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Abstract We propose and investigate novel max-flow models in the spatially continu-
ous setting, with or without i priori defined supervised constraints, under a comparative
study of graph based max-flow/min-cut. We show that the continuous max-flow models
correspond to their respective continuous min-cut models as primal and dual problems.
In this respect, basic conceptions and terminologies from discrete max-flow/min-cut
are revisited under a new variational perspective. We prove that the associated non-
convex partitioning problems, unsupervised or supervised, can be solved globally and
exactly via the proposed convex continuous max-flow and min-cut models. Moreover,
we derive novel fast max-flow based algorithms whose convergence can be guaran-
teed by standard optimization theories. Experiments on image segmentation, both
unsupervised and supervised, show that our continuous max-flow based algorithms
outperform previous approaches in terms of efficiency and accuracy.
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1 Introduction

Max-flow and min-cut are among the most fundamental pair of dual optimization
problems defined over a graph. Such problems arise naturally in applications where
one is interested in dividing a data set, represented by a set of nodes and edges, into
two regions. Very efficient optimization algorithms are available for computing the
maximal flow over a graph and consequently its minimal cut. In consequence, many
optimization problems that can be viewed as a minimum cut problem can benefit from
these algorithms. Perhaps the most prominent application area is image processing and
computer vision, in which case the graph is typically a structured grid representing
the pixels of the image. Many image processing and computer vision problems can be
modeled in the form of energy minimization through Markov Random Fields (MRF)
and solved numerically via min-cut and max-flow, see [38,43] for good references. A
long list of successful examples include image segmentation [2,5,10], stereo [31,32],
3D reconstruction and shape-fitting [36,37,48], image synthesis and photomontage
[1,34], etc. There has been a vast amount of research on this topic during the last years,
initiated partly by [8,10]. Other discrete optimization methods include message pass-
ing [30,49] and linear programming [33] etc. One main drawback of such graph-based
approaches is the grid bias. The interaction potential penalizes some spatial directions
more than other, which leads to visible artifacts in the computational results. Reducing
such metrication errors can be done by considering more neighboring nodes [9,29] or
high-order interaction potentials [27,28]. However, this results in a heavier memory
load and higher computational cost. Recent studies [13] showed that formulating min-
cut in the spatially continuous setting properly avoids metrication bias and leads to
fast and global numerical solvers through convex optimization [11]. G. Strang [45,46]
was the first to formulate max-flow and min-cut problems over a continuous domain,
with sources either within the domain, or on the boundary of the domain. Other related
studies include Nozawa [41], which showed that for some special capacity functions
there is a duality gap between the continuous max-flow and min-cut problems. In
[2,3], Appleton et al. proposed an edge-based continuous minimal surface approach
to segmentation of 2D and 3D objects. A simultaneous work with ours [15], pro-
posed a combinatorial optimization algorithm for solving a discretized version of the
continuous max-flow problem.

In the variational community, there has been much interest in the problem of parti-
tioning the domain � into two regions, a foreground region S and background region
�\S, by minimizing

min
S

∫

�\S

Cs(x)dx +
∫

S

Ct (x)dx + α |∂S| . (1.1)

Here Ct (x) ∈ R is the cost of assigning x to foreground region and Cs(x) is the cost of
assigning x to the background region. The level set method [42] and piecewise constant
variants [40,39] are popular tools for solving the minimization problem numerically,
but are not guaranteed to converge to a global minimizer. Chan et al. [13] showed that
by relaxing the binary constraint set of the characteristic function λ(x) ∈ {0, 1} of S
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A spatially continuous max-flow and min-cut framework 561

to the convex set λ(x) ∈ [0, 1], the binary-constrained nonconvex problem (1.1) can
be globally solved via the convex minimization problem

min
λ(x)∈[0,1]

∫

�

(1 − λ(x))Cs(x)dx +
∫

�

λ(x)Ct (x)dx + α

∫

�

|∇λ| dx . (1.2)

More specifically, solving (1.2) leads to a sequence of global binary optimizers by
thresholding the solution λ∗(x) ∈ [0, 1] at any value t ∈ (0, 1]. In case of non-
uniqueness, a set of global binary solutions to the original nonconvex partition problem
(1.1) can therefore be obtained. Traditional combinatorial max-flow algorithms do not
offer such a flexibility and usually converge to one of the solutions. In this regard,
(1.2) is also known as a continuous min-cut model. Fast numerical solvers for (1.2)
were later developed through convex optimization in [11]. Recently, approach of Chan
et al. was extended to more than two regions in [6,35,44], i.e. the continuous Potts
model, although no simple thresholding scheme as above has been discovered for
these relaxed models.

In the discrete setting, the duality between max-flow and min-cut have been
exploited to design algorithms based on the max-flow [18,14] formulations. Sev-
eral very efficient algorithms, such as the Ford-Fulkerson algorithm [14], push-relabel
algorithm [20], Dinitz blocking flow algorithm [16] are available to computing max-
flow. In contrast, algorithms based on max-flow models over a continuous domain, as
the dual formulation of (1.2), are still missing. For minimization problems involving
total variation, like the ROF model [12], where the primal variable is unconstrained,
dual formulations are also known and has been used to design fast algorithms [12].
However, if constraints like λ ∈ [0, 1] are introduced, the dual formulation changes
completely, as we will see. To tackle such constraints in research so far, algorithms
which are designed for unconstrained total variation have been applied. They are mod-
ified such that the primal variable is forced to the feasible set every iteration, either
by projections or by adding forcing terms [11,13,21]. Recently Bae et al. [6] studied
the dual formulation of the continuous Potts problem with multiple labels, but not in
the manner of maximizing flows. This motivates the contributions of this work. More-
over, we will also investigate the min-cut problem with a priori defined supervision
constraints, by adapting the corresponding max-flow structures.

1.1 Contributions

In this paper we propose and study new max-flow models over a continuous domain,
where a source and sink term are connected to every spatial point of the domain. Our
work is a direct generalization of discrete max-flow models to the spatially continuous
setting and consequently differs from Strang [45] in several respects: we introduce
source and sink flows which are upper bounded by predefined capacities. This leads to
new max-flow models, including the flow conservation constraints. We give a different
proof of strong duality between the max-flow and min-cut models, where the indicator
function of the cut acts as a Lagrange multiplier for the flow conservation constraint;
We also consider max-flow and min-cut models with a priori defined supervision
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constraints; Last, but not least, very efficient max-flow algorithms are constructed
directly from the max-flow formulations based on the Augmented Lagrangian method.

We summarize our main contributions as follows:
First, we propose novel continuous max-flow models, which provide new equivalent

representations of their respective continuous min-cut problems, unsupervised (1.2)
or supervised (4.12), in terms of primal and dual.

Second, we revisit and give explanations of fundamental conceptions used in max-
flow/min-cut, e.g. ’saturated’/’unsaturated’ and ’cuts’, through a new variational per-
spective. Via the equivalent max-flow formulation, we prove that the nonconvex parti-
tioning problems, unsupervised (1.1) and supervised (to be introduced in Sec. (4.1)),
can be solved exactly and globally.

Third, for the continuous min-cut model with supervised constraints, the proposed
continuous max-flow formulation encodes the user-input constraints implicitly, and
does not require to change flow capacities artificially as has been done previously.

Finally, new and fast max-flow based algorithms are proposed, which splits the
optimization problem into simple subproblems over independent flow variables, where
the labeling function λ works as a lagrange multiplier and can be updated at each
iteration. Their convergence can be easily validated by classical optimization theories.
The complexities of the supervised max-flow and min-cut algorithms are no worse
than the unsupervised algorithms. Experiments show that our continuous max-flow
algorithms significantly outperform previous continuous min-cut methods in terms of
efficiency, e.g. [11]. They also outperform highly optimized graph cut implementations
in terms of efficiency and accuracy (no metrication artifacts).

This work extends our preliminary conference paper [50]. More specifically, each
section has been significantly elaborated, proofs of Proposition 3.2 and 4.1 have been
included and significantly more experiments are performed to demonstrate the high
efficiency of the new max-flow algorithms.

2 Revisit of discrete max-flow and min-cut

Many optimization problems can be formulated as max-flow/min-cut problems on
appropriate graphs. This is particularly the case for many optimization problems aris-
ing in image processing and computer vision as first observed by Greig et. al. [23]. A
graph G is a pair (V, E) consisting of a vertex set V and a directed edge set E ⊂ V ×V .
The vertex set V contains two distinguished vertices, the source {s} and the sink {t}.
A cost C(e) is assigned to each edge e ∈ E , which is assumed to be nonnegative i.e.
C(e) ≥ 0.

In this work, we focus especially on one type of graphs where the vertex set V
contains the nodes of a 2-D or N-D nested grid. The edge set is comprised of two
types of edges: the spatial edges en = (r, q), between pairwise neighboring nodes
r, q ∈ V\{s, t} on the grid; and the terminal edges es = (s, r) and et = (r, t), where
r ∈ V\{s, t}, which link the source s and sink t to the grid node r . In case V is a
2-D grid, such a graph is depicted Fig. 1 left. Such graphs have for instance become
very popular for solving a wide range of problems in image processing and computer
vision.
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A spatially continuous max-flow and min-cut framework 563

Fig. 1 Max-flow and min-cut in discrete setting (left) and continuous setting (right)

2.1 Min-cut

A cut on the graph G is a division of the vertices into two disjoint groups Vs and Vt ,
such that: Vs contains the source {s}, Vt contains the sink {t}; for every vertex v ∈ Vs ,
there exists a path between s and v; for every vertex v ∈ Vt , there exists a path between
v and t ; i.e.

V = Vs

⋃
Vt , Vs ∩ Vt = ∅.

The cost of the cut is defined as the sum of weights of edges with tail in Vs and head
in Vt

C(Vs, Vt ) =
∑

(r,q)⊂E :r∈Vs , q∈Vt

C(e). (2.1)

The min-cut problem is to find the cut (Vs, Vt ) of minimum cost C(Vs, Vt ).
A cut on the type of graphs illustrated in Fig. 1 divides the spatial grid nodes

V\{s} ∪ {t} into two disjoint groups: one is connected to the source s and the other is
connected to the sink t (see Fig. 1 left). Therefore, the cut naturally forms an image
segmentation into two regions, in case V consists of the grid nodes of the image domain.

2.2 Max-flow

On the other hand, each edge e ∈ E can be viewed as a pipe and the edge cost C(e) can
be regarded as the capacity which bounds the maximal amount of flow p(e) allowed
on the pipe e, i.e. we get the constraint

0 ≤ p(e) ≤ C(e).

In addition, flow conservation is required at each vertex

∑
r∈V :(r,q)∈E

c(r, q) −
∑

r∈V :(q,r)∈E
c(q, r) = 0 ∀ q ∈ V\{s} ∪ {t}
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The maximum flow problem is to find the largest amount of flow allowed to pass
from the source s to the sink t . The total amount of flow from {s} to {t} can be expressed
as the total amount of flow on the source edges, i.e. the problem can be expressed as

max
p

∑
v∈V :(s,v)∈E

p(s, v), (2.2)

subject to the above flow constraints. It is well known that the max-flow problem (2.2)
is equivalent to the min-cut problem (2.1). Edges with tail in Vs and head in Vt in the
min-cut problem are saturated in the max-flow problem, i.e. the total amount of flow
is bottlenecked by the ’saturated pipes’. With the graph-cut terminology, a flow p(e)
on the edge e ∈ E is said to be ’saturated’ when it reaches the corresponding capacity
C(e); otherwise, it is called ’unsaturated’. We will revisit these conceptions under a
variational perspective in the following sections.

In case of the graph structure we focus on in this work, and as depicted in Fig. 1 in
2-D, the constraints in the max-flow problem become

• Capacity of spatial flows p: for each r, q ∈ V\{s, t}, the directed spatial edges
(r, q) ∈ E and (q, r) ∈ E have spatial flows p(r, q) and p(q, r) which are con-
strained by:

0 ≤ p(r, q) ≤ C(r, q), 0 ≤ p(q, r) ≤ C(q, r). (2.3)

If C(q, r) = C(r, q) = α for all r, q ∈ V\{s, t}, this corresponds to an anisotropic
total-variation term. To simplify notation, one can define a single flow p̃(r, q) for
each edge pair (r, q), (q, r) which is allowed to be negative, such that

p̃(r, q) = p(r, q) − p(q, r).

The flow capacity constraints (2.3) can then be merged in

−C(q, r) ≤ p̃(r, q) ≤ C(r, q).

The continuous generalization of spatial flow will be based on this simpler notation.
• Capacity of source flows ps : for the edge es(v) : s → v linking the terminal s

to a node v ∈ V\{s, t}, the source flow ps(v) is directed from s to v. Its capacity
Cs(v) indicates that

0 ≤ ps(v) ≤ Cs(v); (2.4)

• Capacity of sink flows pt : for the edge et (v) : v → t linking a node v ∈ V\{s, t}
to the terminal t, pt (v) is directed from v to t . Its capacity Ct (v) indicates that

0 ≤ pt (v) ≤ Ct (v); (2.5)
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A spatially continuous max-flow and min-cut framework 565

• Conservation of flows: at each node v ∈ V\{s, t}, incoming flows should be bal-
anced by outgoing flows. In other words, all the flows passing through v, including
spatial flows p(en := (v, q)) where q ∈ N (v) is in the set of neighboring nodes
of v, the source flow ps(v) and the sink flow pt (v), should be constrained by

⎛
⎝ ∑

q∈N (v)

p̃(q, v)

⎞
⎠ − ps(v) + pt (v) = 0. (2.6)

3 Continuous max-flow and min-cut

In this section, we develop a direct continuous generalization of the max-flow model
in Sect. 2.2 and show that it is dual to the min-cut problem (1.1).

3.1 Primal model: continuous max-flow

In the spatially continuous setting, let � be a closed spatial 2-D or N-D domain and
s, t be the source and sink terminals, see Fig. 1 right. At each point x ∈ �, we denote
the spatial flow at x by p(x); the directed source flow from s to x by ps(x); and
the directed sink flow from x to t by pt (x). Now we consider the counterpart of the
discrete max-flow problem (2.2) with constraints (2.3) (2.6) in the continuous limit as
the number of grid nodes in V goes to infinity. The max-flow model can be directly
formulated in the same manner as in Sect. 2.

For each x ∈ � let ps(x) ∈ R denote the flow from the source s to x and pt (x) ∈ R

denote the flow from x to the sink t . Define further the flow field p ∈ C∞(�)N

as the spatial flow within �, where N is the dimension of the domain �. In view
of the flow constraints (2.3), (2.4), (2.5) and (2.6) in the discrete setting, the flows
p(x), ps(x), pt (x) are constrained by the capacities C(x), Cs(x) and Ct (x) as follows:

|p(x)| ≤ C(x), ∀x ∈ �; (3.1)

ps(x) ≤ Cs(x), ∀x ∈ �; (3.2)

pt (x) ≤ Ct (x), ∀x ∈ �; (3.3)

div p(x) − ps(x) + pt (x) = 0, a.e. x ∈ �. (3.4)

p · n = 0. on ∂� (3.5)

Constraint (3.4) is the continuous version of the flow capacity constraint. Here div p
evaluates the total amount of incoming spatial flow locally at x , which is in analogy
with the sum operator of (2.6) in the discrete setting. The notation a.e. stands for “for
almost every”. It means the constraint (3.4) should hold in the integrable, weak sense
for every x ∈ �, expect possibly a subset of zero measure.

Here, the constraints on the source flow ps(x) (3.2) and the sink flow pt (x) (3.3)
are changed a little in comparison to (2.4) and (2.5). This is because the flows ps(x)

and pt (x) are not required to be positive as they are directed flows and their values
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indicate how the flow is distributed from s to the point x or from x to t . Likewise, the
capacities Cs(x) and Ct (x) are also not necessarily required to be positive.

In analogy with the discrete max-flow problem (2.2), the continuous max-flow
model can be formulated as

sup
ps ,pt ,p

⎧⎨
⎩P(ps, pt , p) =

∫

�

ps(x)dx

⎫⎬
⎭ (3.6)

subject to the constraints (3.1), (3.2), (3.3) and (3.4). In this paper, we also call (3.6)
the primal model and all flow variables ps, pt and p the primal variables.

3.2 Primal-dual model

By introducing the unconstrained lagrange multiplier function λ : � �→ R, also called
the dual variable, to the linear equality of flow conservation (3.4), the continuous
maximal flow model (3.6) can be formulated as its equivalent primal-dual model:

inf
λ

sup
ps ,pt ,p

⎧⎨
⎩E(ps, pt , p; λ) =

∫

�

ps(x)dx +
∫

�

λ(x)
(

div p − ps + pt
)
dx

⎫⎬
⎭

s.t. ps(x) ≤ Cs(x), pt (x) ≤ Ct (x), |p(x)| ≤ C(x) ∀x ∈ �. (3.7)

Rearranging the primal-dual formulation (3.7), we then get

inf
λ

sup
ps ,pt ,p

⎧⎨
⎩E(ps, pt , p; λ) =

∫

�

{(
1 − λ

)
ps + λpt + λ div p

}
dx

⎫⎬
⎭

s.t. ps(x) ≤ Cs(x), pt (x) ≤ Ct (x), |p(x)| ≤ C(x) ∀x ∈ �. (3.8)

Note that for the primal-dual model (3.8), the conditions of the minimax theorem
(see e.g., [17] Chapter 6, Proposition 2.4) are all satisfied. That is, the constraints
of flows are convex, and the energy function is linear in both the primal and dual
functions ps(x), pt (x), p(x) and λ(x), hence convex l.s.c. for fixed λ and concave
u.s.c. for fixed ps, pt and p. This also implies the existence of at least one saddle
point, see [17]. Clearly, optimizing the primal-dual problem over the dual variable λ

leads back to the primal max-flow model (3.6), i.e.

P(ps, pt , p) = inf
λ

E(ps, pt , p; λ).
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3.3 Dual model: continuous min-cut

We show in this section that optimizing the primal-dual model (3.7) or (3.8) over the
flow variables ps, pt and p leads to its equivalent dual model:

min
λ(x)∈[0,1]

⎧⎨
⎩D(λ) =

∫

�

{(
1 − λ(x)

)
Cs(x) + λ(x)Ct (x)dx + C(x) |∇λ| }dx

⎫⎬
⎭ .

(3.9)

3.3.1 Optimization of flow variables

In order to optimize the flow variables of (3.8), let us first consider the following
maximization problem

f (q) = sup
p≤C

p · q, (3.10)

where p, q, C are scalars. When q < 0, p can be chosen to be negative infinity in
order to maximize the value p · q, which results in f (q) = +∞. We further observe
that

{
if q = 0, then p ≤ C and f (q) reaches maximum 0
if q > 0, then p = C and f (q) reaches maximum q · C

. (3.11)

Therefore, we can equivalently express f (q) as

f (q) =
{

q · C if q ≥ 0
∞ if q < 0.

(3.12)

Obviously, the function f (q) given by (3.10) provides a prototype to maximize the
primal-dual model (3.8) over the source flow ps(x) and sink flow pt (x). Define

fs(x) = sup
ps (x)≤Cs (x)

(
1 − λ(x)

) · ps(x), (3.13)

and

ft (x) = sup
pt (x)≤Ct (x)

λ(x) · pt (x). (3.14)

Then, by the discussion above, for each position x ∈ �:

fs(x) =
{(

1 − λ(x)
) · Cs(x) if

(
1 − λ(x)

) ≥ 0

∞ if
(
1 − λ(x)

)
< 0

(3.15)
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and

ft (x) =
{

λ(x) · Ct (x) if λ(x) ≥ 0
∞ if λ(x) < 0.

(3.16)

For the maximization of (3.8) over the spatial flow p(x), it is well known [19] that

sup
|p(x)|≤C(x)

∫

�

λ div p dx =
∫

�

C |∇λ| dx . (3.17)

By (3.15), (3.16) and (3.17), maximization of the primal-dual model (3.8) over flows
ps, pt and p leads to its equivalent dual model (3.9). Observe that optimal λ must be
contained in [0, 1], otherwise the primal-dual energy would be infinite, contradicting
the existence of at least one saddle point.

We summarize the above discussions by the following proposition:

Proposition 3.1 The continuous max-flow model (3.6), the primal-dual model (3.7)
or (3.8) and the dual model (3.9) are equivalent to each other.

3.4 Global binary optimizers of the continuous min-cut

When C(x) is constant over the whole domain �, e.g. C(x) = α, the dual model (3.9)
is reduced to

min
λ(x)∈[0,1]

⎧⎨
⎩D(λ) =

∫

�

{(
1 − λ(x)

)
Cs(x) + λ(x)Ct (x) + α |∇λ| }dx

⎫⎬
⎭ (3.18)

which just coincides with the continuous min-cut model investigated by Chan et al.
[13]. The function C satisfies C(x) ≥ 0 for all x ∈ � and is assumed to be bounded and
Borel measurable. For such spatial capacity functions there are no duality gap between
the max-flow and min-cut models studied by Nozawa [41]. In image processing and
computer vision C can for instance be an image edge detector, which takes small values
at edges in the image and large values elsewhere. Such edge detector functions satisfy
the above properties. In this case the model (3.9) becomes the geodesic segmentation
model studied by Bresson et al. [11].

In this paper, we focus on the case that C(x) = α is constant for simplicity, and
prove that there exists a series of binary optimums of (3.18) which are also globally
optimal to the nonconvex min-cut problem (1.1) and can be obtained by thresholding.
This is the same result that was shown by Chan et al. [13]. We demonstrate it in another
way by duality through the continuous max-flow model (3.6). We show that every such
minimal cut of (1.1) has the same energy as the maximum flow energy of (3.6). The
results can easily be extended to the more general version of (3.9).

Proposition 3.2 Let p∗
s , p∗

t , p∗ and λ∗(x) be a global optimizer of the primal-dual
model (3.7) when C(x) = α. Then each �− upper level set S� := {x |λ∗(x) ≥ �, � ∈
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A spatially continuous max-flow and min-cut framework 569

(0, 1] }, � ∈ (0, 1], of λ∗(x) is a global minimizer of the nonconvex min-cut problem
(1.1). The indicator function u�

u�(x) :=
{

1, λ∗(x) ≥ �

0, λ∗(x) < �
,

is a global binary minimizer of (1.2).
Moreover, each cut energy given by S� has the same energy as its optimal max-flow

energy, i.e.

P(p∗
s , p∗

t , p∗) =
∫

�

p∗
s (x)dx = D(u�).

Proof Let p∗
s , p∗

t , p∗ and λ∗(x) be an optimal primal-dual pair of (3.7), then
p∗

s , p∗
t , p∗ optimize the max-flow problem (3.6) and λ∗(x) optimizes the dual problem

(3.18). Clearly, the maximal flow energy of (3.6) is

P(p∗
s , p∗

t , p∗) =
∫

�

p∗
s (x)dx (3.19)

and satisfies

P(p∗
s , p∗

t , p∗) = E(p∗
s , p∗

t , p∗; λ∗) = D(λ∗).

For the max-flow problem (3.6), the flow conservation condition (3.4) is satisfied,
i.e.

div p∗(x) − p∗
s (x) + p∗

t (x) = 0, a.e. x ∈ � (3.20)

Let S� be any level set of λ∗ and � ∈ (0, 1] and u� be its indicator function. In view
of (3.11), for any point x ∈ �\S�, i.e. where λ(x) < � ≤ 1, it is easy to see that

p∗
s (x) = Cs(x), ∀x ∈ �. (3.21)

Likewise, for any point x ∈ S�, i.e. λ(x) ≥ � > 0, we have

p∗
t (x) = Ct (x), ∀x ∈ �.

Then by (3.20), we have

p∗
s (x) = Ct (x) + div p∗(x), x ∈ S�, a.e. x ∈ � (3.22)
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Therefore, by (3.21) and (3.22), the total energy defined in (3.19), for each level set
S�, is

P(p∗
s , p∗

t , p∗) =
∫

�\S�

Cs(x)dx +
∫

S�

(
Ct (x) + div p∗(x)

)
dx

=
∫

�\S�

Cs(x)dx +
∫

S�

Ct (x)dx +
∫

S�

div p∗(x)dx

=
∫

�\S�

Cs(x)dx +
∫

S�

Ct (x)dx + α

∣∣∣∂S�\(∂S� ∩ ∂�)

∣∣∣ .

The last term follows from the fact that p∗
n(x) = α∀x ∈ ∂S�\(∂S� ∩ ∂�) and the

Gaussian theorem

∫

S�

div p∗(x)dx =
∫

∂S�

p∗
n(x)dl = α

∣∣∣∂S�\(∂S� ∩ ∂�)

∣∣∣ . (3.23)

It can also be verified by Prop. 4 of [6].
Therefore, the binary function u�, which is the indicator function of S�, solves the

nonconvex min-cut problem (1.1) globally. This can be seen by the following facts: u�

is obviously contained in the relaxed convex set [0, 1] and its energy P(p∗
s , p∗

t , p∗)
is globally optimal to both the convex relaxed models (3.6) and (3.18). ��

In other words, the continuous max-flow formulation (3.6) implicitly leads to a
segmentation of � with minimal length, i.e. the continuous min-cut given by the
optimal multiplier function λ∗(x). By solving the continuous max-flow model (3.6)
one obtain a globally optimal solution to the partition problem (1.1). In Sec. 5.1, an
algorithm is proposed for solving the continuous max-flow problem.

3.4.1 ’Saturated’/’unsaturated’ flows and cuts

By analyzing the new max-flow model, we can give a variational perspective to the
connections between flows and cuts and also recover concepts such as ’saturated’ and
’unsaturated’ edges, which are used in the discrete max-flow/min-cut setting.

Let p∗ be an optimizer of (3.10). By means of variations, if p∗ < C strictly, its
variation δp can be both positive and negative. Observe that if p∗+δp doesn’t increase
the value f (q) for any δp, it directly follows that q = 0. On the other hand, for p∗ = C ,
variations δp under the constraint must satisfy δp < 0. Again, any p∗ + δp doesn’t
increase the value f (q), hence it follows that q ≥ 0. In other words, if the flow p∗ < C
does not reach its maximum capacity, then q = 0 and f (q) = 0 and hence there is
no contribution to the total energy. We say the corresponding edge is ’unsaturated’
and is therefore not part of the ’minimal cut’. These observations allow us to explain
the relationships between flows and cuts in the spatially continuous setting. In the

123



A spatially continuous max-flow and min-cut framework 571

following it is assumed that p∗
s , p∗

t , p∗ and λ∗(x) be an optimal primal-dual pair of
(3.7).

Source flows, sink flows and cuts: observe from (3.2) that if the source flow p∗
s (x) <

Cs(x) at x ∈ � is ’unsaturated’, we must have 1 − λ∗(x) = 0, i.e.

p∗
s (x) < Cs(x) �⇒ λ∗(x) = 1.

At the position x , it is definitely labeled as 1. In addition, fs(x) = (1−λ∗(x))p∗
s (x) =

0, which means that at the position x , the source flow p∗
s (x) has no contribution to

the cut energy. It follows that p∗
t (x) = Ct (x) is saturated and the minimal cut passes

through the edge from x to the sink t .
Likewise, if the sink flow p∗

t (x) < Ct (x) is ’unsaturated’, we must have λ∗(x) = 0,
i.e.

p∗
t (x) < Ct (x) �⇒ λ∗(x) = 0.

At the position x , it is labeled as 0. In addition, ft (x) = λ∗(x)p∗
s (x) = 0, which

means that at the position x , the sink flow p∗
t (x) has no contribution to the cut energy.

Hence, p∗
s (x) = Cs(x) is saturated and the minimal cut passes through the edge from

the source s to x .
As we see, only ’saturated’ source and sink flows have contributions to the total

energy.
Spatial flows and cuts: for the spatial flows p∗(x), let

Cα
TV := {p ∈ C∞(�)N |‖p‖∞ ≤ α, pn|∂� = 0}.

Observe that

sup
p∈Cα

TV

〈div p, λ〉 = sup
p∈Cα

TV

〈p,∇λ〉 , (3.24)

where the inner product 〈a, b〉 is
∫
�

a(x)b(x)dx . The extremum of the inner product
〈p∗,∇λ∗〉 in (3.24) is just the normal cone-based condition [24] of ∇λ∗, i.e.

∇λ∗ ∈ NCα
TV

(p∗). (3.25)

Then we simply have:

if ∇λ∗(x) �= 0, then
∣∣p∗(x)

∣∣ = α, (3.26a)

if
∣∣p∗(x)

∣∣ < α, then ∇λ∗(x) = 0. (3.26b)

In other words, at potential cut locations x ∈ � where ∇λ∗(x) �= 0 the spatial flow
p∗(x) is ’saturated’. At locations x ∈ � where |p(x)| < α is not saturated, we must
have ∇λ∗(x) = 0 and therefore the cut does not sever the spatial domain at x .
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4 Supervised continuous max-flow and min-cut

In this section, we study continuous max-flow and min-cut models with priori given
supervision constraints.

In contrast to the continuous max-flow and min-cut introduced above, the supervised
max-flow/min-cut computes the optimal partition subject to given constraints on the
region configurations, e.g. some grid nodes are labeled in advance as belonging to
either the foreground or background. This gives a supervised partition problem which
can be modeled as the following supervised continuous min-cut problem

min
S

∫

S\� f

Cs(x)dx +
∫

(�\�b)\S

Ct (x)dx + α |∂S|

s.t.� f ⊂ S ⊂ �\�b, (4.1)

where � f ,�b ⊂ � are the two disjoint areas marked a priori by the user: � f belongs
to the foreground and �b belongs to the background.

The supervised continuous min-cut formulation can equivalently be written in terms
of the binary characteristic function λ(x) ∈ {0, 1} as:

min
λ(x)∈{0,1}

∫

�

(1 − λ(x))Cs(x)dx +
∫

�

λ(x)Ct (x)dx + α

∫

�

|∇λ(x)| dx . (4.2)

subject to the labeling constraints

λ(� f ) = 1, λ(�b) = 0. (4.3)

Considering the derivations in Sect. 3, we could simply set

Cs(� f ) = +∞, Ct (�b) = +∞. (4.4)

These constraints say that the source flow ps(x) is unconstrained at x ∈ � f and the
sink flow pt (x) is unconstrained at x ∈ �b. In view of discussions of Sect. 3.3.1,
the labeling constraints (4.3) would then follow. As in [8], this provides a direct way
to couple the max-flow approach to the min-cut problem with supervised constraints
(4.3).

In this work, we also propose new supervised max-flow and min-cut models without
the artificial flow constraints (4.4), which implicitly encode the supervised information
(4.3) and have the same complexity as the unsupervised formulations: (3.6) and (3.9).
It is also flexible in case the supervised information is not given in an absolute sense as
in (4.3): for example the marked areas � f and �b may be provided in a ’soft’ manner
by probabilities:

λ(� f ) = t f ∈ (0, 1), λ(�b) = tb ∈ (0, 1) (4.5)
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where t f and tb are positive constants but less than 1. It is easy to see that modification
of the flows manually by (4.4) does not work in this case.

To motivate the following approach, we first define two characteristic functions
corresponding to the label constraints (4.3):

u f (x) =
{

1, x ∈ � f

0, x /∈ � f
, ub(x) =

{
0, x ∈ �b

1, x /∈ �b
. (4.6)

Observe that � f and �b are disjoint. It follows that that

u f (�b) = 0, ub(� f ) = 1. (4.7)

For the ’soft’ version of the constraints (4.5), we define

u f (x) =
{

t f , x ∈ � f

0, x /∈ � f
, ub(x) =

{
1 − tb, x ∈ �b

1, x /∈ �b
. (4.8)

It can be seen that the functions u f (x) and ub(x) describe lower and upper bounds
on the probability of labeling the location x ∈ � as foreground and background
respectively. This is shown in more detail in Sect. 4.3.

In the following discussion, we focus on (4.3) to simplify the derivations. The
results are easily extended to the case of (4.5).

4.1 Primal model: supervised max-flow

Consider the flow ps(x) from the source s to each spatial location x ∈ �: when
x ∈ �b, the flow should have no contribution to the energy as it passes through the
known background location; otherwise, it should be valued in the usual way. Therefore,
in view of (4.6), which implies that ub(�b) = 0 and ub(�\�b) = 1, the total amount
of source flow ps in � is given by

∫
�

ub(x)ps(x)dx . Similarly, concerning the total
cost of the flow pt (x) from each spatial location x to the sink t : When x ∈ � f ,
the sink flow contributes to the cost by −pt (x), where the negative sign means it
reduces the cost; otherwise, the sink flow contributes nothing. In view of (4.6), which
implies u f (� f ) = 1 and u f (�\� f ) = 0, we therefore set the total cost of pt in �

as − ∫
�

u f (x)pt (x)dx .
In contrast to the continuous max-flow problem (3.6), we formulate the related

supervised max-flow model as

sup
ps ,pt ,p

PS(ps, pt , p) =
∫

�

ub(x)ps(x)dx −
∫

�

u f (x)pt (x)dx (4.9)

subject to the same flow constraints (3.1), (3.2), (3.3) and (3.4) on ps, pt and p.
Likewise, (4.9) is also called the primal model of the supervised max-flow/min-cut
problem.
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In the special case that no priori information about foreground and background
is given, the two characteristic functions satisfies u f (x) = 0 and ub(x) = 1 for
∀x ∈ �. Therefore, the supervised max-flow problem (4.9) coincides with the max-
flow problem (3.6).

4.2 Supervised primal-dual model

In analogy with (3.7), we can construct the equivalent primal-dual formulation of (4.9)
by introducing the multiplier function λ

sup
ps ,pt ,p

inf
λ

ES(ps, pt , p; λ) =
∫

�

ub(x)ps(x)dx −
∫

�

u f (x)pt (x)dx

+
∫

�

λ(x)
(

div p(x) − ps(x) + pt (x)
)
dx

s.t. ps(x) ≤ Cs(x), pt (x) ≤ Ct (x), |p(x)| ≤ C(x),

(4.10)

which can equivalently be formulated as

sup
ps ,pt ,p

inf
λ

ES(ps, pt , p; λ) =
∫

�

(ub − λ)psdx +
∫

�

(λ − u f )pt dx

+
∫

�

λ(x) div p(x)dx

s.t. ps(x) ≤ Cs(x), pt (x) ≤ Ct (x), |p(x)| ≤ C(x).

(4.11)

As in Sect. 3.2, there exists at least one optimal primal-dual saddle point since all
properties of the mini-max theorem are satisfied.

4.3 Dual model: supervised min-cut

Maximizing all the flow functions ps, pt and p in ES(ps, pt , p; λ) of (4.11), in the
same manner as (3.15), (3.16) and (3.17), leads to the equivalent dual model corre-
sponding to (4.9), also called the supervised min-cut model in this paper:

min
λ

DS(λ) =
∫

�

(
ub − λ

)
Csdx +

∫

�

(
λ − u f

)
Ct dx +

∫

�

C(x) |∇λ(x)| dx

s.t.u f (x) ≤ λ(x) ≤ ub(x). (4.12)
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In this paper, we focus on the case that C(x) = α,∀x ∈ �, in which case (4.12) can
be written as

min
λ

DS(λ) =
∫

�

(
ub − λ

)
Csdx +

∫

�

(
λ − u f

)
Ct dx + α

∫

�

|∇λ(x)| dx

s.t.u f (x) ≤ λ(x) ≤ ub(x); (4.13)

or, observing that ub and u f are given in advance, be shortened as

min
λ

DS(λ) =
∫

�

λ
(
Ct − Cs

)
dx + α

∫

�

|∇λ(x)| dx

s.t.u f (x) ≤ λ(x) ≤ ub(x). (4.14)

We see that (4.14) is just the convex relaxed model of the nonconvex supervised
min-cut problem (4.2), where the subset ordering

� f ⊂ S ⊂ �\�b

in (4.1) is expressed by the inequality ordering

u f (x) ≤ λ(x) ≤ ub(x), x ∈ �

in (4.14).
Moreover, the inequality constraint of λ in (4.14), in view of (4.6) and (4.7) implies

that

λ(� f ) = 1, λ(�b) = 0. (4.15)

This coincides with the priori information that � f is already labeled as foreground
objects and �b is labeled as the background. It follows that the inequality constraint
of λ(x) implicitly encodes the priori supervision information.

In the special case when no priori information about foreground and background is
given, i.e. u f (x) = 0 and ub(x) = 1∀x ∈ �, the supervised min-cut problem (4.13)
is equivalent to the continuous min-cut problem (1.2).

4.4 Global binary supervised min-cuts

Now we prove that global optimums of the nonconvex supervised min-cut model (4.1)
can also be obtained by each upper level set of the global optimum λ∗ to its convex
relaxed version (4.13) or (4.14), in a similar manner as Proposition 3.2.

Proposition 4.1 Let p∗
s , p∗

t , p∗ and λ∗(x) be a global optimum of the primal-dual
problem (4.10) with C(x) = α. Then each �− upper level set S� := {x |λ(x) ≥ �} of
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λ∗(x) where � ∈ (0, 1] is a global minimizer of (4.1). Its indicator function u�:

u�(x) :=
{

1, λ∗(x) ≥ �

0, λ∗(x) < �
,

is a global solution of the nonconvex supervised min-cut problem (4.2).
Moreover, each supervised cut given by S� has the same energy as the optimal

supervised max-flow energy, i.e.

PS(p∗
s , p∗

t , p∗) =
∫

�

ub(x)p∗
s (x)dx −

∫

�

u f (x)p∗
t (x)dx = DS(u

�).

Proof Let p∗
s , p∗

t , p∗ and λ∗(x) be a global optimum of (4.10). Then p∗
s , p∗

t , p∗
optimize the primal problem (4.9) and λ∗(x) optimizes (4.13) or (4.14) at the same
time. Meanwhile, the two energies are equal, i.e.

PS(p∗
s , p∗

t , p∗) = ES(p∗
s , p∗

t , p∗, λ∗) = DS(λ
∗).

By the definition of ub and u f in (4.6), the optimal energy of (4.9) is

PS(p∗
s , p∗

t , p∗) =
∫

�

ub(x)p∗
s (x)dx −

∫

�

u f (x)p∗
t (x)dx

=
∫

�\�b

p∗
s (x)dx −

∫

� f

p∗
t (x).dx (4.16)

Concerning the supervised min-cut problem, (4.15) indicates that

λ∗(� f ) = 1, λ∗(�b) = 0. (4.17)

Then each level set S� of λ∗

S� := {x |λ∗(x) ≥ �},

with � ∈ (0, 1], contains � f and excludes �b, i.e. we have

� f ⊂ S� ⊂ �\�b. (4.18)

As λ∗(x) is the optimal multiplier, we must have the flow conservation condition (3.4),
i.e.

div p∗(x) − p∗
s (x) + p∗

t (x) = 0, a.e. x ∈ �. (4.19)
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For any point x ∈ S�, where λ∗(x) ≥ �, we have by (4.17) that λ∗(x) ≥ u f (x), and
therefore

p∗
t (x) = Ct (x).

Then by (4.19), we have

p∗
s (x) = Ct (x) + div p∗(x), a.e. x ∈ S�\� f . (4.20)

For any point x ∈ (�\�b)\S� we have that λ∗(x) < � and hence λ∗(x) < ub(x).
Hence

p∗
s (x) = Cs(x). (4.21)

Therefore, in view of (4.21) and (4.20), the total optimal energy (4.16) is

PS(p∗
s , p∗

t , p∗) =
∫

(�\�b)\S�

Cs(x)dx +
∫

S�

(
Ct (x) + div p∗(x)

)
dx −

∫

� f

p∗(x)dx

=
∫

(�\�b)\S�

Cs(x)dx +
∫

S�\� f

Ct (x)dx +
∫

S�

div p∗(x)dx

=
∫

(�\�b)\S�

Cs(x)dx +
∫

S�\� f

Ct (x)dx + α

∣∣∣∂S�\(∂S� ∩ ∂�)

∣∣∣ ,

which obviously gives a solution u� of the nonconvex supervised min-cut problem
(4.1). The last term follows from the observation of (3.23).

The above binary solution u� is contained in the relaxed convex set λ(x) ∈ [0, 1]
and reaches the globally optimal energy E∗. It follows that such binary function is
globally optimal. ��

5 Algorithms

In this section, we propose new algorithms for the continuous min-cut models (1.2) and
(4.14) based on their respective max-flow formulations (3.6) and (4.9). In this section
it is assumed the variables p, ps, pt and operators div,∇,

∫
are discretized. In exper-

iments we apply a mimetic spatial discretization [25,26], but any other discretization
may be applied in the algorithms. Note that after discretization, the max-flow min-cut
duality established in Propsitions 3.2 and 4.1 does not necessarily hold exactly. This
is because the coarea formula

∫

�

|∇u|2 =
∞∫

−∞

∫

�

|∇uγ |2dxdγ
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does not hold exactly after discretization in case of isotropic total variation above (but
does so for the anisotropic variant of total variation). Importantly, as the grid size
goes to zero, the discretized total variation gamma converges to the continuous total
variation. Consequently the duality gap goes to zero as the mesh size becomes smaller.

5.1 Continuous max-flow based algorithm

The energy function of the equivalent primal-dual model (3.7) is just the Lagrangian
function of (3.6). For such a linear equality constrained optimization problem, we
derive our fast max-flow based algorithm by means of the augmented Lagrangian
method [7], which introduces an approach to compute both the flows and labeling
function simultaneously. To this end, in view of the Lagrangian function (3.7), we
define the respective augmented Lagrangian function as

Lc(ps, pt , p, λ) :=
∫

�

psdx +
∫

�

λ
(

div p − ps + pt
)
dx − c

2
‖div p − ps + pt‖2 ,

(5.1)

where c > 0. Algorithm 1 shows the details of the proposed continuous max-flow
based algorithm, where λ is updated as a multiplier at each iteration. Algorithm 1 is
an example of the alternating direction method of multipliers. Convergence can be
validated by standard convex optimization theories.

The sub-minimization problem (5.2) can also be solved by one step of the following
iterative procedure:

pk+1 = 	α

(
pk + c∇(div pk − Fk).

)
(5.3)

where 	α is the eucledian projection onto the convex set Cα = {q |‖q‖∞ ≤ α}. This
requires much less computational efforts.

5.2 Supervised continuous max-flow based algorithm

Now we propose the algorithm for the supervision-constrained min-cut problem (4.14)
based on its equivalent continuous max-flow formulation (4.9). The equivalent primal-
dual formulation of (4.10) is the Lagrangian function of (4.9). We define its respective
augmented lagrangian function as

Lc(ps, pt , p, λ) =
∫

�

ub psdx −
∫

�

u f pt dx +
∫

�

λ
(

div p − ps + pt
)
dx

− c

2
‖div p − ps + pt‖2 .

where c > 0. The supervised continuous max-flow based algorithm is provided in
Algorithm 2.
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Algorithm 1 Multiplier-based maximal-flow algorithm

Set the starting values p1
s , p1

t , p1 and λ1, let k = 1 and start k− th iteration, which includes the following
steps, until convergence:

• Optimizing p by fixing other variables

pk+1 := arg max‖p‖∞≤α
Lc(pk

s , pk
t , p, λk ). (5.2)

= arg max‖p‖∞≤α
− c

2

∥∥∥div p(x) − Fk
∥∥∥2

,

where Fk is a fixed variable. This problem can either be solved iteratively by Chambolle’s projection
algorithm [12], or approximately by one step of (5.3).

• Optimizing ps by fixing other variables

pk+1
s := arg max

ps (x)≤Cs (x)
Lc(ps , pk

t , pk+1, λk )

:= arg max
ps (x)≤Cs (x)

∫

�

psdx − c

2

∥∥∥ps − Gk
∥∥∥2

where Gk is a fixed variable and optimizing ps can be easily computed at each x ∈ � pointwise;
• Optimizing pt by fixing other variables

pk+1
t := arg max

pt (x)≤Ct (x)
Lc(pk+1

s , pt , pk+1, λk )

:= arg max
pt (x)∈Ct (x)

− c

2

∥∥∥pt − Hk
∥∥∥2

,

where Hk is a fixed variable and optimizing pt can be simply solved by

pt (x) = min(Hk (x), Ct (x));

• Update λ by

λk+1 = λk − c(div pk+1 − pk+1
s + pk+1

t );

• Set k = k + 1 and repeat.

6 Experiments

We present two types of experiments for the proposed continuous max-flow/min-
cut models: unsupervised image segmentation and supervised image segmentation.
We start by introducing some related algorithms which will be used for comparison
purposes.

6.1 Related algorithms

Bresson et al. [11] extended Chan et al.’s convex relaxation for two region partition
problems by applying a weighted total-variation term. They also proposed a fast algo-
rithm for (1.2) based on an approximation of (1.2):
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Algorithm 2 Multiplier-based supervised max-flow

Set some starting values p1
s , p1

t , p1 and λ1, let k = 1 and start k− th iteration, which includes the following
steps, until convergence:

• Optimize p by fixing other variables

pk+1 := arg max‖p‖∞≤α
Lc(pk

s , pk
t , p, λk )

:= arg max‖p‖∞≤α
− c

2

∥∥∥div p − Fk
∥∥∥2 ;

where Fk is some fixed variable and results in a projection algorithm [12] or the gradient decent project
(5.3);

• Optimizing ps by fixing other variables

pk+1
s := arg max

ps (x)≤Cs (x)
Lc(ps , pk

t , pk+1, λk )

:= arg max
ps (x)≤Cs (x)

∫

�

ub psdx − c

2

∥∥∥ps − Gk
∥∥∥2

,

where Gk is a fixed variable and the optimal ps can easily be computed at each x ∈ � pointwise;
• Optimize pt by fixing other variables

pk+1
t := arg max

pt (x)≤Ct (x)
Lc(pk+1

s , pt , pk+1, λk )

:= arg max
pt (x)∈Ct (x)

−
∫

�

u f pt dx − c

2

∥∥∥pt − Hk
∥∥∥2

,

where Hk is a fixed variable and the optimal pt can also be simply solved pointwise;
• Update λ by

λk+1 = λk − c(div pk+1 − pk+1
s + pk+1

t );

• Let k = k + 1 and repeat.

min
λ,μ

⎧⎨
⎩α

∫

�

|∇λ(x)| dx + 1

2θ
‖λ − μ‖2 +

∫

�

μ(x)
(
Ct (x) − Cs(x)

)
dx + β P(μ)

⎫⎬
⎭
(6.1)

where P(μ) := ∫
�

max{0, 2 |μ − 0.5| − 1}dx is an exact penalty function which
forces μ(x) to the interval [0, 1] pointwise. Clearly, when θ > 0 is chosen small
enough, it is expected that λ � μ, hence (6.1) solves (1.2) given μ(x) ∈ [0, 1]. To this
end, the convex constrained optimization problem (1.2) is approximated by a relatively
simple unconstrained optimization formulation (6.1).

In view of (6.1), the authors introduced a fast alternating-descent scheme which
includes two inner steps concerning the two variables λ and μ within each outer
iteration, i.e. at the k-th iteration,
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• fix μk and solve

λk+1 := arg min
λ

⎧⎨
⎩α

∫

�

|∇λ(x)| dx + 1

2θ
‖λ(x) − μk(x)‖2

⎫⎬
⎭

which can be computed by the standard Chambolle’s projection algorithm [12];
• fix λk+1 and solve

μk+1 :=arg min
μ

⎧⎨
⎩

1

2θ
‖μ(x) − λk+1‖2 +

∫

�

μ(x)
(
Ct (x) − Cs(x)

)
dx + β P(μ)

⎫⎬
⎭

which can be simply solved in closed form by shrinkage (see Proposition 4 of [11]).

Concerning the discrete min-cut problem, a very efficient implementation of the
augmented paths method was proposed in [8], which was specialized for the type
of graphs encountered in image processing and computer vision. It has now become
a standard implementation that has been used in a large number of research papers
during the last decade.

6.2 Experiments on unsupervised image segmentation

For image segmentation without user inputs, we adopt piecewise constant functions
as the image model: i.e. two grayvalues f1 and f2 are chosen a priori for clues to build
the data terms:

Cs(x) = D( f (x) − f1(x)), Ct (x) = D( f (x) − f2(x)),

where D(·) is some penalty function.
Figures 2 and 3 depict two experiments, where the result of the proposed continuous

max-flow based method Algorithm 1 is shown together with Bresson et al. [11] for
comparisons. For the experiment shown in Fig. 2, we have chosen α = 0.4 and
threshold value � = 0.5. We have used the data term D(s) = |s| in Fig. 2 and
D(s) = |s|2 in Fig. 3. Our method converges to a result (see graphs at the second row
of Fig. 2), which takes the value 0 or 1 nearly everywhere. This is in contrast to the
result of the method by Bresson et al. (see graphs at the first row of Fig. 2). For the
experiment shown in Fig. 3, we chose α = 0.4 and threshhold value � = 0.02. Both
results look almost the same, but our method converges significantly faster than the
algorithm of Bresson et al. [11].

At each iteration we evaluate the following convergence criterion:

errk =
∥∥∥λk+1 − λk

∥∥∥ /

∥∥∥λk+1
∥∥∥ .

In contrast to Bresson et al. [11], the proposed algorithm converges within 100
iterations (with accuracy below 1 × 10−4). It greatly outperforms [11] in terms of
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Fig. 2 In this experiment, we chose α = 0.4 and � = 0.5. Graphs of the first row show the results by
Bresson et al.: (left) computed λ∗(x), (middle) threshholded u�(x), (right) segmented image. Graphs of
the second row show the results by our method: (left) computed λ∗(x), (middle) thresholded u�(x), (right)
segmented image

Fig. 3 In this experiment, we chose α = 0.02 and � = 0.5. Graphs of the first row show the esults by
Bresson et al.: (left) computed λ∗(x), (middle) threshholded u�(x), (right) segmented image. Graphs of
the second row show the results by our method: (left) computed λ∗(x), (middle) thresholded u�(x), (right)
segmented image
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Fig. 4 Comparisons of convergence: for the experiments shown in Fig. 2 (left) and Fig. 3 (right), the
method of Bresson et al. (blue line) converges much slower than the proposed continuous max-flow method
(3.6) (red line) (color figure online)

Table 1 Time in seconds for
proposed continuous max-flow
algorithm vs discrete max-flow
algorithm [8]

Discrete Continuous Continuous
max flow [8] max-flow CPU max-flow GPU

Figure 2 0.09 0.14 0.02

Figure 3 0.67 0.84 0.15

convergence rate, see Fig. 4: Bresson et al. (blue line) and ours (red line). In addition,
our algorithm is reliable for a wide range of c.

Experimental comparison with discrete graph cut is provided in Table 1. We have
used the highly optimized c++ implementation of the augmented paths method [8]
specialized for imaging and vision applications. Our proposed continuous max-flow
algorithm is implemented in C on both CPU and GPU. The computer used for experi-
ments has an Intel Core i5-240M, 2.3 GHz CPU and NVIDIA GeForce GT 540M GPU.
As stopping criteria, we have estimated the final energy E∗ using a huge amount of
iterations and terminated the algorithm when the relative energy precision at iteration

k, Ek−E∗
E∗ , falls below 10−3. Note that, although the continuous algorithm will never

terminate exactly, very little changes happen after a certain number of iterations. We
are eventually interested in the binary thresholded solutions, and subsequent changes

to the solution after Ek−E∗
E∗ < 10−3 have no impact on the final binarized result in our

experience.

6.3 Supervised image segmentation

For supervised image segmentation, we use the Middlebury data set [47] for the exper-
iments which are shown in Fig. 5. The corresponding data term, i.e. Cs(x) and Ct (x),
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Fig. 5 First row The three given images, from the Middlebury data set, with pixels marked as foreground
(white) and background (black). Second row computation result of λ∗ to each image shown by color images,
0: blue and 1: red. Third row the black-white segmentation result by a threshold of λ∗. Fourth and fifth
rows respective results computed from tree-reweighted message passing method [30,49] and α expansion
algorithm [8,10]

is based on Gaussian mixture color models of foreground and background and are
provided in advance. It is not required for us to put very large flow capacities arti-
ficially at the marked areas � f and �b as proposed in the supervised continuous
max-flow method (4.9). This is in contrast to graph-based supervised image segmen-
tation [10,30,49].

123



A spatially continuous max-flow and min-cut framework 585

Here the tree-reweighted message passing method [30,49] and the α expansion
method [8,10] are applied for comparisons. As we see, there are no visual artifacts,
like metrication errors in our results (see details of the results, e.g. the left-bottom
pedal of the flower (middle column)).

7 Conclusions and future topics

We have studied continuous max-flow and min-cut models, with or without super-
vised constraints. Dualities between the max-flow and min-cut models in the spatially
continuous setting have been established and by variational techniques. Terminologies
used by graph-cut based techniques have been revisited and explained under a new
variational perspective. New optimization results on the exactness of the proposed
convex models have been derived and discussed with aid of the continuous max-flow
formulations. New continuous max-flow based algorithms have been proposed based
on classical convex optimization theories, which provided fast and reliable numerical
schemes. In contrast to discrete graph-based methods, the algorithms could be easily
speeded up by highly parallel implementation on GPU.

The max-flow models can also be extended to other min-cut problems with multiple
phases (see [4] and [51]). The continuous max-flow and min-cut models could also
be defined over more general manifolds, which would correspond to more complex
discrete graph structures. For instance, generalizations of the problem (1.2) with non-
local operators could be formulated by such max-flow and min-cut models.

Recently, the Split-Bregman method [22] and some other efficient algorithm have
been proposed for solving unconstrained total variation problems. The Split-Bregman
method was also recently applied for solving the convex partition problem (1.2) by
constraining the variable to the set [0, 1] every iteration [21]. In a future work we
will present a detailed experimental comparison with the Split-Bregman method and
other recent algorithms for total variation minimization applied to the convex partition
problem.
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