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Abstract We consider symmetric as well as non-symmetric coupling formulations
of FEM and BEM in the frame of nonlinear elasticity problems. In particular, the
Johnson-Nédélec coupling is analyzed. We prove that these coupling formulations
are well-posed and allow for unique Galerkin solutions if standard discretizations by
piecewise polynomials are employed. Unlike prior works, our analysis does neither
rely on an interior Dirichlet boundary to tackle the rigid body motions nor on any
assumption on the mesh-size of the discretization used.

Mathematics Subject Classification 65N30 · 65N15 · 65N38

1 Introduction and overview

The coupling of the finite element method (FEM) and the boundary element method
(BEM) became very popular when it first appeared in the late seventies of the last
century. These methods combine the advantages of FEM, which allows to resolve
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nonlinear problems in bounded domains, and BEM, which allows to solve problems
with elliptic differential operators with constant coefficients in unbounded domains.
The two methods are coupled via transmission conditions on the coupling boundary.

In 1979, Zienkiewicz et al. [37] introduced a non-symmetric one-equation cou-
pling which is based on the first equation of the Calderón system and only relies
on the simple-layer integral operator V as well as the double-layer integral operator
K . In 1980, Johnson and Nédélec [23] gave a first mathematical proof that this cou-
pling procedure is well-posed and stable. This coupling is therefore also referred to
as Johnson-Nédélec coupling. Their analysis relied on Fredholm theory and the com-
pactness of K and was thus restricted to smooth coupling boundaries and potential
problems. Moreover, we refer to [34] for an overview on asymptotic error estimates.
The main idea therein, which goes back to [3], is to use a finer mesh for BEM than for
FEM. Based on these works, other coupling methods such as the one-equation Bielak-
MacCamy coupling and the (quasi-symmetric) Bielak-MacCamy coupling [4] have
been proposed. The requirement for smooth boundaries is a severe restriction when
dealing with standard FEM or BEM discretizations. Moreover, numerical experiments
in [9] gave empirical evidence that this assumption and hence the compactness of K
can be avoided. It took until 2009 when Sayas [28] gave a first mathematical proof for
the stability of the Johnson-Nédélec coupling on polygonal boundaries.

In the meantime and because of the lack of satisfying theory, the symmetric cou-
pling has been proposed independently by Costabel [11] and Han [21]. Relying on
the symmetric formulation of the exterior Steklov-Poincaré operator, [11,21] proved
stability of the symmetric coupling. Early works for linear as well as nonlinear prob-
lems [11,12,16–18,21,27,29] used interior Dirichlet boundaries to tackle constant
functions for Laplace transmission problems resp. rigid body motions for elasticity
problems. We also refer to the monograph [19] for further details.

To the best of the authors’ knowledge, the very first work which avoided the use
of an additional artificial Dirichlet boundary was [14], where a nonlinear Laplace
transmission problem is considered. In the latter work the authors used the exterior
Steklov-Poincaré operator to reduce the coupling equations to an operator equation
with a stronglymonotone operator.Although their analysis avoids an artificialDirichlet
boundary, their proof of ellipticity of the discrete exterior Steklov-Poincaré operator,
and hence of unique solvability of the discrete coupling equations, involved sufficiently
small mesh-sizes. Bootstrapping the original proof of [14], this assumption could
recently be removed [2]. The authors of [10] then transferred the ideas of [14] to
nonlinear elasticity problems in 2D. Further works in this direction include [5–8,15].
From an implementational point of view, however, the symmetric coupling seems
not to be as attractive as the one-equation coupling methods, since all four integral
operators of the Calderón system are involved.

While Sayas’ work [28] focused on the linear Yukawa transmission problem as
well as the Laplace transmission problem, Steinbach [31] proved stability for a class
of linear Laplace transmission problems. He introduced an explicit stabilization for the
coupling equations so that the stabilized equations turn out to be elliptic. Of & Stein-
bach [26] improved the results from [31], and also gave a sharp condition under which
the stabilized problem is elliptic. Based on and inspired by the analysis of [28,31],
Aurada et al. [1] introduced the idea of implicit stabilization. They proved that all
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(continuous and discrete) coupling equations are equivalent to associated stabilized
formulations, even with the same solution. Since the stabilized formulations appear
to be strongly monotone, this proves well-posedness and stability of the original cou-
pling formulations, i.e., no explicit stabilization is needed or has to be implemented
in practice. For the Johnson-Nédélec and Bielak-MacCamy coupling, their analysis
covers the same problem class as [31] and moreover extends it to handle certain non-
linearities. For the symmetric coupling, the analysis of [1] provides an alternate proof
for the results of [14], but avoids any restriction on the mesh-size.

In the very recent work [32], Steinbach extended the results from [26,31] to linear
elasticity problems. We also refer to [20], where stability of the Johnson-Nédélec, the
one-equation Bielak-MacCamy, and the (quasi-) symmetric Bielak-MacCamy cou-
pling for a Yukawa transmission problem is proven. Moreover, they also show that
the Johnson-Nédélec coupling applied to elasticity problems with interior Dirichlet
boundary is stable for certain specific material parameters.

In our work, we consider (possibly) nonlinear transmission problems in elasticity.
As a novelty, we introduce a general framework to handle both, the symmetric and
non-symmetric couplings. We transfer and extend the idea of implicit theoretical sta-
bilization from [1] to the present setting. This allows us to prove well-posedness of the
non-stabilized coupling equations, although they seem to lack ellipticity. The basic
idea is the following: We add appropriate terms to the right-hand side and left-hand
side of the equations and prove that this modified (continuous or discrete) problem
is equivalent to the original problem, even with the same solution. This means that a
solution of themodified problem also solves the original problem and vice versa. Then,
we prove existence and uniqueness of the solution of the modified problem and, due
to equivalence, we infer that the original problem is well-posed. As in [10,20,32], our
analysis applies to polygonal resp. polyhedral coupling boundaries. From our point of
view, the advances over the state of art are fourfold:

• Unlike [10], we do not have to impose any assumption on the mesh-size h in case
of the symmetric coupling.

• Unlike [12,19–21,29], we avoid the use of an artificial Dirichlet boundary to tackle
the rigid body motions.

• Unlike [32],weprovewell-posedness and stability of the original coupling equations
and thus avoid any explicit stabilization.

• Unlike [20,32], our analysis for the one-equation couplings also covers certain
nonlinear material laws, e.g., nonlinear elastic Hencky material laws.

The remainder of this work is organized as follows: In Sect. 2, we state the nonlinear
elasticity transmission problem as well as the precise assumptions on the nonlinearity.
Furthermore, we fix some notation and collect some important properties of linear
elasticity problems and boundary integral operators, which are used throughout the
work.

Section 3 deals with the symmetric coupling. Here, we introduce the concept
of implicit stabilization, and prove unique solvability of the coupling equations
(Theorem 1). We prove that the necessary assumption on the BEM discretization is
satisfied, if the BEM ansatz space contains the piecewise constants (Theorem 2).
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In Sect. 4, we apply the ideasworked out in Sect. 3 to the Johnson-Nédélec coupling.
Moreover, we incorporate analytical techniques from [26,32] to our method and prove
unique solvability under an additional assumption on the material parameters.

Finally, the short Sect. 5 analyzes the one-equation Bielak-MacCamy coupling
which seems not to be as present as the symmetric resp. Johnson-Nédélec coupling in
the literature.

2 Model problem

Throughout this work,� ⊆ R
d (d = 2, 3) denotes a connected Lipschitz domain with

polyhedral boundary � = ∂� and complement �ext = R
d\�.

2.1 Notation

We use bold symbols for d-dimensional vectors, e.g. x, and vector valued functions
u : Rd → R

d . The components of such objects will be indexed, e.g. u = (u1, u2)T.
For a finite set or a sequence of vector-valued objects we use upper indices for each
element of the set resp. sequence, e.g., {u j }nj=1 resp. {u j }∞j=1.

Let X ⊆ R
d be a nonempty, measurable set and let L2(X) resp. H1(X),

H1/2(X) = (H−1/2(X))∗ denote the usual Lebesgue resp. Sobolev spaces. We define
〈u, v〉X := ∫

X uv dx for u, v ∈ L2(X). For u ∈ H−1/2(�) and v ∈ H1/2(�), the
brackets 〈u, v〉� denote the continuously extended L2-scalar product.

For vector-valued Lebesgue resp. Sobolev spaces we use bold symbols, e.g.,
L2(X) := [L2(X)]d resp. H1(X) := [H1(X)]d and so on. Then, we define 〈u, v〉X :=∫
X u · v dx for u, v ∈ L2(X). The product spaceH := H1(�)× H−1/2(�), equipped

with the norm ‖(u,φ)‖H := (‖u‖2
H1(�)

+‖φ‖2
H−1/2(�)

)1/2 for (u,φ) ∈ H, will be used

throughout the work. Moreover, let ε(u) : σ (v) = ∑d
j,k=1 ε jk(u)σ jk(v) denote the

Frobenius inner product for arbitrary tensors ε, σ , and define 〈σ (u), ε(v)〉� := ∫
�

σ (u) : ε(v) dx . The divergence div(ε(u)) of a tensor is understood row-wise
(div(ε(u))) j = ∑d

k=1 ∂ε jk(u)/∂xk for j = 1, . . . , d. Finally, we write ‖ε(u)‖2
L2(�):= 〈ε(u), ε(u)〉�.

2.2 Linear elasticity

As usual, the linear and symmetric strain tensor ε is defined component-wise by

ε jk(u) = 1

2

(∂u j

∂xk
+ ∂uk

∂x j

)
(1)

for all u ∈ H1(�) and j, k = 1, . . . , d. Together with the Young modulus E > 0 and
the Poisson ratio ν ∈ (0, 1

2 ), the linear stress tensor σ is defined by

σ jk(u) = δ jk
Eν

(1 + ν)(1 − 2ν)
div u + E

1 + ν
ε jk(u) (2)
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Stability of symmetric and nonsymmetric FEM–BEM 203

for all u ∈ H1(�) and j, k = 1, . . . , d. To simplify notation, one usually introduces
the so-called Lamé constants

λ := Eν

(1 + ν)(1 − 2ν)
and μ := E

2(1 + ν)
. (3a)

With the identity matrix I ∈ R
d×d , the stress tensor σ then satisfies

σ (u) = λdiv(u)I + 2με(u) as well as

div σ (u) = μ�u + (λ + μ)∇div(u).
(3b)

The kernel of the strain tensor ε is given by the space of rigid body motions
Rd := ker(ε) = {v ∈ H1(�) : ε(v) = 0} which reads

R2 := span

{(
1
0

)

,

(
0
1

)

,

(−x2
x1

)}

for d = 2 (4)

and

R3 := span

⎧
⎨

⎩

⎛

⎝
1
0
0

⎞

⎠ ,

⎛

⎝
0
1
0

⎞

⎠ ,

⎛

⎝
0
0
1

⎞

⎠ ,

⎛

⎝
−x2
x1
0

⎞

⎠ ,

⎛

⎝
0

−x3
x2

⎞

⎠ ,

⎛

⎝
x3
0

−x1

⎞

⎠

⎫
⎬

⎭
for d = 3. (5)

Therefore, it holds σ (v) = 0 for all v ∈ Rd as well. Note that (3) defines a plain strain
problem in 2D. For a plain stress problem, the Lamé constants (3a) are replaced by
λ = Eν/(1 + ν)(1 − ν), μ = E/(2(1+ ν)). The analysis in this paper holds true for
both cases.

2.3 Nonlinear transmission problem

As model problem, we consider the following nonlinear transmission problem in free
space

−divAε(u) = f in �, (6a)

−div σ ext(uext) = 0 in �ext, (6b)

u − uext = u0, on � (6c)
(
Aε(u) − σ ext(uext)

)
n = φ0, on �, (6d)

|uext(x)| = O(1/|x|) for |x| → ∞, (6e)

where n denotes the exterior unit normal vector on � pointing from � to �ext. The
nonlinear operator A : R

d×d
sym → R

d×d
sym is used to describe a (possibly) nonlinear

material law in �. Our assumptions on the operator A and a more detailed description
will be given later on in Sect. 2.5. The stress tensor σ ext, which corresponds to the
linear elasticity problem in the exterior domain, is defined as in (2)–(3) with Lamé
constants λext, μext.
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2.4 Boundary integral operators

The fundamental solution for linear elastostatics is given by the Kelvin tensor G(z) ∈
R
d×d
sym with

G jk(z) = λ + μ

2μ(λ + 2μ)

(
λ + 3μ

λ + μ
G(z)δ jk + 1

2(d − 1)π

z j zk
|z|d

)

(7)

for all z ∈ R
d\{0} and j, k = 1, . . . , d, where G denotes the fundamental solution of

the Laplacian, i.e.,

G(z) =
⎧
⎨

⎩

− 1
2π log |z| for d = 2,

1
4π

1
|z| for d = 3.

(8)

We stress that the natural conormal derivative γ int
1 is

γ int
1 u := σ (u)n on �. (9)

There holds Betti’s first formula, cf. e.g. [25, Theorem 4.4],

〈σ (u), ε(v)〉� = 〈Lu, v〉� + 〈γ int
1 (u), v〉�, (10)

with the linear differential operator Lu = −div σ (u). Throughout this work, V
denotes the simple-layer integral operator, K the double-layer integral operator with
adjoint K ′, andW denotes the hypersingular integral operator. These boundary integral
operators are induced by the two layer potentials

Ṽφ(x) :=
∫

�

G(x − y)φ( y) d� y, (11)

K̃v(x) :=
∫

�

γ int
1, yG(x − y)v( y) d� y, (12)

It holds

V := γ int
0 Ṽ ∈ L(H−1/2(�); H1/2(�)), (13)

K := γ int
0 K̃ + 1 − S ∈ L(H1/2(�); H1/2(�)), (14)

K ′ := γ int
1 Ṽ − S ∈ L(H−1/2(�); H−1/2(�)), (15)

W := −γ int
1 K̃ ∈ L(H1/2(�); H−1/2(�)), (16)

where γ int
0 denotes the trace operator and S(x) = 1

2 for almost all x ∈ �. We
summarize some important properties of these operators. In 3D, the simple-layer
integral operator is symmetric and elliptic, i.e., with some constant cell > 0, which
depends only on �, it holds
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〈φ, Vψ〉� =〈ψ, Vφ〉� and ‖φ‖2
H−1/2(�)

≤cell〈φ, Vφ〉� for all φ,ψ ∈H−1/2(�).

(17)

Thus, ‖φ‖V := 〈φ, Vφ〉1/2� defines an equivalent Hilbert norm on H−1/2(�). In 2D,
ellipticity can be achieved by an appropriate scaling of the domain �, see e.g. [30,
Section 6.7] for further details, and we may thus assume that V is elliptic. The hyper-
singular operator is symmetric positive semidefinite, i.e.,

〈Wv, w〉� = 〈Ww, v〉� and 〈Wv, v〉� ≥ 0 for all v,w ∈ H1/2(�). (18)

There holds ker(W) = ker( 12 + K ) = Rd , see e.g. [30, Section 6.7], [25, Chapter 10].
Throughout this work, the boundary integral operators V , K , K ′, and W are always
understood with respect to the exterior Lamé constants λext, μext.

2.5 Nonlinear material law and strongly monotone operators

We assume A to be strongly monotone (19) and Lipschitz continuous (20), i.e., there
exist constants cmon > 0 and clip > 0 such that

cmon‖ε(u) − ε(v)‖2
L2(�)

≤ 〈Aε(u) − Aε(v), ε(u) − ε(v)〉� and (19)

‖Aε(u) − Aε(v)‖L2(�) ≤ clip‖ε(u) − ε(v)‖L2(�) (20)

for all u, v ∈ H1(�). In the case Aε(·) = σ (·), simple calculations show

|〈σ (u), ε(v)〉�| ≤ C1‖ε(u)‖L2(�)‖ε(v)‖L2(�), (21)

and

〈σ (u), ε(u)〉� ≥ C2‖ε(u)‖2
L2(�)

(22)

for all u, v ∈ H1(�), with constants C1 = 6λ + 4μ and C2 = 2μ.
An example for a nonlinear material law is the nonlinear elastic Hencky material,

obeying the Hencky-Von Mises stress–strain relation

Aε(u) := (K − 2
d μ̃(γ (ε(u))))div(u)I + 2μ̃(γ (ε(u)))ε(u) (23)

with K > 0 being the constant bulk modulus and Lamé function γ (ε(u)) := (ε(u) −
1
d div(u)I) : (ε(u) − 1

d div(u)I). Here, μ̃ : R≥0 → R+ denotes a function such that
the operator from (23) satisfies (19)–(20). Further information on the Hencky material
law can be found in, e.g., [10,13,29,35] and the references therein.
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2.6 Existence of solutions

For strongly monotone (19) and Lipschitz-continuous (20) operatorsA and given data
f ∈ L2(�), u0 ∈ H1/2(�), andφ0 ∈ H−1/2(�), problem (6) admits unique solutions
u ∈ H1(�) and uext ∈ H1

loc(�
ext) in 3D. This follows from the equivalence to the

symmetric coupling and its well-posedness, see Sect. 3. For the two-dimensional case,
the two-dimensional compatibility condition

〈 f , e j 〉� + 〈φ0, e
j 〉� = 0 j = 1, 2 (24)

ensures unique solvability. Here, e j are the standard unit normal vectors in R
2. We

refer to [22] for further details.

Remark The radiation condition (6e) can be generalized to

uext(x) = −G(x)a + r + O
(
|x|1−d

)
for |x| → ∞, (25)

with r ∈ Rd , a ∈ R
d , and G(·) being the Kelvin tensor defined in (7). Moreover,

a = ∫
�

σ ext(uext)n d�. A solution of (6a)–(6d) with (25) is unique. To see this,
we stress that the pair (u, uext) solves (6a)–(6d) with (25) if and only if the pair
(̃u, ũext) = (u − r, uext − r) solves (6a)–(6d) with

ũext(x) = −G(x)a + O(|x|1−d) for |x| → ∞ (26)

and vice versa. Our analysis presented in this work still holds true if we replace
(u, uext) by (̃u, ũext) in (6a)–(6d) and the radiation condition (6e) by (26). Note that
a = 0 implies the compatibility condition (24) in 2D. Therefore, the compatibility
condition can be dropped in 2D for a �= 0. In general, the constant a is determined by
a = ∫

�
f dx + ∫

�
φ0 d�, which follows from (6a) and (6d). Furthermore, note that

|G(x)| = O(1/|x|) for |x| → ∞ and d = 3. Hence, (26) coincides with (6e) in 3D.

2.7 Discretization

Let Th denote a regular triangulation of � and let E�
h denote a regular triangulation of

�. Here, regularity is understood in the sense ofCiarlet.Wedefine the localmesh-width
function h by h|X := diam(X) for X ∈ Th resp. X ∈ E�

h . Moreover, let K�
h denote

the set of nodes of Th and let K�
h denote the set of nodes of E�

h . We stress that the
triangulation E�

h of the boundary � is, in general, independent of the triangulation Th .
Usually, one uses the space P p(E�

h ) := {v ∈ L2(�) : v|E is a polynomial of degree
≤ p for all E ∈ E�

h } to approximate functions φ ∈ H−1/2(�) and the space
Sq(Th) :=Pq(Th)∩C(�) to approximate functions u ∈ H1(�), withq = p+1.Here,
Pq(Th) := {v ∈ L2(�) : v|T is a polynomial of degree ≤ q}. In Sects. 3–5, we may
therefore use the space Hh :=Xh × Yh = (

Sq(Th)
)d × (

P p(E�
h )

)d to approximate
functions (u,φ) ∈ H := H1(�) × H−1/2(�).
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3 Symmetric FEM–BEM coupling

The symmetric coupling of FEM and BEM has independently been introduced by
Costabel and Han, see [11,21] for example. It relies on the use of all boundary integral
operators from the Caldéron projector. For the derivation of the variational formulation
of the symmetric coupling, cf. (27), we refer to, e.g., [10,13,19] for nonlinear elasticity
problems and to, e.g., [1,14,19] for nonlinear Laplace problems. It is also shown
in [13] resp. in [10] for the two-dimensional case that the symmetric coupling (27) is
equivalent to the model problem (6).

3.1 Variational formulation

The symmetric coupling reads as follows: Find (u,φ) ∈ H := H1(�) × H−1/2(�),
such that

〈Aε(u), ε(v)〉� + 〈Wu, v〉� + 〈(K ′ − 1
2

)
φ, v〉� = 〈 f , v〉� + 〈φ0 + Wu0, v〉�,

(27a)

〈ψ,
( 1
2 − K

)
u + Vφ〉� = 〈ψ,

( 1
2 − K

)
u0〉� (27b)

holds for all (v,ψ) ∈ H.
To abbreviate notation, we define the mapping b : H×H → R and the continuous

linear functional F ∈ H∗ by

b((u,φ), (v,ψ)) := 〈Aε(u), ε(v)〉�
+ 〈Wu, v〉� + 〈(K ′ − 1

2

)
φ, v〉� + 〈ψ,

( 1
2 − K

)
u + Vφ〉�

(28)

and

F(v,ψ) := 〈 f , v〉� + 〈φ0 + Wu0, v〉� + 〈ψ,
( 1
2 − K

)
u0〉� (29)

for all (u,φ), (v,ψ) ∈ H. Then, the symmetric coupling (27) can also be written as
follows: Find (u,φ) ∈ H such that

b((u,φ), (v,ψ)) = F(v,ψ) holds for all (v,ψ) ∈ H. (30)

Note that b(·, ·) is nonlinear in u only, but linear in v,ψ , and φ. If we plug in the
functions (u,φ) = (v,ψ) = (r, 0) with r ∈ Rd into (28), we observe

b((r, 0), (r, 0)) − b((0, 0), (r, 0)) = 0 for all r ∈ Rd . (31)

Therefore, b(·, ·) is not strongly monotone and unique solvability of (30) cannot
be shown directly. In the following sections, we introduce an equivalent formulation
of (30) which even has the same solution. Since this equivalent formulation turns out
to be uniquely solvable, also (30) admits a unique solution.
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The following two theorems are the main results of this section. The validity of the
following Theorem 1 requires that the considered FEM–BEM spaceHh = Xh ×Yh ⊆
H is sufficiently rich, i.e., Yh contains a subspace Y0 which tackles the rigid body
motions. Based on Y0, we shall introduce an appropriate stabilization which pre-
vents (31) and guarantees strongmonotonicity of the stabilized form b̃(·, ·). Theorem 2
then shows that the piecewise constants Y0 = (

P0(T �
h )

)d are an appropriate choice.
With an additional assumption on the model parameters cmon, λ

ext, μext these results
also hold true for other coupling methods, namely the Johnson-Nédélec coupling, cf.
Sect. 4, and the Bielak-MacCamy coupling, cf. Sect. 5.

Theorem 1 Let Hh :=Xh × Yh be a closed subspace of H and assume that Y0 ⊆
Yh ∩ L2(�) satisfies

∀r ∈ Rd\{0}∃ξ ∈ Y0 〈ξ , r〉� �= 0. (32)

Then, the symmetric coupling

b((u,φ), (v,ψ)) = F(v,ψ) for all (v,ψ) ∈ H (33)

as well as its Galerkin formulation

b((uh,φh), (vh,ψh)) = F(vh,ψh) for all (vh,ψh) ∈ Hh (34)

admit unique solutions (u,φ) ∈ H resp. (uh,φh) ∈ Hh. Moreover, there holds the
Céa-type quasi-optimality

‖(u,φ) − (uh,φh)‖H ≤ CCèa min
(vh ,ψh)∈Hh

‖(u,φ) − (vh,ψh)‖H. (35)

The constantCCèa > 0 depends only on�,A,Y0, and on the Lamé constantsλext, μext.

Assumption (32) is clearly satisfied if Y0 := (
P1(E�

h )
)d denotes the space of affine

functions restricted to E�
h , since Rd ⊆ (

P1(E�
h )

)d and one may thus choose ξ = r

in (32). However, we shall also show that the space Y0 := (
P0(E�

h )
)d is sufficiently

rich to ensure (32). This is precisely the second theorem, we aim to emphasize and
prove. Note that the constant CCèa does not depend on the mesh-size h if Y0 ⊆ Yh for
all h.

Theorem 2 For d = 2, 3, the space Y0 := (
P0(E�

h )
)d

satisfies assumption (32).

The proof of Theorem 1 resp. Theorem 2 is carried out in Sect. 3.4 resp. Sect. 3.5.

3.2 Implicit theoretical stabilization

To prove Theorem 1, we shall add appropriate terms to b(·, ·), which tackle the rigid
body motions in the interior domain �. These (purely theoretical) linear stabilization
terms are chosen in such a way that they vanish when inserting a (continuous resp.
discrete) solution of (33). To be more precise, we will use (27b) to stabilize b(·, ·).
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Proposition 3 Let Hh = Xh × Yh be a subspace of H. Let {(ξ j )Dj=1} ⊆ Yh, D ∈ N,
be a set of functions. Define

b̃((u,φ), (v,ψ)) := b((u,φ), (v,ψ))

+
D∑

j=1

〈ξ j ,
( 1
2 −K

)
u+Vφ〉�〈ξ j ,

( 1
2 −K

)
v+Vψ〉� (36)

for all (u,φ), (v,ψ) ∈ Hh and

F̃(v,ψ) := F(v,ψ) +
D∑

j=1

〈ξ j ,
( 1
2 − K

)
u0〉〈ξ j ,

( 1
2 − K

)
v + Vψ〉� (37)

for all (v,ψ) ∈ Hh. Then, there holds the following equivalence: A function (u,φ) ∈
Hh solves

b((u,φ), (v,ψ)) = F(v,ψ) for all (v,ψ) ∈ Hh (38)

if and only if it also solves

b̃((u,φ), (v,ψ)) = F̃(v,ψ) for all (v,ψ) ∈ Hh . (39)

Proof Step 1. Assume that (u,φ) ∈ Hh solves (38), then b((u,φ), (0, ξ j )) =
F(0, ξ j ) and thus (39) follows directly.
Step 2. Assume that (u,φ) ∈ Hh solves (39). By choosing (v,ψ) = (0, ξ �) as a
test-function in (39), we infer

〈ξ �,
( 1
2 − K

)
u + Vφ〉� +

D∑

j=1

〈ξ j ,
( 1
2 − K

)
u + Vφ〉�〈ξ j , Vξ �〉�

= b̃((u,φ), (0, ξ �))

= F̃(0, ξ �) = 〈ξ �,
( 1
2 − K

)
u0〉� +

D∑

j=1

〈ξ j ,
( 1
2 − K

)
u0〉�〈ξ j , Vξ �〉�.

This is equivalent to

D∑

j=1

〈ξ j ,
( 1
2 − K

)
(u−u0)+Vφ〉�〈ξ j , Vξ �〉� = −〈ξ �,

( 1
2 − K

)
(u − u0) + Vφ〉�

(40)

for all � = 1, . . . , D. Next, we define a matrix A ∈ R
D×D
sym with entries

A jk := 〈ξ k, Vξ j 〉� and a vector x ∈ R
D with entries xk := 〈ξ k, ( 1

2 − K
)
(u− u0)+
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Vφ〉� for all j, k = 1, . . . , d. With I ∈ R
d×d the unit matrix, we can rewrite (40) for

all � = 1, . . . , D simultaneously as

(I + A)x = 0. (41)

Since V is elliptic, thematrix A is positive semi-definite and thus has only nonnegative
eigenvalues. Therefore, I + A is positive definite, and (41) is equivalent to x = 0.
This gives

〈ξ j ,
( 1
2 − K

)
u + Vφ〉� = 〈ξ j ,

( 1
2 − K

)
u0〉�

for all j = 1, . . . , D. With these equalities and the definitions of b(·, ·) and b̃(·, ·), we
get

b̃((u,φ), (v,ψ)) − b((u,φ), (v,ψ))

=
D∑

j=1

〈ξ j ,
( 1
2 − K

)
u + Vφ〉�〈ξ j ,

( 1
2 − K

)
v + Vψ〉�

=
D∑

j=1

〈ξ j ,
( 1
2 − K

)
u0〉�〈ξ j ,

( 1
2 − K

)
v + Vψ〉�

= F̃(v,ψ) − F(v,ψ).

In particular, (39) thus implies (38). This concludes the proof. ��

3.3 Equivalent norm

To show that b̃(·, ·) from Proposition 3 yields a strongly monotone formulation, we
show that the employed stabilization term provides an equivalent norm on the energy
space H. The following lemma, also known as Deny-Lions lemma, follows from a
compactness argument and Korn’s second inequality [25, Section 10]; see also [1,
Lemma 10] for the corresponding result for Laplace-type transmission problems. It
can also be understood as a consequence of a generalized Poincaré inequality (see,
e.g., [24, Theorem 5.11.2]).

Lemma 4 Let g j : H → R with j = 1, . . . , D denote linear and continuous func-
tionals such that

|g(r, 0)|2 :=
D∑

j=1

g j (r, 0)2 �= 0 holds for all r ∈ Rd\{0}. (42)

Then, the definition

|||(u,φ)|||2 := ‖ε(u)‖2L2(�)
+ 〈φ, Vφ〉� + |g(u,φ)|2 for all (u,φ) ∈ H (43)
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yields an equivalent norm onH, and the norm equivalence constant Cnorm > 0 in

C−1
norm ‖(u,φ)‖H ≤ |||(u,φ)||| ≤ Cnorm ‖(u,φ)‖H for all (u,φ) ∈ H (44)

depends only on �, λext, μext, and g. ��
The following proposition provides the equivalent norm used to analyze the sym-

metric coupling as well as the Johnson-Nédélec coupling (see Sect. 4 below).

Proposition 5 Let Y0 ⊆ Y ∩ L2(�) be a subspace which satisfies assumption (32) of
Theorem 1. Let r1, . . . , rD with D = dim(Rd) denote a basis of the rigid bodymotions
and let 0 : L2(�) → Y0 be the L2-orthogonal projection. Then, ξ j := 0(r j ) for
j = 1, . . . , D are linearly independent. Moreover, the functionals g j ∈ H∗ defined by

g j (u,φ) := 〈ξ j ,
( 1
2 − K

)
u + Vφ〉� for (u,φ) ∈ H (45)

fulfill assumption (42) of Lemma 4. In particular,

|||(u,φ)|||2 := ‖ε(u)‖2
L2(�)

+ 〈φ, Vφ〉� +
D∑

j=1

|〈ξ j ,
( 1
2 − K

)
u + Vφ〉�|2 (46)

is an equivalent norm on H, and the norm equivalence constant Cnorm > 0 in

C−1
norm ‖(u,φ)‖H ≤ |||(u,φ)||| ≤ Cnorm ‖(u,φ)‖H for all (u,φ) ∈ H (47)

depends only on �, Y0, λext, and μext.

Proof We stress that condition (32) is equivalent to the fact that 0 : Rd → Y0 is
injective. In particular, the ξ j := 0(r j ), for j = 1, . . . , D, are linearly independent.
Therefore, we can reformulate condition (32) as

∀r ∈ Rd\{0}∃ j ∈ {1, . . . , D} 〈ξ j , r〉� �= 0. (48)

The functionals g j are well-defined, linear, and bounded. To see (42), we stress that
due to ker

( 1
2 + K

) = Rd ,

g j (r, 0) = 〈ξ j ,
( 1
2 − K

)
r〉� = 〈ξ j , r〉� for j = 1, . . . , D and r ∈ Rd .

From (48) we infer that there exists j ∈ {1, . . . , D} such that g j (r, 0) �= 0. There-
fore, (42) holds for

|g(u,φ)|2 =
D∑

j=1

g j (u,φ)2 =
D∑

j=1

|〈ξ j ,
( 1
2 − K

)
u + Vφ〉�|2.

This concludes the proof. ��
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3.4 Proof of Theorem 1

As far as existence and uniqueness of solutions is concerned, it suffices to consider
the Galerkin formulation (34), since this covers the case Hh = H as well. With
assumption (32) and Y0 ⊆ Yh ∩ L2(�), Proposition 5 allows to apply Proposition 3.
Hence, we may equivalently ask for the unique solvability of (39) instead of (38)
resp. (34). To this end, we define the nonlinear operator B̃ : Hh → H∗

h by

B̃(uh,φh) := b̃((uh,φh), ·).

First, we rewrite equation (39) as an equivalent operator equation: Find (uh,φh) ∈ Hh

such that

B̃(uh,φh) = F inH∗
h . (49)

Step 1 (Lipschitz continuity of B̃). Due to the Lipschitz continuity (20) of A and
the boundedness of the boundary integral operators, it clearly follows that B̃ is also
Lipschitz continuous. The Lipschitz constant Clip > 0 in

‖B̃(uh,φh) − B̃(vh,ψh)‖H∗ ≤ Clip‖(uh,φh) − (vh,ψh)‖H, (50)

for all (uh,φh), (vh,ψh) ∈ H, thus depends only on A,�, λext, and μext.
Step 2 (Strong monotonicity of B̃). We have to prove that, for all (uh,φh), (vh,ψh)

∈ H,

〈B̃(uh,φh)−B̃(vh,ψh), (uh−vh,φh−ψh)〉 ≥ Cmon‖(uh−vh,φh−ψh)‖2H.

(51)

To abbreviate notation, let (wh,χh) := (uh − vh,φh − ψh). Then, we get

〈B̃(uh,φh) − B̃(vh,ψh), (wh,χh)〉
= 〈Aε(uh) − Aε(vh), ε(wh)〉� + 〈Wwh, wh〉� + 〈(K ′ − 1

2

)
χh, wh〉�

+ 〈χh,
( 1
2 − K

)
wh + Vχh〉� +

D∑

j=1

|〈ξ j ,
( 1
2 − K

)
wh + Vχh〉�|2 =: I

Next, we use strong monotonicity (19) of A and positive semi-definiteness (18) of W
to estimate

I ≥ cmon‖ε(wh)‖2L2(�)
+ 〈χh, Vχh〉� +

D∑

j=1

|〈ξ j ,
( 1
2 − K

)
wh + Vχh〉�|2

≥ min{cmon, 1}
⎛

⎝‖ε(wh)‖2L2(�)
+〈χh, Vχh〉�+

D∑

j=1

|〈ξ j ,
( 1
2 −K

)
wh+Vχh〉�|2

⎞

⎠

= min{cmon, 1} |||(wh,χh)|||2.

123



Stability of symmetric and nonsymmetric FEM–BEM 213

Finally, the norm equivalence of Proposition 5 yields strong monotonicity, where
Cmon = min{cmon, 1}C−1

norm > 0 depends only on A, �, λext, μext and Y0.

Step 3 (Unique solvability and Céa lemma). The main theorem on strongly monotone
operators, see e.g. [36, Section 25], states that the operator formulation (49) and thus
the Galerkin formulation (34) admits a unique solution (uh,φh) ∈ Hh . ForHh = H,
we see that also the symmetric formulation (33) admits a unique solution (u,φ) ∈ H.
Finally, standard theory [36, Section 25] also proves the validity of Céa’s lemma (35),
where CCèa = Clip/Cmon > 0 depends only on �, A, λext, μext, and Y0. ��
Remark Our analysis unveils that (27b) tackles the rigid body motions in the inte-
rior domain. We have seen in (31) that this information is lost when trying to prove
strong monotonicity of b(·, ·), but can be reconstructed by adding appropriate terms
to b(·, ·). We stress that the radiation condition (6e) fixes the rigid body motion in the
exterior �ext, see also Sect. 2.3. Since the interior and exterior solution are coupled
via equation (27b), this information is transferred by (27b) from the exterior to the
interior. Thus, adding terms to b(·, ·) that satisfy (27b) for fixed test-functions seems
to be a natural approach.

3.5 Proof of Theorem 2

Let r1, . . . , rD be a basis of the rigid bodymotionsRd and let0 : L2(�) → P0(E�
h )

denote the L2-projection.We shall use the observation from the proof of Proposition 5
that assumption (32) is equivalent to the fact that the 0(r j ), for j = 1, . . . , D, are
linearly independent.

Proof of Theorem 2 for d = 2 Let

r1 :=
(
1
0

)

, r2 :=
(
0
1

)

, r3 :=
(−x2

x1

)

denote the canonical basis of R2, and let α1, α2, α3 ∈ R fulfill

α10(r1) + α20(r2) + α30(r3) = 0. (52)

We stress that 0(r1) = r1 and 0(r2) = r2. For E ∈ E�
h , we get

0(r3)|E = 1

|E |
(− ∫

E x2 d�x∫
E x1 d�x

)

=
(−sE2

sE1

)

,

where sE = (sE1 , sE2 )T denotes themidpoint of a boundary element E . Therefore, (52)
can be written as

(
α1
α2

)

+ α3

(−sE2
sE1

)

= 0 for all E ∈ E�
h . (53)
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Altogether, we thus obtain α3sE = α3sE
′
for all E, E ′ ∈ E�

h , which can only hold for
α3 = 0. This implies α1r1 + α2r2 = 0 and hence α1 = 0 = α2. Therefore, 0(r j ),
j = 1, . . . , 3 = D, are linearly independent which is equivalent to (32). ��
For the proof of the 3D case, we require the following elementary observation, whose
proof is left to the reader.

Lemma 6 Let d = 3 and E�
h be a regular triangulation of the closed boundary

� = ∂� into flat surface triangles. Then, there are at least three different triangles
A, B,C ∈ E�

h such that the centers of mass a, b, c corresponding to these elements
do not lie on one line, i.e., c− a /∈ {t (b − a) : t ∈ R}. ��
Proof of Theorem 2 for d = 3 Let

r1 :=
⎛

⎝
1
0
0

⎞

⎠ , r2 :=
⎛

⎝
0
1
0

⎞

⎠ , r3 :=
⎛

⎝
0
0
1

⎞

⎠ , r4 :=
⎛

⎝
−x2
x1
0

⎞

⎠ , r5 :=
⎛

⎝
0

−x3
x2

⎞

⎠ ,

r6 :=
⎛

⎝
x3
0

−x1

⎞

⎠

denote the canonical basis of R3. We stress that 0(r j ) = r j for j = 1, 2, 3, and

0(r4)|E =
⎛

⎜
⎝

−sE2
sE1
0

⎞

⎟
⎠ , 0(r5)|E =

⎛

⎜
⎝

0

−sE3
sE2

⎞

⎟
⎠ , 0(r6)|E =

⎛

⎜
⎝

sE3
0

−sE1

⎞

⎟
⎠ ,

where sE = (sE1 , sE2 , sE3 )T ∈ R
3 denotes the center of mass of an element E ∈ E�

h .
The main ingredient for the proof is the geometric observation of Lemma 6: There
are at least three elements A, B,C ∈ E�

h such that the corresponding centers of mass
a, b, c do not lie on one line. Let α1, α2, α3, α4, α5, α6 ∈ R fulfill

α10(r1) + α20(r2) + α30(r3) + α40(r4) + α50(r5) + α60(r6) = 0,

which is equivalent to

⎛

⎝
α1
α2
α3

⎞

⎠ +
⎛

⎜
⎝

−sE2 0 sE3
sE1 −sE3 0

0 sE2 −sE1

⎞

⎟
⎠

⎛

⎝
α4
α5
α6

⎞

⎠ =
⎛

⎝
0
0
0

⎞

⎠ (54)

for arbitrary faces E . The space of rigid body motions is invariant under translations
and rotations. We translate and rotate the domain� and therefore also � such that A is
transformed into the triangle A′ with center of mass a′ = 0, B is transformed into the
triangle B ′ with center of mass b′ = (b′

1, 0, 0) and C is transformed into the triangle
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C ′ with center of mass c′ = (c′1, c′2, c′3). Note that b
′
1 �= 0 as well as (c′2, c′3) �= 0.

Considering A′ in (54) proves (α1, α2, α3) = 0. With B ′ in (54), we get

⎛

⎜
⎝

0 0 0

b′
1 0 0

0 0 −b′
1

⎞

⎟
⎠

⎛

⎝
α4
α5
α6

⎞

⎠ = 0,

and thus α4 = 0 = α6. Finally, taking C ′ in (54), we are led to

⎛

⎜
⎝

−c′2 0 c′3
c′1 −c′3 0

0 c′2 −c′1

⎞

⎟
⎠

⎛

⎝
0
α5
0

⎞

⎠ = 0

and therefore α5 = 0, since (c′2, c′3) �= 0. Altogether, we have shown α1 = α2 =
α3 = α4 = α5 = α6 = 0 in (54). Therefore, the orthogonal projections 0(r j ),
for j = 1, . . . , 6 = D, are linearly independent. Since this is equivalent to (32), we
conclude the proof. ��

4 Johnson-Nédélec coupling

This section deals with the Johnson-Nédélec coupling, see, e.g., [23,37] for linear
Laplace problems and [20,32] for linear elasticity problems. In contrast to [20], we
avoid the use of interior Dirichlet boundaries. Moreover, our approach of implicit
stabilization avoids an explicit stabilization of the coupling equations as is used in [32].
The derivation of the variational formulation (55) of the Johnson-Nédélec coupling
and the proof of equivalence to the model problem (6) are done as for the Laplace
problem, see, e.g., [1,19] for the derivation.

4.1 Variational formulation

The Johnson-Nédélec coupling reads as follows: Find (u,φ) ∈ H = H1(�) ×
H−1/2(�) such that

〈Aε(u), ε(v)〉� − 〈φ, v〉� = 〈 f , v〉� + 〈φ0, v〉� (55a)

〈ψ,
( 1
2 − K

)
u + Vφ〉� = 〈ψ,

( 1
2 − K

)
u0〉� (55b)

holds for all (v,ψ) ∈ H. Note that the second equation of the Johnson-Nédélec
equations (55) is the same as for the symmetric coupling (27). We define a mapping
b : H × H → R and a continuous linear functional F ∈ H∗ by

b((u,φ), (v,ψ)) := 〈Aε(u), ε(v)〉� − 〈φ, v〉� + 〈ψ,
( 1
2 − K

)
u + Vφ〉�

(56)
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as well as

F(v,ψ) := 〈 f , v〉� + 〈φ0, v〉� + 〈ψ,
( 1
2 − K

)
u0〉� (57)

for all (u,φ), (v,ψ) ∈ H. Problem (55) can equivalently be stated as follows: Find
(u,φ) ∈ H such that

b((u,φ), (v,ψ)) = F(v,ψ) holds for all (v,ψ) ∈ H. (58)

We infer from (56) that

b((r, 0), (r, 0)) − b((0, 0), (r, 0)) = 0 for all r ∈ Rd . (59)

Therefore, b(·, ·) cannot be strongly monotone, and we proceed as in Sect. 3 to prove
well-posedness of (55) and its Galerkin discretization.

4.2 Main result

According to [33], there exists a constant 1/2 ≤ cK < 1 such that

‖ ( 1
2 + K

)
v‖V−1 ≤ cK‖v‖V−1 for all v ∈ H1/2(�), (60)

where ‖v‖2
V−1 = 〈V−1v, v〉 denotes an equivalent norm on H1/2(�) induced by the

inverse of the simple-layer integral operator. The following theorem is the main result
of this section.

Theorem 7 Let cK < 1 denote the contraction constant (60) of the double-layer
integral operator and assume that 2cmon > cK (3λext + 2μext). Then, the assertions
of Theorem 1 hold for the Johnson-Nédélec coupling accordingly.

Remark (i) In the linear case A = σ int, we may also use an estimate from [32] in
Step 2 of the proof of Theorem 7 and replace the assumption 2cmon > cK (3λext +
2μext) from Theorem 7 with

η := min{λint/λext, μint/μext} >
cK
4

.

As can be seen, solvability is guaranteed, if the Lamé constants in the exterior
are not too large compared to the Lamé constants in the interior. However, for the
symmetric coupling such a restriction is not needed.

(ii) The assumption2cmon > cK (3λext+2μext), is an assumptionon themonotonicity
constant cmon and the Lamé constants λext, μext in the exterior domain. As we
have seen for the symmetric coupling the assumption cmon > 0 suffices to prove
unique solvability. Since the Johnson-Nédélec coupling is equivalent to themodel
problem,we stress that at least the continuous formulationof the Johnson-Nédélec
coupling equations is uniquely solvable. In [26], Of and Steinbach have shown
that the discrete Johnson-Nédélec coupling equations may become indefinite

123



Stability of symmetric and nonsymmetric FEM–BEM 217

(and hence non-elliptic) for special choices of the model parameters. However,
the numerical experiments from [1] show at least numerically that the Laplace
transmission problem also allows for unique Galerkin solutions in the indefinite
regime.

(iii) Assume a nonlinear Hencky-Von Mises stress–strain relation, i.e., the operator
from (23), with μ̃(·) ≥ α > 0 and μ̃(·) ≤ Kd/2−β for some α, β > 0. Then we
may replace the assumption 2cmon > cK (3λext + 2μext) from Theorem 7 with

η >
cK
4

,

where η := min{(K − 2/d inf x∈R+ μ̃(x))/λext, inf x∈R+ μ̃(x)/μext}.

4.3 Auxiliary results

We stress that the results of Sects. 3.2 and 3.3 also apply to the Johnson-Nédélec
coupling without further modifications. Additionally, the proof needs some properties
of the boundary integral operators and some results from the works [26,32], which
are stated in the following. First, we introduce the interior Steklov-Poincaré operator
S : H1/2(�) → H−1/2(�) defined by

S := V−1 ( 1
2 + K

)
,

see e.g. [22]. Note that V and K are still defined with respect to the exterior Lamé
constants λext, μext. We use the estimate

‖ ( 1
2 + K

)
w‖2

V−1 ≤ cK 〈Sw, w〉� for all w ∈ H1/2(�)

from [26,32], which involves the contraction constant (60) of the double-layer integral
operator K . The last estimate yields

〈χ ,
( 1
2 + K

)
w〉� ≤ ‖ ( 1

2 + K
)
w‖V−1‖χ‖V

≤ √
cK 〈Sw, w〉�‖χ‖V for all (w,χ) ∈ H. (61)

For w ∈ H1(�), we next introduce the splitting

w0 := w − wD, (62)

where wD ∈ H1(�) is the unique weak solution of

div σ ext(wD) = 0 in �,

wD = w on �.
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Then, there holds w0|� = 0 as well as the orthogonality relation 〈σ ext(wD), ε(w0)〉�
= 0 = 〈σ ext(w0), ε(wD)〉�. Consequently, we see

〈σ ext(w), ε(w)〉� = 〈σ ext(wD), ε(wD)〉� + 〈σ ext(w0), ε(w0)〉�. (63)

Moreover, wD fulfills γ int
1 wD = SwD. Together with Betti’s first formula (10), we

infer

〈σ ext(wD), ε(wD)〉� = 〈γ int
1 wD, wD〉� = 〈SwD, wD〉�. (64)

4.4 Proof of Theorem 7

Note that Proposition 3 holds true with b(·, ·) resp. F(·) replaced by definition (56)
resp. (57). We define the nonlinear operator B̃ : H → H∗ by

〈B̃(uh,φh), (·, ·)〉 := b̃((uh,φh), (·, ·)).

Step 1 (Lipschitz continuity of B̃). Arguing as in (50) in the proof of Theorem 1, we
prove Lipschitz continuity of B̃, where the Lipschitz constant Clip > 0 depends only
on A, λext, μext, and �.
Step 2 (Strong monotonicity of B̃). We have to prove that, for all (uh,φh), (vh,ψh)

∈ H,

〈B̃(uh,φh)−B̃(vh,ψh), (uh−vh,φh−ψh)〉 ≥ Cmon‖(uh−vh,φh−ψh)‖2H.

(65)

Toabbreviate notation, let (wh,χh) := (uh−vh,φh−ψh). Byuseofmonotonicity (19)
of A, we see

〈B̃(uh,φh) − B̃(vh,ψh), wh〉�
= 〈Auh − Avh, wh〉� − 〈χh, wh〉� + 〈χh,

( 1
2 − K

)
wh + Vχh〉�

+
D∑

j=1

|〈ξ j ,
( 1
2 − K

)
wh + Vχh〉�|2

≥ cmon‖ε(wh)‖2L2(�)
− 〈χh,

( 1
2 + K

)
wh〉� + 〈χh, Vχh〉�

+
D∑

j=1

|〈ξ j ,
( 1
2 − K

)
wh + Vχh〉�|2

=: I1 − I2 + I3 + I4.

Next, we use the splitting (62) forwh = w0 +wD. Together with (63) and (21), where
C1 = 6λext + 4μext, we get
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I1 ≥ cmon

C1
〈σ ext(wh), ε(wh)〉�

= cmon

C1
〈σ ext(w0), ε(w0)〉� + cmon

C1
〈σ ext(wD), ε(wD)〉�

=: I11 + I12.

Estimate (61) and Young’s inequality yield for δ > 0

I2 = 〈χh,
( 1
2 + K

)
wD〉� ≤

√
cK 〈SwD, wD〉�‖χh‖V

≤ δ

2
cK 〈SwD, wD〉� + δ−1

2
‖χh‖2V .

With the last inequality and (64), we get

I2 ≤ δ

2
cK 〈σ ext(wD), ε(wD)〉� + δ−1

2
‖χh‖2V .

Now, we can further estimate the terms I1 − I2 + I3 by

I1 − I2 + I3 ≥ I11 +
(cmon

C1
− δ

2
cK

)
〈σ ext(wD), ε(wD)〉� +

(
1 − δ−1

2

)
‖χh‖2V

≥
(cmon

C1
− δ

2
cK

)
〈σ ext(wh), ε(wh)〉� +

(
1 − δ−1

2

)
〈χh, Vχh〉�,

where we used (63) again. The assumption 2cmon > cK (3λext + 2μext) is equivalent
to cmon/C1 > cK/4 with C1 = 6λext + 4μext. Therefore, there exists δ > 0 such that
C := min{cmon/C1 − cK δ/2, 1 − δ−1/2} > 0. Together with (63) and (22), we infer

I1 − I2 + I3 + I4 ≥ C
(
〈σ ext(wh), ε(wh)〉� + 〈χh, Vχh〉�

+
D∑

j=1

|〈ξ j ,
( 1
2 − K

)
wh + Vχh〉�|2

)

≥ C̃
(
‖ε(wh)‖2L2(�)

+ 〈χh, Vχh〉�

+
D∑

j=1

|〈ξ j ,
( 1
2 − K

)
wh + Vχh〉�|2

)

= C̃ |||(wh,χh)|||2 ≥ C̃C−1
norm‖(wh,χh)‖2H,

where C̃ = C min{1,C2}. The constant Cmon := C̃C−1
norm > 0 depends only on

�,A,Y0, and on the Lamé constants λext, μext.

Step 3 (Unique solvability and Céa lemma). This step is essentially the same as Step 3
in the proof of Theorem 1. We thus omit the details. ��
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5 One-equation and symmetric Bielak-MacCamy coupling

In this section, we investigate the non-symmetric Bielak-MacCamy one-equation cou-
pling, see e.g. [1,4,9] for the Laplace problem, as well as its symmetric variant. The
derivation of the variational formulation (66) as well as the proof of equivalence to
the model problem (6) essentially follow as for the Johnson-Nédélec coupling resp.
symmetric coupling, cf. e.g. [1,10,19]. For brevity, we only sketch the results and
proofs and leave the details to the reader.

5.1 One-equation coupling

The variational formulation of the Bielak-MacCamy coupling reads as follows: Find
(u,φ) ∈ H = H1(�) × H−1/2(�) such that

〈Aε(u), ε(v)〉� + 〈( 12 − K ′)φ, v〉� = 〈 f , v〉� + 〈φ0, v〉� (66a)

〈ψ, Vφ − u〉� = −〈ψ, u0〉� (66b)

holds for all (v,ψ) ∈ H. We sum up the left-hand side and the right-hand side of (66)
and define the mapping b : H × H → R as well as the linear functional F ∈ H∗ by

b((u,φ), (v,ψ)) := 〈Aε(u), ε(v)〉� + 〈( 12 − K ′) φ, v〉� + 〈ψ, Vφ − u〉� (67)

as well as

F(v,ψ) := 〈 f , v〉� + 〈φ0, v〉� − 〈ψ, u0〉� (68)

for all (u,φ), (v,ψ) ∈ H. Then, problem (66) can equivalently be stated as follows:
Find (u,φ) ∈ H such that

b((u,φ), (v,ψ)) = F(v,ψ) holds for all (v,ψ) ∈ H. (69)

As for the other coupling formulations b(·, ·) is not strongly monotone, and unique
solvability cannot be shown directly. We follow the ideas of Sect. 3 resp. Sect. 4 to
overcome these difficulties. Moreover, with bJN(·, ·) denoting the mapping defined
in (56), we stress that

bJN((u,φ), (u,φ)) = b((u,φ), (u,φ)) for all (u,φ) ∈ H. (70)

Thus, there is a strong relation between the one-equation Bielak-MacCamy and
Johnson-Nédélec coupling.

As in Sect. 3.2, we use (66b) to stabilize b(·, ·) and to tackle the rigid body motions
in the interior domain �. We note that Proposition 3 holds with b̃(·, ·) resp. F̃(·)
replaced by
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b̃((u,φ), (v,ψ)) := b((u,φ), (v,ψ)) +
D∑

j=1

〈ξ j , Vφ − u〉�〈ξ , Vv − ψ〉�, (71)

F̃(v,ψ) := F(v,ψ) −
D∑

j=1

〈ξ j , u0〉�〈ξ , Vv − ψ〉� (72)

for all (u,φ), (v,ψ) ∈ H. Furthermore, the assertions of Proposition 5 also hold true
if (45) is replaced by

g j (u,φ) := 〈ξ , Vφ − u〉� for (u,φ) ∈ H. (73)

With these observations, Theorem 7 transfers to the Bielak-MacCamy coupling.
Details are left to the reader.

5.2 Combination of the Johnson-Nédélec and Bielak-MacCamy coupling

For a fixed parameter δ ∈ (0, 1) we consider the convex combination of (55)
and (66), see also [4,20], which yields to the variational formulation: Find (u,φ,χ) ∈
H := H1(�) × H−1/2(�) × H−1/2(�) such that

〈Aε(u), ε(v)〉� − δ〈φ, v〉� − (1 − δ)〈( 12 − K ′) χ , v〉� = 〈 f , v〉� + 〈φ0, v〉�,

(74a)

δ〈ψ,
( 1
2 − K

)
u + Vφ〉� = δ〈ψ,

( 1
2 − K

)
u0〉�, (74b)

(1 − δ)〈ω, Vχ − u〉� = −(1 − δ)〈ω, u0〉� (74c)

for all (v,ψ,ω) ∈ H. For δ = 1
2 the coupling scheme (74) is also called (quasi-)

symmetric Bielak-MacCamy coupling method. We define the mapping b : H×H →
R for all (u,φ,χ), (v,ψ,ω) ∈ H by

b((u,φ,χ), (v,ψ,ω)) = 〈Aε(u), ε(v)〉� − δ〈φ, v〉� − (1 − δ)〈( 12 − K ′)χ , v〉�
+ δ〈ψ,

( 1
2 − K

)
u + Vφ〉� + (1 − δ)〈ω, Vχ − u〉�.

(75)

Due to the rigid body motions, the mapping b(·, ·) is not strongly monotone. As for
the symmetric coupling, the Johnson-Nédélec coupling and the one-equation Bielak-
MacCamy coupling, the mapping b(·, ·) can be stabilized—either by using equa-
tion (74b), equation (74c) or both of them. This yields to a modified mapping b̃(·, ·)
which is strongly monotone. The same techniques as above provide an equivalent for-
mulation and unique solvability thereof. Thus, Theorem 7 holds true for the combined
coupling (74) with any fixed δ ∈ (0, 1).
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