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Abstract We study the stability in the H1-seminorm of the L2-projection onto finite
element spaces in the case of nonuniform but shape regular meshes in two and three
dimensions and prove, in particular, stability for conforming triangular elements up
to order twelve and conforming tetrahedral elements up to order seven.
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1 Introduction

The L2-projection onto a finite element space is a valuable tool in many areas of
finite element analysis. It plays, for example, often an important role in the conver-
gence analysis of multigrid methods. In [2], a simple proof of H1-stability of the
L2-projection was given in the case of quasiuniform meshes with this application
in mind. With the widespread use of adaptive and more general classes of nonuni-
form meshes, there is interest in generalizing this result to the nonuniform mesh case.
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362 R. E. Bank, H. Yserentant

At first glance, it seems that this should not be a difficult problem. The mass matrix,
while no longer comparable to the identity matrix independent of the (now local) mesh
size, does remain comparable to its own diagonal. One expects that the exponential
decay of matrix elements away from the diagonal in the inverse of the mass matrix,
shown by Douglas et al. in [14], should also remain valid even in the nonuniform mesh
case. However, the central difficulty is that this exponential decay might potentially be
offset by exponential growth due to grading of the finite element mesh. The works of
Crouzeix and Thomée [10], Bramble, Pasciak and Steinbach [6], and Carstensen [7,8]
all address this issue by imposing certain local or global growth constraints on the
mesh. In this work, we must also impose some constraints, but ours are weaker, and
allow the inclusion of high order elements and meshes generated by many commonly
used adaptive meshing strategies.

Although our technique easily transfers to more general situations and can be
applied to a large variety of different finite element spaces, we restrict ourselves in
this article for the ease of presentation to the classical case of piecewise polynomial
conforming elements. Starting point is a conforming triangulation T of a polygonal
domain Ω in two or three space dimensions, built up from triangles in two space
dimensions and tetrahedrons in the three-dimensional case. Associated with T is a
conforming finite element space S of the usual kind, consisting of continuous, piece-
wise polynomial functions of at first fixed degree, determined by their nodal values.
Our object of study is the L2-orthogonal projection

Q : L2(Ω) → S (1.1)

from L2(Ω) onto the finite element space S . We want to estimate the H1-seminorm
of the projection Qu, the L2-norm of its first order derivatives, of a function u in the
Sobolev space H1 by the H1-seminorm of u itself.

To each finite element T ∈ T we assign a nonnegative integer k = k(T ), the level
of the element, such that 2−k(T ) is roughly proportional to the diameter h(T ) of T , in
the sense that there are constants α > 0 and β > 0 with

α2−k(T ) ≤ h(T ) ≤ β2−k(T ). (1.2)

The actual size of these constants is of no significance; only their ratio β/α will enter
into our estimates. The triangulation T can be highly nonuniform and can contain
finite elements from a very wide range of levels. We require, however, that the level of
two neighboring elements differs at most by one. By neighbor, we refer to all elements
that share a vertex with a given element.

Originally we had grids in mind that are generated by common adaptive mesh-
ing schemes based on bisection, for example the red-green refinement scheme in two
[4] or three space dimensions [5]. In this case, the level of an element T counts the
number of refinement steps that are needed to generate T from its ancestor in the
initial triangulation. This is consistent with our current definition of level. The ratio
of the constants α and β reflects in such cases the degree of non-uniformity of the
initial triangulation but remains independent of the degree of refinement. Consider, for
example, red-green refinement in two space dimensions. Red refinement of a triangle
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H1-stability of the L2-projection 363

means subdivision into four congruent subtriangles of half the diameter. Since a green
refinement into two subtriangles takes place only in the final step and is reversed in
case of an additional refinement, the condition (1.2) holds with β/α = 2 if one restricts
the attention to a single triangle of the initial triangulation. In three space dimensions,
the situation is basically the same. Red refinement of a tetrahedron means subdivision
into eight tetrahedrons of equal volume that fall in at most three congruence classes,
independent of the number of refinement steps, and green refinement takes again only
place in the final step.

In red-green refinement, it is typical to impose a difference of at most one level
between elements sharing a common edge in two or face in three space dimension.
This is not sufficient to guarantee the same kind of constraint for the vertices, that
is, that the levels of neighboring elements in the sense introduced above differs only
by one. This condition can, however, be explicitly imposed on red-green meshes at
little additional cost, even if such meshes often satisfy such a condition simply due to
the refinement pattern generated by the local error indicators used in the refinement
process. Experience shows that the local element sizes change even more moderately
in case of mesh generators for nonuniform meshes that employ vertex-based mesh
smoothing to locally optimize some measure of shape regularity [1], at least up to
very few elements in small exceptional regions around strong singularities.

We will show that subject to the given conditions on the mesh the estimate

|Qu|1 ≤ c| u |1 (1.3)

for the H1-seminorm of the projection Qu of a function u in H1 holds for elements
up to order twelve in two and up to order seven in three space dimensions. The
constant c depends only on the order of the elements, on the ratio β/α of the constants
in (1.2), and on the shape regularity of the triangles or tetrahedrons, but neither on the
quasiuniformity of the mesh nor on any other such global property. For a sufficiently
smooth grading of the mesh our argumentation works without any restriction to the
polynomial order of the finite elements or any further condition to the triangulation
up to shape regularity. It is even possible to extend our proof to hp-like adaptive finite
element methods as long as the maximum order of the elements remains limited.

2 An iterative method

The main ingredient of our proof for the H1-stability of the L2-projection, as well as
other proofs in the literature, are its strong localization properties, or roughly speaking,
the fact that the inverse of the mass matrix decays very rapidly away from the diagonal.
See Douglas et al. [14] and the related work [11,12] of Demko and coauthors for band
matrices. The results of this section will serve to quantify this effect in a fashion needed
for our analysis.

Let S0 be the subspace of the finite element space S under consideration that
consists of the functions in S that are L2-orthogonal to the functions in S that
vanish on the boundaries of the single elements. The functions in S0 are determined
by their values at the nodes on the boundaries of the finite elements. For finite element
spaces of polynomial order d or less, d = 2 or d = 3 the space dimension, no interior
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nodes, inside the elements, exist and S0 is the original space S . In all other cases,
we denote by S1 the space of the functions in S that vanish on the boundaries of the
finite elements. The L2-orthogonal projection Q onto S splits then into the sum

Q = Q0 + Q1 (2.1)

of the L2-orthogonal projection Q0 onto the subspace S0 and the L2-orthogonal
projection Q1 onto S1 = S ⊥

0 . As the contributions from the single elements to
Q1 do not interact, the localization properties of the projection Q are completely
determined by those of Q0, the operator that will be studied in the rest of this section.

We label the vertices of the finite elements by the integers i = 1, 2, . . . n. The
vertex i is surrounded by the patch Ui , the union of the finite elements that share this
vertex. Let Vi be the space that consists of the functions in the space S0 that vanish
outside Ui . Let Pi be the L2-orthogonal projection onto Vi and let

C = P1 + P2 + . . .+ Pn . (2.2)

We will construct with help of this operator approximations of the projection Q0u of
a given square integrable function u onto S0. For that purpose, we first define finite
element functions u(ν) ∈ S0 recursively by

u(ν+1) = u(ν) + C (u − u(ν)), (2.3)

with u(0) ∈ S0 an arbitrary starting value, and combine them to weighted averages

w(�) =
�∑

ν=0

α�νu(ν),
�∑

ν=0

α�ν = 1. (2.4)

This procedure can be seen as a polynomially accelerated additive subspace correction
method in the sense of [16]; see also the survey article [18].

The analysis of this iterative method starts from two abstract assumptions [16,18]
that still need to be verified. First, we assume that every finite element function

v = v1 + v2 + . . . + vn (2.5)

in S0 can be decomposed into functions vi in the subspaces Vi such that

∑

i

‖vi‖2
0 ≤ K1‖v‖2

0. (2.6)

Secondly, we assume that for every such linear combination (2.5) the estimate

‖v‖2
0 ≤ K2

∑

i

‖vi‖2
0 (2.7)
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H1-stability of the L2-projection 365

holds. Our main tool is the following lemma that is an adaption of the general result
for subspace decomposition methods [16,18] to the present situation.

Lemma 2.1 The restriction of the operator C to the subspace S0 is self-adjoint with
respect to the L2-inner product. Its eigenvalues λ range in the interval

1/K1 ≤ λ ≤ K2. (2.8)

Proof The self-adjointness of the operator C immediately results from its definition,
that is, the self-adjointness of the projections Pi . Let v = v1 + v2 + . . . + vn be a
decomposition of the finite element function v ∈ S0 as in the assumption (2.6). Then
it follows from the Cauchy-Schwarz inequality

(v, v) =
∑

i

(vi , v) =
∑

i

(vi , Piv) ≤
( ∑

i

‖vi‖2
0

)1/2(∑

i

‖Piv‖2
0

)1/2

and therefore, by assumption (2.6),

(v, v) ≤ K1

∑

i

‖Piv‖2
0 = K1

∑

i

(v, Piv) = K1(v,Cv).

The operator C is therefore positive definite and its eigenvalues are bounded from
below by the constant 1/K1. By assumption (2.7) conversely

‖Cv‖2
0 =

∥∥∥
∑

i

Piv

∥∥∥
2

0
≤ K2

∑

i

‖Piv‖2
0

and, using once more that Pi is an L2-orthogonal projection,

‖Cv‖2
0 ≤ K2

∑

i

(v, Piv) = K2(v,Cv).

The constant K2 is therefore an upper bound for the eigenvalues of C . ��
The error between the projection Q0u and its approximation (2.4) can be bounded in
terms of the ratio λn/λ1 ≤ K1 K2 of the maximum and the minimum eigenvalue of
the operator C restricted to the subspace S0. This results from:

Lemma 2.2 Let λ1 ≤ λ2 ≤ . . . ≤ λn be the eigenvalues of the operator C restricted
to the space S0 and introduce the polynomial

P(λ) =
�∑

ν=0

α�ν(1 − λ)ν (2.9)

of degree �. Then the error estimate

‖Q0u − w(�)‖0 ≤ max
k=1,...,n

|P(λk)|‖Q0u − w(0)‖0. (2.10)

holds for the approximation (2.4) of the projection Q0u of u ∈ L2 onto S0.
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Proof Since
∑�
ν=0 α�ν = 1, w(0) = u(0), and Cu = C Q0u,

Q0u − w(�) =
�∑

ν=0

α�ν (I − C)ν(Q0u − w(0)).

Expanding the initial error into L2-orthogonal eigenfunctions of the self-adjoint oper-
ator C from the finite element space into itself, the proposition follows. ��
The polynomial P of degree � that satisfies the normalization condition P(0) = 1
and attains the minimum maximal value on the interval λ1 ≤ λ ≤ λn is, up to a
linear transformation of the variable and the multiplication by a constant factor, the
Chebyshev polynomial of degree �, a fact that is widely used in the analysis of semi-
iterative and Krylov-space methods; see [13], for example. Choosing the averaging
coefficients α�ν accordingly, one obtains from (2.10) and the estimate (2.8) for the
eigenvalues of C the final estimate for the convergence rate of our semiiterative method:

Lemma 2.3 If the coefficients α�ν are optimally chosen,

‖Q0u − w(�)‖0 ≤ 2 q �

1 + q 2� ‖Q0u − w(0)‖0, (2.11)

where the convergence rate

q =
√
κ − 1√
κ + 1

(2.12)

is determined by the condition number κ = λn/λ1 ≤ K1 K2 of the operator C.

It remains to bound the constants K1 and K2. The optimum decomposition (2.5)
of a given finite element function in S0 can be found solving a global saddle point
problem, but this observation is not truly helpful. Our estimate for K1 is based on a
local, element-wise construction and utilizes the nodal basis representation of the finite
element functions. Let ϕi be the linear nodal basis function assigned to the vertex i .
The ϕi form a partition of unity. We decompose the finite element functions v ∈ S0
therefore into the finite element functions vi ∈ Vi given by their values

vi (xk) = ϕi (xk)v(xk) (2.13)

at the boundary nodes xk of the finite elements. The estimate (2.6) on the overall region
then follows from the local estimates

∑

i

‖vi‖2
0,T ≤ K1‖v‖2

0,T (2.14)

on the single elements T in the triangulation T by summation over all T . As the local
mass matrices for the single elements differ only by a scalar area respectively volume
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factor and L2-orthogonality is not affected by the size or shape of the elements, thus
one can restrict oneself in the calculation of K1 to the examination of a single reference
element. This leads to a small eigenvalue problem

Bx = ζMx, (2.15)

where M is the element mass matrix and B the sum of the three or four matrices that
arise from the multiplication of the values of the finite element functions at the bound-
ary nodes by the values of the corresponding functions ϕi . The maximum eigenvalue ζ
represents then an upper bound for the best possible constant K1.

Upper bounds for the constants K2 can be derived in a similar way. As above, one
can restrict oneself again to the consideration of a reference element T . If

‖v1 + v2 + . . .+ vd+1‖2
0,T ≤ K2

d+1∑

i=1

‖vi‖2
0,T (2.16)

holds for every set of finite element functions vi that vanish on the edge respectively
the face opposite to the vertex i and that are orthogonal to all polynomials of given
order that vanish on the boundary of T , (2.7) holds with the same constant. Therefore

K2 ≤ d + 1 (2.17)

independent of the order of the elements, as follows from the triangle and the Cauchy-
Schwarz inequality. The calculation of of the minimum possible constant K2 in (2.16)
leads again to a matrix eigenvalue problem.

The corresponding eigenvalues have been calculated with help of the computer
algebra program Maple, where exact arithmetic over the rational numbers has been
used to set up the element matrices and to factor the resulting characteristic polyno-
mials as far as possible. The zeroes of the single factors have then been calculated
numerically with very high precision. All these zeroes turned out to be simple. To
guarantee the accuracy of the zeroes up to the given number of digits, it has been
shown afterward using again rational arithmetic that the factors change their sign in
correspondingly small neighborhoods of the computed floating point numbers.

Table 1 shows the results of these computations, rounded to sixteen decimal digits,
for triangular elements of order p = 1 to p = 13 together with the resulting upper
bound for the convergence rate (2.12) of the polynomially accelerated iteration. For
elements up to order twelve, the convergence rate remains below the bound

q <
1

2
(2.18)

that will turn out to be critical and will be needed to counterbalance the mesh grading.
The situation for tetrahedral elements in three space dimensions is somewhat less

favorable. The results of the corresponding computations are shown in Table 2. The
convergence rate (2.12) remains below the critical bound (2.18) for elements of order
one to seven. The condition (2.18) is violated for elements of order eight.
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Table 1 The constants K1 and K2 and the convergence rate q for triangular elements of order p = 1 to 13

p K1 K2 q

1 2.000000000000000 2.000000000000000 0.333333333333333

2 1.632455532033676 2.720759220056126 0.356393958692601

3 1.393486807238790 2.644675210593510 0.315002511332227

4 1.295003216312185 2.636962512818568 0.297737526545759

5 1.222972165878670 2.594459484027661 0.280906146388308

6 1.302765305805047 2.593404439622517 0.295302231149967

7 1.299140221691548 2.565323271153285 0.292178820394059

8 1.512553465736873 2.567071358864272 0.326710513903202

9 1.576386303728820 2.547084406182064 0.334175300880362

10 2.028522383753149 2.549982029590451 0.389192884071447

11 2.269932525316121 2.535127973622464 0.411568856476138

12 3.300684993647074 2.538378961496179 0.486461159099767

13 4.089468949259074 2.526997823375298 0.525466578179801

Table 2 The constants K1 and K2 and the convergence rate q for tetrahedral elements of order p = 1 to 8

p K1 K2 q

1 2.000000000000000 2.500000000000000 0.381966011250105

2 1.707106781186548 3.414213562373095 0.414213562373095

3 2.259093807508443 3.838087488839953 0.492976225239085

4 2.165373305836483 3.796924809950539 0.482851496718484

5 1.805566330903338 3.793859892383240 0.447095775974396

6 2.070521001184189 3.767800697161865 0.472724376154808

7 1.973130199031725 3.766914533817588 0.463271950206115

8 2.483457333030411 3.750763186028049 0.506419704289367

3 A decay property of the L2-projection

The convergence rate q determines the localization properties of the L2-projection.
The faster the iteration converges, that is, the smaller q is, the faster local influences
decay with distance from the source. The aim of this section is to quantify this effect.
We group the finite elements by their levels and denote byΩi the union of the elements
of level i . The next lemma describes how fast the projections of functions that vanish
outside these sets decay on the exterior of these sets.

Lemma 3.1 Let vk be a square integrable function vanishing outside Ωk . Then

‖Qvk‖0,Ωi ≤ γ (|i − k|)‖vk‖0, (3.1)
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where the prefactors decay like q |i−k| with the distance from i to k and are given by

γ (�) = min(1, 2 q �−1). (3.2)

Proof Let the w(�) ∈ S0 be the iteratively generated approximations of Q0vk as in
(2.4), with starting value w(0) = 0. By (2.11) then

‖Q0vk − w(�)‖0 ≤ 2 q�‖Q0vk‖0 ≤ 2q�‖vk‖0.

As the operator (2.2) is composed of the local projections onto the spaces of functions
in S0 that vanish outside the patches consisting of the elements surrounding a given
vertex, information propagates in the transition from step � to step �+ 1 from a given
set of elements not further than to the union of the patches that cover at least one
of these elements. As the level of neighboring elements, where neighbors were in
our definition elements that share a vertex, differs by assumption at most by one, the
approximation w(�) of Q0vk thus vanishes on the union Ωi of the elements of level i
as long as the number � of iterations remains less than |i − k|. For these �,

‖Q0vk‖0,Ωi = ‖Q0vk − w(�)‖0,Ωi ≤ 2 q � ‖vk‖0.

As Qvk = Q0vk outside Ωk , the proposition follows choosing � = |i − k| − 1. ��

4 The H1-stability

If the convergence rate q given by (2.12) is less than 1/2, then the decay behavior
expressed by (3.1) counterbalances the possible decrease of the element diameter
from a given element to its neighbors. This is the key to the proof of the following
theorem, that forms the basis of our proof for the H1-stability of the L2-projection.

Theorem 4.1 If the convergence rate q given by (2.12) is less than 1/2, there is a
constant c such that for all square integrable functions v

‖h−1 Qv‖0 ≤ c ‖h−1v‖0, (4.1)

where the function h denotes the local meshwidth on the single elements. This constant
exclusively depends on the convergence rate q and the ratio β/α of the constants in
the assumption (1.2) that links the levels of the elements to their diameters.

Proof We first introduce the weighted L2-norm given by the expression

|||v|||2 =
∑

i

4i ‖v‖2
0,Ωi

, (4.2)

where Ωi is as above the union of the elements of level i . By assumption (1.2),

α‖h−1v‖0 ≤ |||v||| ≤ β‖h−1v‖0
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370 R. E. Bank, H. Yserentant

holds for all square integrable functions v. Thus it suffices to prove an estimate

|||Qv||| ≤ c0 |||v|||. (4.3)

Let vk attain the same values as v on Ωk and the value 0 elsewhere. Then

|||Qv|||2 =
∣∣∣
∣∣∣
∣∣∣
∑

k

Qvk

∣∣∣
∣∣∣
∣∣∣
2 =

∑

i

4i
∑

k,l

(Qvk, Qv�)Ωi ,

where all sums extend over the finite set of nonempty levels i, k, and � in the given
triangulation. The estimate from Lemma 3.1 leads therefore to the estimate

|||Qv|||2 ≤
∑

k,l

∑

i

4iγ (|i − k|)γ (|i − �|)‖vk‖0‖v�‖0

or, going back to the definition of vk and v� and of the weighted L2-norm (4.2),

|||Qv|||2 ≤
∑

k,l

ak�|||vk ||||||v�|||,

where the coefficients ak� are given by

ak� =
∑

i

2i−kγ (|i − k|) 2i−�γ (|i − �|).

If Λ denotes the maximum eigenvalue of the symmetric matrix with these entries,

|||Qv|||2 ≤ Λ
∑

k

|||vk |||2 = Λ
∑

k

4k‖v‖2
0,Ωk

= Λ|||v|||2

follows. The eigenvalue Λ is bounded by the maximum row sum

∑

�

|ak�| =
∑

i

2i−kγ (|i − k|)
∑

�

2i−�γ (|i − �|)

of this matrix, that is, in terms of the maximum level j of the finite elements in the
given triangulation, by the square of the expression

j∑

�=0

2−�γ (�)+
j∑

�=1

2�γ (�).

If q < 1/2, one can let tend j to infinity and obtains the desired upper bound

∞∑

�=0

2−�γ (�)+
∞∑

�=1

2�γ (�) = 4

1 − 2q
− 1

2
+ q

2 − q
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for the constant c0 in the estimate (4.3). In the limit case q = 1/2,

j∑

�=0

2−�γ (�)+
j∑

�=1

2�γ (�) = 4 j − 1

6
− 4

3
4− j .

In this case, it is no longer possible to limit the weighted L2-norm of the projection
operator independent of j . It increases, however, at most like the logarithm of the
quotient of the maximum and the minimum diameter of the finite elements. ��

The stability (4.1) of Q with respect to the given weighted L2-norm implies the H1-
stability of Q. In fact, to finish our proof we need only a quasi-interpolation operator
Π : L2 → S with the following properties. First, we assume that the estimate

‖h−1(u −Πu)‖0 � | u |1 (4.4)

holds for all functions u ∈ H1, which is a kind of error estimate, and secondly, that

|Πu|1 � | u |1 (4.5)

for these u. Since its introduction by Clément [9], the use of such quasi-interpolation
operators is standard in finite element theory. One possible example is the operator

Πu =
∑

i

(u, ϕi )

(1, ϕi )
ϕi (4.6)

that reproduces locally constant functions; the ϕi are the piecewise linear hat functions
assigned to the vertices of the finite elements. It is analyzed in more detail in [17]. The
proof of (4.4) and (4.5) is based on a local version of the Poincaré inequality and the
local quasiuniformity of the triangulation.

Theorem 4.2 If the convergence rate q given by (2.12) is less than 1/2, and the L2-
orthogonal projection Q onto the finite element space S is thus stable with respect
to the weighted L2-norm from (4.1), there is a constant c such that for all u ∈ H1

|Qu|1 ≤ c | u |1. (4.7)

Proof Since Πu is reproduced by the projection Q,

|Qu|1 ≤ |Q(u −Πu)|1 + |Πu|1.

The second term on the right hand side can, by means of (4.5), be estimated as desired.
To estimate the first term, we first apply the inverse inequality

|Q(u −Πu)|1 � ‖h−1 Q(u −Πu)‖0
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and utilize Theorem 4.1, the stability of Q in the weighted L2-norm:

‖h−1 Q(u −Πu)‖0 � ‖h−1(u −Πu)‖0.

Applying the error estimate (4.4), one obtains the estimate

|Q(u −Πu)|1 � | u |1

for the first term, which proves the theorem. ��
The assumptions of Theorem 4.2 are in particular fulfilled for conforming triangular

elements up to order twelve in two space dimensions and conforming tetrahedral
elements up to order seven in three space dimensions. We conclude:

Theorem 4.3 The L2-projection onto the given finite element spaces is H1-stable in
the case of elements up to order twelve in two and up to order seven in three space
dimensions, regardless the quasiuniformity of the triangulation.

5 An analysis of a simple hp-method

Finite elements of a fixed order greater than three or four are rarely used in practice,
in contrast to hp-methods that became meanwhile very popular. The recent version
[1] of the finite element code pltmg is based on such an approach. More details on
such kinds of finite element methods can be found in [3]. Our theory applies to the
hp-case, at least if the maximum order of the elements is limited.

We restrict ourselves here to the two-dimensional case and start from the same type
of conforming triangulationsT as described in the introduction, to which a conforming
finite element space S is associated. The functions in S are globally continuous but
their polynomial degree can now differ from triangle to triangle. The triangulations
are composed of regular elements and a special kind of transition elements. Regular
elements are elements as considered before. The restrictions of the finite element
functions to regular elements of order p are the polynomials of degree p. These are
determined by their values at the nodes of order p in the given triangle. The transition
elements serve to connect elements of a given order p to a single element of order
p + 1. The finite element functions are determined on such triangles by their values at
the nodes of order p, except for those on the transition edge that are there replaced by
the nodes of order p + 1. The restriction of the finite element space to such a triangle
is spanned by the polynomials of degree p and a further polynomial of degree p + 1
that enables the continuous transition across the transition edge and vanishes on the
other two edges. The transition elements play in the given context the same role as the
“green” triangles in red-green h-refinement [4].

The analysis of the preceding sections completely covers this construction. The
corresponding constants K1 and K2 from (2.14) and (2.16) for the transition elements,
calculated and checked in the same way as in Sect. 2, can be found in Table 3. As
there, the interior nodes of the transition elements have been eliminated to speed up
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Table 3 The constants K1 and K2 for the transition elements connecting triangles of order p and p + 1

p K1 K2

1 2.973780511330725 2.264830035664230

2 1.857129338976809 2.723363613342249

3 1.615801659121557 2.661483393318108

4 1.321501990999704 2.649121326689785

5 1.290337433437715 2.619472429444019

6 1.303493086453341 2.608376639571315

7 1.499020700986966 2.597820625553555

8 1.690529874327097 2.584547510600745

9 2.088008464403344 2.583492578167884

10 2.604264691222322 2.574531675438955

11 3.530390137827354 2.572006470993573

the convergence of the iteration underlying our proof. Since in the hp-case elements
of different kind are combined, the global constants

K1 = max
T ∈T

K1(T ), K2 = max
T ∈T

K2(T ) (5.1)

are the maxima of the corresponding constants for the single elements respectively
reference elements. Remarkably, the global constants K1 and K2 are dominated by
those of low-order transition elements, K1 by that of the transition elements from order
1 to 2 and K2 by that of the transition elements from order 2 to 3. Nevertheless we
can conclude that the convergence rate of the iteration from Sect. 2 is at least

q = 0.4799547 . . . (5.2)

if we limit the maximum order of the elements to eleven and remains therefore below
the critical bound q = 1/2. The L2-projection thus remains also for this case H1-stable
without further conditions to the mesh or any other assumption.

6 The influence of the mesh grading

The crucial estimate that links the structure of the mesh and the type of the finite
element functions is (3.1). It represents a worst case estimate that allows the size of
the elements to change rather quickly. If one assumes a smoother grading of the finite
element mesh, one can relax our conditions considerably. To quantify this effect, we
attribute a graph to the triangulation. The single elements are the nodes of this graph.
Two nodes are connected by an edge if the corresponding two elements are neighbors.
The distance of two elements is then the distance of the corresponding nodes in the
graph. The proof of (3.1) uses that the distance of two elements of levels i and k is at
least |i − k|. If one assumes that the distance of two such elements is at least m|i − k|
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with m a real parameter greater than one for levels that differ sufficiently much, that is,
that the meshsize changes at least in some average less abruptly, one obtains instead
of (3.1) a potentially much stronger estimate

‖Qvk‖0,Ωi ≤ γ̃ (|i − k|)‖vk‖0, (6.1)

where the prefactor is, for � greater than a fixed �0, now given by

γ̃ (�) = 2 qm�−1. (6.2)

It depends now on m and decays like qm|i−k| with the distance from i to k. The proof
of Theorem 4.1 works then as before, with the only difference that the condition that
the convergence rate q is less than 1/2 can be replaced by the less restrictive condition

qm <
1

2
. (6.3)

One can even go a step further modifying the concept of level. Assume that the
diameter h(T ) of two elements in T that have at least one point in common differs
at most by the factor μ ≥ 1; the existence of such a factor follows from the shape
regularity of the elements. Then to each finite element T in our triangulation T we
assign a nonnegative integer k = k(T ), the new kind of level of the element, such that

h0μ
−k(T ) ≤ h(T ) < h0 μ

−k(T )+1, (6.4)

where h0 is the maximum element diameter. The level of two neighboring elements
differs then by construction at most by one. One can therefore show along the given
lines that the L2-projection remains H1-stable as long as the condition

q m <
1

μ
(6.5)

is satisfied. The condition on the convergence rate q of the iterative method from
Sect. 2 thus becomes less and less restrictive the more μ approaches the value one or
the larger constant m introduced as above is, that is, the smoother the grading of the
mesh becomes. Shape regularity of the elements and a sufficiently smooth grading of
the mesh provided, our argumentation thus works without any restriction to the type
or order of the finite elements. There is therefore less doubt that the L2-projection
remains H1-stable in almost all cases of practical interest.

7 A counterexample

The following simple example strongly suggests that the L2-projection onto finite ele-
ment spaces cannot be H1-stable without any condition to the grid and that assumptions
on the grading of the mesh cannot be avoided. We start from the sequence
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x0 = 0, xk+1 = xk + hk, k = 1, 2, 3, . . . , (7.1)

of gridpoints in the interval [0, 1), where the local gridwidths

hk = (1 − ρ)ρk, 0 < ρ < 1, (7.2)

tend exponentially to zero and are chosen such that the xk tend to 1 as k goes to infinity.
We consider the infinite-dimensional space S that consists of the on [0, 1) continuous
and square integrable functions u whose restrictions to the intervals [xk, xk+1] are
linear. As the spaces of the restrictions of the functions in S to all closed subintervals
of the half-open interval [0, 1) are finite-dimensional, S is a closed subspace of
L2(0, 1) and the L2-orthogonal projection Q from L2(0, 1) to S exists. The nodal
values uk of the projection Qu of a functions u ∈ L2 to S satisfy the equations

hk−1

6
uk−1 + hk−1 + hk

3
uk + hk

6
uk+1 = (u, ϕk) (7.3)

assigned to the gridpoints xk for k = 1, 2, . . . and the additional equation

h0

3
u0 + h0

6
u1 = (u, ϕ0), (7.4)

assigned to x0; the ϕk are the hat functions assigned to the xk , the piecewise linear
functions that take the value 1 at xk and the value 0 at all other gridpoints.

In the following, we are only interested in the projections Qu of functions u that
vanish for x ≥ x1. To represent these in closed form, we introduce the constants

λ1 = −1 + ρ − √
1 + ρ + ρ2

ρ
, λ2 = −1 + ρ + √

1 + ρ + ρ2

ρ
. (7.5)

Lemma 7.1 The nodal values uk of the projection Qu of a square integrable function
u that takes the value zero for x ≥ x1 are, for k ≥ 1, given by

uk = 6 (u, ϕ0)− 12 (u, ϕ1)

(1 − ρ)(2 + λ1)
λk

1. (7.6)

Proof The right hand sides of the difference equation (7.3) vanish in this case for all
indices k ≥ 2. The uk satisfy therefore, for k ≥ 2, the difference equation

uk−1 + 2 (1 + ρ)uk + ρ uk+1 = 0.

Since λ1 and λ2 are the roots λ of the characteristic polynomial

1 + 2 (1 + ρ)λ+ ρλ2
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of this equation, the general solution of this equation is

uk = a λk−1
1 + bλk−1

2 , k = 1, 2, . . . .

Since ρλ2
1 < 1 and ρλ2

2 > 1 for all ρ in the interval (0, 1] and because of

xk+1∫

xk

(λkϕk + λk+1ϕk+1)
2 dx = (1 − ρ)(1 + λ+ λ2)

3
(ρλ2)k,

the uk are nodal values of a square integrable function in S if and only if b = 0. This
observation fixes the coefficient b. To determine a, we use that

(3h0 + 4h1)u1 + 2h1u2 = 12 (u, ϕ1)− 6 (u, ϕ0),

as follows from (7.3) and (7.4). Since λ1 is a root of the characteristic polynomial,

(3h0 + 4h1 + 2h1λ1) λ1 = − (1 − ρ)(2 + λ1).

Inserting the representation u1 = a, u2 = a λ1, the proposition follows. The value

u0 = 6 (u, ϕ0)+ 6 λ1(u, ϕ1)

(1 − ρ)(2 + λ1)

of u0 can then be derived from (7.4). ��
Not much surprisingly, uk = 0 for k ≥ 1 if u = ϕ0. As

xk+1∫

xk

(λkϕ′
k + λk+1ϕ′

k+1)
2dx = (1 − λ)2

1 − ρ

(λ2

ρ

)k
, (7.7)

the H1-seminorms over the subintervals of a function represented by the values (7.6)
sum up, for (u, ϕ0) = 2 (u, ϕ1), to a finite value if and only if

λ2
1

ρ
< 1, (7.8)

regardless the smoothness of u. Since λ1 behaves asymptotically like

λ1 = −1

2
+ 3

8
ρ + O(ρ2), ρ → 0+, (7.9)

this condition is violated if ρ approaches zero. That means, the L2-projection can only
be H1-stable if the length of the subintervals does not decrease too fast in comparison
to the speed of decay of the projection from gridpoint to gridpoint, the property on
which the proof of Theorem 4.1 and with that our entire theory is based.
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Appendix: The one-dimensional case

The one-dimensional case is particularly simple. The subspace S0 can in this case be
built up from a single type of basis functions that are assigned to the boundary points
of the subintervals. Let [−1, 1] be the reference interval and let ϕ : [−1, 1] → R be
the polynomial of given degree n that takes the values ϕ(−1) = 1 and ϕ(1) = 0 and
is L2-orthogonal to all polynomials of degree n that vanish at −1 and 1. The basis
functions on the reference interval are then the functions

ϕ1(x) = ϕ(x), ϕ2(x) = ϕ(−x).

The reduced mass matrix of the overall problem becomes in this case a tridiagonal
matrix. The condition number of its diagonally scaled counterpart can be estimated
by the condition number κ of the (2 × 2)-element matrix

(
(ϕ1, ϕ1) (ϕ1, ϕ2)

(ϕ2, ϕ1) (ϕ2, ϕ2)

)
.

As the application of the operator C from Sect. 2 corresponds here to diagonal pre-
conditioning of the reduced mass matrix, it determines the convergence rate

q =
√
κ − 1√
κ + 1

of the iterative method studied in Sect. 2 and with that the upper bound for the factor
μ from Eq. (6.5) by which the length of neighbored subintervals can differ.

To calculate the above element matrix, we use the Jacobi polynomials Pk = P(α,β)k
of degree k for the indices α, β = 2. They are given by the Rodrigues formula

Pk(x) = (−1)k

2k k! (1 − x2)2

( d

dx

)k{
(1 − x2)k+2

}

and satisfy the orthogonality relations

1∫

−1

(1 − x)2(1 + x)2 Pk(x)P�(x) dx = 32

2k + 5

(k + 1)(k + 2)

(k + 3)(k + 4)
δk�.

For even k, they are symmetric and for odd k antisymmetric:

Pk(−x) = (−1)k Pk(x).

More comprehensive information can be found in [15].
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Lemma The above element matrix is a scalar multiple of the matrix

(
n + 1 (−1)n+1

(−1)n+1 n + 1

)
.

Proof We first expand the projection of the linear function that takes the value 1 at
the left and the value 0 at the right endpoint onto the space of polynomials of degree
at most n that vanish at both endpoints in terms of the L2-orthonormal polynomials

ψk(x) =
(

2k + 5

32

(k + 3)(k + 4)

(k + 1)(k + 2)

)1/2

(1 − x2) Pk(x).

Since the boundary terms vanish, multiple integration by parts yields

1∫

−1

1 − x

2
(1 − x2) Pk(x) dx = 1

2k+1k!
1∫

−1

( d

dx

)k{ 1

1 + x

}
(1 − x2)k+2 dx

and thus after some rather obvious intermediate steps the explicit representation

1∫

−1

1 − x

2
(1 − x2) Pk(x) dx = (−1)k

8

(k + 3)(k + 4)

of the integral. The expansion coefficients are therefore

ck = (−1)k
(

2k + 5

32

(k + 3)(k + 4)

(k + 1)(k + 2)

)1/2 8

(k + 3)(k + 4)

and the initially introduced shape function ϕ of polynomial order n ≥ 2 is given by

ϕ(x) = 1 − x

2
−

n−2∑

k=0

ckψk(x)

or directly in terms of the Jacobi polynomials by

ϕ(x) = 1 − x

2
−

n−2∑

k=0

(−1)k

4

2k + 5

(k + 1)(k + 2)
(1 − x2) Pk(x).

Using the L2-orthonormality of the ψk , the diagonal entries of the matrix become

1∫

−1

ϕ(x)2 dx = 2

3
−

n−2∑

k=0

c2
k = 2

n (n + 2)
.
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As ψk(−x) = (−1)kψk(x), its off-diagonal entries are correspondingly

1∫

−1

ϕ(x)ϕ(−x) dx = 1

3
−

n−2∑

k=0

(−1)k c2
k = 2 (−1)n+1

n (n + 1)(n + 2)
.

As the final results remain true for n = 1, this proves the proposition. ��

The reduced total mass matrix is composed of the element mass matrices and is the
sum of these. If the polynomial order is everywhere the same the following holds:

Lemma If the polynomial order is n on all subintervals, the minimum and the maxi-
mum eigenvalue of the diagonally scaled reduced total mass matrix are

1 − 1

n + 1
, 1 + 1

n + 1
.

Proof We start from the generalized eigenvalue problem

(
(ϕ1, ϕ1) (ϕ1, ϕ2)

(ϕ2, ϕ1) (ϕ2, ϕ2)

)(
x
y

)
= λ

(
(ϕ1, ϕ1) 0

0 (ϕ2, ϕ2)

)(
x
y

)

for the just considered element matrix and its diagonal. The minimum and the maxi-
mum eigenvalue λ are by our first lemma the two values given above. Therefore

(
1 − 1

n + 1

)
vTDv ≤ vTM0v ≤

(
1 + 1

n + 1

)
vTDv

for all coefficient vectors v of functions in S0, where M0 is the reduced total mass
matrix and D its diagonal. The given values thus represent a lower respectively upper
bound for the eigenvalues of the diagonally scaled reduced total mass matrix.

The eigenvectors for the minimum and the maximum respectively the maximum
and the minimum eigenvalue of the element matrix are the multiples of the vectors

(
1
1

)
,

(
1

−1

)
,

depending on the polynomial degree n. Inserting above the coefficient vectors v of the
functions in S0 with value 1 and alternately the values ±1 at the intermediate points,
one sees that both bounds are attained. This proves the proposition. ��

After diagonal scaling the condition number of the reduced total mass matrix is thus

κ = n + 2

n
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if the polynomial order is n on all subintervals. In this case therefore

q =
√
κ − 1√
κ + 1

<
1

2n
.

The L2-projection Q onto the full space S thus remains H1-stable as long as the
length of neighbored subintervals differs at most by the factor of 2n. The larger the
polynomial degree is, the less stringent this condition becomes. By the same arguments
as in Sect. 7 one can, however, show that the length of neighbored subintervals must
not differ arbitrarily.

Even more interesting than the case of fixed polynomial degree is the hp-case in
which the polynomial degree can change from subinterval to subinterval. Independent
of that, 1/2 remains a lower and 3/2 an upper bound for the eigenvalues of the diagonally
scaled reduced element matrices. Thus the estimate

κ ≤ 3

holds for the condition number of the diagonally scaled reduced total mass matrix.
This implies that the L2-projection onto such hp-spaces remains stable with respect
to the weighted L2-norm from Theorem 4.1 independent of the involved polynomial
degrees as long as the length of neighbored subintervals differs at most by a factor

μ <

√
3 + 1√
3 − 1

.

The limiting factor in the hp-case is therefore the inverse inequality.
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