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Abstract In this article, the construction of nested bases approximations to discretiza-
tions of integral operators with oscillatory kernels is presented. The new method has
log-linear complexity and generalizes the adaptive cross approximation method to
high-frequency problems. It allows for a continuous and numerically stable transition
from low to high frequencies.
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1 Introduction

In this article, the efficient numerical solution of Helmholtz problems

−�u − κ2u = 0 in Ωc, (1a)

u + α∂νu = u0 on Γ := ∂Ω (1b)

used to model acoustics and electromagnetic scattering will be considered. Herein,
κ denotes the wave number and Ωc := R

3\Ω the exterior domain of the obsta-
cle Ω ⊂ R

3. The parameter α and the right-hand side u0 appearing in the impedance
condition (1b) are given. A convenient way to solve exterior problems is the reformu-
lation as an integral equation [11,13,14] over the boundary Γ of the scattererΩ . The
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2 M. Bebendorf et al.

Galerkin discretization leads to large-scale fully populated matrices A ∈ C
M×N ,

ai j =
∫

Γ

∫

Γ

K (x, y)ϕi (x)ψ j (y) dsy dsx , (2)

with i ∈ I := {1, . . . ,M}, j ∈ J := {1, . . . , N }, test and ansatz functions ϕi , ψ j ,
having supports Xi := suppϕi and Y j := suppψ j , respectively. We consider kernel
functions K of the form

K (x, y) := f (x, y) exp(iκ|x − y|) (3)

with an arbitrary asymptotically smooth (with respect to x and y) function f , i.e., there
are constants cas,1, cas,2 > 0 such that for all α, β ∈ N

3

|∂αx ∂βy f (x, y)| ≤ cas,1cp
as,2 α!β! | f (x, y)|

|x − y|p
, p := |α + β|. (4)

An example is K (x, y) = S(x − y) used in the single layer ansatz, where S(x) =
exp(iκ|x |)/(4π |x |) denotes the fundamental solution. Notice that the double layer
potential K (x, y) = ∂νy S(x − y) is of the form (3) only if Γ , i.e. the unit outer normal
ν, is sufficiently smooth.

Depending on the application, low or high-frequency problems are to be solved.
For low-frequency problems, i.e. for κ diamΩ ≤ 1, the treecode algorithm [5] and
fast multipole methods (FMM) [24–26,35] were introduced to treat A with log-linear
complexity. The panel clustering method [32] is directed towards more general kernel
functions. All previous methods rely on degenerate approximations

K (x, y) ≈
k∑

i=1

ui (x)vi (y), x ∈ X, y ∈ Y, (5)

using a short sum of products of functions ui and vi depending on only one of the two
variables x and y chosen from a pair of domains X × Y which satisfies the far-field
condition

ηlow dist(X,Y ) ≥ max{diamX, diamY } (6)

with a given parameter ηlow > 0. Since replacing the kernel function K in the inte-
grals (2) with degenerate approximations (5) leads to matrices of low rank, a more
direct approach to the efficient treatment of matrices (2) are algebraic methods such
as mosaic-skeletons [39] and hierarchical matrices [27,29]. These methods also allow
to define approximate replacements of usual matrix operations such as addition, mul-
tiplication, inversion, and LU factorization; cf. [23]. An efficient and comfortable
way to construct low-rank approximations is the adaptive cross approximation (ACA)
method [6]. The advantage of this approach compared with explicit kernel approxima-
tion is that significantly better approximations can be expected due the quasi-optimal
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Wideband nested cross approximation for Helmholtz problems 3

approximation properties; cf. [7]. Furthermore, ACA has the practical advantage that
only few of the original entries of A are used for its approximation. A second class
are wavelet compression techniques [1], which lead to sparse and asymptotically well-
conditioned approximations of the coefficient matrix.

It is known that the fundamental solution S (and its derivatives) of any elliptic
operator allows for a degenerate approximation (5) on a pair of domains (X,Y ) satis-
fying (6); see [7]. This applies to the Yukawa operator −�+κ2 for any κ , because the
decay of S benefits from the positive shift κ2. However, the negative shift −κ2 in the
Helmholtz operator introduces oscillations in S. Hence, for high-frequency Helmholtz
problems, i.e. for κ diamΩ > 1, the wave number κ enters the degree of degeneracy k
in (5) in a way that k grows linearly with κ . In addition to this difficulty, the mesh width
h of the discretization has to be chosen such that κh ∼ 1 for a sufficient accuracy of
the solution. We assume that

κh ≤ 1

2
, h := max{diamXi , diamY j , i ∈ I, j ∈ J } ∼ 1/

√
N , (7)

which implies that κ ∼ √
N ∼ √

M . Notice that the recent formulation [16] allows
to avoid the previous condition and hence leads to significantly smaller N . For high-
frequency Helmholtz problems, one- and two-level versions [36,37] were presented
with complexity O(N 3/2) and O(N 4/3), respectively. Multi-level algorithms [2,18]
are able to achieve logarithmic-linear complexity. The previous methods are based on
an extensive analytic apparatus that is tailored to the kernel function K . To overcome
the instability of some of the employed expansions at low frequencies, a wideband
version of FMM was presented in [17]. The H2-matrix approach presented in [4] is
based on the explicit kernel expansions used in [2,36] for two-dimensional problems.

A well-known idea from physical optics (cf. [21]) is to approximate K (·, y) in a
given direction e ∈ S

2 by a plane wave. The desired boundedness of k with respect to
κ when approximating

K̂ (x, y) := K (x, y) exp(−iκ(x − y, e))

can be achieved if (6) is replaced by a condition which depends on κ and which is
directionally dependent. This is exploited by the fast multipole methods presented in
[12,19,20,33] and the so-called butterfly algorithm [15,34]. The aim of this article is
to combine this approach with the ease of use of ACA, i.e., our aim is to construct
approximations to A with complexity k2 N log N using only few of the original entries
of A. In this sense, this article generalizes ACA (which achieves log-linear complexity
only for low-frequencies) to high-frequency Helmholtz problems. An interesting and
important property of the new method is that it will allow for a continuous and numer-
ically stable transition from low to high wave numbers κ by a generalized far-field
condition that fades to the usual condition (6) if the wave number becomes small.
Since we approximate the operator rather than just its application to a vector, this
article is expected to lay ground to future work related to the definition of approxi-
mate arithmetic operations and hence to efficient preconditioners for high-frequency
problems.
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4 M. Bebendorf et al.

The remaining part of this article is organized as follows. In Sect. 2, we prove esti-
mates like (4) for K̂ in a cone around e. The desired asymptotic smoothness of K̂ leads
to a far-field condition on the pair of domains (X,Y ) on which such estimates are valid.
In Sect. 3, these conditions will be accounted for by subdividing the matrix indices
hierarchically. It will be seen that the number of blocks resulting from this partitioning
is too large to allow for hierarchical matrix approximations with log-linear complex-
ity. Therefore, nested bases approximations are required, and in Sect. 4 directional
H2-matrices will be introduced as a generalization of usual H2-matrices [28,31] that
incorporate a directional hierarchy. To define approximate arithmetic operations for
such matrices, the H2-matrix operations introduced in [9] have to be generalized to
take into account the directional hierarchy.

The results obtained in the first part of this article are amenable to any way of
construction of the low-rank approximation, e.g. polynomial interpolation. Sect. 5 is
devoted to the construction of directional H2-matrices using only few of the entries
of A. Error estimates for the constructed nested bases are presented and complexity
estimates prove the log-linear overall storage and the log-linear number of operations
required by the new technique. Finally, Sect. 6 presents numerical experiments that
validate our analysis.

2 Directional asymptotic smoothness

In [7] it is proved that the singularity function of any elliptic second-order partial
differential operator is asymptotically smooth. The latter property can be used to prove
convergence of ACA and hence the existence of degenerate kernel approximations (5).
The wave number κ enters the estimates on k in (5) only through the expression
cκ := max{1, κ maxx∈X, y∈Y |x − y|}, which in general becomes unbounded in the
limit κ → ∞. For parts X of the domain of small size, i.e. κ diamX ≤ 1, satisfying (6),
cκ and hence k in (5) are bounded independently of κ . This follows from the fact that
the recursive construction of domains satisfying (6) ensures that (6) is sharp in the
sense that there is a constant q > 1 such that

ηlow dist(X,Y ) ≤ q min{diamX, diamY }.

If the diameters of X and Y are comparable, i.e. diamY ≤ c diamX (which is a valid
assumption for H-matrix partitions), then

max
x∈X, y∈Y

|x − y| ≤ dist(X,Y )+ diamX + diamY ≤
(

q

ηlow
+ 1 + c

)
diamX

and thus

cκ ≤ max{1,
(

q

ηlow
+ 1 + c

)
κ diamX} ≤ q

ηlow
+ 1 + c (8)

is bounded independently of κ . In the other case κ diamX > 1, we will not be able
to prove asymptotic smoothness with bounded constants. However, a similar property
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Wideband nested cross approximation for Helmholtz problems 5

Fig. 1 Re K (x1, x2, 0) and Re K̂ (x1, x2, 0) with e = (1, 0, 0)T

can be proved if the far-field condition (6) is replaced with a frequency dependent
condition and if the corresponding far field is subdivided into directions.

For the ease of presentation, K defined in (3) will be investigated as a function of
x with fixed y. Hence, after shifting x to x + y we consider
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6 M. Bebendorf et al.

K̂ (x) = f (x) exp(iκ[|x | − (x, e)]),

which can be regarded as K divided by the plane wave exp(iκ(x, e)) with some given
vector e ∈ S

2; cf. Fig. 1. It will be shown that K̂ is asymptotically smooth with respect
to x in a cone around e. To this end, K̂ will be investigated in the coordinates r := |x |
and

ξ := |x | − (x, e).

As a first step, we investigate the derivative of ξ in direction e, i.e., we assume that
cosϕ > 0, whereϕ := �(x, e). Notice that the desired smoothness cannot be expected
for cosϕ ≤ 0; see Fig. 1. Furthermore, it will be seen later that it is required that
sin ϕ → 0 as κ → ∞. Hence, the following upper bound on | sin ϕ| is a valid
technical assumption.

Lemma 1 Let x ∈ R
3 such that cosϕ > 0 and | sin ϕ| < 1/4. Then there is a constant

cas,3 > 0 such that

|∂ p
e ξ(x)| ≤ cas,3 2p p! |x |1−p(sin ϕ)2, p ∈ N.

Proof We may assume that e = e1 := (1, 0, 0)T . Hence, x1 = |x | cos �(x, e1) > 0
and ξ(x) = |x | − x1. In order to estimate the p-th order derivative of ξ with respect
to x1, we define

b2 := x2
2 + x2

3 = |x |2 − x2
1 = (|x | sin ϕ)2

and extend ξ regarded as a function in x1 to

ξ̂ (z) :=
√

z2 + b2 − z,

which is holomorphic in Bρ(x1), ρ := |x |/2. Consider z = α + iβ ∈ Bρ(x1). It is
easy to see that any ball Br (x1) of radius 0 < r < x1/

√
2 is contained in the set

{(x, y) ∈ C : x > |y|}. The assumption | sin ϕ| < 1/4 implies that cosϕ > 1/
√

2
and hence that ρ = |x |/2 = x1/(2 cosϕ) < x1/

√
2. In particular, we obtain that

α > b > 0 and α2 > β2. With A := |z2 + b2| = √
B2 + 4α2β2, B := α2 −β2 + b2,

we have

√
z2 + b2 =

√
1

2
(A + B)+ i sgn(β)

√
1

2
(A − B).

Due to |√x2 ± y2 − |x || ≤ y2/
√

x2 ± y2 for all x, y ∈ R, it follows that

|1

2
(A + B)− α2| = 1

2
|
√
(α2 + β2 − b2)2 + 4α2b2 − (α2 + β2 − b2)| ≤ 2

b2α2

A
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Wideband nested cross approximation for Helmholtz problems 7

and

|1

2
(A − B)− β2| = 1

2
|
√
(α2 + β2 + b2)2 − 4β2b2 − (α2 + β2 + b2)| ≤ 2

b2β2

A
.

Hence,

|
√

z2 + b2 − z|2 = |
√

1

2
(A + B)− α|2 + |

√
1

2
(A − B)− |β||2

≤ 8b4

A2

(
α4

A + B
+ β4

A − B

)

≤ 8b4

A2

(
α4

2α2 − 4b2α2/A
+ β4

2β2 − 4b2β2/A

)

= 4b4

A2

|z|2
1 − 2b2/A

≤ 4b4

A

1

1 − 8
√

2(sin ϕ)2
,

which follows from

A = |z2 + b2| =
√

|z|4 + 2b2(α2 − β2)+ b4 ≥
√

|z|4 + b4 ≥ 1√
2
(|z|2 + b2)

≥ 1√
2
((x1 − ρ)2 + b2) ≥ 1√

2
(|x |2 − 2ρ|x | + ρ2) = |x |2

4
√

2
= b2

4
√

2(sin ϕ)2

and in particular A ≥ |z|2. From Cauchy’s differentiation formula we obtain

|∂ p
x1ξ(x)| = |ξ̂ (p)(x1)| ≤ p!

2π

∫

∂Bρ(x1)

|ξ̂ (z)|
|z − x1|p+1 dz

≤ 2p p!
|x |p−1

4 4
√

2(sin ϕ)2√
1 − 8

√
2(sin ϕ)2

.

��
Using the previous estimate on the derivatives of ξ , we are now able to estimate

the derivatives of K̂ in directions e and e⊥ ∈ S
2 perpendicular to e. To this end, we

exploit (4) and make use of

|∂ p
v K̂ (x)| ≤

∑
i+ j=p

(
p
i

)
|∂ i
v exp(iκξ)| |∂ j

v f (x)|

≤ cas,1 p!|K̂ (x)|
∑

i+ j=p

|∂ i
v exp(iκξ)|

i !
(cas,2

r

) j
, (9)
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8 M. Bebendorf et al.

which holds true for any direction v. Thus, we require an estimate for |∂ i
v exp

(iκξ)|. This will be done in the following two lemmas for the cases v = e and v = e⊥,
respectively.

Lemma 2 Let x and ϕ be as in Lemma 1. Let d > 1/κ and define η := κ d2/r, γ :=
κ d| sin ϕ|. Then

|∂ p
e K̂ (x)| ≤ c p!

(ρ
d

)p |K̂ (x)|, p ∈ N,

where c := 2cas,1 exp(4cas,3γ ) and ρ := max{cas,2, 4} max{γ, η}.
Proof In order to estimate |∂ i

e exp(iκξ)|, we apply Faà di Bruno’s formula expressed
in terms of Bell polynomials Bn,k

di

dxi
( f ◦ g)(x) =

i∑
k=0

f (k)(g(x))Bi,k(g
′(x), . . . , g(i−k+1)(x)).

Using Lemma 1 and κ d > 1, we obtain

|∂ i
e exp(iκξ)| = |

i∑
k=0

∂k
ξ exp(iκξ)

∑
∑
ν jν=k∑
ν ν jν=i

i !
j1! j2! . . .

i−k+1∏
�=1

(
∂�e ξ(x)

�!
) j�

|

≤ i !
i∑

k=0

κk
∑

∑
ν jν=k∑
ν ν jν=i

1

j1! j2! . . .
i−k+1∏
�=1

(
cas,3 2�(sin ϕ)2

r�−1

) j�

≤ 2i i !
i∑

k=0

(cas,3 κ(sin ϕ)2)krk−i
∑

∑
ν jν=k∑
ν ν jν=i

1

j1! j2! . . .

=
(

2

κ d2

)i

i !
i∑

k=0

(cas,3γ
2)kηi−k

∑
∑
ν jν=k∑
ν ν jν=i

1

j1! j2! . . .

<

(
2ρ̃

d

)i

i !
i∑

k=0

(cas,3γ )
k

∑
∑
ν jν=k∑
ν ν jν=i

1

j1! j2! . . . ,

where ρ̃ := max{η, γ } and jν = 0 for all ν > i − k + 1. From the multinomial
theorem for j ∈ N

d and L := i − k + 1

∑
| j |=k

(
k
j

)
x j = (

L∑
i=1

xi )
k
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Wideband nested cross approximation for Helmholtz problems 9

it follows that

∑
∑
ν jν=k∑
ν ν jν=i

1

j1! · · · jL ! = 2k

k!
∑

∑
ν jν=k∑
ν ν jν=i

(
k
j

) L∏
�=0

(2−�) j� ≤ 2k

k! (
L∑
�=0

2−�)k ≤ 4k

k!

and hence |∂ i
e exp(iκξ)| ≤ c̃ i !(2ρ̃/d)i with c̃ := exp(4cas,3γ ). Together with (9) this

yields

|∂ p
e K̂ (x)| ≤ c̃ cas,1 p! |K̂ (x)|

d p

∑
i+ j=p

(2ρ̃)i
(

cas,2 d

r

) j

≤ c̃ cas,1 p!
(

2ρ̃

d

)p

|K̂ (x)|
∑

i+ j=p

(cas,2

2

) j

≤ 2c̃ cas,1 p!
(

max{cas,2, 4}ρ̃
d

)p

|K̂ (x)|

due to d/r = η/(κ d) < η ≤ ρ̃ and
∑p

j=0 t j ≤ 2 t p for t ≥ 2. ��

Lemma 3 Let e⊥ ∈ S
2 be any direction perpendicular to e ∈ S

2 and let d, η, γ as in
Lemma 2 such that η, γ < 1. Then

|∂ p
e⊥ K̂ (x)| ≤ 2 cas,1 p!

(ρ
d

)p |K̂ (x)|,

where ρ := max{6/√ρ̃, 2cas,2} ρ̃ and ρ̃ := max{η, γ }.

Proof First, we claim that ∂ i
e⊥ exp(iκξ) consists of at most 3i summands of the form

g(x) := cg
(iκ)n

rn+2m
(x, e⊥)2(n+m)−i exp(iκξ),

where n,m ∈ N with 2(m + n) ≥ i ≥ m + n and |cg| ≤ 2i i !. This can be seen by
induction using

∂e⊥ g(x) = cg
(iκ)n+1

rn+1+2m
(x, e⊥)2(n+1+m)−(i+1) exp(iκξ)

+ (2n + 2m − i) cg
(iκ)n

rn+2m
(x, e⊥)2(n+m)−(i+1) exp(iκξ)

− (n + 2m) cg
(iκ)n

rn+2(m+1)
(x, e⊥)2(n+m+1)−(i+1) exp(iκξ).
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10 M. Bebendorf et al.

We estimate

|g(x)|
i ! ≤ |cg|

i !
κn

rn+2m
|(x, e⊥)|2(n+m)−i ≤ 2i κn

rn+2m
(r | sin ϕ|)2(n+m)−i

≤ 2i κ
i−(2m+n)

r i−n

(γ
d

)2(n+m)−i
.

Here, we used that |(x, e⊥)| ≤ r | sin ϕ| = rγ /(κ d). As in the proof of Lemma 2 we
have that d/r < η and hence

di

i ! |g(x)| = 2i κ
i−(2m+n)

r i−n
γ 2(n+m)−i d2(i−n−m) = 2iηi−(2m+n)γ 2(n+m)−i

(
d

r

)2m

≤ 2i ρ̃2m+n ≤ 2i ρ̃i/2.

The last estimate follows from 2m + n ≥ i/2. This implies that |∂ i
e⊥ exp(iκξ)| ≤

i !(6/d)i ρ̃i/2 and together with (9) we get

d p

p! |∂
p
e⊥ K̂ (x)| ≤ cas,1|K̂ (x)|

∑
i+ j=p

6i ρ̃i/2
(

cas,2 d

r

) j

≤ cas,1 (cas,2 ρ̃)
p|K̂ (x)|

∑
i+ j=p

(
6

cas,2
√
ρ̃

)i

≤ cas,1 (cas,2 ρ̃)
p|K̂ (x)|

p∑
i=0

(
ĉ

cas,2

)i

≤ 2 cas,1(ĉ ρ̃)
p|K̂ (x)|,

where ĉ := max{6/√ρ̃, 2cas,2}. ��
We return to the general case of estimating the derivatives of K̂ (x, y) for x ∈ X

and y ∈ Y . The last two lemmata show that the derivatives of K̂ can be controlled by
the parameters η, γ , and d. Let χ(X) denote the Chebyshev center of X . Using the
angle condition

| sin �(χ(X)− y, e)| ≤ γhigh

κ diamX
, y ∈ Y, (10)

and the high-frequency far-field condition

ηhighdist(X,Y ) ≥ κ(diamX)2 (11)

with 0 < γhigh, ηhigh < 1, we obtain for the choice d = diamX and x �→ x − y
that d > 1/κ and

η = κ d2

r
= κ(diamX)2

|x − y| ≤ κ(diamX)2

dist(X,Y )
≤ ηhigh.
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Wideband nested cross approximation for Helmholtz problems 11

Fig. 2 Re K̂ (x1, x2, 0) with e = (1, 0, 0)T for κ = 2 and κ = 4

The following lemma shows that γ = κ diamX sin �(x − y, e) is bounded by
γhigh+ηhigh

1−ηhigh
.

123



12 M. Bebendorf et al.

Lemma 4 Let X and Y satisfy (10) and (11). Then for x ∈ X and y ∈ Y

| sin �(x − y, e)| ≤ γhigh + ηhigh

1 − ηhigh

1

κ diamX
.

Proof Let u × v denote the cross product of u, v ∈ R
3. Then

|(x − y)× e| ≤ |x − χ(X)| + |(χ(X)− y)× e| ≤ diamX + |(χ(X)− y)× e|.

It follows that

| sin �(x − y, e)| = |(x − y)× e|
|x − y| ≤ |(χ(X)− y)× e| + diamX

|χ(X)− y| − diamX
.

Due to ηhigh|χ(X) − y| ≥ κ(diamX)2 ≥ diamX , we obtain that the denominator of
the last expression is bounded from below by (1 − ηhigh)|χ(X)− y|. Hence,

| sin �(x − y, e)| ≤ 1

1 − ηhigh

|(χ(X)− y)× e| + diamX

|χ(X)− y|
≤ 1

1 − ηhigh

(
γhigh

κ diamX
+ diamX

|χ(X)− y|
)

≤ γhigh + ηhigh

1 − ηhigh

1

κ diamX
.

��
As a consequence of the angle condition (10) and the far-field condition (11) we

obtain from Lemmas 2 and 3 for x ∈ X and y ∈ Y

max
{
|∂ p

e,x K̂ (x, y)|, |∂ p
e⊥,x K̂ (x, y)|

}
≤ c p!

( ρ

diamX

)p |K̂ (x, y)|, (12)

where c is independent of κ , the directions e, e⊥ ∈ S
2 satisfy (e, e⊥) = 0 and 0 <

ρ < 1 for small enough ηhigh and γhigh. Figure 2 shows that the angle condition is not
a result of overestimation. The angle of the region in which K̂ is smooth decreases
with κ .

3 Matrix partitioning

The aim of this section is to partition the set of indices I × J, I = {1, . . . , N } and
J = {1, . . . ,M}, of the matrix defined in (2) into sub-blocks t × s, t ⊂ I and s ⊂ J ,
such that the associated supports

Xt :=
⋃
i∈t

Xi and Ys :=
⋃
j∈s

Y j

satisfy (11) in the high-frequency case κ diamXt > 1 and (6) if κ diamXt ≤ 1.
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Wideband nested cross approximation for Helmholtz problems 13

Before we discuss the matrix partition, let us make some assumptions that are in
line with the usual finite element discretization. The first assumption is that the overlap
of the sets Xi , i ∈ I , is bounded in the sense that there is a constant ν > 0 such that

∑
i∈t

μ(Xi ) ≤ νμ(Xt ) for any t ⊂ I. (13)

Furthermore, the surface measure μ has the property that there is cΓ > 0 such that

μ(X) ≤ cΓ (diamX)2

for all X ⊂ Γ . The usual way of constructing hierarchical matrix partitions is based
on cluster trees; see [7,30]. A cluster tree TI for the index set I is a binary tree with
root I , where each t ∈ TI and its successors t ′, t ′′ ∈ TI (if they exist) have the
properties t = t ′ ∪ t ′′, t ′ �= ∅ �= t ′′, and t ′ ∩ t ′′ = ∅. We refer to L(TI ) = {t ∈ TI :
t has no successors} as the leaves of TI and define

T (�)I = {t ∈ TI : dist(t, I ) = �} ⊂ TI ,

where dist(t, s) is the minimum distance between t and s in TI . Furthermore,

L := L(TI ) := max{dist(t, I ), t ∈ TI } + 1

denotes the depth of TI . We assume that a cluster tree TI is constructed such that there
are constants cg, cG > 0 with

2−�/cG ≤ μ(Xt ) and (diamXt )
2 ≤ cg2−� (14)

for all t from the �-th level T (�)I of TI . We will make use of the notation SI (t) for
the set of sons of a cluster t ∈ TI . The same properties are also assumed for the sets
Y j , j ∈ J . Under these assumptions it follows that the depth L of the cluster trees is
of the order L ∼ log N ∼ log M .

A block cluster tree TI×J is a quad-tree with root I × J satisfying conditions
analogous to a cluster tree. It can be constructed from the cluster trees TI and TJ in
the following way. Starting from the root I × J ∈ TI×J , let the sons of a block
t × s ∈ TI×J be SI×J (t, s) := ∅ if t × s satisfies the low-frequency far-field
condition

κ min{diamXt , diamYs} ≤ 1, (15a)

ηlow dist(Xt ,Ys) ≥ max{diamXt , diamYs} (15b)

or the high-frequency far-field condition

κ min{diamXt , diamYs} > 1, (16a)

ηhigh dist(Xt ,Ys) ≥ κ max{(diamXt )
2, (diamYs)

2} (16b)
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14 M. Bebendorf et al.

or min{|t |, |s|} ≤ nmin with some given constants ηlow, ηhigh, nmin > 0. In all other
cases, we set SI×J (t, s) := SI (t) × SJ (s). Notice that for κ = 0 we obtain the
usual far-field condition (6). Furthermore, the transition from the low to the high-
frequency regime is continuous in the sense that for κ max{diamXt , diamYs} = 1 the
conditions (15b) and (16b) are equivalent with ηhigh = ηlow. We will, however, keep
both constants in order to be able to optimize them independently in the implementation
of the algorithm.

The set of leaves of TI×J defines a partition P of I × J . As usual, we partition P
into admissible and non-admissible blocks

P = Padm ∪ Pnonadm,

where each t × s ∈ Padm satisfies (15) or (16) and each t × s ∈ Pnonadm is small, i.e.
satisfies min{|t |, |s|} ≤ nmin. In order to distinguish low and high-frequency blocks,
we further subdivide

Padm = Plow ∪ Phigh,

where Plow := {t × s ∈ P : t × s satisfies (15) } and Phigh := Padm\Plow.
The following lemma will be the basis for the complexity analysis of the algorithms

presented in this article. Notice that this lemma analyzes the so-called sparsity constant
of hierarchical matrix partitions introduced in [23] for the far-field condition (6). Since
the lemma states that this constant is unbounded with respect to κ , usual H-matrices
are not able to guarantee logarithmic-linear complexity for the high-frequency far-
field condition (16b). Therefore, in the next section a variant of H2-matrices will be
introduced.

Lemma 5 Let t ∈ T (�)I . The set {s ∈ TJ : t×s ∈ Phigh}has cardinalityO(1 + 2−�κ2).

Proof The assumptions (13) and (14) guarantee that each set

Nρ := {s ∈ T (�)J : max
y∈Ys

|χ(Xt )− y| ≤ ρ}, ρ > 0,

contains at most νcGcΓ 2�(2ρ)2 clusters s from the same level � in TJ . This follows
from

|Nρ |2−�/cG ≤
∑

s∈Nρ

μ(Ys) ≤ νμ(YNρ ) ≤ νcΓ (2ρ)
2. (17)

Let s ∈ TJ such that t × s ∈ Phigh. Furthermore, let t∗ and s∗ be the father clusters
of t and s, respectively. Suppose that maxy∈Ys |χ(Xt )− y| ≥ ρ0, where

ρ0 := κ/ηhigh max{(diamXt∗)
2, (diamYs∗)2} + diamXt∗ + diamYs∗ .
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Wideband nested cross approximation for Helmholtz problems 15

Then

dist(Xt∗ ,Ys∗) ≥ max
y∈Ys

|χ(Xt )− y| − diamXt∗ − diamYs∗

≥ κ/ηhigh max{(diamXt∗)
2, (diamYs∗)2}

implies that t∗×s∗ ∈ Phigh. Hence, Phigh cannot contain t ×s, which is a contradiction.
It follows that

max
y∈Ys

|χ(Xt )− y| < ρ0 ≤ (cg2−(�−1))1/2(2 + (cg2−(�−1))1/2κ/ηhigh).

From (17) we obtain that

|{s ∈ TJ : t × s ∈ Phigh}| ≤ 8νcΓ cgcG(2 + (cg2−(�−1))1/2κ/ηhigh)
2

and hence the assertion. ��

3.1 Directional subdivision of high-frequency blocks

In the high-frequency regime, i.e. κ min{diamXt , diamYs} > 1, the matrix block cor-
responding to t × s ∈ Phigh cannot be approximated independently of κ unless it is
directionally subdivided; see the discussion in Sect. 2. In view of the angle condi-
tion (10), we partition the space R

3 recursively into a hierarchy of unbounded pyra-
mids. The first subdivision partitions R

3 into the 6 pyramids defined by the origin and
the faces of the unit cube as the pyramids’ bases. In each of the next steps, a pyramid
is subdivided by dividing its base perpendicular to a largest side of the base into two
equally sized halves. A pyramid Z resulting from ν subdivisions satisfies

| sin �(x, e)| ≤ 2(1−ν)/2 for all x ∈ Z , (18)

where e ∈ S
2 denotes the vector pointing from the origin to the center of the base of Z .

For a given cluster t ∈ T (�)I from the �-th level of TI let νt be the smallest non-negative
integer such that

νt ≥ 2(ν0 + log2 κ)− �+ 1, (19)

where ν0 ∈ N is a fixed value which will be specified later on. Denote by E(t) the set
of directions e ∈ S

2 associated with all pyramids Ze after νt subdivisions. Notice that
depending on t some of the directions will not be used when there are no targets in
that particular direction. Such directions can be removed from E(t). Then

|E(t)| ≤ 6 · 2νt ∼ κ22−�. (20)

Given t ∈ TI and e ∈ E(t), for t ′ ∈ SI (t) we define e′ ∈ E(t ′) as the axis of the
pyramid Ze′ from which Ze results after subdivision. Notice that despite t ′ ⊂ t we
have Ze ⊂ Ze′ . Furthermore, let
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16 M. Bebendorf et al.

Fe(Xt ) := De(Xt ) ∩ F(Xt ) with

De(X) :=
{

y ∈ R
3 : | sin �(χ(X)− y, e)| ≤ γhigh

κ diamX

}
,

be the directional far field of Xt . Here, F(X) := {y ∈ R
3 : ηhigh dist(X, y) ≥

κ(diamX)2} denotes the far field of X ⊂ R
3.

The following lemma will be important for the construction of nested bases used
for the approximation. Notice that the directional far fields are nested up to constants.

Lemma 6 Let t ′ ∈ SI (t) and e′ be defined as above. Then the directional far field
satisfies Fe(Xt ) ⊂ F̃e′(Xt ′) with

F̃e′(Xt ′) :=
{

y ∈ Γ : | sin �(χ(Xt ′)− y, e′)| ≤ γ̃

κ diamXt ′

}
∩ F(Xt ′)

and the constant γ̃ := 21−ν0
√

cg + (γhigh + ηhigh)/(1 − ηhigh).

Proof For y ∈ Fe(Xt ) let ζ = χ(Xt ′) − y − (χ(Xt ′) − y, e)e, ζ ′ := χ(Xt ′) − y −
(χ(Xt ′)− y, e′)e′, and δ := ζ ′ − ζ . Then

| sin �(χ(Xt ′)− y, e′)| = |ζ ′|
|χ(Xt ′)− y| ≤ |ζ | + |δ|

|χ(Xt ′)− y|
= | sin �(χ(Xt ′)− y, e)| + |δ|

|χ(Xt ′)− y|
and

|δ| = |(χ(Xt ′)− y, e)[e − (e, e′)e′] − (χ(Xt ′)− y, e′ − (e, e′)e)e′|
≤ |χ(Xt ′)− y|[|e − (e, e′)e′| + |e′ − (e, e′)e|] ≤ 2|χ(Xt ′)− y|| sin �(e′, e)|.

Using Lemma 4, we obtain from χ(Xt ′) ∈ Xt ′ ⊂ Xt

| sin �(χ(Xt ′)− y, e)| ≤ γhigh + ηhigh

1 − ηhigh

1

κ diamXt
.

From e′ ∈ ∂Ze it follows

| sin �(e′, e)| ≤ 2(1−νt )/2 ≤ 2−ν0

κ
2�/2 ≤ 2−ν0

√
cg

κ diamXt

due to (18) and (14). We obtain

| sin �(χ(Xt ′)− y, e′)| ≤
(
γhigh + ηhigh

1 − ηhigh
+ 21−ν0

√
cg

)
1

κ diamXt
.

The inclusion F(Xt ) ⊂ F(Xt ′) is obvious due to Xt ′ ⊂ Xt . ��
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Wideband nested cross approximation for Helmholtz problems 17

From the previous proof it can be seen that | sin �(x, e)| ≤ 2−ν0 √
cg

κ diamXt
for all x ∈ Ze.

With Lemma 6 it follows that

(χ(Xt )+ Ze) ∩ F(Xt ) ⊂ Fe′(Xt ′) for all e ∈ E(t) (21)

provided that ν0 from (19) is chosen sufficiently large and ηhigh is chosen sufficiently
small.

Since high-frequency blocks require special attention, we gather column clusters s
which are admissible with t in direction e ∈ E(t) in the (cluster) far field with direction
e

Fe(t) :=
⋃

{s ∈ TJ : ∃t̂ ⊃ t such that t̂ × s ∈ Phigh and Ys ⊂ De(Xt )}.

4 Directional H2-matrices

From Lemma 5 we see that H-matrices are not able to achieve logarithmic linear
complexity. Therefore we employ a nested representation similar to H2-matrices intro-
duced in [31]. To account for the required directional subdivision, we generalize the
concept of nested cluster bases.

Definition 1 A directional cluster basis U for the rank distribution (ke
t )t∈TI ,e∈E(t)

is a family U = (Ue(t))t∈TI ,e∈E(t) of matrices Ue(t) ∈ C
t×ke

t . It is called nested if

for each t ∈ TI \L(TI ) there are transfer matrices T t ′t
e ∈ C

ke′
t ′ ×ke

t such that for the
restriction of the matrix Ue(t) to the rows t ′ it holds that

Ue(t)|t ′ = Ue′(t ′)T t ′t
e for all t ′ ∈ SI (t). (22)

For estimating the complexity of storing a nested cluster basis U , we assume that
ke

t ≤ k for all t ∈ TI , e ∈ E(t) with some k ∈ N. It follows from (14) that the depth
L ∈ N of TI is of the order L ∼ log2(κ

2). Since the set of leaf clusters L(TI ) constitutes
a partition of I and according to (20) for each cluster t ∈ L(TI ) at most |E(t)| ∼ κ22−�
matrices Ue(t) each with at most k|t | entries have to be stored, k|I |κ22−L ∼ k N units
of storage are required for the leaf matrices Ue(t), t ∈ L(TI ).

Using (7), we can estimate the storage required for the transfer matrices

k2
∑
t∈TI

|E(t)| = k2
L−1∑
�=0

|T (�)I | · |E(t)| ∼ k2
L−1∑
�=0

κ2 = k2κ2L ∼ k2 N log N .

Definition 2 A matrix M ∈ C
I×J is a directional H2-matrix if Mb is of low rank

for all b ∈ Plow and there are nested directional cluster bases U and V such that for
t × s ∈ Phigh

Mts = Ue(t)S(t, s)V H−e(s) (23)

with coupling matrices S(t, s) ∈ C
ke

t ×k−e
s and e ∈ E(t) such that s ⊂ Fe(t).
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18 M. Bebendorf et al.

The storage cost of the blocks in Pnonadm and Plow is bounded by the storage cost of
a hierarchical matrix, which is known to be O(max{k, nmin}N log N ). We estimate
the storage required for the coupling matrices. According to Lemma 5, the number of
blocks t × s ∈ Phigh is O(2−�κ2) for t ∈ T (�)I . Thus, the coupling matrices require at
most

k2
∑
t∈TI

|{s ∈ TJ : t × s ∈ Phigh}| ∼ k2κ2
L−1∑
�=0

∑
t∈T (�)I

2−� ∼ k2κ2L ∼ k2 N log N

units of storage. Hence, the overall cost for a directional H2-matrix is of the
order O(k2 N log N ).

4.1 Matrix-vector multiplication

Let M ∈ C
I×J be a directional H2-matrix. Since its structure is similar to an H2-

matrix, the matrix-vector multiplication y := y + Mx of M by a vector x ∈ C
J can

be done via the usual three-phase algorithm (cf. [31]) which we modified to account
for the directions e. The following algorithm is a consequence of the decomposition

Mx =
∑

t×s∈Pnonadm

Mts xs +
∑

t×s∈Plow

Wts Z H
ts xs +

∑
t×s∈Phigh

Ue(t)S(t, s)V−e(s)
H xs

with e ∈ E(t) such that s ⊂ Fe(t).

1. Forward transform
The auxiliary vectors x̂e(s) := Ve(s)H xs, e ∈ E(s), are computed for all s ∈ TJ .
Exploiting the nestedness of the cluster bases V (with transfer matrices T̄ s′s

e ), one has
the following recursive relation

x̂e(s) = Ve(s)
H xs =

∑
s′∈SJ (s)

(T̄ s′s
e )H Ve′(s′)H xs′ =

∑
s′∈SJ (s)

(T̄ s′s
e )H x̂e′(s′),

which has to be applied starting from the leaf vectors x̂e(s), e ∈ E(s), s ∈ L(TJ ).
2. Far field interaction

The products S(t, s)x̂−e(s) are computed and summed up over all blocks t × s ∈
Phigh:

ŷe(t) :=
∑

s:t×s∈Phigh

S(t, s)x̂−e(s), e ∈ E(t), t ∈ TI .

3. Backward transform
The vectors ŷe(t) are transformed to the target vector y. The nestedness (22)
of U yields a recursion which descends TI for the computation of y :=∑

t∈TI

∑
e∈E(t) Ue(t)ŷe(t):
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Wideband nested cross approximation for Helmholtz problems 19

(a) Compute ŷe′(t ′) := ŷe′(t ′)+ T t ′t
e ŷe(t) for all e ∈ E(t) and all t ′ ∈ SI (t);

(b) Compute yt := yt + ∑
e∈E(t) Ue(t)ŷe(t) for all clusters t ∈ L(TI ).

4. Low-frequency interaction For all t × s ∈ Plow compute yt := yt + Wts Z H
ts xs .

5. Near field interaction
For all t × s ∈ Pnonadm compute yt := yt + Mts xs .

The total number of operations of the latter algorithm is bounded by O(k2 N log N ),
which can be proven by observing that at most two floating-point operations are per-
formed for each matrix coefficient stored in the directional H2-matrix representation.

5 Construction of approximations

Our aim is to approximate A ∈ C
I×J defined in (2) with a directional H2-matrix.

Blocks in Pnonadm are stored entrywise without approximation. From (8) it follows
that K is asymptotically smooth with constants independent of κ on domains Xt × Ys

corresponding to blocks t × s ∈ Plow. It follows from the convergence analysis in [7]
that the adaptive cross approximation

Ats ≈ Atσ (Aτσ )
−1 Aτ s (24)

with appropriately chosen τ ⊂ t and σ ⊂ s, kε := |τ | = |σ | ∼ | log ε|2 independent
of κ , can be used to generate low-rank approximations Wts Z H

ts ≈ Ats , where Wts ∈
C

t×kε and Zts ∈ C
s×kε .

In the rest of this section, we will consider the remaining case t × s ∈ Phigh, i.e.
we assume that (16) is valid. To be able to apply the results from Sect. 2 and prove
existence of low-rank matrix approximations it is required to additionally partition the
far field F(Xt ) into subsets Fe(Xt ) corresponding to directions e ∈ E(t). Although
ACA generates approximations of high quality, the number of blocks is too large (see
Lemma 5) to construct and store the approximations as in the low-frequency case. To
overcome this difficulty, we consider the approximation (see [8] for the application of
this kind of approximation to Laplace-type problems)

Ats ≈ Atσ e
t
(Aτtσ

e
t
)−1 Aτtσs (Aτ−e

s σs
)−1 Aτ−e

s s, Ys ⊂ Fe(Xt ), (25)

instead of (24), which is of type (23) with coupling matrices S(t, s) = Aτtσs . The aim
of this section is to prove error estimates for the special type of low-rank approximation

Ats ≈ Ue(t)S(t, s)V−e(s)
H (26)

with nested bases U and V approximating Atσ e
t
(Aτtσ

e
t
)−1 and (Aτ−e

s σs
)−1 Aτ−e

s s ,
respectively.

A crucial part of the approximation (25) is the construction of what we call proper
pivots τt ⊂ t and σ e

t ⊂ Fe(t), |τt | = |σ e
t |. They have to guarantee that Aτtσ

e
t

is
invertible, and for proving error estimates they have to be chosen so that

‖Ats − Atσ e
t
(Aτtσ

e
t
)−1 Aτt s‖ ≤ cR ε ‖At J ‖ for all s ⊂ Fe(t)
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20 M. Bebendorf et al.

with some cR > 0; cf. Lemma 9. Hence τt and σ e
t represent t and its far field Fe(t),

respectively. We refer to [8] for a method for choosing τt and σ e
t . Note that it is

sufficient to choose σ e
t so that

Yσ e
t

⊂ (χ(Xt )+ Ze) ∩ F(Xt ). (27)

Here and in what follows, ε > 0 denotes a given accuracy that (up to constants) is
to be achieved by the approximations. Let {ζ1, . . . , ζkε } be a basis of the space

Π̂3
pε−1 := {u eiκ(·,e) : u ∈ Π3

pε−1},

where Π3
p denotes the space of polynomials of degree at most p with respect to each

of the three variables, kε := dimΠ3
pε−1 = p3

ε , and pε ∈ N is the smallest number
such that pε ≥ | logρ ε| with ρ from (12).

Assumption 1 Let t ∈ TI . If |t | ≥ kε, we assume that there is τt = {i1, . . . , ikε } ⊂ t
such that the following two conditions are satisfied.

(i) Let � ∈ R
|t |×kε have the entries �i j = (ϕi/‖ϕi‖L2(Γ ), ζ j )L2(Γ ), i ∈ t, j =

1, . . . , kε. There are coefficients ξi� such that

�i j =
kε∑
�=1

ξi��i� j , i ∈ t, j = 1, . . . , kε, (28)

and the norm ‖�‖∞ of the matrix � = (ξi�)i� ∈ C
t×kε is bounded by a multiple

of 2pε ,
(ii) each matrix Aτt Fe(t), e ∈ E(t), has full rank.

In the remaining case |t | < kε, we set τt = t and assume only that At Fe(t) has full
rank.

To see that these assumptions are reasonable, notice that rank� ≤ kε, which implies
(28). The coefficients ξi� depend only on the underlying grid. Hence, the boundedness
of the norm of � in (i) is an assumption on the regularity of the discretization and on
the choice of the pivots τt . Notice that the assumed bound grows exponentially with
pε. In practice, it seems that a polynomial growth ‖�‖∞ ≤ cp2

ε with respect to pε
can be achieved. Hence, this should be regarded as a decent assumption.

The set τt is not unique. Usually, any sub-set of t having kε elements will do.
To see this, assume for the time being that ϕi = δxi . In this case, the sub-matrix
(�i� j )�j ∈ R

kε×kε of� is non-singular if and only if Π̂3
pε−1 is unisolvent with respect

to the points xi� , � = 1, . . . , kε, i.e.

eiκ(xi� ,e)q(xi� ) = 0 ⇐⇒ q(xi� ) = 0, � = 1, . . . , kε,

for some q ∈ Π3
pε−1 implies that q = 0. The set of tupels (xi1 , . . . , xikε

) for which

Π3
pε−1 is not unisolvent is known to be of measure zero (in the parameter domain of
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Wideband nested cross approximation for Helmholtz problems 21

Γ ); see [38]. Hence, we may assume that τt ⊂ t is chosen such that also (i i) is valid.
Otherwise, the rank of At Fe(t) is already bounded by kε.

Notice that with the previous assumptions it is possible to guarantee that the rows
τt used for the approximation of Ats can be chosen independently of s ⊂ Fe(t). This
will be crucial for the construction of nested bases.

In the following lemma, we prove error estimates for the multivariate tensor prod-
uct Chebyshev interpolant Ip K̂ (·, y) ∈ Π3

p−1 with fixed y ∈ Y of K̂ (·, y) :=
K (·, y) exp(−iκ(· − y, e)).

Lemma 7 Let X,Y ⊂ R
3 such that Y ⊂ Fe(X). Then

|K̂ (x, y)− Ix,p K̂ (x, y)| ≤ cI(p)

(
ρ

ρ + 2

)p

max
x ′∈X

|K̂ (x ′, y)| for all x ∈ X, y ∈ Y,

where cI(p) := 8ecp(1 + ρ)(1 + 2
π

log p)3 with c and ρ from (12).

Proof Without loss of generality we may assume that X is contained in a cube Q =∏3
i=1 Qi which is aligned with e and that Y ⊂ Fe(Q). Notice that this can be achieved

by slightly modifying the constants γhigh, ηhigh. Let K̂i be the function in the i-th
argument of K̂ (·, y), i = 1, 2, 3. From (12) we obtain

‖K̂ (k)
i ‖Qi ,∞ ≤ c k!

(
ρ

diamQi

)k

‖K̂i‖Qi ,∞, k ∈ N.

Using [10, Lemma 3.13], this implies

min
q∈Πp−1

‖K̂i − q‖Qi ,∞ ≤ c̃ p

(
ρ

ρ + 2

)p

‖K̂i‖Qi ,∞,

where c̃ := 4ec(1 + ρ). With this estimate the proof can be done analogously to
Theorem 3.18 in [7]. ��

Although the following estimates will hold in any absolute norm, throughout this
article the max norm

‖A‖ := max
i=1,...,m

max
i=1,...,n

|ai j |

of A ∈ C
m×n will be used if not otherwise indicated. Notice that the max norm is

not a matrix norm but satisfies ‖AB‖ ≤ ‖A‖‖B‖1 and ‖AB‖ ≤ ‖A‖∞‖B‖, where
‖ · ‖∞, ‖ · ‖1 denote the absolute row and the absolute column sum, respectively.

Lemma 8 Let assumption (i) be valid and let ϕi , ψ j , and f in (2) be non-negative.
Assume that cas,2 ηhigh < 1. For t ∈ TI satisfying |t | ≥ kε and e ∈ E(t) there is
� ∈ R

t×kε and an ε-independent constant c1 > 0 such that

‖Ats −�Aτt s‖ ≤ c1ε‖Ats‖

for all s ⊂ J satisfying Ys ⊂ Fe(Xt ).
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Proof Due to K (x, y) = exp(iκ(x − y, e))K̂ (x, y), we can apply Lemma 7 and obtain
for x ∈ Xt , y ∈ Ys that with Tpε (x, y) := exp(iκ(x, e))Ix,pε K̂ (x, y) ∈ Π̂3

pε−1

|K (x, y)− Tpε (x, y)| = |K̂ (x, y)− Ix,pε K̂ (x, y)|
≤ cI(pε)

(
ρ

ρ + 2

)pε
max
x ′∈Xt

|K̂ (x ′, y)|.

According to a remark following (12), we may assume that ρ < 1. In addition,
without loss of generality we may assume that ‖ϕi‖L2(Γ ) = 1. Then assumption (28)
is equivalent with

∫

Γ

(
ϕi (x)−

kε∑
�=1

ξi�ϕi� (x)

)
ζ(x) dsx = 0 for all ζ ∈ Π̂3

pε−1.

Hence,

ai j −
kε∑
�=1

ξi�ai� j =
∫

Γ

∫

Γ

(
ϕi (x)−

kε∑
�=1

ξi�ϕi� (x)

)
K (x, y)ψ j (y) dsy dsx

=
∫

Γ

(
ϕi (x)−

kε∑
�=1

ξi�ϕi� (x)

) ∫

Γ

[K (x, y)− Tpε (x, y)]ψ j (y) dsy dsx

and we see using μ(Xi ) ≤ πh2 that

|ai j −
kε∑
�=1

ξi�ai� j | ≤ cI(pε)

(
ρ

ρ + 2

)pε
(1 + ‖�‖∞)

(
μ(Xi ∪

kε⋃
�=1

Xi� )

)1/2

· max
x ′∈Xt

∫

Γ

|K̂ (x ′, y)||ψ j (y)| dsy

≤ c̃h

(
ρ

ρ + 2

)pε
max
x ′∈Xt

∫

Γ

|K̂ (x ′, y)||ψ j (y)| dsy

with c̃ := cI(pε)(1+‖�‖∞)
√
(kε + 1)π . From the Taylor expansion and the asymp-

totic smoothness of f it can be seen that for cas,2 ηhigh < 1

| f (x ′, y)| ≤ ĉ | f (x, y)| for all x, x ′ ∈ Xt (29)

with a constant ĉ > 0. Estimate (29) and 1 = ‖ϕi‖L2(Γ ) ≤ c′h−1‖ϕi‖L1(Γ ) imply for
y ∈ Ys

max
x ′∈Xt

|K̂ (x ′, y)| = max
x ′∈Xt

| f (x ′, y)| ≤ ĉ min
x∈Xi

| f (x, y)|

≤ ĉ c′h−1
∫

Γ

|ϕi (x)|| f (x, y)| dsx .
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Wideband nested cross approximation for Helmholtz problems 23

From

|ai j | = |eiκ[−|ξ(Xi )−ξ(Y j )|]ai j |
≥ Re

∫

Γ

∫

Γ

ϕi (x)ψ j (y) f (x, y)eiκ[|x−y|−|ξ(Xi )−ξ(Y j )|] dsy dsx

=
∫

Γ

∫

Γ

ϕi (x)ψ j (y) f (x, y) cos(κ[|x − y| − |ξ(Xi )− ξ(Y j )|]) dsy dsx

≥ c′′
∫

Γ

∫

Γ

ϕi (x)ψ j (y) f (x, y) dsy dsx

with c′′ > 0 independent of κ and h due to (cf. (7))

κ[|x − y| − |ξ(Xi )− ξ(Y j )|] ≤ κ[|x − ξ(Xi )| + |y − ξ(Y j )|] ≤ 2κh <
π

2
,

we obtain exploiting the non-negativity of ϕi , ψ j , and f

|ai j −
kε∑
�=1

ξi�ai� j | ≤ c̃ ĉ c′

c′′

(
ρ

ρ + 2

)pε
|ai j |.

Hence, the matrix � satisfies

‖Ats −�Aτt s‖ ≤ c̃ ĉ c′

c′′(ρ + 2)pε
ρ pε‖Ats‖ ≤ c1ε‖Ats‖,

because cI (pε)ĉc′
c′′(ρ+2)pε (1 + ‖�‖∞)

√
(p3
ε + 1)π is bounded by an ε-independent constant

c1 from above due to the assumption that ‖�‖∞ is bounded by a multiple of 2pε and
cI(pε) grows at most algebraically with pε. ��

The expression cS := max{c(r)S , c(c)S , ‖(Aτ e
s σs )

−1 Aτ e
s s‖1 : s ∈ TJ }, where

c(c)S := max{‖(Aτtσ
e
t
)−1 Aτt s‖1

: s ⊂ J, Ys ⊂ Fe(Xt ), e ∈ E(t), t ∈ TI },
c(r)S := max{‖Atσs (Aτ e

s σs )
−1‖∞ : t ⊂ I, Xt ⊂ Fe(Ys), e ∈ E(s), s ∈ TJ },

will play a central role in the following error analysis. Notice that cS does not depend
on the cardinality of the clusters. However, it depends on the choice of the pivots
{τt , σ

e
t , τ

e
s , σs : t ∈ TI , s ∈ TJ } and hence on ε. Numerical experiments show that

cS ≤ cp2
ε .

Lemma 9 Let Assumption 1 be valid. Then for t ∈ TI and e ∈ E(t) there are proper
pivots (τt , σ

e
t ), |τt | = |σ e

t | = min{kε, |t |}, i.e., for all s ⊂ J satisfying Ys ⊂ Fe(Xt )

‖Ats − Atσ e
t
(Aτtσ

e
t
)−1 Aτt s‖ ≤ c2ε‖At J ‖, (30)

where c2(ε) := c1(1 + cS(ε)).
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Proof Since Aτt Fe(t) is assumed to have full rank, there is σ e
t ⊂ Fe(t), |σ e

t | =
|τt | = min{kε, |t |}, such that Aτtσ

e
t

is invertible. If |t | < kε, we have τt = t and
Atσ e

t
(Aτtσ

e
t
)−1 = I . Hence, (30) is trivially satisfied. We may hence assume that

|t | ≥ kε. Let � ∈ R
t×kε be as in Lemma 8. We have

Ats − Atσ e
t
(Aτtσ

e
t
)−1 Aτt s = {Ats −�Aτt s} − {Atσ e

t
−�Aτtσ

e
t
}(Aτtσ

e
t
)−1 Aτt s

and thus

‖Ats − Atσ e
t
(Aτtσ

e
t
)−1 Aτt s‖ ≤ ‖Ats −�Aτt s‖ + ‖Atσ e

t
−�Aτtσ

e
t
‖ cS

≤ c1ε(‖Ats‖ + cS‖Atσ e
t
‖) ≤ c2ε‖At J ‖.

The second last estimate follows from Lemma 8, because Yσ e
t
,Ys ⊂ Fe(Xt ). ��

5.1 Construction of directional cluster bases

Based on the previous estimates, we are going to construct and analyze nested bases
approximations. The construction of nested bases is usually done by explicit approxi-
mation of the kernel function K ; see, for instance, the fast multipole method [37] and
the method in [33], which uses interpolation. In this section, we construct the nested
bases via a purely algebraic technique which is based on the original matrix entries
and thus avoids explicit kernel expansions. In this sense, the presented construction is
in the class of kernel independent fast multipole methods; see [3,19,40].

We will define a nested basis U consisting of matrices Ue(t) ∈ C
t×kε for each

t ∈ TI and e ∈ E(t) in a recursive manner starting from the leaves. Due to (16a), it is
actually sufficient to consider the sub-tree

T̂I := {t ∈ TI : κ diamXt > 1}

of TI . For its leaf clusters t ∈ L(T̂I ) and e ∈ E(t)we set Ue(t) = Btt
e , where for t ′ ⊂ t

Bt ′t
e := At ′σ e

t
(Aτtσ

e
t
)−1.

Assume that matrices Ue(t ′) have already been constructed for the sons t ′ ∈ SI (t) of
t ∈ T̂I \ L(T̂I ) and e ∈ E(t ′). Then in view of (22) we define for e ∈ E(t)

Ue(t)|t ′ := Ue′(t ′)Bτt ′ t
e , t ′ ∈ SI (t),

where e′ ∈ E(t ′) is defined before Lemma 6.
The following lemma estimates the accuracy when expressing Bt ′t

e by the product
Bt ′t ′

e′ B
τt ′ t
e . As stated in [8], Bt ′t

e may be regarded as the algebraic form of an interpo-
lation operator.
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Lemma 10 Let t ′ ∈ T̂I satisfy t ′ ⊂ t ∈ T̂I \L(T̂I ) and e ∈ E(t). Then for all s ⊂ J
satisfying Ys ⊂ Fe(Xt ) it holds that

‖[Bt ′t
e − Bt ′t ′

e′ B
τt ′ t
e ]Aτt s‖ ≤ c2cSε‖At ′ J ‖

with cS = cS(ε) and c2 = c2(ε) from Lemma 9.

Proof It is clear that

[Bt ′t
e − Bt ′t ′

e′ B
τt ′ t
e ]Aτt s = [At ′σ e

t
− At ′σ e′

t ′
(A

τt ′σ e′
t ′
)−1 Aτt ′σ e

t
](Aτtσ

e
t
)−1 Aτt s .

Due to (27) and (21), it holds that Yσ e
t

⊂ Fe′(Xt ′). Hence, Lemma 9 yields

‖[Bt ′t
e − Bt ′t ′

e′ B
τt ′ t
e ]Aτt s‖ ≤ c2ε‖At ′ J ‖‖(Aτtσ

e
t
)−1 Aτt s‖1

.

��
Theorem 1 Let Assumption 1 be valid. Let t ∈ T̂I and let � = L(T̂t ) denote the depth
of the sub-tree T̂t of T̂I rooted at t ∈ TI . Then for all e ∈ E(t)

‖[Ue(t)− Btt
e ]Aτt s‖ ≤ c3ε‖At J ‖ for all s ⊂ Fe(t),

where

c3(ε) := c1(1 + cS(ε))
(2cS(ε))

�

2cS(ε)− 1
.

Proof From Lemma 10 we have for t ∈ T̂I \L(T̂I )

‖[Ue(t)− Btt
e ]Aτt s‖ ≤

∑
t ′∈SI (t)

‖[Ue(t)|t ′ − Bt ′t
e ]Aτt s‖

=
∑

t ′∈SI (t)

‖[Ue′(t ′)Bτt ′ t
e − Bt ′t

e ]Aτt s‖

≤
∑

t ′∈SI (t)

‖[Ue′(t ′)−Bt ′t ′
e′ ]B

τt ′ t
e Aτt s‖+‖[Bt ′t

e − Bt ′t ′
e′ B

τt ′ t
e ]Aτt s‖

≤
∑

t ′∈SI (t)

cS‖[Ue′(t ′)− Bt ′t ′
e′ ]Aτt ′σ e

t
‖ + εc2cS‖At ′ J ‖

≤ 2c2cSε‖At J ‖ + cS

∑
t ′∈SI (t)

‖[Ue′(t ′)− Bt ′t ′
e′ ]Aτt ′σ e

t
‖.

We set αt ′ := ‖[Ue′(t ′)− Bt ′t ′
e′ ]Aτt ′σ e

t
‖ for t ′ ∈ SI (t). From (27) and (21) we obtain

that Yσ e
t

⊂ Fe′(Xt ′). Hence, we can apply the latter inequality recursively replacing s
by σ e

t and obtain the recurrence relation
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αt ≤ 2c2cSε‖At J ‖ + cS

∑
t ′∈SI (t)

αt ′ , t ∈ TI \ L(TI ). (31)

We show that

αt ≤ 2c2cSε
(2cS)

�−1 − 1

2cS − 1
‖At J ‖, t ∈ TI , (32)

where � = �(t) denotes the depth of the sub-tree T̂t . This estimate is obviously true
for leaf clusters t ∈ L(TI ) as αt = 0. Assume that (32) is valid for the sons SI (t) of
t ∈ T̂I \L(T̂I ). Then (31) proves

αt ≤ 2c2cSε‖At J ‖ + cS

∑
t ′∈SI (t)

αt ′

≤ 2c2cSε‖At J ‖ + 2c2c2
Sε
(2cS)

�−2 − 1

2cS − 1

∑
t ′∈SI (t)

‖At ′ J ‖

≤ 2c2cSε

(
1 + 2cS

(2cS)
�−2 − 1

2cS − 1

)
‖At J ‖ = 2c2cSε

(2cS)
�−1 − 1

2cS − 1
‖At J ‖.

Hence,

‖[Ue(t)− Btt
e ]Aτt s‖ ≤ 2c2cSε‖At J ‖ + cS

∑
t ′∈SI (t)

αt ′

≤ 2c2cSε
(2cS)

�−1

2cS − 1
‖At J ‖ ≤ c2ε

(2cS)
�

2cS − 1
‖At J ‖

together with c2 = c1(1 + cS) proves the assertion. ��
Similar results as for the row clusters t can be obtained for column clusters s ∈ TJ

and e ∈ E(s) provided assumptions analogous to Assumption 1 are made. In particular,
this defines clusters σs ⊂ s and τ e

s ⊂ F ′
e(s), |τ e

s | = |σs | = min{kε, |s|}, where

F ′
e(s) :=

⋃
{t ∈ TI : ∃ŝ ⊃ s such that t × ŝ ∈ Phigh and Xt ⊂ De(Ys)}.

For s′ ⊂ s we define

Cs′s
e := (Aτ e

s σs )
−1 Aτ e

s s′ .

For leaf clusters s ∈ L(T̂J ) and e ∈ E(s) we set Ve(s) = (Css
e )

H . Assuming that
matrices Ve(s′) have already been constructed for the sons s′ ∈ SJ (s) of s ∈ T̂J \L(T̂J )

and e ∈ E(s′), we define for e ∈ E(s)

Ve(s)|s′ := Ve′(s′)(Cσs′ s
e )H , s′ ∈ SJ (s),
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Wideband nested cross approximation for Helmholtz problems 27

where e′ ∈ E(s′) is defined before Lemma 6. Due to the analogy with Lemma 9 and
Theorem 1, we omit the proofs of the following error estimates.

Lemma 11 There is c4 = c4(ε) > 0 such that for all s ∈ TJ and e ∈ E(s) it holds
that

‖Ats − Atσs (Aτ e
t σs )

−1 Aτ e
s s‖ ≤ c4ε‖AI s‖

for all t ⊂ I satisfying Xt ⊂ Fe(Ys).

Theorem 2 Let s ∈ T̂J and let � = L(T̂s) denote the depth of the cluster tree T̂s . Then
there is c5 = c5(ε) > 0 such that for all e ∈ E(s)

‖Atσs [Css
e − Ve(s)

H ]‖ ≤ c5ε‖AI s‖, t ⊂ F ′
e(s).

Using the previously constructed bases U and V , we employ S(t, s) := Aτtσs in
(26) for each block Ats, t × s ∈ Phigh. In the following theorem, the accuracy of the
nested approximation based on the matrix entries of A is estimated.

Theorem 3 Let all previous assumptions be valid and t × s ∈ Phigh. Then there is
e ∈ E(t) such that s ⊂ Fe(t) and the approximation error is bounded by

‖Ats − Ue(t)S(t, s)V−e(s)
H ‖ ≤ cS(c2 + c3)ε‖At J ‖ + (c4 + c5‖Ue(t)‖∞)ε‖AI s‖

(33)

with cS, c2, c3, c4, c5 depending on ε defined above.

Proof From s ⊂ Fe(t) it follows that t ⊂ F ′−e(s). We have that

Ats − Btt
e S(t, s)Css−e = Ats − Atσs Css−e + [Atσs − Btt

e Aτtσs ]Css−e.

From Lemma 9 it follows that ‖Atσs − Btt
e Aτtσs ‖ ≤ c2ε‖At J ‖, and from Lemma 11

we have that ‖Atσs − Atσs Css−e‖ ≤ c4ε‖AI s‖. Therefore,

‖Ats − Btt
e S(t, s)Css−e‖ ≤ ε(c4‖AI s‖ + c2‖At J ‖‖Css−e‖1).

Furthermore, Theorems 1 and 2 yield

‖Ue(t)S(t, s)V−e(s)
H − Btt

e S(t, s)Css−e‖
≤ ‖Ue(t)‖∞‖S(t, s)[V−e(s)

H − Css−e]‖
+ ‖[Ue(t)− Btt

e ]S(t, s)‖‖Css−e‖1

≤ c5ε‖Ue(t)‖∞‖AI s‖ + c3cSε‖At J ‖,

which proves the assertion. ��
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Remark 1 Furthermore, the ‖ · ‖∞-norm of Ue(t) can be expected to be close to ‖Btt
e ‖

since Ue(t) approximates Btt
e ; cf. Theorem 1. The actual values of ‖Ue(t)‖∞ can

easily be evaluated during computation. Hence, it easy to check the quality of the
nested approximation via (33). The numerical results in the next section show that
these terms are bounded in practice and do not destroy the convergence of the method.

6 Numerical results

We consider the sound soft/hard scattering problem (1) imposing either the Dirichlet
datum u = u D (sound soft) or the Neumann trace ∂νu = vN (sound hard) on the
boundary Γ . We denote V the single and K the double-layer-operator with the kernels
S(x − y) and ∂νy S(x − y), respectively. Using Green’s representation formula u =
Ku − V(∂νu) in Ωc and the jump relations, we end up with the integral equation

V(∂νu) =
(

K − 1

2
I

)
u on Γ, (34)

which can be solved either for the unknown ∂νu|Γ in the case of a Dirichlet problem
or for the unknown u|Γ in the Neumann case. The Brakhage–Werner ansatz

u = Kφ − iβVφ in Ωc (35)

with an arbitrary coupling parameter β > 0 uses an unknown density function φ that
satisfies the integral equation

(
1

2
I + K − iβV

)
φ = u D. (36)

In either case, Galerkin discretization of the integral equations leads to a linear system
with matrices of the form (2) that can be approximated by directional H2-matrices.
The solution can then be obtained via GMRES using the matrix-vector multiplication
from Sect. 4.1, which we proved to have logarithmic-linear complexity.

6.1 Approximation of V

As a first step, we validate the logarithmic-linear complexity of the directional
H2-matrices (labeled dirH2-ACA). Moreover, we compare our new approach with
the standard H-matrix approximation via ACA (labeled H-ACA) and the H2-matrix
approach from [8] (labeled H2-ACA). In this section, we focus on the approximation
of the single-layer operator V. Since we assumed κh to be constant, we increase κ
with growing number of degrees of freedom N . By “acc.” we label the relative error
to the full matrix in the Frobenius norm.

Table 1 shows the memory consumption of the approximation of the discretization
of V with piecewise constant ansatz and test functions on the prolate spheroid, i.e. an
ellipsoid with ten times the extension in x-direction. The accuracy for N = 1,905,242
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Fig. 3 Memory consumption in MB on prolate spheroid
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was not computed, because the calculation of the difference to a full matrix in Frobenius
norm takes O(N 2) time.

For small N , the three methods have about the same performance. This is due to fact
that directional H2-matrices adapt to the wave number and fade to usual H-matrices for
low frequencies. Nevertheless, H2-ACA seems to be superior with respect to memory
consumption. The latter approach, however, is not convenient for Helmholtz-type
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30 M. Bebendorf et al.

Table 1 Prolate spheroid: κh ∼ 0.15, ηhigh = 5

N 6,496 28,108 114,258 469,010 1,905,242
κ 16 32 64 128 256

H-ACA Mem. (MB) 61 236 1,267 7,179 40,987

Mem./N (KB) 9.8 8.8 11.6 16.1 22.6

Time (s) 15 70 360 1,996 11,222

Time/N (ms) 2.3 2.5 3.1 4.3 5.9

Acc. 7.4−5 6.7−5 7.5−5 1.1−4 −
H2-ACA Mem. (MB) 59 154 730 6,501 26,632

Mem./N (KB) 9.5 5.7 6.7 14.5 14.6

Time (s) 16 84 364 3,660 15,005

Time/N (ms) 2.5 2.9 3.2 7.8 7.9

Acc. 9.8−5 1.3−4 9.9−5 4.5−4 −
dirH2-ACA Mem. (MB) 48 197 942 4,434 18,625

Mem./N (KB) 7.8 7.3 8.6 9.9 10.2

Time (s) 14 65 292 1,336 5,910

Time/N (ms) 2.1 2.3 2.6 2.8 3.1

Acc. 5.6−4 1.0−4 1.5−4 1.4−4 −

Table 2 dirH2-ACA: L2-error of ũ D with κh = 0.19

N 642 2,562 10,242 40,962 163,842 655,362
κ 2 4 8 16 32 64

Time (s) V 2 12 94 755 4,571 27,247

Mem. (MB) V 2 16 105 481 2,145 9,409

KB/N V 3.8 6.6 10.7 12.3 13.7 15.1

Time (s) K 2 13 100 811 4,921 29,539

Mem. (MB) K 2 16 105 471 2,081 9,187

L2-error 2.6−3 2.1−3 2.0−3 1.9−3 1.9−3 2.0−3

kernel functions as the running time increases for higher wave numbers. The reason
for this behaviour is that the blockwise rank cannot be guaranteed to be constant and
thus, the number of apriori pivots must be increased accordingly in order to achieve
a prescribed accuracy. The gain of dirH2-ACA in terms of both time and memory
becomes visible for larger N (see Figs. 3, 4).

6.2 Neumann problem

We consider the sound hard scattering problem and use piecewise linear ansatz and
test functions for the Galerkin discretization of (34). The approximate Dirichlet datum
ũ D ≈ u|Γ is obtained from solving (34) with approximations (ε = 10−4) of the
discrete operators V and K of V and K. We use the Neumann datum vN := ∂νS(·−x0)
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Table 3 H-ACA: L2-error of ũ D with κh = 0.19

N 642 2,562 10,242 40,962 163,842 655,362
κ 2 4 8 16 32 64

Time (s) V 2 11 64 464 6,890 −
Mem. (MB) V 2 13 80 491 3,150 −
KB/N V 3.1 5.2 8.2 12.6 20.2 −
Time (s) K 3 14 77 520 7,050 −
Mem. (MB) K 2 12 78 478 3,073 −
L2-error 2.7−3 2.0−3 1.9−3 2.0−3 2.7−3 −

Table 4 dirH2-ACA: L2-error of ũ D with fixed κ = 6

N 642 2,562 10,242 40,962 163,842

Time (s) V 6 42 75 286 1,613

Mem. (MB) V 3 15 66 345 1,613

KB/N V 5.1 6.2 6.7 8.8 11.0

Time (s) K 7 47 84 317 1,734

Mem. (MB) K 3 15 64 334 1,669

L2-error 1.8−2 4.5−3 1.2−3 3.9−4 2.3−4

Table 5 H-ACA: L2-error of ũ D with fixed κ = 6

N 642 2,562 10,242 40,962 163,842

Time (s) V 2 13 69 379 2,771

Mem. (MB) V 3 17 90 454 2,167

KB/N V 4.5 6.9 9.2 11.6 13.9

Time (s) K 3 17 83 439 3,024

Mem. (MB) K 3 17 89 446 2,122

L2-error 1.8−2 4.4−3 1.1−3 3.0−4 1.2−4

with an interior point x0 ∈ Ω . In this case, we are able to compute the L2-error
‖ũ D − u‖L2(Γ )/‖u‖L2(Γ ) to the exact Dirichlet trace given by u|Γ = S(· − x0).
Tables 2 and 4 show the behaviour of the error on the sphere with radius 1 for fixed κh
and fixed κ , respectively. Furthermore, the CPU time and the memory consumption
required by the approximations to V and K is shown and can be seen to behave
logarithmic-linear for both fixed and growing wave numbers. As a reference, we made
the same computations also using H-matrices. The corresponding results are shown in
Tables 3 and 5. As before, the advantage of dirH2-ACA becomes visible for a growing
number of waves. It is remarkable, however, that even in the fixed frequency case the
directional approach outperforms H-ACA in terms of memory and computation time
for larger degrees of freedom. For smaller degrees of freedom the performance of
H-ACA is only slightly better.
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Fig. 5 Pressure field |us + ui | for κ = 10 and κ = 40

6.3 Visualization of Dirichlet problem with Brakhage–Werner

We consider the sound soft scattering problem, i.e. we seek a solution u = ui + us

of the Helmholtz equation (1), where ui (x) := exp(iκ(x, e)) with e = (1, 0, 1)T /
√

2
denotes the incident acoustic wave and us is the unknown scattered field. The incident
wave is reflected on a sound soft obstacle Ω , which is described by the Dirichlet
condition us |Γ = −ui |Γ .

The obstacle is composed of 4 cylindrical spheres with 507,904 panels and 253,960
vertices. We solve (36) for the unknown density φ with piecewise linear ansatz and
test functions. Following [22], we use the coupling parameter β = κ/2. In a second
step, we evaluate the potential (35) on a uniform discretization of a screen behind
the obstacle in order to compute the scattered wave us . Figure 5 shows the resulting
pressure field of the total wave |ui + us | for κ = 10 and κ = 40.
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