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Abstract We consider the guaranteed a posteriori estimates for the inverse parabolic
operators with homogeneous initial-boundary conditions. Our estimation technique
uses a full-discrete numerical scheme, which is based on the Galerkin method with an
interpolation in time by using the fundamental solution for semidiscretization in space.
In our technique, the constructive a priori error estimates for a full discretization of
solutions for the heat equation play an essential role. Combining these estimates with an
argument for the discretized inverse operator and a contraction property of the Newton-
type formulation, we derive an a posteriori estimate of the norm for the infinite-
dimensional operator. In numerical examples, we show that the proposed method
should be more efficient than the existing method. Moreover, as an application, we give
some prototype results for numerical verification of solutions of nonlinear parabolic
problems, which confirm the actual usefulness of our technique.
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680 T. Kinoshita et al.

1 Introduction

Setting Lt := ∂
∂t − ν� + b · ∇ + c, for f ∈ L2

(
J ; L2(Ω)

)
, consider the following

linear parabolic partial differential equations (PDEs) with homogeneous initial and
boundary conditions:

⎧
⎨

⎩

Lt u = f, in �× J , (1a)

u(x, t) = 0, on ∂�× J , (1b)

u(x, 0) = 0, in �, (1c)

where Ω ⊂ R
d , (d ∈ {1, 2, 3}) is a bounded polygonal or polyhedral domain,

J := (0, T ) ⊂ R, (T < ∞) is a bounded interval, ν is a positive constant,
b ∈ L∞(J ; L∞(Ω)

)d , and c ∈ L∞(J ; L∞(Ω)
)
. As is well known, for any

f ∈ L2
(
J ; L2(Ω)

)
, there exists a unique weak solution u ∈ L2

(
J ; H1

0 (Ω)
)

to the
problem (1). Denoting the solution operator of (1) by L −1

t , it is a bounded linear
operator from L2

(
J ; L2(Ω)

)
to L2

(
J ; H1

0 (Ω)
)
.

The main aim of this paper is to obtain the concrete value CL2 L2,L2 H1
0
> 0 satisfying

the following estimates:

∥∥∥L −1
t

∥∥∥
L
(

L2(J ;L2(Ω)),L2(J ;H1
0 (Ω))

) ≤ CL2 L2,L2 H1
0
. (2)

The constant CL2 L2,L2 H1
0

plays an important role in the verification of solutions for
the initial-boundary-value problems for the nonlinear parabolic PDEs, and we usually
need to estimate it as small as possible. The concrete value CL2 L2,L2 H1

0
> 0 satisfying

(2) can be calculated by the Gronwall inequality or other theoretical considerations
(e.g., [16]), which we call the “a priori estimates.” However, in general, CL2 L2,L2 H1

0
obtained by such a priori estimates is exponentially dependent on the length of the
time interval J unless the corresponding elliptic part of the operator Lt is coercive
[4,5]. Thus a priori estimates often lead to an overestimate for the norm of L −1

t ,
which yields worse results for some purposes.

In order to overcome this difficulty, we proposed a method to calculate CL2 L2,L2 H1
0

by numerical computation with guaranteed accuracy in [10], which we called “a pos-
teriori estimates.” The method is based on combining the a priori error estimates
for a semidiscretization with the a priori estimates for the ordinary differential equa-
tions (ODEs) in time. It has proven to be more efficient than the existing a priori
method; some numerical examples show that this a posteriori method can remove the
exponential dependency on the time interval J . However, it has a very large computa-
tional cost, because the semidiscretization of (1) causes stiff ODEs that require a very
small step size. Also, it is not clear what time-space ratio to use in the discretization
process.

In this paper, we propose a new a posteriori method with a fully discretized Newton-
type operator, which uses the Galerkin approximation in the space direction and the
Lagrange-type interpolation in the time direction. In the case of the simple heat equa-
tions, some fundamental properties (e.g., the stability and a priori error estimates)
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On the a posteriori estimates for inverse 681

for this full-discretization scheme have already been obtained in [11]. In the desired

estimation of the inverse operator norm
∥∥
∥L −1

t

∥∥
∥

L
(
L2(J ;L2(Ω)),L2(J ;H1

0 (Ω))
), the matrix

norm estimates corresponding to the discretized inverse operator and the constructive
error analysis for the simple heat equations are important and essential. By construc-
tive analysis, we can also guess an appropriate time-space ratio prior to the actual
computation. Moreover, by using numerical examples, we will show that the pro-
posed method succeeds in obtaining a posteriori estimates with less computational
cost than the previous method in [10]. This means that the present method is very
robust compared with the previous one.

The contents of this paper are as follows: In Sect. 2, we introduce some function
spaces, operators, and other notation. In Sect. 3, we introduce the results of stability and
a priori error estimates for the full-discretization scheme for the simple heat equations,
which were obtained in [11]. In Sect. 4, we consider the approximate quasi-Newton
operator that corresponds to the full-discretization scheme for problem (1). In Sect.
5, we derive the new a posteriori estimates of (2) by combining the results in Sect. 3
with the property of the approximate quasi-Newton operator defined in the previous
section. In Sect. 6, we compare the computed values for CL2 L2,L2 H1

0
by three methods,

namely, the a priori method, the a posteriori estimates in [10], and the new a posteriori
method obtained in Sect. 5. In this section we also show some prototype results of the
numerical enclosure of solutions for nonlinear parabolic problems as an application
of our method.

2 Notation

In this section, we introduce some function spaces, operators, and other notation.
Let L2(Ω) and H1(Ω) be the usual Lebesgue and Sobolev spaces on Ω , respec-
tively, and define the natural inner product of u, v in L2(Ω) by (u, v)L2(Ω) :=∫
Ω

u(x)v(x) dx . Also, let H1
0 (Ω) be a Sobolev space defined by H1

0 (Ω) :={
u ∈ H1(Ω); u = 0 on ∂Ω

}
with inner product (u, v)H1

0 (Ω)
:= (∇u,∇v)L2(Ω)d .

We will sometimes refer to the following Sobolev inequality on H1
0 (Ω). Namely, for

a suitable constant p ≥ 1, which is dependent on the dimension of Ω , there exists a
constant Cs,p > 0 such that

‖u‖L p(Ω) ≤ Cs,p ‖u‖H1
0 (Ω)

, ∀u ∈ H1
0 (Ω). (3)

When p = 2, (3) is called the Poincaré inequality.
Let � : L2(Ω) → L2(Ω) be the Laplace operator that is self-adjoint on the

domain D(�) := {
u ∈ H1

0 (Ω);�u ∈ L2(Ω)
}
. Let V 1(J ) be a subspace of H1(J )

defined by V 1(J ) := {
u ∈ H1(J ); u(0) = 0

}
. Then, V 1(J ) is a Hilbert space

with inner product (u, v)V 1(J ) := (
u′, v′)

L2(J ). The time-dependent Lebesgue space

L2
(
J ; L2(Ω)

)
is defined as a space of square-integrable L2(Ω)-valued functions on J .

Then, L2
(
J ; L2(Ω)

)
is a Hilbert space with inner product (u, v)L2(J ;L2(Ω)) :=
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682 T. Kinoshita et al.

∫
J

∫
Ω

u(x, t)v(x, t) dxdt . We denote the function space L2
(
J ; L2(Ω)

)
as L2L2, for

short. Let L2
(
J ; H1

0 (Ω)
)

be a subspace of L2L2 defined by

L2(J ; H1
0 (Ω)

) :=
{

u ∈ L2 L2 ; ∇u ∈ L2(J ; L2(Ω)
)d
, u( · , t) = 0 on ∂Ω, a.e. t ∈ J

}
.

Then, L2 H1
0 ≡ L2

(
J ; H1

0 (Ω)
)

is a Hilbert space with inner product (u, v)L2 H1
0

:=
(∇u,∇v)(L2 L2)d . Let V 1

(
J ; L2(Ω)

)
be a subspace of L2L2 defined by

V 1(J ; L2(Ω)
) :=

{
u ∈ L2(J ; L2(Ω)

); ∂u

∂t
∈ L2(J ; L2(Ω)

)
, u( · , 0) = 0 in L2(Ω)

}
.

Then, V 1L2 ≡ V 1
(
J ; L2(Ω)

)
is a Hilbert space with inner product (u, v)V 1 L2 :=(

∂u
∂t ,

∂v
∂t

)
L2 L2 . We define the Hilbert space V := V 1L2 ∩ L2 H1

0 with inner prod-

uct (u, v)V := (u, v)V 1 L2 + (u, v)L2 H1
0

= (
∂u
∂t ,

∂v
∂t

)
L2 L2 + (∇u,∇v)(L2 L2)d . More-

over, we define the partial differential operator �t : L2L2 → L2L2 by �t :=
∂
∂t − ν� on the domain D(�t ) := V 1L2 ∩ L2

(
J ; D(�)). Then, the inverse of

�t exists (e.g., [3]), and we denote it by �−1
t ∈ L (L2L2). Notably, the range

of �−1
t satisfies R(�−1

t ) = D(�t ). From the compactness of the embedding
Ie : D(�t ) ↪→ L2 H1

0 , the bounded linear operator Ie�−1
t ∈ L (L2L2, L2 H1

0 ) is also
compact.

Let Sh(Ω) be a finite-dimensional subspace of H1
0 (Ω) dependent on the discretiza-

tion parameter h. For example, Sh(Ω) is considered to be a finite element space
with mesh size h. Let n be the number of degrees of freedom of Sh(Ω), and let
{φi }n

i=1 ⊂ H1
0 (Ω) be the basis functions of Sh(Ω). Moreover, we denote a vector

of the basis functions of Sh(Ω) by φ := (φ1, . . . , φn)
T . We also assume the inverse

estimates on Sh(Ω) like as follows:

Assumption 2.1 There exists a positive constant Cinv(h) satisfying

‖uh‖H1
0 (Ω)

≤ Cinv(h) ‖uh‖L2(Ω) , ∀uh ∈ Sh(Ω). (4)

For example, if Ω is a bounded open interval in R, and Sh(Ω) is the P1 finite

element space, then Assumption 2.1 is realized with Cinv(h) =
√

12
hmin

, where hmin is
the minimum mesh size in the division of Ω (see e.g., [15, Theorem 1.5]).

Let P1
h : H1

0 (Ω) → Sh(Ω) be an H1
0 -projection. Namely, for an arbitrary element

u ∈ H1
0 (Ω), P1

h u ∈ Sh(Ω) satisfies the following variational equation:

(
∇(u − P1

h u),∇vh

)

L2(Ω)d
= 0, ∀vh ∈ Sh(Ω). (5)

We need the following assumptions as the a priori error estimates for P1
h .
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On the a posteriori estimates for inverse 683

Assumption 2.2 There exists a positive constant CΩ(h) satisfying

∥∥∥u − P1
h u
∥∥∥

H1
0 (Ω)

≤ CΩ(h) ‖�u‖L2(Ω) , ∀u ∈ D(�), (6)
∥∥
∥u − P1

h u
∥∥
∥

L2(Ω)
≤ CΩ(h)

∥∥
∥u − P1

h u
∥∥
∥

H1
0 (Ω)

, ∀u ∈ H1
0 (Ω). (7)

For example, if Ω is a bounded open interval in R, and Sh(Ω) is the P1 finite
element space, then Assumption 2.2 is realized as CΩ(h) = h

π
, where h is the mesh

size (see e.g., [1,7]).
Let V 1

k (J ) be a finite-dimensional subspace of V 1(J ) dependent on the discretiza-
tion parameter k. For example, V 1

k (J ) is considered to be a finite element space with
mesh size (time step size) k. Let m be the number of degrees of freedom for V 1

k (J ),
and let {ψi }m

i=1 ⊂ V 1(J ) be the basis functions of V 1
k (J ). Moreover, we denote a

vector of the basis functions of V 1
k (J ) by ψ := (ψ1, . . . , ψm)

T .
We assume that Πk : V 1(J ) → V 1

k (J ) is a Lagrange interpolation operator.
Namely, if the mesh points on J are taken as 0 = t0 < t1 < · · · < tm = T , for
any element u ∈ V 1(J ), Πku ∈ V 1

k (J ) satisfies

u(ti ) = (
Πku

)
(ti ), ∀i ∈ {1, . . . ,m}. (8)

We need the following assumption as the a priori error estimate for Πk .

Assumption 2.3 There exists a positive constant CJ (k) satisfying

‖u −Πku‖L2(J ) ≤ CJ (k) ‖u‖V 1(J ) , ∀u ∈ V 1(J ). (9)

For example, if V 1
k (J ) is the P1 finite element space, then Assumption 2.3 is realized

by CJ (k) = k
π

(see e.g., [15, Theorem 2.4]).
Let V 1

(
J ; Sh(Ω)

)
and V 1

k

(
J ; Sh(Ω)

)
be the semidiscretization and the full-

discretization subspaces of V , respectively. We now define the semidiscretization
operator Ph : V → V 1

(
J ; Sh(Ω)

)
by the following weak form for any u ∈ V

(
∂

∂t

(
u − Phu

)
(t), vh

)

L2(Ω)

+ ν
(∇(u − Phu

)
(t),∇vh

)
L2(Ω)d

= 0,

∀vh ∈ Sh(Ω), a.e. t ∈ J. (10)

Then the full-discretization operator Ph,k : V → V 1
k

(
J ; Sh(Ω)

)
is defined as the

composition of Ph and Πk , that is, by Ph,k := Πk Ph .

3 Constructive a priori error estimates

In this section, we introduce some results for the stability of, and a priori error estimates
for, the full-discretization operator Ph,k . Since the results of this section are given in
[11], we omit the proofs.
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684 T. Kinoshita et al.

Theorem 3.1 ([11, Lemma 5.3 & Theorem 5.4]) Under Assumption 2.1 and Assump-
tion 2.3, the following constructive a priori estimate holds,

∥∥Ph,ku
∥∥

L2
(

J ;H1
0 (Ω)

) ≤
(

Cs,2

ν
+ Cinv(h)CJ (k)

)∥∥∥∥
∂u

∂t
− ν�u

∥∥∥∥
L2 L2

, ∀u ∈ D(�t ).

(11)

Moreover, if V 1
k (J ) is the P1 finite element space then we have the following estimates:

∥∥Ph,ku
∥∥

V 1
(

J ;L2(Ω)
) ≤ 2

∥∥∥∥
∂u

∂t
− ν�u

∥∥∥∥
L2
(

J ;L2(Ω)
) , ∀u ∈ D(�t ). (12)

Since the full-discretization scheme proposed in [6,9] has no V 1L2 stability, we
can say that the present full-discretized approximation has better properties, in an
analytical and practical sense.

Finally, we introduce the constructive a priori error estimates for Ph,k .

Theorem 3.2 ([11, Theorem 5.5 & Theorem 5.6]) Under the assumptions 2.1– 2.3,
we have the following constructive a priori error estimates:

∥∥u − Ph,ku
∥∥

L2
(

J ;H1
0 (Ω)

) ≤ C1(h, k)
∥∥ ∂u
∂t − ν�u

∥∥
L2
(

J ;L2(Ω)
) , ∀u ∈ D(�t ),

(13)
∥∥u − Ph,ku

∥∥
L2
(

J ;L2(Ω)
) ≤ C0(h, k)

∥∥ ∂u
∂t − ν�u

∥∥
L2
(

J ;L2(Ω)
) , ∀u ∈ D(�t ),

(14)

where C1(h, k) := 2
ν

CΩ(h)+ Cinv(h)CJ (k) and C0(h, k) = 8
ν

CΩ(h)2 + CJ (k).

4 Discretized quasi-Newton scheme

In this section, we consider a full-discretized approximation scheme for solutions of
(1) by using a quasi-Newton operator. Since the full-discretization scheme in this
paper uses interpolation in time, its computational method is somewhat complicated.
However, it enables us to get an efficient and accurate estimation of the inverse operator
norm in (2), as well as the verified computation of solutions to nonlinear problems.

We first describe an easy, but an important operation of matrix-vector multiplication.

Definition 4.1 Let M be an m1-by-m2 matrix. Then, we define the m1m2 vector
vec (M) as follows:

vec (M) := (
M1,1,M1,2, . . . ,M1,m2 ,M2,1, . . . ,Mm1,m2

)T
. (15)

We call this transformation a “row-major matrix-vector transformation”.
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Definition 4.2 Let M be an m1-by-m2 matrix. Then, we define the block diagonal
matrix (In ⊗ M) as follows:

(In ⊗ M) :=
⎛

⎜
⎝

M · · · 0
...
. . .

...

0 · · · M

⎞

⎟
⎠

︸ ︷︷ ︸
n

. (16)

Here, In is the n-by-n identity matrix, and the operator ⊗ denotes the Kronecker
product.

From these definitions, we have the following lemma.

Lemma 4.3 For an arbitrary n-by-m matrix M and m-dimensional vector x, the
following equality holds:

Mx =
(

In ⊗ xT
)

vec (M) . (17)

Proof The elements of Mx are calculated by

Mx =
⎛

⎜
⎝

M1,1 · · · M1,m
...

. . .
...

Mn,1 · · · Mn,m

⎞

⎟
⎠

⎛

⎜
⎝

x1
...

xm

⎞

⎟
⎠ =

⎛

⎜
⎝

M1,1x1 + · · · + M1,m xm
...

Mn,1x1 + · · · + Mn,m xm

⎞

⎟
⎠ .

On the other hand, the elements of
(
In ⊗ xT

)
vec (M) are calculated by

(
In ⊗ xT

)
vec (M) =

⎛

⎜
⎝

xT · · · 0
...
. . .

...

0 · · · xT

⎞

⎟
⎠

⎛

⎜
⎝

M1,1
...

Mn,m

⎞

⎟
⎠ =

⎛

⎜
⎝

M1,1x1 + · · · + M1,m xm
...

Mn,1x1 + · · · + Mn,m xm

⎞

⎟
⎠ .

Therefore, the corresponding components coincide with each other. ��

Next, we consider the quasi-Newton operator of (1) and its full-discretization. Let
A be an integral operator defined by A := −Ie�−1

t (b · ∇ + c) : L2
(
J ; H1

0 (Ω)
) →

L2
(
J ; H1

0 (Ω)
)
. Since the domain of �t is D(�t ), denoting the range of A by R(A),

it holds that R(A) ⊂ D(�t ) = V 1L2 ∩ L2 D(�). Then, the differential operator of
the left-hand side of (1a) can be represented as Lt = �t (I − A), where I denotes
the identity operator on D(�t ). We define the quasi-Newton operator as the inverse
of I − A, i.e., (I − A)−1 : L2 H1

0 → L2 H1
0 .

We now define the symmetric and positive definite matrices Lφ and Dφ ∈ R
n×n by

Lφ,i, j := (
φ j , φi

)
L2(Ω)

, Dφ,i, j := (∇φ j ,∇φi
)

L2(Ω)d
, ∀i, j ∈ {1, . . . , n}.
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Let L1/2
φ and D1/2

φ be the Cholesky factors of Lφ and Dφ , respectively, i.e., the fol-
lowing equalities hold

Lφ = L1/2
φ LT/2

φ , Dφ = D1/2
φ DT/2

φ ,

where L1/2
φ and D1/2

φ are lower triangular matrices, and LT/2
φ and DT/2

φ are those
matrices transposed. Let Lψ ∈ R

m×m be the symmetric and positive-definite matrix
whose elements are defined by Lψ,i, j := (

ψ j , ψi
)

L2(J ). We define Zφ ∈ L∞(J )n×n

as the matrix function on J whose elements are defined by

Zφ,i, j := (
(b · ∇)φ j + cφ j , φi

)
L2(Ω)

, ∀i, j ∈ {1, . . . , n}.

For any i ∈ {1, . . . ,m}, we define the matrices G̃(i)
φ,ψ ∈ R

n×nm and G̃φ,ψ ∈ R
nm×nm

by

G̃(i)φ,ψ :=
ti∫

0

exp
(
(s − ti )νL−1

φ Dφ
)

L−1
φ Zφ(s)

(
In ⊗ ψ(s)T

)
ds, G̃φ,ψ :=

⎛

⎜
⎜
⎝

G̃(1)φ,ψ
...

G̃(m)φ,ψ

⎞

⎟
⎟
⎠ .

(18)

Moreover, we define Gφ,ψ ∈ R
nm×nm as Gφ,ψ := Inm − G̃φ,ψ .

We obtain the Theorem 4.4 as a full-discretization scheme of the quasi-Newton
operator.

Theorem 4.4 Let V 1
k (J ) be a finite element space constituted by the Lagrange ele-

ments. For a function fh,k ∈ V 1
k

(
J ; Sh(Ω)

)
, let uh,k ∈ V 1

k

(
J ; Sh(Ω)

)
be a solution

of the following equation

uh,k − Ph,k Auh,k = fh,k . (19)

Then, the unique existence of a solution uh,k of (19) is equivalent to the nonsingularity
of Gφ,ψ .

Proof First, we consider Ph,k Auh,k . For an arbitrary uh,k ∈ V 1
k

(
J ; Sk(Ω)

)
, there

exists a matrix U ∈ R
n×m such that uh,k(x, t) = φ(x)T Uψ(t). Let wh := Ph Auh,k .

Similarly, from wh ∈ V 1
(
J ; Sh(Ω)

)
, there exists a vector function w ∈ V 1(J )n such

that

wh(x, t) = φ(x)T w(t) =
n∑

i=1

φi (x)wi (t).
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For each vh ∈ Sh(Ω), and almost everywhere t ∈ J , from the definition of Ph and the
operator A, we have

(
∂wh

∂t
(t), vh

)

L2(Ω)

+ ν (∇wh(t),∇vh)L2(Ω)d

=
(
∂Auh,k

∂t
(t), vh

)

L2(Ω)

+ ν
(∇ Auh,k(t),∇vh

)
L2(Ω)d

,

= ((
b(t) · ∇)uh,k(t)+ c(t)uh,k(t), vh

)
L2(Ω)

. (20)

From the arbitrariness of vh ∈ Sh(Ω), the variational equation (20) is equivalent to
the following system of first-order linear ODEs with homogeneous initial conditions

(
Lφ

d

dt
+ νDφ

)
w = ZφUψ. (21)

Since (21) is an initial-value problem for an ODE system with constant coefficients,
by using its fundamental matrix, w can be presented as

w(t) =
t∫

0

exp
(
(s − t)νL−1

φ Dφ
)

L−1
φ Zφ(s)Uψ(s) ds (22)

=
⎛

⎝
t∫

0

exp
(
(s − t)νL−1

φ Dφ
)

L−1
φ Zφ(s)

(
In ⊗ ψ(s)T

)
ds

⎞

⎠ vec (U ) , (23)

where we have used (17) to make the deformation from (22) to (23). And, from (18),
we have

w(ti ) = G̃(i)
φ,ψvec (U ) ∈ R

n, ∀i ∈ {1, . . . ,m}. (24)

Thus, from (23), we obtain the following relation between U and w:

(
w(t1)

T , . . . ,w(tm)
T
)T = G̃φ,ψvec (U ) .

Now, we prove that if (19) is solvable for each fh,k ∈ V 1
k

(
J ; Sh(Ω)

)
, then Gφ,ψ

is nonsingular. For an fh,k ∈ V 1
k

(
J ; Sh(Ω)

)
, we denote the solution of (19) as

uh,k ∈ V 1
k

(
J ; Sh(Ω)

)
. From the fact that fh,k ∈ V 1

k Sh , there exists an F ∈ R
n×m

such that fh,k(x, t) = φ(x)T Fψ(t). Note that, for any nodal points ti , we have
(Ph,k Auh,k)(x, ti ) = (Πkwh)(x, ti ) = φ(x)T w(ti ) by the definition of Πk . There-
fore, from (19) and (24), we have

uh,k(x, ti )− fh,k(x, ti ) = (Ph,k Auh,k)(x, ti ), ∀x ∈ Ω, ∀i ∈ {1, . . . ,m},
= (Πkwh)(x, ti ),
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which implies

φ(x)T (U − F)ψ(ti ) = φ(x)T w(ti )

= φ(x)T G̃(i)
φ,ψvec (U ) . (25)

Since we assume that V 1
k (J ) is the finite element space constituted by the Lagrange

elements,ψ j (ti ) = δ j,i is satisfied, where δ j,i denotes the Kronecker delta. Therefore,
we get

(U − F)ψ(ti ) =
⎛

⎜
⎝

U1,1 − F1,1 · · · U1,m − F1,m
...

. . .
...

Un,1 − Fn,1 · · · Un,m − Fn,m

⎞

⎟
⎠

⎛

⎜
⎝

ψ1(ti )
...

ψm(ti )

⎞

⎟
⎠ =

⎛

⎜
⎝

U1,i − F1,i
...

Un,i − Fn,i

⎞

⎟
⎠ .

From the arbitrariness of x and i , the variational equation (25) is equivalent to the
following simultaneous linear equations:

vec (U − F) = G̃φ,ψvec (U ) .

Namely, we have

(
Inm − G̃φ,ψ

)
vec (U ) = vec (F) .

Therefore, from the arbitrariness of fh,k , the nonsingularity of Inm − G̃φ,ψ follows.
The converse of this proposition is easily obtained by reversing the discussion. ��
When we apply the proposed a posteriori estimates, it is necessary to confirm that

Gφ,ψ is nonsingular, which will be able to verify by validated computations such as
[14]. Therefore, in what follows, we always assume the nonsingularity of Gφ,ψ . More-
over, we define the linear operator [I − A]−1

h,k : V 1
k

(
J ; Sh(Ω)

) → V 1
k

(
J ; Sh(Ω)

)
by

the solution of (19). We call this operator a “fully discretized quasi-Newton operator”.

5 A posteriori estimates

In this section, we derive a new a posteriori estimate to obtain CL2 L2,L2 H1
0
, which

satisfies (2) by using the fully discretized quasi-Newton operator.
First, we describe a method to calculate the norm of the elements in the full-

discretization space. Let Kφ,ψ be a matrix in R
nm×nm defined by

Kφ,ψ := Dφ ⊗ Lψ =
⎛

⎜
⎝

Dφ,1,1Lψ · · · Dφ,1,n Lψ
...

. . .
...

Dφ,n,1Lψ · · · Dφ,n,n Lψ

⎞

⎟
⎠ . (26)

From the symmetric positive definiteness of Dφ and Lψ , it is readily seen that Kφ,ψ
is also symmetric positive definite. Therefore, Kφ,ψ is Cholesky decomposable such
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that Kφ,ψ = K 1/2
φ,ψK T/2

φ,ψ . Similarly, we define the matrix Lφ,ψ in R
nm×nm as Lφ,ψ :=

Lφ ⊗ Lψ .

Lemma 5.1 For an element uh,k ∈ V 1
k

(
J ; Sh(Ω)

)
, taking U ∈ R

n×m such that
uh,k = φT Uψ , then the following equalities hold

∥∥uh,k
∥∥

L2
(

J ;L2(Ω)
) =

∣∣∣LT/2
φ,ψvec (U )

∣∣∣ , (27)

∥∥uh,k
∥∥

L2
(

J ;H1
0 (Ω)

) =
∣
∣∣K T/2

φ,ψvec (U )
∣
∣∣ , (28)

where | · | denotes the Euclidean norm of a vector.

Proof Since the proofs of (27) and (28) are almost the same, we will prove only (27).
From (17), we have

∥
∥uh,k

∥
∥2

L2
(

J ;L2(Ω)
) =

∫

J

∫

Ω

ψ(t)T U T φ(x)φ(x)T Uψ(t) dxdt

=
∫

J

∫

Ω

vec (U )T (In ⊗ ψ(t))T φ(x)φ(x)T
(

In ⊗ ψ(t)T
)

vec (U ) dxdt

= vec (U )T
∫

J

(In ⊗ ψ(t))T Lφ
(

In ⊗ ψ(t)T
)

dt vec (U )

= vec (U )T
∫

J

⎛

⎜
⎝

Lφ,1,1ψ(t)ψ(t)
T · · · Lφ,1,nψ(t)ψ(t)

T

...
. . .

...

Lφ,n,1ψ(t)ψ(t)
T · · · Lφ,n,nψ(t)ψ(t)

T

⎞

⎟
⎠ dt vec (U )

= vec (U )T

⎛

⎜
⎝

Lφ,1,1Lψ · · · Lφ,1,n Lψ
...

. . .
...

Lφ,n,1Lψ · · · Lφ,n,n Lψ

⎞

⎟
⎠ vec (U )

=
(

LT/2
φ,ψvec (U )

)T (
LT/2
φ,ψvec (U )

)
,

which proves equation (27). ��
Let Mφ,ψ(h, k) be a nonnegative constant defined by Mφ,ψ(h, k) :=∥∥∥K T/2
φ,ψG−1

φ,ψK −T/2
φ,ψ

∥∥∥
2
, where ‖ · ‖2 denotes the matrix two-norm. The following the-

orem for Mφ,ψ holds.

Theorem 5.2 It holds that
∥
∥∥[I − A]−1

h,k fh,k

∥
∥∥

L2
(

J ;H1
0 (Ω)

) ≤ Mφ,ψ

∥
∥ fh,k

∥
∥

L2
(

J ;H1
0 (Ω)

) , ∀ fh,k ∈ V 1
k Sh . (29)

Proof For any fh,k ∈ V 1
k Sh , we set uh,k := [I − A]−1

h,k fh,k ∈ V 1
k Sh . Since fh,k

and uh,k are the elements of V 1
k

(
J ; Sh(Ω)

)
, there exist matrices F and U in R

n×m
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such that fh,k = φT Fψ and uh,k = φT Uψ , respectively. Moreover, from the proof
of Theorem 4.4, it follows that vec (U ) = G−1

φ,ψvec (F). Therefore, we have the
following estimates

∥
∥uh,k

∥
∥2

L2
(

J ;H1
0 (Ω)

) = vec (U )T Kφ,ψvec (U )

=
(

K T/2
φ,ψvec (U )

)T (
K T/2
φ,ψG−1

φ,ψK −T/2
φ,ψ

) (
K T/2
φ,ψvec (F)

)

≤ ∥
∥uh,k

∥
∥

L2
(

J ;H1
0 (Ω)

)
∥∥
∥K T/2

φ,ψG−1
φ,ψK −T/2

φ,ψ

∥∥
∥

2

∥
∥ fh,k

∥
∥

L2
(

J ;H1
0 (Ω)

) .

This completes the proof. ��
Let C0 and C1 be the nonnegative constants defined by

C0 := Mφ,ψ

(
Cs,2

ν
+ Cinv(h)CJ (k)

)
, C1 := ‖b‖L∞L∞ + Cs,2 ‖c‖L∞L∞ ,

respectively. Moreover, we define the constant κφ,ψ as follows:

κφ,ψ := ‖b‖L∞L∞ (1 + C0C1)C1(h, k)+ C0C1C0(h, k) ‖c‖L∞L∞

1 − C0(h, k) ‖c‖L∞L∞
, (30)

provided that 1 − C0(h, k) ‖c‖L∞L∞ �= 0.

Theorem 5.3 Assume that

0 ≤ κφ,ψ < 1. (31)

Then under the same assumptions as in Theorem 3.2, we have the following construc-
tive a posteriori estimates

∥∥
∥L −1

t

∥∥
∥

L
(

L2(J ;L2(Ω)),L2(J ;H1
0 (Ω))

) ≤ 1

1 − κφ,ψ

C0 + (1 + C0C1)C1(h, k)

1 − C0(h, k) ‖c‖L∞L∞
. (32)

Proof For any f ∈ L2
(
J ; L2(Ω)

)
, we set u := L −1

t f ∈ D(�t ). Then we make the
following decomposition of (1) into two parts, e.g., the finite- and infinite-dimensional
parts, using the projection Ph,k . Namely, in the space L2

(
J ; H1

0 (Ω)
)
, using the fol-

lowing equivalency

∂u

∂t
− ν�u + (b · ∇)u + cu = f

⇐⇒ u = Ie�−1
t

(−(b · ∇)u − cu + f
)
, (33)

we have the decomposition:

⇐⇒
{

Ph,ku = Ph,k Ie�−1
t

(−(b · ∇)u − cu + f
)
, (34a)

(I − Ph,k)u = (I − Ph,k)Ie�−1
t

(−(b · ∇)u − cu + f
)
. (34b)
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We set u⊥ := u − Ph,ku for short. From (34a), using the definition of the operator
A, we have

Ph,ku = Ph,k

(
A(Ph,ku + u⊥)+ Ie�−1

t f
)
,

by the definition of the operator [I − A]−1
h,k , which implies

Ph,ku = [I − A]−1
h,k Ph,k

(
Au⊥ + Ie�−1

t f
)
.

Therefore, from (29) and (11), we have the following estimates,

∥∥Ph,ku
∥∥

L2 H1
0

≤ Mφ,ψ

(∥∥Ph,k Au⊥
∥∥

L2 H1
0

+
∥∥∥Ph,k Ie�−1

t f
∥∥∥

L2 H1
0

)

≤ Mφ,ψ

(
Cs,2

ν
+ Cinv(h)CJ (k)

)
(‖(b · ∇ + c)u⊥‖L2 L2 + ‖ f ‖L2 L2

)
.

From the definition of C0, we have

∥∥Ph,ku
∥∥

L2 H1
0

≤ C0 ‖(b · ∇)u⊥ + cu⊥‖L2 L2 + C0 ‖ f ‖L2 L2

≤ C0 ‖b‖L∞L∞ ‖u⊥‖L2 H1
0

+ C0 ‖c‖L∞L∞ ‖u⊥‖L2 L2 + C0 ‖ f ‖L2 L2 .

(35)

By calculating the L2L2 norm of (34b) using (14), we have

‖u⊥‖L2 L2 ≤ C0(h, k) ‖−(b · ∇)u − cu + f ‖L2 L2

≤ C0(h, k)
(‖b‖L∞L∞ ‖u‖L2 H1

0
+ ‖c‖L∞L∞ ‖u‖L2 L2 + ‖ f ‖L2 L2

)
,

which yields

(
1−C0(h, k) ‖c‖L∞L∞

) ‖u⊥‖L2 L2 ≤ C0(h, k)
(‖b‖L∞L∞ ‖u‖L2 H1

0

+ ‖c‖L∞L∞
∥
∥Ph,ku

∥
∥

L2 L2 +‖ f ‖L2 L2
)
.

From (31), 1 − C0(h, k) ‖c‖L∞L∞ > 0 is satisfied. Therefore, we obtain

‖u⊥‖L2 L2 ≤ C0(h, k)

1 − C0(h, k) ‖c‖L∞ L∞

(
‖b‖L∞ L∞

∥∥Ph,ku + u⊥
∥∥

L2 H1
0

+ Cs,2 ‖c‖L∞ L∞
∥∥Ph,ku

∥∥
L2 H1

0
+ ‖ f ‖L2 L2

)

≤ C0(h, k)

1 − C0(h, k) ‖c‖L∞ L∞

(
C1
∥∥Ph,ku

∥∥
L2 H1

0
+ ‖b‖L∞ L∞ ‖u⊥‖L2 H1

0
+ ‖ f ‖L2 L2

)
.

(36)
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Thus (35) is estimated as

∥∥Ph,ku
∥∥

L2 H1
0

≤ C0 ‖b‖L∞L∞ ‖u⊥‖L2 H1
0

+ C0 ‖ f ‖L2 L2

+ C0
C0(h, k) ‖c‖L∞L∞

1 − C0(h, k) ‖c‖L∞L∞

(
C1
∥
∥Ph,ku

∥
∥

L2 H1
0

+ ‖b‖L∞L∞ ‖u⊥‖L2 H1
0

+ ‖ f ‖L2 L2

)
. (37)

Setting nonnegative constants R1,1, R1,2, and b1 as follows:

R1,1 := 1 − C0C1
C0(h, k) ‖c‖L∞L∞

1 − C0(h, k) ‖c‖L∞L∞
, R1,2 := C0 ‖b‖L∞L∞

1 − C0(h, k) ‖c‖L∞L∞
,

b1 := C0

1 − C0(h, k) ‖c‖L∞L∞
,

(37) is rewritten as

R1,1
∥∥Ph,ku

∥∥
L2
(

J ;H1
0 (Ω)

) − R1,2 ‖u⊥‖
L2
(

J ;H1
0 (Ω)

) ≤ b1 ‖ f ‖
L2
(

J ;L2(Ω)
) . (38)

On the other hand, by considering the L2 H1
0 norm of (34b), from (13) we have

‖u⊥‖L2 H1
0

≤ C1(h, k) ‖−(b · ∇)u − cu + f ‖L2 L2

≤ C1(h, k)
(
‖b‖L∞L∞

∥∥Ph,ku + u⊥
∥∥

L2 H1
0

+‖c‖L∞L∞
∥∥Ph,ku + u⊥

∥∥
L2 L2 + ‖ f ‖L2 L2

)

≤ C1(h, k)
(
C1
∥∥Ph,ku

∥∥
L2 H1

0
+ ‖b‖L∞L∞ ‖u⊥‖L2 H1

0

+‖c‖L∞L∞ ‖u⊥‖L2 L2 + ‖ f ‖L2 L2

)
.

From (36), we obtain

‖u⊥‖L2 H1
0

≤ C1(h, k)C1
∥∥Ph,ku

∥∥
L2 H1

0

+ C1(h, k) ‖b‖L∞L∞ ‖u⊥‖L2 H1
0

+ C1(h, k) ‖ f ‖L2 L2

+ C1(h, k)
C0(h, k) ‖c‖L∞L∞

1 − C0(h, k) ‖c‖L∞L∞

(
C1
∥∥Ph,ku

∥∥
L2 H1

0

+ ‖b‖L∞L∞ ‖u⊥‖L2 H1
0

+ ‖ f ‖L2 L2
)
. (39)
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We set nonnegative constants R2,1, R2,2, and b2 as follows:

R2,1 := C1C1(h, k)

1 − C0(h, k) ‖c‖L∞L∞
, R2,2 := 1 − ‖b‖L∞L∞ C1(h, k)

1 − C0(h, k) ‖c‖L∞L∞
,

b2 := C1(h, k)

1 − C0(h, k) ‖c‖L∞L∞
,

where we note that the positivity of R2,2 follows by the condition (31). Thus (39) can
be rewritten as

−R2,1
∥∥Ph,ku

∥∥
L2
(

J ;H1
0 (Ω)

) + R2,2 ‖u⊥‖
L2
(

J ;H1
0 (Ω)

) ≤ b2 ‖ f ‖
L2
(

J ;L2(Ω)
) . (40)

From (38) and (40), we have the following simultaneous inequalities,

(
R1,1 −R1,2

−R2,1 R2,2

)⎛

⎝

∥∥Ph,ku
∥∥

L2
(

J ;H1
0 (Ω)

)

‖u⊥‖
L2
(

J ;H1
0 (Ω)

)

⎞

⎠ ≤
(

b1
b2

)
‖ f ‖

L2
(

J ;L2(Ω)
) .

By assumption (31), we obtain

det

(
R1,1 −R1,2

−R2,1 R2,2

)
= 1 − κφ,ψ > 0.

Therefore, the simultaneous inequalities can be solved as follows:

⎛

⎝

∥∥Ph,ku
∥∥

L2
(

J ;H1
0 (Ω)

)

‖u⊥‖
L2
(

J ;H1
0 (Ω)

)

⎞

⎠ ≤ 1

1 − κφ,ψ

(
R2,2 R1,2
R2,1 R1,1

)(
b1
b2

)
‖ f ‖

L2
(

J ;L2(Ω)
) . (41)

Finally, from (41), we have

‖u‖
L2
(

J ;H1
0 (Ω)

) ≤ ∥∥Ph,ku
∥∥

L2
(

J ;H1
0 (Ω)

) + ‖u⊥‖
L2
(

J ;H1
0 (Ω)

)

≤ R2,2b1 + R1,2b2 + R2,1b1 + R1,1b2

1 − κφ,ψ
‖ f ‖

L2
(

J ;L2(Ω)
) ,

which proves the desired estimates. ��

6 Numerical examples

In this section, we show several rigorous numerical results for CL2 L2,L2 H1
0

satisfy-
ing (2) for test problems by three kinds of methods, namely, a priori estimates (the
Gronwall inequality), a posteriori estimates proposed in [10], and the new method in
Theorem 5.3. Moreover, we also show several rigorous error bounds of the numerical
solutions for the nonlinear parabolic equations as an application of the estimates of
(2).
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We considered the norm estimates for an inverse operator of the following Lt :

Lt := ∂

∂t
− ν� − 2uk

h, (42)

that is, b = 0 and c = −2uk
h in (2). Here, uk

h is assumed to be an approximate solution
of the following nonlinear parabolic problem:

⎧
⎪⎪⎨

⎪⎪⎩

∂u

∂t
− ν�u = u2 + f, in �× J , (43a)

u(x, t) = 0, on ∂�× J , (43b)

u(x, 0) = 0, in �. (43c)

Therefore, (42) becomes a linearized operator of (43) at uk
h . We only considered

one-space-dimensional case (d = 1) with Ω = (0, 1). Furthermore, the function f
was chosen so that the problem (43) had the following exact solutions:

• u(x, t) = 0.5t sin(πx), ν = 0.1, (Example 1.1);
• u(x, t) = 0.5t sin(πx), ν = 1.0, (Example 1.2);
• u(x, t) = sin(π t) sin(πx), ν = 0.1, (Example 2.1);
• u(x, t) = sin(π t) sin(πx), ν = 1.0, (Example 2.2).

Note that Example 1.1 and Example 2.1 are studied in [10]. In each example, the
function uk

h was computed as an approximation of the corresponding u by using a
piecewise-cubic Hermite interpolation in the space direction with a piecewise-linear
interpolation in the time direction. Therefore, uk

h belongs to V 1
(
J ; H1

0 (Ω)∩ H2(Ω)
)
.

We used the finite-dimensional spaces Sh(Ω) and V 1
k (J ), spanned by piecewise

linear functions with uniform mesh size h and k, respectively, so that they satisfied
k = h2. Then, it was seen that the constants in previous sections could be taken
as CΩ(h) = h/π , Cinv(h) = √

12/h, CJ (k) = k/π = h2/π , and Cs,2 = 1/π ,
respectively. Moreover, we had

‖c‖
L∞
(

J ;L∞(Ω)
) = 2

∥∥
∥uk

h

∥∥
∥

L∞
(

J ;L∞(Ω)
) ≤

{
T (Example 1.1 and 1.2)

2 (Example 2.1 and 2.2).

6.1 A posteriori estimates of the inverse parabolic operator

We now present the results computed for CL2 L2,L2 H1
0

by using three kinds of method.
Here, we used the following a priori estimate, which comes from the Gronwall
inequality

∥∥∥L −1
t

∥∥∥
L
(

L2(J ;L2(Ω)),L2(J ;H1
0 (Ω))

) ≤ exp(γ T )
Cs,2

ν
, γ := max

{
sup
Ω×J

(−c), 0

}
.

In this subsection, we will refer to the a posteriori estimates studied in [10] and
our present estimates (32) as “a posteriori estimate I” and “a posteriori estimate II,”
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Fig. 1 ν = 0.1

Fig. 2 ν = 1

respectively. To compute a posteriori estimate I, we used the same parameters as in
[10], i.e., (n,m) = (5, 700 · T 2) for Example 1.1, (n,m) = (5, 100 · 4T ) for Example
2.1, where we note that h = 1/(n + 1) and k = 1/m. For a posteriori estimate II, we
used h = 1/8 and h = 1/16, with k = h2.

Example 1.1 and 1.2: uk
h(x, t) ≈ −t sin(πx)

Figures 1, 2 show the values of CL2 L2,L2 H1
0

for Example 1.1–1.2, plotted out on log-
linear coordinates. For T > 1, the values of the proposed estimates are smaller than
the other estimates. The two kinds of a posteriori estimates require the validated upper
bound for the matrix two-norm of the corresponding unsymmetric dense matrices (e.g.,
Mφ,ψ ), and most of the computational costs is due to this task. In Example 1.1, for
T = 2, a posteriori estimate I a matrix of size 14000, but in a posteriori estimate II, we
can attain our purpose with a matrix of size 896 for h = 1/8, and 7680 for h = 1/16.
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Fig. 3 ν = 0.1

Fig. 4 ν = 1

This fact shows, in the case of a posteriori estimate II, that it is not necessary to take
special account of the stiff property of the ODEs coming from the semidiscretization.

Example 2.1 and 2.2: uk
h(x, t) ≈ −2 sin(π t) sin(πx)

Figures 3, 4 show the values of CL2 L2,L2 H1
0

for Example 2.1-2.2 (log-linear coordi-
nates). For T > 1/2, the values of the proposed estimates with h = 1/16 are smaller
than the other estimates. In Example 2.1, for T = 2, a posteriori estimate I requires
a matrix of size 8000, but a posteriori estimate II requires only one of size 896 for
h = 1/8 and size 7680 for h = 1/16. It is notable that the results of the proposed esti-
mates show no exponential dependency for T . On the other hand, due to the stiffness
of the corresponding ODEs, we were not successful in computing the inverse operator
of a posteriori estimate I, except for the case where T was very small.
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6.2 Verification results for solutions of nonlinear parabolic equations

Applying the estimates (2), we implemented a numerical verification method to prove
the existence of solutions for the nonlinear parabolic problems. As a prototype appli-
cation, we considered the nonlinear parabolic initial-boundary-value problems of the
form (43). In a similar way as in [8] for the elliptic case, we defined the fixed-point
equation for a compact operator, which is equivalent to (43) with the Newton-type
residual form, and derived a verification condition by applying the Schauder fixed-
point theorem.

First, we considered the following residual equation for (43):

⎧
⎪⎪⎨

⎪⎪⎩

∂w

∂t
− ν�w − 2uk

hw = g(w), in �× J , (44a)

w(x, t) = 0, on ∂�× J , (44b)

w(x, 0) = 0, in �, (44c)

where

g(w) = w2 + ε, ε = (uk
h)

2 + f −
(
∂uk

h

∂t
− ν�uk

h

)

.

Note that if the approximate solution uk
h is close to the exact solution of (43), then

w ≈ 0, ε ≈ 0, and g(w) ≈ 0. Thus (44) can be rewritten as the following fixed-point
equation of the compact map F :

w = L −1
t g(w) =: F(w). (45)

Next, for any positive constants α and β, we define the candidate set Wα,β as

Wα,β :=
{
w ∈ V ; ‖w‖L2 H1

0
≤ α, ‖w‖V 1 L2 ≤ β

}
.

From the Schauder fixed-point theorem, noting that the continuity of the map F in the
space L2 H1

0 , if the set Wα,β satisfies

F(Wα,β) ⊂ Wα,β, (46)

then a fixed point of (45) exists in the set Wα,β , where Wα,β stands for the closure of
the set Wα,β in L2 H1

0 .
Now, for any w ∈ Wα,β , we obtain the following estimates:

‖F(w)‖L2 H1
0

≤ CL2 L2,L2 H1
0
‖g(w)‖L2 L2 (47)

≤ CL2 L2,L2 H1
0

(‖w‖2
L4 L4 + ‖ε‖L2 L2

)
.

Taking notice of the Sobolev embedding constants in one domensional case with
Ω = (0, 1) and J = (0, T ) (cf. [15, p. 8]), we have
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‖w‖4
L4 L4 ≤

∫

J

‖w(t)‖2
L2(Ω)

‖w(t)‖2
L∞(Ω) dt

≤ 1

4

∫

J

‖w(t)‖2
L2(Ω)

‖w(t)‖2
H1

0 (Ω)
dt

≤ 1

4
‖w‖2

L∞L2 ‖w‖2
L2 H1

0

≤ T

8
‖w‖2

V 1 L2 ‖w‖2
L2 H1

0
.

Here, in order to get the last inequality, we have used the fact that in case of the function
with 0 only at one endpoint, i.e., t = 0, we can also apply the usual embedding theorem
by considering a symmetric extension of the function on (0, T ) to (0, 2T ). Therefore,
from w ∈ Wα,β , we have

‖g(w)‖L2 L2 ≤
√

T

8
‖w‖V 1 L2 ‖w‖L2 H1

0
+ ‖ε‖L2 L2 ≤

√
T

8
αβ + ‖ε‖L2 L2 . (48)

On the other hand, from [10, Lemma 2], the V 1L2 norm of F(w) is estimated by:

‖F(w)‖V 1 L2 ≤ ‖�t F(w)‖L2 L2 ≤ ‖g(w)‖L2 L2 + 2
∥
∥∥uk

h

∥
∥∥

L∞L∞ ‖F(w)‖L2 L2 .

Noting that the Poincaré constant can be taken as 1
π

with Ω = (0, 1), we obtain, by
(47)

‖F(w)‖L2 L2 ≤ 1

π
‖F(w)‖L2 H1

0
≤ 1

π
CL2 L2,L2 H1

0
‖g(w)‖L2 L2 .

Therefore, from (48), the following inequality holds:

‖F(w)‖V 1 L2 ≤
(

2

π
CL2 L2,L2 H1

0

∥∥∥uk
h

∥∥∥
L∞L∞ + 1

)(
αβ

√
T
8 + ‖ε‖L2 L2

)
.

By these inequalities, we have the following sufficient condition for (46):

⎧
⎪⎪⎨

⎪⎪⎩

CL2 L2,L2 H1
0

(
αβ

√
T
8 + ‖ε‖L2 L2

)
≤ α,

(
2
π

CL2 L2,L2 H1
0

∥∥uk
h

∥∥
L∞L∞ + 1

)(
αβ

√
T
8 + ‖ε‖L2 L2

)
≤ β.

Thus, we obtain the verification condition for the existence of the solutions of (44).
Since it holds thatw = u−uk

h , by solving the above simultaneous algebraic inequalities
in α and β, we have error bounds of the form

∥∥u − uk
h

∥∥
L2 H1

0
≤ α.

We now present the verification results for the solutions of (44), namely, α, β, and
the residual norm, ‖ε‖L2 L2 . In Fig. 5, we chose the function f so that (43) has the
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Fig. 5 Verification results: exact solution for u(x, t) = 0.5t sin(πx), with ν = 0.1 (left), ν = 1.0 (right)

Fig. 6 Verification results: exact solution for u(x, t) = sin(π t) sin(πx), with ν = 0.1 (left), ν = 1.0
(right)

exact solution u(x, t) = 0.5t sin(πx), with ν = 0.1 and ν = 1.0, which correspond
to Example 1.1 and Example 1.2, respectively, in the previous subsection. We show
more results in Fig. 6, in which the function f is chosen so that (43) has the exact
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solution u(x, t) = sin(π t) sin(πx), with ν = 0.1 and ν = 1.0, which correspond to
Example 2.1 and Example 2.2, respectively.

From these figures, it is seen that the error bounds increase in proportion to the resid-
ual norms. This property should be expected in our verification conditions. Namely,
the validated accuracy of the present method is essentially dependent on the residual
norm of the approximate solutions.

We see in the left side of Fig. 6, for the case ν = 0.1, that our verification method
failed for T > 0.5 with h = 1/8. On the other hand, since CΩ(h) and the residual
norm ‖ε‖L2 L2 for the mesh size h = 1/16 are smaller than in case of h = 1/8, we
succeeded in verification up to T ≤ 1.25. This fact shows that a smaller h yields better
verification, which should also be quite expected.

Remark 6.1 (Computer environment) All computations were carried out on a Dell
Precision T7500 (Intel Xeon x5680, 72 GB of memory) with MATLAB R2010b. The
computation errors have been taken into account by using INTLAB 6.0, a toolbox for
self-validating algorithms, developed by Rump [14].

7 Conclusions

We propose a method to compute constructive a posteriori estimates of the inverse
operators for parabolic initial-boundary-value problems. This method is based on
the full-discretization quasi-Newton operator, as well as the constructive a priori error
estimates for the Galerkin method, with an interpolation in time by effectively using the
fundamental solution for the spatial semidiscretization. Our proposed new estimates
(32) seem to be better and more robust than the previous estimates [10], as illustrated
in the test problems. Moreover, by applying the method to some prototype examples,
we illustrated that our method can be used to enclose solutions for nonlinear parabolic
problems.
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