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Abstract We consider the nonstationary iterated Tikhonov regularization in Banach
spaces which defines the iterates via minimization problems with uniformly convex
penalty term. The penalty term is allowed to be non-smooth to include L1 and total
variation (TV) like penalty functionals, which are significant in reconstructing special
features of solutions such as sparsity and discontinuities in practical applications. We
present the detailed convergence analysis and obtain the regularization property when
the method is terminated by the discrepancy principle. In particular we establish the
strong convergence and the convergence in Bregman distance which sharply contrast
with the known results that only provide weak convergence for a subsequence of the
iterative solutions. Some numerical experiments on linear integral equations of first
kind and parameter identification in differential equations are reported.
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1 Introduction

We are interested in solving inverse problems which can be formulated as the operator
equation

F(x) = y, (1.1)
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where F : D(F) ⊂ X �→ Y is an operator between two Banach spaces X and Y with
domain D(F) ⊂ X ; the norms in X and Y are denoted by the same notation ‖ · ‖
that should be clear from the context. A characteristic property of inverse problems
is their ill-posedness in the sense that their solutions do not depend continuously on
the data. Due to errors in the measurements, one never has the exact data in practical
applications; instead only noisy data are available. If one uses the algorithms developed
for well-posed problems directly, it usually fails to produce any useful information
since noise could be amplified by an arbitrarily large factor. Let yδ be the only available
noisy data to y satisfying

‖yδ − y‖ ≤ δ (1.2)

with a given small noise level δ > 0. How to use yδ to produce a stable approximate
solution to (1.1) is a central topic, and regularization methods should be taken into
account.

When both X and Y are Hilbert spaces, a lot of regularization methods have been
proposed to solve inverse problems in the Hilbert space framework [4,15]. In case F :
X → Y is a bounded linear operator, nonstationary iterated Tikhonov regularization
is an attractive iterative method in which a sequence {xδ

n} of regularized solutions is
defined successively by

xδ
n := arg min

x∈X

{
1

2
‖Fx − yδ‖2 + αn

2
‖x − xδ

n−1‖2
}

,

where xδ
0 := x0 ∈ X is an initial guess and {αn} is a preassigned sequence of positive

numbers. Since {xδ
n} can be written explicitly as

xδ
n = xδ

n−1 − (αn I + F∗F)−1 F∗(Fxδ
n−1 − yδ),

where F∗ : Y → X denotes the adjoint of F : X → Y , the complete analysis of
the regularization property has been established (see [8] and references therein) when
{αn} satisfies suitable property and the discrepancy principle is used to terminate
the iteration, This method has been extended in [12,13] to solve nonlinear inverse
problems in Hilbert spaces.

Regularization methods in Hilbert spaces can produce good results when the sought
solution is smooth. However, because such methods have a tendency to over-smooth
solutions, they may not produce good results in applications where the sought solution
has special features such as sparsity or discontinuities. In order to capture the special
features, the methods in Hilbert spaces should be modified by incorporating the infor-
mation of suitable adapted penalty functionals, for which the theories in Hilbert space
setting are no longer applicable.

The nonstationary iterated Tikhonov regularization has been extended in [14] for
solving linear inverse problems in Banach spaces setting by defining xδ

n as the mini-
mizer of the convex minimization problem
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min
x∈X

{
1

r
‖Fx − yδ‖r + αnΔp(x, xδ

n−1)

}

for n ≥ 1 successively, where 1 ≤ r < ∞, 1 < p < ∞ and Δp(·, ·) denotes
the Bregman distance on X induced by the convex function x → ‖x‖p/p. When
X is uniformly smooth and uniformly convex, and when the method is terminated
by the discrepancy principle, the regularization property has been established if {αn}
satisfies

∑∞
n=1 α−1

n = ∞. The numerical simulations in [14] indicate that the method
is efficient in sparsity reconstruction when choosing X = L p with p > 1 close to
1 on one hand, and provides robust estimator in the presence of outliers in the noisy
data when choosing Y = L1 on the other hand. However, since X is required to be
uniformly smooth and uniformly convex and since Δp(·, ·) is induced by the power
of the norm in X , the result in [14] does not apply to regularization methods with L1

and total variation like penalty terms that are important for reconstructing sparsity and
discontinuities of sought solutions.

The total variation regularization was introduced in [18], its importance was recog-
nized immediately and many successive works were conducted in the last two decades.
In [16] an iterative regularization method based on Bregman distance and total varia-
tion was introduced to enhance the multi-scale nature of reconstruction. The method
solves (1.1) with F : X → Y linear and Y a Hilbert space by defining {xδ

n} in the
primal space X and {ξδ

n } in the dual space X ∗ via

xδ
n := arg min

x∈X

{
1

2
‖Fx − yδ‖2 + αn Dξδ

n−1
Θ(x, xδ

n−1)

}
,

ξ δ
n := ξδ

n−1 − 1

αn
F∗ (

Fxδ
n − yδ

)
,

(1.3)

where Θ : X → (−∞,∞] is a proper convex function, xδ
0 ∈ X is an initial guess,

ξδ
0 ∈ X ∗ is in the sub-gradient of Θ at xδ

0, and DξΘ(·, ·) denotes the Bregman
distance induced by Θ . This method was extended in [2] to solve nonlinear inverse
problems. Extensive numerical simulations were reported in [2,16] and convergence
analysis was given, with special attention to the case that X = L2(Ω) and Θ(x) =
a‖x‖2

L2 + ∫
Ω

|Dx |, where
∫
Ω

|Dx | denotes the total variation, when the iteration is
terminated by a discrepancy principle and {αn} satisfies the condition α ≤ αn ≤ α

for two positive constants α ≥ α > 0. The analysis in [2,16], however, is somewhat
preliminary since it provides only the boundedness of {Θ(xδ

nδ
)} which guarantees only

weak convergence for a subsequence of {xδ
nδ

}, where nδ denotes the stopping index
determined by the discrepancy principle. It is natural to ask if the whole sequence
converges strongly and in Bregman distance.

We point out that the method (1.3) is equivalent to the augmented Lagrangian
method introduced originally in [10,17] and developed further in various directions,
see [11] and reference therein. One may refer to [6] for some results on convergence
and convergence rates of the augmented Lagrangian method applied to linear inverse
problems in Hilbert spaces with general convex penalty term. When X and Y are
Hilbert spaces and Θ(x) = ‖x‖2, (1.3) is exactly the nonstationary iterated Tikhonov
regularization. In this paper we formulate an extension of the nonstationary iterated
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Tikhonov regularization in the spirit of (1.3) to solve (1.1) with both X and Y being
Banach spaces and present the detailed convergence analysis when the method is
terminated by the discrepancy principle. In the method we allow {αn} to vary in
various ways so that geometric decreasing sequence can be included; this makes it
possible to terminate the method in fewer iterations. Moreover, we allow the penalty
term Θ to be general uniformly convex functions on X so that the method can be used
for sparsity reconstruction and discontinuity detection. Most importantly, we obtain

xδ
nδ

→ x†, Θ(xδ
nδ

) → Θ(x†) and Dξδ
nδ

Θ(x†, xδ
nδ

) → 0

and give a characterization of the limit x†, which significantly improve the known
convergence results.

This paper is organized as follows. In Sect. 2 we give some preliminary results
on Banach spaces and convex analysis. In Sect. 3, we then formulate the method in
Banach spaces with uniformly convex penalty term for solving linear and nonlinear
inverse problems, and present the main convergence results. In Sect. 4 we first prove a
convergence result for the method when the data is given exactly; we then show that,
if the data contains noise, the method is well-defined and admits some stability prop-
erty; by combining these results we finally obtain the proof of the main convergence
theorems. Finally, in Sect. 5 we present some numerical simulations on linear integral
equations of first kind and parameter identification problems in partial differential
equations to test the performance of the method.

2 Preliminaries

Let X be a Banach space with norm ‖ · ‖. We use X ∗ to denote its dual space. Given
x ∈ X and ξ ∈ X ∗ we write 〈ξ, x〉 = ξ(x) for the duality pairing. We use “→”
and “⇀” to denote the strong convergence and weak convergence respectively. If
Y is another Banach space and A : X → Y is a bounded linear operator, we use
A∗ : Y∗ → X ∗ to denote its adjoint, i.e. 〈A∗ζ, x〉 = 〈ζ, Ax〉 for any x ∈ X and
ζ ∈ Y∗. We use N (A) = {x ∈ X : Ax = 0} to denote the null space of A and define

N (A)⊥ := {ξ ∈ X ∗ : 〈ξ, x〉 = 0 for all x ∈ N (A)}.

When X is reflexive, there holds

N (A)⊥ = R(A∗), (2.1)

where R(A∗) denotes the range space of A∗ and R(A∗) denotes the closure of R(A∗)
in X ∗.

For a convex function Θ : X → (−∞,∞], we use D(Θ) := {x ∈ X : Θ(x) <

+∞} to denote its effective domain. We call Θ proper if D(Θ) �= ∅. Given x ∈ X
we define

∂Θ(x) := {ξ ∈ X ∗ : Θ(x̄) − Θ(x) − 〈ξ, x̄ − x〉 ≥ 0 for all x̄ ∈ X }.
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Any element ξ ∈ ∂Θ(x) is called a subgradient of Θ at x . The multi-valued mapping
∂Θ : X → 2X ∗

is called the subdifferential of Θ . It could happen that ∂Θ(x) = ∅
for some x ∈ D(Θ). Let

D(∂Θ) := {x ∈ D(Θ) : ∂Θ(x) �= ∅}.

For x ∈ D(∂Θ) and ξ ∈ ∂Θ(x) we define

DξΘ(x̄, x) := Θ(x̄) − Θ(x) − 〈ξ, x̄ − x〉, ∀x̄ ∈ X

which is called the Bregman distance induced by Θ at x in the direction ξ . Clearly
DξΘ(x̄, x) ≥ 0. By straightforward calculation one can see that

DξΘ(x2, x) − DξΘ(x1, x) = Dξ1Θ(x2, x1) + 〈ξ1 − ξ, x2 − x1〉 (2.2)

for all x, x1 ∈ D(∂Θ), ξ ∈ ∂Θ(x), ξ1 ∈ ∂Θ(x1) and x2 ∈ X .
A proper convex function Θ : X → (−∞,∞] is called uniformly convex if there

is a continuous function h : [0,∞) → [0,∞), with the property that h(t) = 0 implies
t = 0, such that

Θ(λx̄ + (1 − λ)x) + λ(1 − λ)h(‖x̄ − x‖) ≤ λΘ(x̄) + (1 − λ)Θ(x) (2.3)

for all x̄, x ∈ X and λ ∈ (0, 1). If h in (2.3) can be taken as h(t) = ct p for some
c > 0 and p ≥ 2, then Θ is called p-uniformly convex. It can be shown [20, Theorem
3.5.10] that Θ is uniformly convex if and only if there is a strictly increasing continuous
function ϕ : [0,∞) → [0,∞) with ϕ(0) = 0 such that

DξΘ(x̄, x) ≥ ϕ(‖x̄ − x‖) (2.4)

for all x̄ ∈ X , x ∈ D(∂Θ) and ξ ∈ ∂Θ(x).
On a Banach space X , we consider for 1 < r < ∞ the convex function x →

‖x‖r/r . Its subdifferential at x is given by

Jr (x) := {ξ ∈ X ∗ : ‖ξ‖ = ‖x‖r−1 and 〈ξ, x〉 = ‖x‖r }

which gives the duality mapping Jr : X → 2X ∗
with gauge function t → tr−1. We

call X uniformly convex if its modulus of convexity

δX (t) := inf{2 − ‖x̄ + x‖ : ‖x̄‖ = ‖x‖ = 1, ‖x̄ − x‖ ≥ t}

satisfies δX (t) > 0 for all 0 < t ≤ 2. If there are c > 0 and r > 1 such that
δX (t) ≥ ctr for all 0 < t ≤ 2, then X is called r -uniformly convex. We call X
uniformly smooth if its modulus of smoothness

ρX (s) := sup{‖x̄ + x‖ + ‖x̄ − x‖ − 2 : ‖x̄‖ = 1, ‖x‖ ≤ s}
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satisfies lims↘0
ρX (s)

s = 0. One can refer to [1,3] for many examples of Banach
spaces, including the sequence spaces lr , the Lebesgue spaces Lr , the Sobolev spaces
W k,r and the Besov spaces Bs,r with 1 < r < ∞, that are both uniformly convex and
uniformly smooth.

It is well known that any uniformly convex or uniformly smooth Banach space is
reflexive. On a uniformly smooth Banach space X , every duality mapping Jr with
1 < r < ∞ is single valued and uniformly continuous on bounded sets; for each
1 < r < ∞ we use

Δr (x̄, x) = 1

r
‖x̄‖r − 1

r
‖x‖r − 〈Jr (x), x̄ − x〉, ∀x̄, x ∈ X

to denote the Bregman distance induced by the convex function Θ(x) = ‖x‖r/r .
Furthermore, on a uniformly convex Banach space, any sequence {xn} satisfying

xn ⇀ x and ‖xn‖ → ‖x‖ must satisfy xn → x as n → ∞. This property can be easily
generalized for uniformly convex functions which we state in the following result.

Lemma 2.1 Let Θ : X → (−∞,∞] be a proper, weakly lower semi-continuous, and
uniformly convex function. Then Θ admits the Kadec property, i.e. for any sequence
{xn} ⊂ X satisfying xn ⇀ x ∈ X and Θ(xn) → Θ(x) < ∞ there holds xn → x as
n → ∞.

Proof Assume the result is not true. Then, by taking a subsequence if necessary, there
is an ε > 0 such that ‖xn − x‖ ≥ ε for all n. In view of the uniform convexity of
Θ , there is a γ > 0 such that Θ((xn + x)/2) ≤ (Θ(xn) + Θ(x))/2 − γ. Using
Θ(xn) → Θ(x) we then obtain

lim sup
n→∞

Θ

(
xn + x

2

)
≤ Θ(x) − γ.

On the other hand, observing that (xn + x)/2 ⇀ x , we have from the weak lower
semi-continuity of Θ that

Θ(x) ≤ lim inf
n→∞ Θ

(
xn + x

2

)
.

Therefore Θ(x) ≤ Θ(x) − γ , which is a contradiction. ��
In many practical applications, proper, weakly lower semi-continuous, uniformly

convex functions can be easily constructed. For instance, consider X = L p(Ω),
where 2 ≤ p < ∞ and Ω is a bounded domain in R

d . It is known that the functional
Θ0(x) := ∫

Ω
|x(ω)|pdω is uniformly convex on L p(Ω) (it is in fact p-uniformly

convex). Consequently we obtain on L p(Ω) the uniformly convex functions

Θ(x) := μ

∫
Ω

|x(ω)|pdω + a
∫
Ω

|x(ω)|dω + b
∫
Ω

|Dx |, (2.5)
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where μ > 0, a, b ≥ 0, and
∫
Ω

|Dx | denotes the total variation of x over Ω that is
defined by [7]

∫
Ω

|Dx | := sup

⎧⎨
⎩

∫
Ω

x div f dω : f ∈ C1
0(Ω; R

N ) and ‖ f ‖L∞(Ω) ≤ 1

⎫⎬
⎭ .

For a = 1 and b = 0 the corresponding function is useful for sparsity reconstruction
[19]; while for a = 0 and b = 1 the corresponding function is useful for detecting the
discontinuities, in particular, when the solutions are piecewise-constant [18].

3 The method and main results

We now return to (1.1), where F : X → Y is an operator between two Banach spaces
X and Y . We will always assume that X is reflexive, Y is uniformly smooth, and
(1.1) has a solution. In general, Eq. (1.1) may have many solutions. In order to find
the desired one, some selection criteria should be enforced. Choosing a proper convex
function Θ , we pick x0 ∈ D(∂Θ) and ξ0 ∈ ∂Θ(x0) as the initial guess, which may
incorporate some available information on the sought solution. We define x† to be the
solution of (1.1) with the property

Dξ0Θ(x†, x0) := min
x∈D(Θ)∩D(F)

{Dξ0Θ(x, x0) : F(x) = y}. (3.1)

We will work under the following conditions on the convex function Θ and the
operator F .

Assumption 3.1 Θ is a proper, weakly lower semi-continuous and uniformly convex
function such that (2.4) holds, i.e. there is a strictly increasing continuous function
ϕ : [0,∞) → [0,∞) with ϕ(0) = 0 such that

DξΘ(x̄, x) ≥ ϕ(‖x̄ − x‖)

for x̄ ∈ X , x ∈ D(∂Θ) and ξ ∈ ∂Θ(x).

Assumption 3.2 (a) D(F) is convex, and F is weakly closed, i.e. for any sequence
{xn} ⊂ D(F) satisfying xn ⇀ x ∈ X and F(xn) ⇀ v ∈ Y there hold x ∈ D(F)

and F(x) = v;
(b) There is ρ > 0 such that (1.1) has a solution in Bρ(x0) ∩ D(F) ∩ D(Θ), where

Bρ(x0) := {x ∈ X : ‖x − x0‖ ≤ ρ};
(c) F is Fréchet differentiable on D(F), and x → F ′(x) is continuous on D(F),

where F ′(x) denotes the Fréchet derivative of F at x ;
(d) There exists 0 ≤ η < 1 such that

‖F(x̄) − F(x) − F ′(x)(x̄ − x)‖ ≤ η‖F(x̄) − F(x)‖

for all x̄, x ∈ B3ρ(x0) ∩ D(F).
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When X is a reflexive Banach space, by using the weakly closedness of F and the
weakly lower semi-continuity and uniformly convexity of Θ it is standard to show
that x† exists. The following result shows that x† is in fact uniquely defined.

Lemma 3.1 Let X be reflexive, Θ satisfy Assumption 3.1, and F satisfy Assump-
tion 3.2. If x† is a solution of F(x) = y satisfying (3.1) with

Dξ0Θ(x†, x0) ≤ ϕ(ρ), (3.2)

then x† is uniquely defined.

Proof Assume that (1.1) has two distinct solutions x̂ and x† satisfying (3.1). Then it
follows from (3.2) that

Dξ0Θ(x̂, x0) = Dξ0Θ(x†, x0) ≤ ϕ(ρ).

By using Assumption 3.1 on Θ we obtain ‖x̂ − x0‖ ≤ ρ and ‖x† − x0‖ ≤ ρ. Since
F(x̂) = F(x†), we can use Assumption 3.2 (d) to derive that F ′(x†)(x̂ − x†) = 0.
Let xλ = λx̂ + (1 − λ)x† for 0 < λ < 1. Then xλ ∈ Bρ(x0) ∩ D(Θ) ∩ D(F) and
F ′(x†)(xλ − x†) = 0. Thus we can use Assumption 3.2 (d) to conclude that

‖F(xλ) − F(x†)‖ ≤ η‖F(xλ) − F(x†)‖.

Since 0 ≤ η < 1, this implies that F(xλ) = F(x†) = y. Consequently, by the minimal
property of x† we have

Dξ0Θ(xλ, x0) ≥ Dξ0Θ(x†, x0). (3.3)

On the other hand, it follows from the strict convexity of Θ that

Dξ0Θ(xλ, x0) < λDξ0Θ(x̂, x0) + (1 − λ)Dξ0Θ(x†, x0) = Dξ0Θ(x†, x0)

for 0 < λ < 1 which is a contradiction to (3.3). ��
We are now ready to formulate the nonstationary iterated Tikhonov regularization

with penalty term induced by the uniformly convex function Θ . For the initial guess
xδ

0 := x0 ∈ D(∂Θ) ∩ D(F) and ξδ
0 := ξ0 ∈ ∂Θ(x0), we take a sequence of positive

numbers {αn} and define the iterative sequences {xδ
n} and {ξδ

n } successively by

xδ
n ∈ arg min

x∈D(F)

{
1

r
‖F(x) − yδ‖r + αn Dξδ

n−1
Θ(x, xδ

n−1)

}
,

ξ δ
n = ξδ

n−1 − 1

αn
F ′ (xδ

n

)∗
Jr

(
F(xδ

n) − yδ
) (3.4)

for n ≥ 1, where 1 < r < ∞ and Jr : Y → Y∗ denotes the duality mapping of Y
with gauge function t → tr−1 which is single-valued and continuous because Y is
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assumed to be uniformly smooth. At each step, the existence of xδ
n is guaranteed by

the reflexivity of X and Y , the weakly lower semi-continuity and uniformly convexity
of Θ , and the weakly closedness of F . However, xδ

n might not be unique when F is
nonlinear; we will take xδ

n to be any one of the minimizers. In view of the minimality
of xδ

n , we have ξδ
n ∈ ∂Θ(xδ

n). From the definition of xδ
n , it is straightforward to see that

‖F(xδ
n) − yδ‖ ≤ ‖F(xδ

n−1) − yδ‖, n = 1, 2, . . . . (3.5)

We will terminate the iteration by the discrepancy principle

‖F(xδ
nδ

) − yδ‖ ≤ τδ < ‖F(xδ
n) − yδ‖, 0 ≤ n < nδ (3.6)

with a given constant τ > 1. The output xδ
nδ

will be used to approximate a solution of
(1.1).

In order to understand the convergence property of xδ
nδ

, it is necessary to consider
the noise-free iterative sequences {xn} and {ξn}, where each xn and ξn with n ≥ 1 are
defined by (3.4) with yδ replaced by y, i.e.,

xn ∈ arg min
x∈D(F)

{
1

r
‖F(x) − y‖r + αn Dξn−1Θ(x, xn−1)

}
,

ξn = ξn−1 − 1

αn
F ′(xn)∗ Jr (F(xn) − y) ∈ ∂Θ(xn).

(3.7)

In Sect. 4.1 we will give a detailed convergence analysis on {xn}; in particular, we
will show that {xn} strongly converges to a solution of (1.1). In order to connect such
result with the convergence property of xδ

nδ
, we will make the following assumption.

Assumption 3.3 xn is uniquely defined for each n.

We will give some sufficient condition for the validity of Assumption 3.3. This
assumption enables us to establish some stability results connecting xδ

n and xn so that
we can finally obtain the convergence property of xδ

nδ
in the following result.

Theorem 3.1 Let X be reflexive and Y be uniformly smooth, let Θ satisfy Assump-
tion 3.1, and let F satisfy Assumptions 3.2 and 3.3. Assume that 1 < r < ∞, τ > (1+
η)/(1−η) and that {αn} is a sequence of positive numbers satisfying

∑∞
n=1 α−1

n = ∞
and αn ≤ c0αn+1 for all n with some constant c0 > 0. Assume further that

Dξ0Θ(x†, x0) ≤ τ r − 1

τ r − 1 + c0
ϕ(ρ). (3.8)

Then, the discrepancy principle (3.6) terminates the method (3.4) after nδ < ∞ steps.
Moreover, there is a solution x∗ ∈ D(Θ) of (1.1) such that

xδ
nδ

→ x∗, Θ(xδ
nδ

) → Θ(x∗) and Dξδ
nδ

Θ(x∗, xδ
nδ

) → 0 (3.9)

as δ → 0. If, in addition, N (F ′(x†)) ⊂ N (F ′(x)) for all x ∈ B3ρ(x0) ∩ D(F), then
x∗ = x†.
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In this result, the closeness condition (3.8) is used to guarantee that xδ
n is in B3ρ(x0)

for 0 ≤ n ≤ nδ so that Assumption 3.2 (d) can be applied. This issue does not appear
when F : X → Y is a bounded linear operator. Furthermore, Assumption 3.3 holds
automatically for linear problems when Θ is strictly convex. Consequently, we have
the following convergence result for linear inverse problems.

Theorem 3.2 Let F : X → Y be a bounded linear operator with X being reflexive
and Y being uniformly smooth, let Θ be proper, weakly lower semi-continuous, and
uniformly convex, let 1 < r < ∞, and let {αn} be such that

∑∞
n=1 α−1

n = ∞ and
αn ≤ c0αn+1 for all n with c0 > 0. Then, the discrepancy principle (3.6) with τ > 1
terminates the method after nδ < ∞ steps. Moreover, there hold

xδ
nδ

→ x†, Θ(xδ
nδ

) → Θ(x†) and Dξδ
nδ

Θ(x†, xδ
nδ

) → 0

as δ → 0.

In the next section, we will give the detailed proof of Theorem 3.1. It should be
pointed out that the convergence xδ

nδ
→ x∗ does not imply Θ(xδ

nδ
) → Θ(x∗) directly

since Θ is not necessarily continuous. The proof of Θ(xδ
nδ

) → Θ(x∗) relies on
additional observations.

When applying our convergence result to the situation that X = L2(Ω) and Θ(x) =
μ

∫
Ω

|x(ω)|2dω + ∫
Ω

|Dx | with μ > 0, we can obtain

‖xδ
nδ

− x†‖L2(Ω) → 0 and
∫
Ω

|Dxδ
nδ

| →
∫
Ω

|Dx | as δ → 0.

This significantly improves the result in [2] in which only the boundedness of Θ(xδ
nδ

)

was derived and hence only weak convergence for a subsequence of {xδ
nδ

} can be
guaranteed.

We conclude this section with some sufficient condition to guarantee the validity
of Assumption 3.3.

Assumption 3.4 There exist C0 ≥ 0 and 1/r ≤ κ < 1 such that

‖F(x̄) − F(x) − F ′(x)(x̄ − x)‖ ≤ C0[DξΘ(x̄, x)]1−κ [Δr (F(x̄) − y, F(x) − y)]κ

for all x̄, x ∈ B3ρ(x0) ∩ D(Θ) ∩ D(F) with x ∈ D(∂Θ) and ξ ∈ ∂Θ(x), where
Δr (·, ·) denotes the Bregman distance on Y induced by the convex function ‖y‖r/r .

When Y is a r -uniformly convex Banach space, Θ is a p-uniformly convex function
on X with p ≥ 2, and 1/p + 1/r ≤ 1, Assumption 3.4 holds with κ = 1 − 1/p if
there is a constant C1 ≥ 0 such that

‖F(x̄) − F(x) − F ′(x)(x̄ − x)‖ ≤ C1‖x̄ − x‖‖F(x̄) − F(x)‖ (3.10)

for x̄, x ∈ B3ρ(x0) ∩ D(F), which is a slightly strengthened version of Assump-
tion 3.2 (d).
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Lemma 3.2 Let X be reflexive and Y be uniformly smooth, let 1 < r < ∞, let Θ

satisfy Assumption 3.1, let F satisfy Assumptions 3.2 and 3.4, and let {αn} satisfy∑∞
n=1 α−1

n = ∞. Assume that

Dξ0Θ(x†, x0) ≤ ϕ(ρ) and C̄0[Dξ0Θ(x†, x0)]1− 1
r < 1 (3.11)

with C̄0 := C0κ
κ(1 − κ)1−κ(1 − η)

1−r
r α

κ− 1
r

1 . Then Assumption 3.3 holds, i.e. xn is
uniquely defined for each n.

We will prove Lemma 3.2 at the end of Sect. 4.1 by using some useful estimates
that will be derived during the proof of the convergence of {xn}.

4 Convergence analysis

We prove Theorem 3.1 in this section. We first obtain a convergence result for the
noise-free iterative sequences {xn} and {ξn}. We then consider the sequences {xδ

n} and
{ξδ

n } corresponding to the noisy data case, and show that the discrepancy principle
indeed terminates the iteration in finite steps. We further establish a stability result
which in particular implies that xδ

n → xn as δ → 0 for each fixed n. Combining all
these results we finally obtain the proof of Theorem 3.1.

4.1 Convergence result for noise-free case

We first consider the noise-free iterative sequences {xn} and {ξn} defined by (3.7)
and obtain a convergence result that is crucial for proving Theorem 3.1. Our proof is
inspired by [9,14].

Theorem 4.1 Let X be reflexive and Y be uniformly smooth, let 1 < r < ∞, let Θ

satisfy Assumption 3.1, let F satisfy Assumption 3.2, and let {αn} satisfy
∑∞

n=1 α−1
n =

∞. Assume that

Dξ0Θ(x†, x0) ≤ ϕ(ρ). (4.1)

Then there exists a solution x∗ of (1.1) in B3ρ(x0) ∩ D(Θ) such that

lim
n→∞ ‖xn − x∗‖ = 0, lim

n→∞ Θ(xn) = Θ(x∗) and lim
n→∞ Dξn Θ(x∗, xn) = 0.

If in addition N (F ′(x†)) ⊂ N (F ′(x)) for all x ∈ B3ρ(x0) ∩ D(F), then x∗ = x†.

Proof We first show by induction that for any solution x̂ of (1.1) in B3ρ(x0) ∩ D(Θ)

there holds

Dξn Θ(x̂, xn) ≤ Dξ0Θ(x̂, x0), n = 0, 1, . . . . (4.2)
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This is trivial for n = 0. Assume that it is true for n = m − 1 for some m ≥ 1, we will
show that it is also true for n = m. From (2.2) we have

Dξm Θ(x̂, xm) − Dξm−1Θ(x̂, xm−1) = −Dξm−1Θ(xm, xm−1) + 〈ξm−1 − ξm, x̂ − xm〉.

By dropping the first term on the right which is non-positive and using the definition
of ξm we can obtain

Dξm Θ(x̂, xm) − Dξm−1 Θ(x̂, xm−1) ≤ 1

αm
〈Jr (F(xm) − y), F ′(xm)(x̂ − xm)〉.

In view of the properties of the duality mapping Jr it follows that

Dξm Θ(x̂, xm) − Dξm−1Θ(x̂, xm−1)

≤ − 1

αm
‖F(xm)−y‖r + 1

αm
‖F(xm)−y‖r−1‖F(xm)−y + F ′(xm)(x̂ − xm)‖.

(4.3)

In order to proceed further, we need to show that xm ∈ B3ρ(x0) so that Assumption 3.2
(d) on F can be employed. Using the minimizing property of xm , the induction hypoth-
esis, and (4.1) we obtain

Dξm−1Θ(xm, xm−1) ≤ Dξm−1Θ(x†, xm−1) ≤ Dξ0Θ(x†, x0) ≤ ϕ(ρ).

With the help of Assumption 3.1 on Θ , we have

‖xm − xm−1‖ ≤ ρ, ‖x† − xm−1‖ ≤ ρ and ‖x† − x0‖ ≤ ρ.

Therefore xm ∈ B3ρ(x0). Thus we may use Assumption 3.2 (d) to obtain from (4.3)
that

Dξm Θ(x̂, xm) − Dξm−1Θ(x̂, xm−1) ≤ −1 − η

αm
‖F(xm) − y‖r . (4.4)

This and the induction hypothesis imply (4.2) with n = m.
As an immediate consequence of (4.2), we know that (4.4) is true for all m. Con-

sequently

Dξn Θ(x̂, xn) ≤ Dξn−1Θ(x̂, xn−1), n = 1, 2, . . . (4.5)

and

1 − η

αn
‖F(xn) − y‖r ≤ Dξn−1Θ(x̂, xn−1) − Dξn Θ(x̂, xn). (4.6)
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By using the monotonicity of ‖F(xn) − y‖ with respect to n, we obtain

‖F(xn) − y‖r
n∑

j=1

1

α j
≤

n∑
j=1

1

α j
‖F(x j ) − y‖r ≤ 1

1 − η
Dξ0Θ(x̂, x0).

Since
∑n

j=1 α−1
j → ∞ as n → ∞, we have ‖F(xn) − y‖ → 0 as n → ∞.

Next we show that {xn} converges to a solution of (1.1). To this end, we show that
{xn} is a Cauchy sequence in X . For 0 ≤ l < m < ∞ we have from (2.2) that

Dξl Θ(xm, xl) = Dξl Θ(x̂, xl) − Dξm Θ(x̂, xm) + 〈ξm − ξl , xm − x̂〉.

By the definition of ξn we have

|〈ξm − ξl , xm − x̂〉| =
∣∣∣∣∣

m∑
n=l+1

〈ξn − ξn−1, xm − x̂〉
∣∣∣∣∣

=
∣∣∣∣∣

m∑
n=l+1

1

αn
〈Jr (F(xn) − y), F ′(xn)(xm − x̂)〉

∣∣∣∣∣
≤

m∑
n=l+1

1

αn
‖F(xn) − y‖r−1‖F ′(xn)(xm − x̂)‖. (4.7)

By using Assumption 3.2 (d) on F and the monotonicity of ‖F(xn)− y‖ we can obtain

‖F ′(xn)(xm − x̂)‖ ≤ ‖F ′(xn)(xn − x̂)‖ + ‖F ′(xn)(xm − xn)‖
≤ (1 + η)(‖F(xn) − y‖ + ‖F(xm) − F(xn)‖)
≤ 3(1 + η)‖F(xn) − y‖. (4.8)

Therefore, by using (4.6), we have with c0 := 3(1 + η)/(1 − η) that

|〈ξm − ξl , xm − x̂〉| ≤ 3(1 + η)

m∑
n=l+1

1

αn
‖F(xn) − y‖r

≤ c0(Dξl Θ(x̂, xl) − Dξm Θ(x̂, xm)). (4.9)

Consequently

Dξl Θ(xm, xl) ≤ (1 + c0)(Dξl Θ(x̂, xl) − Dξm Θ(x̂, xm)).

Since {Dξn Θ(x̂, xn)} is monotonically decreasing, we obtain Dξl Θ(xm, xl) → 0 as
l, m → ∞. In view of the uniform convexity of Θ , we can conclude that {xn} is
a Cauchy sequence in X . Thus xn → x∗ for some x∗ ∈ X as n → ∞. Since
‖F(xn) − y‖ → 0 as n → ∞, we may use the weak closedness of F to conclude that
x∗ ∈ D(F) and F(x∗) = y. We remark that x∗ ∈ B3ρ(x0) because xn ∈ B3ρ(x0).
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Next we show that

x∗ ∈ D(Θ), lim
n→∞ Θ(xn) = Θ(x∗) and lim

n→∞ Dξn Θ(x∗, xn) = 0.

From the convexity of Θ and ξn ∈ ∂Θ(xn) it follows that

Θ(xn) ≤ Θ(x̂) + 〈ξn, xn − x̂〉. (4.10)

In view of (4.9) we have

Θ(xn) ≤ Θ(x̂) + 〈ξ0, xn − x̂〉 + c0 Dξ0Θ(x̂, x0).

Since xn → x∗ as n → ∞, by using the weak lower semi-continuity of Θ we obtain

Θ(x∗) ≤ lim inf
n→∞ Θ(xn) ≤ Θ(x̂) + 〈ξ0, x∗ − x̂〉 + c0 Dξ0Θ(x̂, x0) < ∞. (4.11)

This implies that x∗ ∈ D(Θ). We next use (4.9) to derive for l < n that

|〈ξn, xn − x∗〉| ≤ c0(Dξl Θ(x∗, xl) − Dξn Θ(x∗, xn)) + |〈ξl , xn − x∗〉|.

By taking n → ∞ and using xn → x∗ we can derive that

lim sup
n→∞

|〈ξn, xn − x∗〉| ≤ c0(Dξl Θ(x∗, xl) − ε0),

where ε0 := limn→∞ Dξn Θ(x∗, xn) whose existence is guaranteed by the monotonic-
ity of {Dξn Θ(x∗, xn)}. Since the above inequality holds for all l, by taking l → ∞ we
obtain

lim sup
n→∞

|〈ξn, xn − x∗〉| ≤ c0(ε0 − ε0) = 0. (4.12)

Using (4.10) with x̂ replaced by x∗ we thus obtain lim supn→∞ Θ(xn) ≤ Θ(x∗). Com-
bining this with (4.11) we therefore obtain limn→∞ Θ(xn) = Θ(x∗). This together
with (4.12) then implies that limn→∞ Dξn Θ(x∗, xn) = 0.

Finally we prove x∗ = x† under the additional condition N (F ′(x†)) ⊂ N (F ′(x))

for x ∈ B3ρ(x0) ∩ D(F). We use (4.10) with x̂ replaced by x† to obtain

Dξ0Θ(xn, x0) ≤ Dξ0Θ(x†, x0) + 〈ξn − ξ0, xn − x†〉. (4.13)

By using (4.9), for any ε > 0 we can find l0 such that

|〈ξn − ξl0 , xn − x†〉| <
ε

2
, n ≥ l0.

We next consider 〈ξl0 − ξ0, xn − x†〉. According to the definition of ξn we have
ξ j − ξ j−1 ∈ R(F ′(x j )

∗). Since X is reflexive and N (F ′(x†)) ⊂ N (F ′(x j )), we have
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from (2.1) that R(F ′(x j )∗) ⊂ R(F ′(x†)∗). Thus we can find v j ∈ Y∗ and β j ∈ X ∗
such that

ξ j − ξ j−1 = F ′(x†)∗v j + β j and ‖β j‖ ≤ ε

3l0 M
, 1 ≤ j ≤ l0,

where M > 0 is a constant such that ‖xn − x†‖ ≤ M for all n. Consequently

|〈ξl0 − ξ0, xn − x†〉| =
∣∣∣∣∣∣

l0∑
j=1

〈ξ j − ξ j−1, xn − x†〉
∣∣∣∣∣∣

=
∣∣∣∣∣∣

l0∑
j=1

[〈v j , F ′(x†)(xn − x†)〉 + 〈β j , xn − x†〉]
∣∣∣∣∣∣

≤
l0∑

j=1

(
‖v j‖‖F ′(x†)(xn − x†)‖ + ‖β j‖‖xn − x†‖

)

≤ (1 + η)

l0∑
j=1

‖v j‖‖F(xn) − y‖ + ε

3
.

Since ‖F(xn) − y‖ → 0 as n → ∞, we can find n0 ≥ l0 such that

|〈ξl0 − ξ0, xn − x†〉| <
ε

2
, ∀n ≥ n0.

Therefore |〈ξn − ξ0, xn − x†〉| < ε for all n ≥ n0. Since ε > 0 is arbitrary, we obtain
limn→∞〈ξn−ξ0, xn−x†〉 = 0. By taking n → ∞ in (4.13) and using Θ(xn) → Θ(x∗)
we obtain

Dξ0Θ(x∗, x0) ≤ Dξ0Θ(x†, x0).

According to the definition of x† we must have Dξ0Θ(x∗, x0) = Dξ0Θ(x†, x0). A
direct application of Lemma 3.1 gives x∗ = x†. ��

As a byproduct, now we can use some estimates established in the proof of Theo-
rem 4.1 to prove Lemma 3.2.

Proof of Lemma 3.2 We assume that the minimization problem in (3.7) has two min-
imizers xn and x̂n . Then it follows that

0 = 1

r
‖F(x̂n) − y‖r + αn Dξn−1Θ(x̂n, xn−1) − 1

r
‖F(xn) − y‖r

−αn Dξn−1Θ(xn, xn−1)

= Δr (F(x̂n) − y, F(xn) − y) + 〈Jr (F(xn) − y), F(x̂n) − F(xn)〉
+αn(Θ(x̂n) − Θ(xn) − 〈ξn−1, x̂n − xn〉).
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With the help of the definition of ξn we can write

Θ(x̂n) − Θ(xn) − 〈ξn−1, x̂n − xn〉
= Θ(x̂n) − Θ(xn) − 〈ξn, x̂n − xn〉 + 〈ξn − ξn−1, x̂n − xn〉
= Dξn Θ(x̂n, xn) − 1

αn
〈Jr (F(xn) − y), F ′(xn)(x̂n − xn)〉.

Therefore

0 = Δr (F(x̂n) − y, F(xn) − y) + αn Dξn Θ(x̂n, xn)

+〈Jr (F(xn) − y), F(x̂n) − F(xn) − F ′(xn)(x̂n − xn)〉.

Since xn, x̂n ∈ B3ρ(x0) as shown in the proof of Theorem 4.1, we may use Assump-
tion 3.4 and the Young’s inequality to obtain

0 ≥ Δr (F(x̂n) − y, F(xn) − y) + αn Dξn Θ(x̂n, xn)

− C0‖F(xn) − y‖r−1[Dξn Θ(x̂n, xn)]1−κ [Δr (F(x̂n) − y, F(xn) − y)]κ

≥ αn Dξn Θ(x̂n, xn) − (1 − κ)κ
κ

1−κ C
1

1−κ

0 ‖F(xn) − y‖ r−1
1−κ Dξn Θ(x̂n, xn).

Recall that in the proof of Theorem 4.1 we have established

‖F(xn) − y‖r ≤ 1

1 − η
s−1

n Dξ0Θ(x†, x0) with sn :=
n∑

j=1

α−1
j .

Since s−1
n ≤ min{α1, αn} and κ ≥ 1/r , we therefore obtain

0 ≥
(

1 − C̄
1

1−κ

0 Dξ0Θ(x†, x0)
r−1

r(1−κ)

)
αn Dξn Θ(x̂n, xn)

with C̄0 := C0κ
κ(1 − κ)1−κ(1 − η)

1−r
r α

κ− 1
r

1 . Thus we may use the second condition
in (3.11) to conclude that Dξn Θ(x̂n, xn) = 0 and hence x̂n = xn . ��

4.2 Justification of the method

In this subsection we show that the method is well-defined, in particular we prove that,
when the data contains noise, the discrepancy principle (3.6) terminates the iteration
in finite steps, i.e. nδ < ∞.

Lemma 4.1 Let X be reflexive and Y be uniformly smooth, let Θ satisfy Assump-
tion 3.1, and let F satisfy Assumption 3.2. Let 1 < r < ∞ and τ > (1 + η)/(1 − η),
and let {αn} be such that

∑∞
n=1 α−1

n = ∞. Assume that (4.1) holds.
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Then the discrepancy principle (3.6) terminates the iteration after nδ < ∞ steps.
If nδ ≥ 2, then for 1 ≤ n < nδ there hold

Dξδ
n
Θ(x̂, xδ

n) ≤ Dξδ
n−1

Θ(x̂, xδ
n−1), (4.14)

1

αn
‖F(xδ

n) − yδ‖r ≤ C1

(
Dξδ

n−1
Θ(x̂, xδ

n−1) − Dξδ
n
Θ(x̂, xδ

n)
)

. (4.15)

If, in addition, αn ≤ c0αn+1 for all n with some constant c0 > 0 and

Dξ0Θ(x†, x0) ≤ τ r − 1

τ r − 1 + c0
ϕ(ρ), (4.16)

then there holds

Dξδ
nδ

Θ(x̂, xδ
nδ

) ≤ Dξδ
nδ−1

Θ(x̂, xδ
nδ−1) + (1 + η)τ r−1 δr

αnδ

, (4.17)

where C1 := τ/[(1 − η)τ − 1 − η] and x̂ denotes any solution of (1.1) in
B3ρ(x0) ∩ D(Θ).

Proof To prove the first part, we first show by induction that

xδ
n ∈ B2ρ(x0) and Dξδ

n
Θ(x†, xδ

n) ≤ Dξ0Θ(x†, x0), 0 ≤ n < nδ. (4.18)

This is trivial for n = 0. Next we assume that (4.18) is true for n = m − 1 for some
m < nδ and show that (4.18) is also true for n = m. By the minimizing property of
xδ

m and the induction hypothesis we have

1

r
‖F(xδ

m) − yδ‖r + αm Dξδ
m−1

Θ(xδ
m, xδ

m−1) ≤ 1

r
δr + αm Dξδ

m−1
Θ(x†, xδ

m−1)

≤ 1

r
δr + αm Dξ0Θ(x†, x0). (4.19)

Since ‖F(xδ
m) − yδ‖ > τδ, we can obtain

τ r

r
δr + αm Dξδ

m−1
Θ(xδ

m, xδ
m−1) ≤ 1

r
δr + αm Dξ0Θ(x†, x0).

Because τ > 1, this implies that

αm ≥ (τ r − 1)δr

r Dξ0Θ(x†, x0)
and Dξδ

m−1
Θ(xδ

m, xδ
m−1) ≤ Dξ0Θ(x†, x0). (4.20)

By Assumption 3.1 and the condition (4.1), we can derive that ‖xδ
m − xδ

m−1‖ ≤ ρ. In
view of the induction hypothesis we also have ‖xδ

m−1−x0‖ ≤ 2ρ. Thus xδ
m ∈ B3ρ(x0).
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We are now able to use Assumption 3.2 (d) and the similar argument for deriving
(4.3) to obtain that

Dξδ
m
Θ(x̂, xδ

m) − Dξδ
m−1

Θ(x̂, xδ
m−1)

≤ 〈ξδ
m − ξδ

m−1, xδ
m − x̂〉 = − 1

αm
〈Jr (F(xδ

m) − yδ), F ′(xδ
m)(xδ

m − x̂)〉

≤ − 1

αm
‖F(xδ

m) − yδ‖r + 1

αm
‖F(xδ

m) − yδ‖r−1(δ + η‖F(xδ
m) − y‖)

≤ −1 − η

αm
‖F(xδ

m) − yδ‖r + 1 + η

αm
‖F(xδ

m) − yδ‖r−1δ. (4.21)

Using again ‖F(xδ
m) − yδ‖ > τδ, we can conclude that

Dξδ
m
Θ(x̂, xδ

m)−Dξδ
m−1

Θ(x̂, xδ
m−1)≤− 1

αm

(
1−η− 1 + η

τ

)
‖F(xδ

m)−yδ‖r .

(4.22)

Since τ > (1 + η)/(1 − η), we obtain

Dξδ
m
Θ(x̂, xδ

m) ≤ Dξδ
m−1

Θ(x̂, xδ
m−1).

In view of this inequality with x̂ = x† and the induction hypothesis, we obtain the
second result in (4.18) with n = m. By using again Assumption 3.1 and (4.1) we have
‖xδ

m − x†‖ ≤ ρ and ‖x† − x0‖ ≤ ρ which imply that xδ
m ∈ B2ρ(x0). We therefore

complete the proof of (4.18). As a direct consequence, we can see that (4.22) holds
for all 1 ≤ m < nδ which implies (4.14) and (4.15).

In view of (4.15) and the monotonicity (3.5) of ‖F(xδ
n) − yδ‖ with respect to n, it

follows that

‖F(xδ
n) − yδ‖r

n∑
j=1

1

α j
≤

n∑
j=1

1

α j
‖F(xδ

j ) − yδ‖r ≤ τ

(1 − η)τ − 1 − η
Dξ0Θ(x̂, x0).

Since ‖F(xδ
n) − yδ‖ > τδ for 1 ≤ n < nδ and

∑n
j=1 α−1

j → ∞ as n → ∞, we can
conclude that nδ is a finite integer.

Finally we prove the second part, i.e. the inequality (4.17). Since (4.19) is true for
m = nδ , we have

Dξδ
nδ−1

Θ
(
xδ

nδ
, xδ

nδ−1

) ≤ δr

rαnδ

+ Dξ0Θ(x†, x0).

Recall from (4.20) that αnδ−1 ≥ (τ r − 1)δr/(r Dξ0Θ(x†, x0)). Since αnδ−1 ≤ c0αnδ ,
we can derive that

Dξδ
nδ−1

Θ
(
xδ

nδ
, xδ

nδ−1

) ≤ τ r − 1 + c0

τ r − 1
Dξ0Θ(x†, x0).
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It then follows from Assumption 3.1 and (4.16) that ‖xδ
nδ

−xδ
nδ−1‖ ≤ ρ. Since xδ

nδ−1 ∈
B2ρ(x0) we obtain xδ

nδ
∈ B3ρ(x0). Thus we can employ Assumption 3.2 (d) to conclude

that (4.21) is also true for m = nδ . By setting m = nδ in (4.21) and using ‖F(xδ
nδ

) −
yδ‖ ≤ τδ, we can obtain (4.17). ��

As a byproduct of the proof of Lemma 4.1, we have the following result which will
be used to show limδ→0 Θ(xδ

nδ
) = Θ(x∗) in the proof of Theorem 3.1.

Lemma 4.2 Let all the conditions in Lemma 4.1 hold, and let x̂ be any solution of
(1.1) in B3ρ(x0) ∩ D(Θ). Then for all 0 ≤ l < nδ there holds

|〈ξδ
nδ

− ξδ
l , x̂ − xδ

nδ
〉| ≤ C2

δr

αnδ

+ C3 Dξδ
l
Θ(x̂, xδ

l ), (4.23)

where C2 := 3(1 + η)τ r−1(1 + τ) and C3 := 3(1 + η)(1 + τ)/[(1 − η)τ − 1 − η].

Proof By the definition of ξδ
n and the property of the duality mapping Jr , we can

obtain, using the similar argument for deriving (4.7), that

|〈ξδ
nδ

− ξδ
l , x̂ − xδ

nδ
〉| ≤

nδ∑
n=l+1

1

αn
‖F(xδ

n) − yδ‖r−1‖F ′(xδ
n)(x̂ − xδ

nδ
)‖.

With the help of Assumption 3.2 (d) and the monotonicity (3.5) of ‖F(xδ
n)− yδ‖ with

respect to n, similar to the derivation of (4.8) we have for n ≤ nδ that

‖F ′(xδ
n)(x̂ − xδ

nδ
)‖ ≤ 3(1 + η)(‖F(xδ

n) − yδ‖ + δ).

Therefore

|〈ξδ
nδ

− ξδ
l , x̂ − xδ

nδ
〉| ≤ 3(1 + η)

nδ∑
n=l+1

1

αn
‖F(xδ

n) − yδ‖r−1(‖F(xδ
n) − yδ‖ + δ).

Since ‖F(xδ
nδ

) − yδ‖ ≤ τδ and ‖F(xδ
n) − yδ‖ > τδ for 0 ≤ n < nδ , we thus obtain

|〈ξδ
nδ

− ξδ
l , x̂ − xδ

nδ
〉|

≤ 3(1 + η)τ r−1(1 + τ)
δr

αnδ

+ 3(1 + η)(1 + τ)

τ

nδ−1∑
n=l+1

1

αn
‖F(xδ

n) − yδ‖r .

(4.24)

In view of (4.15) in Lemma 4.1, we can see that
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nδ−1∑
n=l+1

1

αn
‖F(xδ

n) − yδ‖r ≤ τ

(1 − η)τ − 1 − η
Dξδ

l
Θ(x̂, xδ

l ).

Combining this inequality with (4.24) gives the desired estimate. ��

4.3 Stability

We will prove some stability results on the method which connect {xδ
n} with {xn}.

These results enable us to use Theorem 4.1 to complete the proof of Theorem 3.1.

Lemma 4.3 Let X be reflexive and Y be uniformly smooth, let Θ satisfy Assump-
tion 3.1, and let F satisfy Assumptions 3.2 and 3.3. Then for each fixed n there hold

xδ
n → xn, Θ(xδ

n) → Θ(xn) and ξδ
n → ξn (4.25)

as yδ → y.

Proof We show this result by induction. It is trivial when n = 0 since xδ
0 = x0 and

ξδ
0 = ξ0. In the following we assume that the result is proved for n = m − 1 and show

that the result holds also for n = m.
We will adapt the argument from [5]. Let {yδi } be a sequence of data satisfying

‖yδi − y‖ ≤ δi with δi → 0. By the minimizing property of xδi
m we have

1

r
‖F(xδi

m ) − yδi ‖r + αm D
ξ

δi
m−1

Θ(xδi
m , xδi

m−1) ≤ 1

r
‖F(xδi

m−1) − yδi ‖r .

By the induction hypothesis, we can see that the right hand side of the above inequal-
ity is uniformly bounded with respect to i . Therefore both {‖F(xδi

m ) − yδi ‖} and
{D

ξ
δi
m−1

Θ(xδi
m , xδi

m−1)} are uniformly bounded with respect to i . Consequently {F(xδi
m )}

is bounded in Y and {xδi
m } is bounded in X ; here we used the uniform convexity of Θ .

Since both X and Y are reflexive, by taking a subsequence if necessary, we may assume
that xδi

m ⇀ x̄m ∈ X and F(xδi
m ) ⇀ ȳm ∈ Y as i → ∞. Since F is weakly closed,

we have x̄m ∈ D(F) and F(x̄m) = ȳm . In view of the weak lower semi-continuity of
Banach space norm we have

‖F(x̄m) − y‖ ≤ lim inf
i→∞ ‖F(xδi

m ) − yδi ‖. (4.26)

Moreover, by using xδi
m ⇀ x̄m , the weak lower semi-continuity of Θ , and the induction

hypothesis, we have

lim inf
i→∞ D

ξ
δi
m−1

Θ(xδi
m , xδi

m−1) = lim inf
i→∞ Θ(xδi

m ) − Θ(xm−1) − 〈ξm−1, x̄m − xm−1〉
≥ Θ(x̄m) − Θ(xm−1) − 〈ξm−1, x̄m − xm−1〉
= Dξm−1Θ(x̄m, xm−1). (4.27)
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The inequalities (4.26) and (4.27) together with the minimizing property of xδi
m and

the induction hypothesis imply

1

r
‖F(x̄m) − y‖r + αm Dξm−1Θ(x̄m, xm−1)

≤ lim inf
i→∞

{
1

r
‖F(xδi

m ) − yδi ‖r + αm D
ξ

δi
m−1

Θ(xδi
m , xδi

m−1)

}

≤ lim sup
i→∞

{
1

r
‖F(xδi

m ) − yδi ‖r + αm D
ξ

δi
m−1

Θ(xδi
m , xδi

m−1)

}

≤ lim sup
i→∞

{
1

r
‖F(xm) − yδi ‖r + αm D

ξ
δi
m−1

Θ(xm, xδi
m−1)

}

= 1

r
‖F(xm) − y‖r + αm Dξm−1Θ(xm, xm−1).

According to the definition of xm and Assumption 3.3, we must have x̄m = xm .
Therefore xδi

m ⇀ xm, F(xδi
m ) ⇀ F(xm), and

lim
i→∞

{
1

r
‖F(xδi

m ) − yδi ‖r + αm D
ξ

δi
m−1

Θ(xδi
m , xδi

m−1)

}

= 1

r
‖F(xm) − y‖r + αm Dξm−1Θ(xm, xm−1). (4.28)

Next we will show that

lim
i→∞ D

ξ
δi
m−1

Θ(xδi
m , xδi

m−1) = Dξm−1Θ(xm, xm−1). (4.29)

Let

a := lim sup
i→∞

D
ξ

δi
m−1

Θ(xδi
m , xδi

m−1) and b := Dξm−1Θ(xm, xm−1).

In view of (4.27), it suffices to show a ≤ b. Assume to the contrary that a > b. By
taking a subsequence if necessary, we may assume that

a = lim
i→∞ D

ξ
δi
m−1

Θ(xδi
m , xδi

m−1).

It then follows from (4.28) that

1

r
lim

i→∞ ‖F(xδi
m ) − yδi ‖r = 1

r
‖F(xm) − y‖r + αm(b − a) <

1

r
‖F(xm) − y‖r

which is a contradiction to (4.26). We therefore obtain (4.29).
By using the induction hypothesis and xδi

m ⇀ xm , we obtain from (4.29) that

lim
i→∞ Θ(xδi

m ) = Θ(xm).

123



506 Q. Jin, M. Zhong

Since xδi
m ⇀ xm and since Θ has the Kadec property, see Lemma 2.1, we obtain that

xδi
m → xm as i → ∞. Finally, from the definition of ξ

δi
m , the induction hypothesis, and

the continuity of the map x → F ′(x), and the continuity of the duality mapping Jr , it
follows that ξ

δi
m → ξm as i → ∞.

The above argument shows that for any sequence {yδi } converging to y, the sequence
{xδi

m } always has a subsequence, still denoted as xδi
m , such that xδi

m → xm, Θ(xδi
m ) →

Θ(xm) and ξ
δi
m → ξm as i → ∞. Therefore, we obtain (4.25) with n = m as yδ → y.

The proof is complete. ��

4.4 Proof of Theorem 3.1

Since other parts have been proved in Lemma 4.1, it remains only to show the conver-
gence result (3.9), where x∗ is the limit of {xn} which exists by Theorem 4.1.

Assume first that {yδi } is a sequence satisfying ‖yδi − y‖ ≤ δi with δi → 0 such
that nδi → n0 as i → ∞ for some integer n0. We may assume nδi = n0 for all i .
From the definition of nδi = n0, we have

‖F(xδi
n0

) − yδi ‖ ≤ τδi .

Since Lemma 4.3 implies xδi
n0 → xn0 , by letting i → ∞ we have F(xn0) = y.

This together with the definition of xn implies that xn = xn0 for all n ≥ n0. Since
Theorem 4.1 implies xn → x∗ as n → ∞, we must have xn0 = x∗. Consequently, we
have from Lemma 4.3 that xδi

nδi
→ x∗, Θ(xδi

nδi
) = Θ(xδi

n0) → Θ(xn0) = Θ(x∗) and

D
ξ

δi
nδi

Θ(x∗, xδi
nδi

) = D
ξ

δi
n0

Θ(xn0 , xδi
n0

) → 0 as i → ∞.

Assume next that {yδi } is a sequence satisfying ‖yδi − y‖ ≤ δi with δi → 0 such
that ni := nδi → ∞ as i → ∞. We first show that

D
ξ

δi
ni −2

Θ(x∗, xδi
ni −2) → 0 as i → ∞. (4.30)

Let ε > 0 be an arbitrary number. Since Theorem 4.1 implies Dξn Θ(x∗, xn) → 0
as n → ∞, there exists an integer n(ε) such that Dξn(ε)

Θ(x∗, xn(ε)) < ε/2. On

the other hand, since Lemma 4.3 implies xδi
n(ε) → xn(ε), Θ(xδi

n(ε)) → Θ(xn(ε)) and

ξ
δi
n(ε) → ξn(ε) as i → ∞, we can pick an integer i(ε) large enough such that for all

i ≥ i(ε) there hold ni − 2 ≥ n(ε) and

|D
ξ

δi
n(ε)

Θ(x∗, xδi
n(ε)) − Dξn(ε)

Θ(x∗, xn(ε))| <
ε

2
.

Therefore, it follows from Lemma 4.1 that

D
ξ

δi
ni −2

Θ(x∗, xδi
ni −2) ≤ D

ξ
δi
n(ε)

Θ(x∗, xδi
n(ε)) ≤ Dξn(ε)

Θ(x∗, xn(ε)) + ε
2 < ε
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for all i ≥ i(ε). Since ε > 0 is arbitrary, we thus obtain (4.30). With the help of (4.14),
we then obtain

D
ξ

δi
ni −1

Θ(x∗, xδi
ni −1) → 0 as i → ∞. (4.31)

In view of (4.15) we have

1

αni −1
‖F(xδi

ni −1) − yδi ‖r ≤ τ

(1 − η)τ − 1 − η
D

ξ
δi
ni −2

Θ(x∗, xδi
ni −2).

Since ‖F(xδi
ni −1) − yδi ‖ > τδi , we can conclude from (4.30) that δr

i /αni −1 → 0.
Since αni −1 ≤ c0αni , we must have δr

i /αni → 0 as i → ∞. In view of (4.17) and
(4.31), we can obtain

D
ξ

δi
ni

Θ(x∗, xδi
ni

) → 0 as i → ∞, (4.32)

which together with the uniform convexity of Θ implies that xδi
ni → x∗ as i → ∞.

Finally we show that Θ(xδi
ni ) → Θ(x∗) as i → ∞. In view of (4.32), it suffices to

show that

〈ξδi
ni

, x∗ − xδi
ni

〉 → 0 as i → ∞. (4.33)

Recall that Θ(xn) → Θ(x∗) and 〈ξn, x∗ − xn〉 → 0 as n → ∞ which have been
established in Theorem 4.1 and its proof. Thus, for any ε > 0, we can pick an integer
l0 such that

|Θ(xl0) − Θ(x∗)| < ε and |〈ξl0 , x∗ − xl0〉| < ε. (4.34)

Then, using (4.23) in Lemma 4.2, we can derive

|〈ξδi
ni

, x∗ − xδi
ni

〉| ≤ |〈ξδi
l0

, x∗ − xδi
ni

〉| + |〈ξδi
ni

− ξ
δi
l0

, x∗ − xδi
ni

〉|
≤ |〈ξδi

l0
, x∗ − xδi

ni
〉| + C2

δr
i

αni

+ C3 D
ξ

δi
l0

Θ(x∗, xδi
l0

).

By using the definition of Bregman distance and (4.34) we have

D
ξ

δi
l0

Θ(x∗, xδi
l0

) = [Θ(x∗) − Θ(xl0)] + [Θ(xl0) − Θ(xδi
l0

)] − 〈ξl0 , x∗ − xl0〉

−〈ξl0 , xl0 − xδi
l0

〉 − 〈ξδi
l0

− ξl0 , x∗ − xδi
l0

〉
≤ 2ε+|Θ(xl0)−Θ(xδi

l0
)|+|〈ξl0 , xl0 −xδi

l0
〉|+|〈ξδi

l0
− ξl0 , x∗ − xδi

l0
〉|.
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Therefore

|〈ξδi
ni

, x∗ − xδi
ni

〉| ≤ 2C3ε + C2
δr

i

αni

+ |〈ξδi
l0

, x∗ − xδi
ni

〉| + C3|Θ(xl0) − Θ(xδi
l0

)|

+ C3|〈ξl0 , xl0 − xδi
l0

〉| + C3|〈ξδi
l0

− ξl0 , x∗ − xδi
l0

〉|.

In view of Lemma 4.3 and the facts that δr
i /αni → 0 and xδi

ni → x∗ as i → ∞ which
we have established in the above, we can conclude that there is an integer i0(ε) such
that for all i > i0(ε) there hold ni > l0 and |〈ξδi

ni , x∗ − xδi
ni 〉| ≤ 3C3ε. Since ε > 0 is

arbitrary, we thus obtain (4.33).

4.5 A variant of the discrepancy principle

When nδ denotes the integer determined by the discrepancy principle (3.6), from
Lemma 4.1 we can see that the Bregman distance Dξδ

n
Θ(x†, xδ

n) is decreasing up to
n = nδ − 1. This monotonicity, however, may not hold at n = nδ . Therefore, it seems
reasonable to consider the following variant of the discrepancy principle.

Rule 4.1 Let τ > 1 be a given number. If ‖F(x0) − yδ‖ ≤ τδ, we define nδ := 0;
otherwise we define

nδ := max{n : ‖F(xδ
n) − yδ‖ ≥ τδ},

i.e., nδ is the integer such that

‖F(xδ
nδ+1) − yδ‖ < τδ ≤ ‖F(xδ

n) − yδ‖, 0 ≤ n ≤ nδ.

We point out that the argument for proving Theorem 3.1 can be used to prove the
convergence property of xδ

nδ
for nδ determined by Rule 4.1, we can even drop the

condition αn ≤ c0αn+1 on {αn} in Theorem 3.1. In fact we have the following result.

Theorem 4.2 Let X be reflexive and Y be uniformly smooth, Θ satisfy Assumption 3.1,
and F satisfy Assumptions 3.2 and 3.3. Let 1 < r < ∞ and τ > (1 + η)/(1 − η), and
let {αn} be such that

∑∞
n=1 α−1

n = ∞. Assume further that

Dξ0Θ(x†, x0) ≤ ϕ(ρ).

Then, the integer nδ defined by Rule 4.1 is finite. Moreover, there is a solution x∗ ∈
D(Θ) of (1.1) such that

xδ
nδ

→ x∗, Θ(xδ
nδ

) → Θ(x∗) and Dξδ
nδ

Θ(x∗, xδ
nδ

) → 0 (4.35)

as δ → 0. If, in addition, N (F ′(x†)) ⊂ N (F ′(x)) for all x ∈ B3ρ(x0) ∩ D(F), then
x∗ = x†.

123



Nonstationary iterated Tikhonov regularization 509

Proof The proof of Lemma 4.1 can be used without change to show that nδ < ∞
and that (4.14) and (4.15) hold for 1 ≤ n ≤ nδ . Consequently, (4.23) in Lemma 4.2
becomes

|〈ξδ
nδ

−ξδ
l , x∗ − xδ

nδ
〉|≤ 3(1 + η)(1 + τ)

(1 − η)τ −1 − η
Dξδ

l
Θ(x∗, xδ

l ), 0≤ l < nδ. (4.36)

In order to prove the convergence result (4.35), as in the proof of Theorem 3.1 we
consider two cases.

Assume first that {yδi } is a sequence satisfying ‖yδi − y‖ ≤ δi with δi → 0 such
that nδi → n0 as i → ∞ for some integer n0. We may assume nδi = n0 for all i .
By Rule 4.1 we always have ‖F(xδi

n0+1) − yδi ‖ ≤ τδi . By letting i → ∞, we obtain
F(xn0+1) = y. This together with the definition of xn implies that xn = xn0+1 for
all n ≥ n0 + 1. It then follows from Theorem 4.1 that x∗ = xn0+1. We claim that
xn0+1 = xn0 . To see this, by using the definition of ξn0+1, we have

ξn0+1 = ξn0 − 1

αn0+1
F ′(xn0+1)

∗ Jr (F(xn0+1) − y) = ξn0 .

Therefore

Dξn0
Θ(xn0+1, xn0) ≤ Dξn0

Θ(xn0+1, xn0) + Dξn0+1Θ(xn0 , xn0+1)

= 〈ξn0+1 − ξn0 , xn0+1 − xn0〉 = 0.

This and the strictly convexity of Θ imply that xn0+1 = xn0 . Consequently xn0 = x∗.
A simple application of Lemma 4.3 then gives the desired conclusion.

Assume next that {yδi } is a sequence satisfying ‖yδi − y‖ ≤ δi with δi → 0 such
that nδi → ∞ as i → ∞. We can follow the argument for deriving (4.30) to show
that D

ξ
δi
ni

Θ(x∗, xδi
ni ) → 0 which in turn implies that xδi

ni → x∗ by the uniformly

convexity of Θ . Then we can use (4.36) and follow the same procedure in the proof
of Theorem 3.1 to obtain Θ(xδi

ni ) → Θ(x∗) as i → ∞. ��

5 Numerical examples

In this section we present some numerical simulations to test the performance of our
method by considering a linear integral equation of the first kind and a nonlinear
problem arising from the parameter identification in partial differential equations.

Example 5.1 We consider the linear integral equation of the form

Ax(s) :=
1∫

0

K (s, t)x(t)dt = y(s) on [0, 1], (5.1)
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where

K (s, t) =
{

40s(1 − t), s ≤ t,
40t (1 − s), s ≥ t.

It is clear that A : X := L2[0, 1] → Y := L2[0, 1] is a compact operator. Our goal is
to find the solution of (5.1) by using some noisy data yδ instead of y. We assume that
the exact solution is

x†(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0.5, t ∈ [0.292, 0.300],
1, t ∈ [0.500, 0.508],
0.7, t ∈ [0.700, 0.708],
0, elsewhere

Let y = Ax† which is the exact data. For a given noise level δ > 0, we add random
Gaussian noise to y to obtain yδ satisfying ‖y − yδ‖L2[0,1] = δ which is used to
reconstruct x† when the iteration is terminated by the discrepancy principle (3.6).

In our numerical simulations, we take x0 = 0 and ξ0 = 0, we divide [0, 1] into N =
400 subintervals of equal length, approximate any integrals by the trapezoidal rule,
and solve the involved minimization problems by the modified Fletcher-Reeves CG
method in [21]. In Fig. 1 we present the reconstruction results by taking δ = 0.5×10−3

and αn = 2−n with τ = 1.02 in the discrepancy principle (3.6). Figure 1a reports the
result via the method with Θ(x) = ‖x‖2

L2 . It is clear that the reconstructed solution is

0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
δ=16

0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(a) n (b) n δ=15

Fig. 1 Reconstruction results for Example 5.1: a Θ(x) = ‖x‖2
L2 ; b Θ(x) = μ‖x‖2

L2 + ‖x‖L1 with
μ = 0.01
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rather oscillatory and fails to capture the sparsity of the exact solution x†. Figure 1b
gives the result of the method with Θ(x) = μ‖x‖2

L2 + ‖x‖L1 and μ = 0.01. During

the computation, ‖x‖L1 is replaced by a smooth one
∫ 1

0

√|x |2 + ε with ε = 10−6.
The sparsity reconstruction is significantly improved.

Example 5.2 We next consider the identification of the parameter c in the boundary
value problem

{−�u + cu = f in Ω,

u = g on ∂Ω
(5.2)

from an L2(Ω)-measurement of the state u, where Ω ⊂ R
d , d ≤ 3, is a bounded

domain with Lipschitz boundary, f ∈ L2(Ω) and g ∈ H3/2(∂Ω). We assume that the
sought solution c† is in L2(Ω). This problem reduces to solving an equation of the
form (1.1) if we define the nonlinear operator F : L2(Ω) → L2(Ω) by F(c) := u(c),
where u(c) ∈ H2(Ω) ⊂ L2(Ω) denotes the unique solution of (5.2). This operator F
is well defined on

D(F) :=
{

c ∈ L2(Ω) : ‖c − ĉ‖L2(Ω) ≤ γ0 for some ĉ ≥ 0 a.e.
}

for some positive constant γ0 > 0. It is well known that F is Fréchet differentiable;
the Fréchet derivative of F and its adjoint are given by

F ′(c)h = −A(c)−1(hF(c)) and F ′(c)∗w = −u(c)A(c)−1w

for h, w ∈ L2(Ω), where A(c) : H2 ∩ H1
0 → L2 is defined by A(c)u = −�u + cu

which is an isomorphism uniformly in a ball Bρ(c0) ∩ D(F) for any c0 ∈ D(F) with
small ρ > 0. It has been shown (see [4]) that for any c̄, c ∈ Bρ(c0) there holds

‖F(c̄) − F(c) − F ′(c)(c̄ − c)‖L2(Ω) ≤ C‖c̄ − c‖L2(Ω)‖F(c̄) − F(c)‖L2(Ω).

Therefore, Assumption 3.2 and the condition (3.10) hold if ρ > 0 is small enough.
In our numerical simulation, we consider the two dimensional problem with Ω =

[0, 1] × [0, 1] and

c†(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

1, if (x − 0.3)2 + (y − 0.7)2 ≤ 0.22;
0.5, if (x, y) ∈ [0.6, 0.8] × [0.2, 0.5];
0, elsewhere.

We assume u(c†) = x + y and add noise to produce the noisy data uδ satisfying
‖uδ −u(c†)‖L2(Ω) = δ. We take δ = 0.1×10−3 and αn = 2−n . The partial differential
equations involved are solved approximately by a finite difference method by dividing
Ω into 40 × 40 small squares of equal size. and the involved minimization problems
are solved by the modified nonlinear CG method in [21]. we take the initial guess
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(a) Exact solution

Fig. 2 Reconstruction results for Example 5.2: a exact solution; b Θ(c) = ‖c‖2
L2 ; c, d Θ(c) = μ‖c‖2

L2 +∫
Ω |Dc| with μ = 0.01 and μ = 1 respectively

c0 = 0 and ξ0 = 0, and terminate the iteration by the discrepancy principle (3.6) with
τ = 1.05.

Figure 2a plots the exact solution c†(x, y). Figure 2b shows the result for the method
with Θ(c) = ‖c‖2

L2 . Figure 2c, d report the reconstruction results for the method with

Θ(c) = μ‖c‖2
L2 + ∫

Ω
|Dc| for μ = 0.01 and μ = 1.0 respectively; the term

∫
Ω

|Dc|
is replaced by a smooth one

∫
Ω

√|Dc|2 + ε with ε = 10−6 during computation. The
reconstruction results in (c) and (d) significantly improve the one in (b) by efficiently
removing the notorious oscillatory effect and indicate that the method is robust with
respect to μ. We remark that, due to the smaller value of μ, the reconstruction result in
(d) is slightly better than the one in (c) as can be seen from the plots; the computational
time for (d), however, is longer.
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20. Zălinscu, C.: Convex Analysis in General Vector Spaces. World Scientific Publishing Co., Inc., River

Edge (2002)
21. Zhang, L., Zhou, W., Li, D.: Global convergence of a modified Fletcher–Reeves conjugate gradient

method with Armijo-type line search. Numer. Math. 104, 561–572 (2006)

123


	Nonstationary iterated Tikhonov regularization in Banach spaces with uniformly convex penalty terms
	Abstract
	1 Introduction
	2 Preliminaries
	3 The method and main results
	4 Convergence analysis
	4.1 Convergence result for noise-free case
	4.2 Justification of the method
	4.3 Stability
	4.4 Proof of Theorem 3.1
	4.5 A variant of the discrepancy principle

	5 Numerical examples
	Acknowledgments
	References


