ Eb1

h and all j ∈ Zr .
We next show (4.6). Since (wh)p = 0 for all p ∈ N \N ◦, we have

m∑

l=1

∑

k∈Zr

�wh�τl
k, j = [wh]τmξ,r, j − [wh]τ1ξ,0, j = 0,

from which and (4.5), the Eq. (4.6) follows. ��
This lemma indicates that equations in (4.4) are linear dependent. Obviously we

have #Eb1
h r = 1

2#E
b
h r equations in (4.6). Moreover, if we choose 1

2#E
b
h r −1 equations

of (4.6) hold, the rest 1 equation will hold automatically. In other words, we have
1
2#E

b
h r−1 linear independent equations in (4.6).Nowwe remove 1

2#E
b
h r−1 constraints

from (4.4), we get a linear system with #N ◦ unknowns and #N ◦ equations. Using the
fact vh = 0 implies wh = 0, this linear system has a unique solution. The existence
of wh = �vh is also proved.

We next show that � is bounded from the trial space to the test space.

Lemma 4.2 If Th is shape regular, then for any vh ∈ Ur
h ,

|�vh |′h � |vh |1, (4.7)

where the hidden constant depends only on r.

Proof First, the fact that Th is a shape regular mesh yields that

|vh |1,τ ∼ |v̂τ |1,τ0 , ∀τ ∈ Th .

Consequently,

|vh |21 =
∑

τ∈Th
|vh |21,τ ∼

∑

τ∈Th
|v̂τ |21,τ0 .

On the other hand, by the definition of the semi-norm | · |′h ,

(|�vh |′h)2 =
∑

E∈E ′
h

([�vh]E )2 =
∑

τ∈Th

∑

E∈E ′
h∩τ

([�vh]E )2.
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Therefore, to show (4.7), we only need to show that for all τ ∈ Th ,
∑

E∈E ′
h∩τ

([�vh]E )2 � |v̂τ |21,τ0 . (4.8)

Noticing ∂2v̂τ

∂ξ∂η
∈ Qr−1(τ0), we have

∑

i∈Zr

��vh�τ
i j = A j

∑

i∈Zr

Ai
∂2v̂τ

∂ξ∂η
(gi , g j ) = A j

∫ 1

−1

∂2v̂τ

∂ξ∂η
(ξ, g j )dξ

= A j
∂v̂τ

∂η
(1, g j ) − A j

∂v̂τ

∂η
(−1, g j ).

Then, by the fact that ��vh�τ
i, j = [�vh]τξ,i, j − [�vh]τξ,i−1, j , we have

[�vh]τξ,r, j − [�vh]τξ,0, j = A j
∂v̂τ

∂η
(1, g j ) − A j

∂v̂τ

∂η
(−1, g j ).

Since vh = 0 and wh = 0 on ∂�, for all τ ∈ Th, j ∈ Zr , we have

[�vh]τξ,0, j = A j
∂v̂τ

∂η
(−1, g j ).

Therefore, by the inverse inequality,

|[�vh]τξ,0, j | ≤ A j

∥∥∥∥
∂v̂τ

∂η
(·, g j )

∥∥∥∥
L∞(−1,1)

� A j

∥∥∥∥
∂v̂τ

∂η
(·, g j )

∥∥∥∥
L2(−1,1)

.

Since for i ∈ Zr ,

[�vh]τξ,i, j = [�vh]τξ,0, j +
i∑

i ′=1

��vh�τ
i ′, j

= [�vh]τξ,0, j + A j

i∑

i ′=1

Ai ′
∂2v̂τ

∂ξ∂η
(gi , g j ),

and by the inverse inequality,

∣∣∣∣∣
i∑

i ′=1

Ai ′
∂2v̂τ

∂ξ∂η
(gi ′, g j )

∣∣∣∣∣ �
∥∥∥∥

∂2v̂τ

∂ξ∂η
(·, g j )

∥∥∥∥
L∞(−1,1)

�
∥∥∥∥

∂2v̂τ

∂ξ∂η
(·, g j )

∥∥∥∥
L2(−1,1)

�
∥∥∥∥
∂v̂τ

∂η
(·, g j )

∥∥∥∥
L2(−1,1)

,
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for all i ∈ Z
0
r , there holds

|[�vh]τξ,i, j | � A j

∥∥∥∥
∂v̂τ

∂η
(·, g j )

∥∥∥∥
L2(−1,1)

. (4.9)

Since
∫ 1
−1(

∂v̂τ

∂η
(ξ, ·))2dξ is a polynomial (w.r.t η) of degree less than 2r − 1, we have

∑

j∈Zr

A j

∫ 1

−1

(
∂v̂τ

∂η
(ξ, g j )

)2

dξ =
∫ 1

−1

∫ 1

−1

(
∂v̂τ

∂η
(ξ, η)

)2

dξdη =
∥∥∥∥
∂v̂τ

∂η

∥∥∥∥
2

L2(τ0)

.

Noticing (4.9), we obtain

∑

i∈Z0
r , j∈Zr

([�vh]τξ,i, j )
2 �

∥∥∥∥
∂v̂τ

∂η

∥∥∥∥
2

L2(τ0)

.

Similarly,

∑

i∈Zr , j∈Z0
r

([�vh]τη,i, j )
2 �

∥∥∥∥
∂v̂τ

∂ξ

∥∥∥∥
2

L2(τ0)

.

Consequently,

∑

E∈E ′
h∩τ

([�vh]E )2 =
∑

i∈Z0
r , j∈Zr

([�vh]τξ,i, j )
2 +

∑

i∈Zr , j∈Z0
r

([�vh]τη,i, j )
2 � |v̂τ |21,τ0 .

That is, (4.8) is verified. The inequality (4.7) then follows. ��

4.3 Coercivity of bilinear form ah(·,�·)

With the help of �, we obtain a bilinear form ah(·,�·) which is defined only on the
trial space Ur

h . In this subsection, we show the coercivity of ah(·,�·).
By (4.3), for all v ∈ Ur

h ,

aτ (v,�v) = I1 + I2.

where

I1 = −
∑

(i, j)∈Zr×Zr

Ai A j
∂2v̂τ

∂ξ∂η
(gi , g j )VEτ

1 ,Q1
j
(Gτ

i, j ),
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and

I2 = −
∑

(i, j)∈Zr×Zr

Ai A j
∂2v̂τ

∂ξ∂η
(gi , g j )VEτ

2 ,Q2
i
(Gτ

i, j ).

Wewill only estimate the lower bound of I1 since the lower bound of I2 can be obtained
by dual reasoning.

For all j ∈ Z
r , we denote

� j (ξ) = ∂2v̂τ

∂ξ∂η
(·, g j )VEτ

1 ,Q1
j
(Fτ (·, g j )), ξ ∈ [−1, 1],

and let

Err τ
ξ, j =

∫ 1

−1
� j (ξ)dξ −

∑

i∈Zr

Ai� j (gi )

be the error of the Gauss quadrature.

Lemma 4.3 If τ ∈ Th is an h1+γ -parallelogram, then for sufficiently small h,

Err τ
ξ, j � −hγ

τ |v̂τ |21,τ0 , ∀ j ∈ Zr , (4.10)

where the hidden constant is independent of h.

Proof By [10, p98, (2.7.12)], for all i ∈ ZN

Err τ
ξ, j = 22r+1(r !)4

(2r + 1)[(2r)!]3 (� j )
(2r)(ξ ′),

where ξ ′ ∈ (−1, 1).
We next calculate and estimate (� j )

(2r). By the Definition (4.2) and the formula
(2.8), we have that for all ξ0 ∈ (−1, 1) and all j ∈ Zr ,

VEτ
1 ,Q1

j
(Fτ (ξ0, g j ))=VEτ

1 ,Q1
j
(Fτ (−1, g j ))+

∫ ξ0

−1

α

Jτ

(
−sτ

ξ,g j

∂v̂τ

∂ξ
+ (r τ,1

ξ,g j
)2

∂v̂τ

∂η

)
dξ,

and consequently,

d

dξ
VEτ

1 ,Q1
j
(Fτ (ξ, g j )) = α

Jτ

(
−sτ

ξ,g j

∂v̂τ

∂ξ
+ (r τ,1

ξ,g j
)2

∂v̂τ

∂η

)
.

Then by the Leibnitz formula and noticing that the function ∂2v̂τ

∂ξ∂η
(·, g j ) is a polynomial

of degree r − 1, we have

�
(2r)
j (ξ ′) = J1 + J2 + J3.
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where

J1 = α

(
2r

r − 1

)
(r τ,1

ξ, j )
2

Jτ

(
∂r+1v̂τ

∂ξ r∂η
(ξ ′, g j )

)2

,

J2 = −α

(
2r

r − 1

)
(sτ

ξ, j )
′

Jτ

∂r v̂τ

∂ξ r
(ξ ′, g j )

∂r+1v̂τ

∂ξ r∂η
(ξ ′, g j ),

J3 = α

(
2r

r − 1

)
∂r+1v̂τ

∂ξ r∂η
(ξ ′, g j )

r∑

l=1

(
1

Jτ

)(l) (
−sτ

ξ,g j

∂v̂τ

∂ξ
+ (r τ,1

ξ,g j
)2

∂v̂τ

∂η

)(r−l)

(ξ ′)

+
r−2∑

k=0

(
2r

k

)
∂k+2v̂τ

∂ξ k+1∂η
(ξ ′)

(
α

Jτ

(
−sτ

ξ, j
∂v̂τ

∂ξ
+ (r τ,1

ξ, j )
2 ∂v̂τ

∂η

))(2r−k−1)

(ξ ′).

The fact that Jτ,p > 0 and (2.5) yield that Jτ > 0 for sufficiently small h. Conse-
quently, when h is sufficiently small,

J1 ≥ 0.

On theother hand, since sτ
ξ, j is linearwith respect to ξ , (sτ

ξ, j )
′ = (

βτ
2
2 +βτ

3 (1+g j )

4 )(
βτ
3
4 ) =

O(h2+γ
τ ), by the inverse inequality

|J2| � hγ |v̂τ |21,τ0 .

Next we estimate J3. We observe that J3 is a summation of a finite number of terms
which can be represented as

α
∂k1+1v̂τ

∂ξ k1∂η

⎛
⎝

(
sτ
ξ, j

Jτ

)(l)
∂k2+1v̂τ

∂ξ k2+1 +
(

(r τ,1
ξ, j )

2

Jτ

)(l)
∂k2+1v̂τ

∂ξ k2∂η

⎞
⎠

for some 1 ≤ l ≤ 2r, 0 ≤ ki ,≤ 2r, i = 1, 2. Recall that Jτ is linear with respect to ξ ,
J ′
τ = Jτ,ξ = O(h2+γ

τ ). For all l ≥ 1,

(J−1
τ )(l) = (−1)l l!(Jτ )−l−1(J ′

τ )
l = O(hlγ−2

τ ).

On the other hand, (r τ,1
ξ, j )

2 is a constant with respect to ξ , (r τ,1
ξ, j )

2 = O(h2τ ). s
τ
ξ, j is

linear with respect to ξ , sτ
ξ, j = O(h2), (sτ

ξ, j )
′ = O(h2+γ

τ ). Therefore for all l ≥ 1, we
always have

(
sτ
ξ, j

Jτ

)(l)

� hγ
τ ,

(
(r τ,1

ξ, j )
2

Jτ

)(l)

� hγ
τ .
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Again by the inverse inequality, we have

|J3| � hγ
τ |v̂τ |21,τ0 .

Consequently,

�
(2r)
j (ξ ′) � −hγ

τ |v̂τ |21,τ0 .

The proof of (4.10) is completed. ��
We are now ready to bound aτ (·, ·) from below.

Lemma 4.4 If τ ∈ Th is a shape regular h1+γ -parallelogram, then when h is suffi-
ciently small,

aτ (vh,�vh) � C |vh |21,τ + bdyτ , (4.11)

where C > 0 depends only on the minimal angle θ0, the parameters γ and r, and

bdyτ =
∑

j∈Zr

A jbdyτ,1, j +
∑

i∈Zr

Aibdyτ,2,i .

with

bdyτ,1, j = ∂v̂τ

∂η
(−1, g j )VEτ

1 ,g j (Fτ (−1, g j )) − ∂v̂τ

∂η
(1, g j )VEτ

1 ,g j (Fτ (1, g j )),

and

bdyτ,2,i = ∂v̂τ

∂η
(gi ,−1)VEτ

2 ,gi (Fτ (gi ,−1)) − ∂v̂τ

∂η
(gi , 1)VEτ

2 ,gi (Fτ (gi , 1)).

Proof By (4.10), there exists a positive constant C1 such that

I1 ≥ −
∑

j∈Zr

A j

∫ 1

−1
� j (ξ)dξ − C1h

γ |v|21,τ .

Using the integration by parts, we have

−
∫ 1

−1
� j (ξ)dξ =

∫ 1

−1
�1(ξ, g j )dξ + bdyτ,1, j ,

where

�1(ξ, η) = ∂v̂τ

∂η

(
α

Jτ

(
−sτ

ξ,η

∂v̂τ

∂ξ
+ (r τ,1

ξ,η)2
∂v̂τ

∂η

))
.
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Then

I1 ≥
∫ 1

−1

∑

j∈Zr

A j�1(ξ, g j )dξ +
∑

j∈Zr

A jbdyτ,1, j − Chγ |vh |21,τ .

By the same arguments in Lemma 4.3, we obtain that for any fixed ξ ∈ [−1, 1],
∣∣∣∣∣∣

∫ 1

−1
�1(ξ, η)dη −

∑

j∈Zr

A j�1(ξ, g j )

∣∣∣∣∣∣
� hγ |vh |21,τ .

Consequently,

I1 ≥
∫

τ0

�1(ξ, η)dξdη +
∑

j∈Zr

A jbdyτ,1, j − Chγ |vh |21,τ .

By dual reasoning, we have

I2 ≥
∫

τ0

�2(ξ, η)dξdη +
∑

i∈Zr

Aibdyτ,2,i − C1h
γ |vh |21,τ ,

where

�2(ξ, η) = ∂v̂τ

∂ξ

(
α

Jτ

(
−sτ

ξ,η

∂v̂τ

∂η
+ (r τ,2

ξ,η )2
∂v̂τ

∂ξ

))
.

Therefore, we have

aτ (vh,�vh) ≥
∫

τ0

(�1(ξ, η) + �2(ξ, η))dξdη + bdyτ − Chγ |vh |21,τ .

Note that

�1(ξ, η) + �2(ξ, η) = α

Jτ

(
(r τ,1

ξ,η)2
(

∂v̂τ

∂η

)2

+ (r τ,2
ξ,η )2

(
∂v̂τ

∂ξ

)2

− 2sτ
ξ,η

∂v̂τ

∂ξ

∂v̂τ

∂η

)
.

By (2.7) and Cauchy–Schwartz inequality, we have

∫

τ0

∣∣∣∣2sτ
ξ,η

∂v̂τ

∂ξ

∂v̂τ

∂η

∣∣∣∣ dξdη ≤ cos θ0

∫

τ0

(
(r τ,1

ξ,η)2
(

∂v̂τ

∂η

)2

+ (r τ,2
ξ,η )2

(
∂v̂τ

∂ξ

)2
)
dξdη.

Therefore,

�1(ξ, η) + �2(ξ, η) ≥ (1 − cos θ0)
α

Jτ

(
(r τ,1

ξ,η)2
(

∂v̂τ

∂η

)2

+ (r τ,2
ξ,η )2

(
∂v̂τ

∂ξ

)2
)

.
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Note that r τ,1
ξ,η , r τ,2

ξ,η = O(hτ ), Jτ = O(h2τ ), and α ≥ α0. Moreover, we have the
equivalence |v̂τ |1,τ0 ∼ |vh |1,τ . Therefore there exists a constant C2 > 0 such that

aτ (vh,�vh) ≥ C2|vh |21,τ + bdyτ − 2C1h
γ |vh |21,τ .

When h is sufficiently small, the estimate (4.11) is valid. ��
Finally, we are ready to state and show the coercivity of ah(·,�·).

Theorem 4.5 Let Th be a shape regular h1+γ parallelogram, then

ah(vh,�vh) � |vh |21, ∀vh ∈ Ur
h . (4.12)

Proof The facts that vh and VE,P ,∀E ∈ Eb,1
h , P ∈ E are continuous across each

internal edge E ∈ Eh and that vh = 0 on the boundary ∂� implies that

∑

τ∈Th
bdyτ = 0.

Then (4.12) is a direct consequence of local estimates (4.11). ��

4.4 Inf–sup property

Summarizing the above two lemmas, we obtain the following inf–sup property.

Theorem 4.6 Let Th be a shape regular h1+γ , γ > 0 quadrilateral mesh and suppose
the coefficient α is piecewise continuous with respect to Th. Then (4.1) holds when the
meshsize h is sufficiently small.

Proof When α is piecewise constant, by (4.12) and (4.7), for any vh ∈ Ur
h ,

sup
wh∈Vh

ah(vh, wh)

|wh |′h
≥ ah(vh,�vh)

|�vh |′h
� |vh |21

|�vh |′h
� |vh |1.

The inf–sup condition (4.1) is proved. Furthermore, an argument in the beginning of
this section guarantee that (4.1) holds also for general piecewise continuous coefficient
α with respect to the underlying mesh. ��
Remark 4.7 Let us reiterate the essential idea in establishing the inf–sup condition,
the construction of the special mapping from the trail space to the test space is the key.
Recall that the trial space is the same as the standard finite element method, which
contains globally continuous piecewise polynomials. On the other hand, the test space
contains globally discontinuous piecewise constants with much more “pieces” on the
dual mesh. The feasibility of the mapping between the two spaces can be seen from
the counting of total degrees of freedom. We examine the simplest case, the Poisson
equation (α = 0) with zero Dirichlet boundary condition and Th is the n × n square
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partition of the unit square [0, 1]2. For bilinear element, the dimension of the trial
space is (n − 1)2, while the piecewise constants in the test space has exactly (n − 1)2

non-zero pieces on the dual mesh. For biquadratic element, the dimension of the trial
space is (2n − 1)2. By our construction, non-zero constant pieces are those between
four adjacent Gaussian points that form a square. In each of the horizontal and vertical
directions, there are 2n Gaussian points and 2n−1 intervals between them, and hence
there are (2n − 1)2 squares between Gaussian points so that the test space has exactly
(2n − 1)2 non-zero pieces on the dual mesh. The counting can be easily extended to
r -degree tensor product space with both trial and test space have the same dimension
(rn−1)2. As for a general domainwhich can be partitioned by general quadrilaterals, a
careful examination of the topological structure is needed. Nevertheless, the degrees of
freedom for trial and test spaces are still the same,which guarantees the the existence of
the aforementioned mapping even though the construction of such a mapping requires
more delicate analysis as we have done in this work.

5 Numerical results

In this section, we present two numerical examples to validate our theoretical findings.

Example 1 We consider the problem (3.1), (3.2) with α = 1 and � = [0, 1]2. We
choose the right-hand-side function

f (x, y) = [(5π2 − 4x2 − 3) sin(2πx) sin(πy) − 8πx sin(πy) cos(2πx)

−2π cos(πy) sin(2πx)]ex2+y, (x, y) ∈ [0, 1]2

which allows the exact solution

u(x, y) = sin(2πx) sin(πy)ex
2+y, (x, y) ∈ [0, 1]2.

We use FV schemes (3.5) with r = 1, 2, 3, 4 to compute FVM approximate solu-
tions of u. The partition Tk = Thk , k = 1, . . . , 6, are obtained by first uniformly
refining the unite square [0, 1]2 and then adding some lines to obtain associated trape-
zoidal meshes, see Fig. 5 for an example of trapezoidal mesh.

Fig. 5 A trapezoidal mesh
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Table 1 Error and convergence order for the problem with a sufficiently smooth function

N r = 1 r = 2 r = 3 r = 4

Error C.O. Error C. O. Error C. O. Error C. O.

2 5.0e−01 – 5.1e−2 – 3.4e−03 – 1.7e−04 –

4 2.5e−01 1.0015 1.3e−2 2.0004 4.2e−04 2.9970 1.0e−05 3.9960

8 1.3e−01 1.0004 3.2e−3 2.0002 5.3e−05 2.9993 6.5e−07 3.9990

16 6.3e−02 1.0001 8.0e−4 2.0001 6.6e−06 2.9999 4.1e−08 3.9997

32 3.1e−02 1.0000 2.0e−4 2.0000 8.3e−07 3.0000 2.6e−09 3.9986

64 1.6e−02 1.0000 5.0e−5 2.0000 1.0e−07 3.0000 1.9e−10 3.9972

We present our numerical results in Table 1. In this table, r indicates the polynomial
order, N = h−1

k = 2k, k = 1, . . . , 6 indicates the number of partition along the x− and
y− directions. The “Error” indicates the computed H1 semi-norm error |u − uhk |H1

where uh j is the finite volume solution in the space Ur
hk

and “C.O.” indicates the

computed convergence order of the H1 semi-norm error. We observe that |u− uhk |H1

decays with the optimal convergence order hrk which supports our theory (3.11).

Example 2 We consider the problem (3.1), (3.2) with � = [0, 1]2 which admits a
unique solution

u(x, y) = x(1 − x) + y(1 − y)

4
− 2

π3

∞∑

i=0

1

(2i + 1)3(1 + e−(2i+1)π )

·[(e−(2i+1)πy + e−(2i+1)π(1−y)) sin(2i + 1)πx

+(e−(2i+1)πx + e−(2i+1)π(1−x)) sin(2i + 1)πy].

One can verify that−
u = 1 in�. However, in this numerical experiment, we choose
the non-constant coefficient as

α(x, y) =
{
1 x ≤ y
1 + x − y x > y

which is continuous but not globally smooth in �. Correspondingly, the right-hand-
side function is given by

f (x, y) =
{
1, x ≤ y
1 + x − y + ∂u

∂y − ∂u
∂x , x > y.

We use FV schemes (3.5) with r = 1, 2, 3, 4 to compute FVM approximate solu-
tions of u. The partition Tk = Thk , k = 1, . . . , 7, are quadrilateral meshes which are
obtained by giving the corresponding rectangularmeshes a small random perturbation.
Specifically, the node coordinates of a point (xi j , yi j ) of the quadrilateral mesh Tk are
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Fig. 6 A rectangular mesh with
small random perturbation
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Table 2 Error and convergence for the problem with a singular solution

N r = 1 r = 2 r = 3 r = 4

Error C.O. Error C. O. Error C. O. Error C. O.

2 5.6e−02 – 5.1e−02 – 9.1e−04 – 2.2e−04 –

4 2.8e−02 0.9871 1.5e−03 1.7733 2.2e−04 2.0223 5.4e−05 1.9981

8 1.4e−02 0.9961 4.2e−04 1.8298 5.6e−05 2.0053 1.4e−05 1.9999

16 7.2e−03 0.9989 1.2e−04 1.8628 1.4e−05 2.0013 3.4e−06 2.0000

32 3.6e−03 0.9997 3.1e−05 1.8848 3.5e−06 2.0003 8.5e−07 2.0000

64 1.8e−03 0.9999 8.4e−06 1.9007 8.7e−07 2.0001 2.1e−07 2.0000

128 8.9e−04 1.0000 2.2e−06 1.9128 2.2e−07 2.0000 5.3e−08 2.0000

given by

xi j = i
N + 0.1 1

N sin
( iπ
N

)
sin

(
jπ
N

)
randn(),

yi j = j
M + 0.1 1

M sin
( iπ
N

)
sin

(
jπ
N

)
randn(),

0 ≤ i, j ≤ N ,

where N = 2k, k = 1, . . . , 7 and randn() is a built-in random number generator
that usually produces a uniformly distributed random number in (0, 1). Notice that the
random quadrilateral meshes used in Tk are not nested as k increases from 1 to 8 since
for each run, the random numbers are different. What we know is that the maximal
distortion in the meshes is about 20% of the uniform mesh size h = 1/M . Depicted
in Fig. 6 is the grid T4.

The numerical results are demonstrated in Table 2. We observe that when r = 1,
the error |u − uhk |H1 decays with the optimal convergence order r , even here the
coefficient α is nonsmooth and the underlying mesh has been randomly perturbed.
However, when r = 2, 3, 4, the error decay order is of about 2. Note that this does Not
violate (3.11), since here the exact solution u has singularities in the four corners of
� and thus it only belongs to H3−ε with an arbitrary small ε. Moreover, we find that
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similar phenomena happen when we use corresponding FEM methods to compute
the same problem. How to construct optimal order FV schemes based on adaptive
(non-uniform) mesh for singular problems is our next on-going project.

6 Conclusions and future works

The design and analysis of high-order FV schemes are challenging tasks. In this
paper, we constructed a family of any order FV schemes based on the Gauss points.
Using a novel mapping from the trial to test space, we provide a unified proof for
the optimal-convergence-order property of our FV schemes. Moreover, to prove this
optimal-convergence-order property, we only require a very relaxed mesh condition
which is similar to that in finite element methods.

It is obvious that we can use the same idea to construct FV schemes for 3D elliptic
problems, and some other problems such as nonlinear problems. In fact, we have
constructed and tested numerically some 3D FV schemes for some simple examples.
From our numerical experiments, the 3D FV schemes also have optimal convergence
order. However, since the traditional tensor-product argument is difficult to be applied
to the arguments in the analysis of the current paper, the analysis of corresponding 3D
FV schemes will be a challenging task and it is one of our on-going project.
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