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Abstract We consider the application of multilevel Monte Carlo methods to elliptic
PDEs with random coefficients. We focus on models of the random coefficient that
lack uniform ellipticity and boundedness with respect to the random parameter, and
that only have limited spatial regularity. We extend the finite element error analysis
for this type of equation, carried out in Charrier et al. (SIAM J Numer Anal, 2013), to
more difficult problems, posed on non-smooth domains and with discontinuities in the
coefficient. For this wider class of model problem, we prove convergence of the mul-
tilevel Monte Carlo algorithm for estimating any bounded, linear functional and any
continuously Fréchet differentiable non-linear functional of the solution. We further
improve the performance of the multilevel estimator by introducing level dependent
truncations of the Karhunen–Loève expansion of the random coefficient. Numerical
results complete the paper.

Mathematics Subject Classification 65N15 · 65N30 · 65C05 · 60H35 · 35R60

1 Introduction

Monte Carlo type methods are widely used in a range of scientific applications. The
dimension independent convergence rate of the sampling error makes these methods
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570 A. L. Teckentrup et al.

attractive for high-dimensional problems, which often can not be approximated well
by other types of methods. However, even though dimension independent, the con-
vergence rate of conventional Monte Carlo methods is very slow, and achieving high
accuracies is often not computationally feasible.

To improve on the convergence of conventional Monte Carlo methods, one can
make use of a variety of variance reduction techniques, such as control variates and
antithetic sampling. A variance reduction technique that has received a lot of atten-
tion recently, is the multilevel Monte Carlo (MLMC) method. It was first introduced
by Heinrich [26] to compute high-dimensional, parameter-dependent integrals, and
then extended by Giles [16] to infinite-dimensional integration related to stochastic
differential equations (SDEs). Since then, it has been applied in many areas of mathe-
matics related to differential equations, in particular stochastic differential equations
[10,15,27,29] and several types of partial differential equations (PDEs) with random
forcing [17,22] or random coefficients [2,6,8,19].

In this paper, we are concerned with the application of multilevel Monte Carlo
methods to elliptic PDEs with random coefficients. In particular, we will focus on
rough coefficients, which cannot be uniformly bounded in the random parameter and
only have Hölder continuous trajectories. This type of problem arises, for example,
in stochastic groundwater flow modelling, where log-normal random coefficients are
frequently used. A fundamental analysis of the multilevel Monte Carlo algorithm
applied to this type of model problem was recently done in [6], and also [8] demon-
strates numerically the effectiveness of multilevel Monte Carlo methods applied to
elliptic PDEs with log-normal coefficients. The purpose of this paper is to extend the
analysis to cover more situations of practical interest, and to expand on some of the
issues raised in [6,8].

The analysis in [6] addresses the convergence of the multilevel Monte Carlo method
for simple output functionals, such as the L2 or the H1 norm of the solution. In practical
situations, however, one is often interested in more complicated functionals, such as
the outflow through parts of the boundary or local pressure values. Here, we therefore
extend the analysis to cover bounded linear and continuously Fréchet differentiable
nonlinear functionals of the solution.

Another issue, raised both in [6,8], is the influence of the rough nature of our
model problem on the performance of the multilevel Monte Carlo estimator. The
oscillatory nature and the short characteristic length scale of the random coefficients
puts a bound on how coarse the coarsest level in the multilevel estimator can be.
Asymptotically, as the required accuracy goes to 0, this does not have any effect on
the cost of the MLMC estimator. For a fixed tolerance, however, it restricts the gain
that we can expect compared to a standard Monte Carlo estimator. In this paper, we
propose a solution to this problem by using smoother approximations of the ran-
dom coefficient on the coarse levels of the estimator. This allows us to choose the
coarsest level independent of the length scale on which the random coefficient varies.
See also [19] for a similar strategy in the context of the related Brinkman prob-
lem. In [19] the decay rate for the finite element error with respect to the number
of KL-modes K was assumed. Here we make no such assumption and instead use
the decay rates established in [5,6] for certain log-normal fields and covariance func-
tions.
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Finally, we extend the theoretical aspects of [6] to more challenging model prob-
lems. This includes problems posed on polygonal domains, which are frequently used
in connection with finite element methods, as well as problems where the random coef-
ficient has a jump discontinuity. It is well known that these types of model problems
do not always exhibit full global regularity, which directly influences the convergence
rates of the finite element error.

The outline of the rest of the paper is as follows. In §2, we present the model
problem, together with the main results on its regularity and finite element error esti-
mates. This follows closely the work in [6]. The proof of the new regularity result for
polygonal/polyhedral domains is postponed to §5. For the reader’s convenience, we
also briefly recall the multilevel Monte Carlo algorithm and the abstract convergence
theorem. In §3, we prove convergence of the MLMC algorithm for a wide class of
(linear and nonlinear) output functionals, including boundary fluxes and local aver-
ages of the pressure. In §4, we improve on the performance of the MLMC estimator
by using smoother approximations of the random coefficient on coarser levels. The
gains possible with this approach are established theoretically and verified numeri-
cally. Finally, in §5, we give a detailed proof of the regularity result stated in §2, and
extend the results further to certain classes of discontinuous coefficients.

A key task in this paper is to keep track of how the constants in the bounds and
estimates depend on the coefficient a(ω, x) and on the mesh size h. Hence, we will
almost always be stating constants explicitly. Constants that do not depend on a(ω, x)
or h will not be explicitly stated. Instead, we will write b � c for two positive quantities
b and c, if b/c is uniformly bounded by a constant independent of a(ω, x) and of h.

2 Background

2.1 Problem setting and basic finite element error analysis

Given a probability space (Ω,A,P) andω ∈ Ω , we consider the following linear ellip-
tic partial differential equation (PDE) with random coefficients, posed on a bounded,
Lipschitz polygonal/polyhedral domain D ⊂ R

d , d = 2, 3, and subject to Dirichlet
boundary conditions: Find u : Ω × D → R such that

− ∇ · (a(ω, x)∇u(ω, x)) = f (ω, x), for x ∈ D,

u(ω, x) = φ j (ω, x), for x ∈ Γ j . (2.1)

The differential operators ∇· and ∇ are with respect to x ∈ D, and Γ := ∪m
j=1Γ j

denotes the boundary of D, partitioned into straight line segments in 2D and into planar
polygonal panels in 3D. We assume that the boundary conditions are compatible, i.e.
φ j (x) = φk(x), if x ∈ Γ j ∩ Γ k . We also let φ ∈ H1(D) be an extension of the
boundary data {φ j }m

j=1 to the interior of D whose trace coincides with φ j on Γ j .
Let us formally define, for all ω ∈ Ω ,

amin(ω) := min
x∈D

a(ω, x) and amax(ω) := max
x∈D

a(ω, x). (2.2)
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572 A. L. Teckentrup et al.

We make the following assumptions on the input data:

A1. amin ≥ 0 almost surely and 1/amin ∈ L p(Ω), for all p ∈ (0,∞).
A2. a ∈ L p(Ω,C t (D)), for some 0 < t ≤ 1 and for all p ∈ (0,∞).
A3. f ∈ L p∗(Ω, Ht−1(D)) and φ j ∈ L p∗(Ω, Ht+1/2(Γ j )), j = 1, . . . ,m, for
some p∗ ∈ (0,∞].

Here, the space C t (D) is the space of Hölder-continuous functions with exponent
t, Hs(D) is the usual fractional order Sobolev space, and Lq(Ω,B) denotes the space
of B-valued random fields, for which the q th moment (with respect to the measure
P) of the B-norm is finite, see e.g [6]. A space which will appear frequently in the
error analysis is the space Lq(Ω, H1

0 (D)), which denotes the space of H1
0 (D)-valued

random fields with the norm on H1
0 (D) being the usual H1(D)-seminorm | · |H1(D).

We will weaken Assumption A2 in §5.2, and assume only piecewise continuity of
a(ω, ·), but chose not to do this here for ease of presentation. For the same reason,
we do not choose to weaken Assumptions A1 and A2 to 1/amin and ‖a‖C t (D) having
finite moments of order pa , for some pa ∈ (0,∞), although this is possible. Finally,
note that since amax(ω) = ‖a‖C 0(D), Assumption A2 implies that amax ∈ L p(Ω), for
any p ∈ (0,∞).

To simplify the notation in the following, let 0 < Ca, f,φ j <∞ denote a generic
constant which depends algebraically on Lq(Ω)-norms of amax, 1/amin, ‖a‖C t (D),‖ f ‖Ht−1(D) and ‖φ j‖Ht+1/2(Γ j )

, with q < p∗ in the case of ‖ f ‖Ht−1(D) and
‖φ j‖Ht+1/2(Γ j )

. Two additional random variables related to output functionals will
be added to this notation later.

An example of a random field a(ω, x) that satisfies Assumptions A1 and A2, for all
p ∈ (0,∞), is a log-normal random field a = exp(g), where the underlying Gaussian
field g has a Hölder-continuous mean and a Lipschitz continuous covariance function.
For example, g could have constant mean and an exponential covariance function,
given by

E

[
(g(ω, x)− E[g(ω, x)])(g(ω, y)− E[g(ω, y)])

]
= σ 2 exp(−‖x − y‖/λ),

(2.3)

where σ 2 and λ are real parameters known as the variance and correlation length, and
‖ · ‖ denotes a norm on R

d . If ‖ · ‖ = ‖ · ‖p, we will call it a p-norm exponential
covariance.

If we denote by H1
φ(D) := {v ∈ H1(D) : v − φ = 0 on Γ }, then the variational

formulation of (2.1), parametrised by ω ∈ Ω , is to find u ∈ H1
φ(D) such that

bω
(
u(ω, ·), v) = Lω(v) , for all v ∈ H1

0 (D). (2.4)
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Further analysis of multilevel Monte Carlo 573

The bilinear form bω and the linear functional Lω (both parametrised byω) are defined
as usual, for all u, v ∈ H1(D), by

bω(u, v) :=
∫

D

a(ω, x)∇u(x) · ∇v(x) dx and Lω(v) :=〈 f (ω, ·), v〉Ht−1(D),H1−t
0 (D),

(2.5)

where H1−t
0 (D) is the closure of C∞

0 (D) in the H1−t (D)-norm. We say that for any
ω ∈ Ω, u(ω, ·) is a weak solution of (2.1) iff u(ω, ·) ∈ H1

φ(D) and u(ω, ·) satisfies
(2.4). An application of the Lax–Milgram Theorem ensures existence and uniqueness
of u(ω, ·) ∈ H1

φ(D), for almost all ω, and in combination with Assumptions A1– A3,

this gives the existence of a unique solution u ∈ L p(Ω, H1(D)), for any p < p∗.
In [6], a regularity analysis of the above model problem was performed under

the assumptions that the spatial domain D is C2. Here, the analysis is extended to
polygonal domains, or more generally, to piecewise C2 domains that are rectilinear
near the corners. This is very important since in standard finite element methods one
naturally works with polygonal/polyhedral domains.

Definition 2.1 Let 0 < λΔ(D) ≤ 1 be such that for any 0 < s ≤ λΔ(D), s �= 1
2 , the

Laplace operatorΔ is surjective as an operator from H1+s(D)∩ H1
0 (D) to Hs−1(D).

In other words, let λΔ(D) be no larger than the order of the strongest singularity of
the Laplace operator with homogeneous Dirichlet boundary conditions on D.

The number λΔ(D) exists for any Lipschitz polygonal/polyhedral domain, see e.g.
[24, Remarks 2.4.6 and 2.6.7]. We will come back to specific values of λΔ(D) in §5.

Theorem 2.1 Let Assumptions A1-A3 hold for some 0 < t ≤ 1. Then,

‖u(ω, ·)‖H1+s (D) �
amax(ω)‖a(ω, ·)‖2

C t (D)

amin(ω)4⎡
⎣‖ f (ω, ·)‖Ht−1(D) + ‖a(ω, ·)‖C t (D)

m∑
j=1

‖φ j (ω, ·)‖Ht+1/2(Γ j )

⎤
⎦ , (2.6)

for almost all ω ∈ Ω and for all 0 < s < t such that s ≤ λΔ(D). Moreover,
u ∈ L p(Ω, H1+s(D)), for all p < p∗. If t = λΔ(D) = 1, then u ∈ L p(Ω, H2(D))
and the above bound holds with s = 1.

Proof The proof for individual samples, for almost all ω ∈ Ω , is a classical result and
follows Grisvard [23, Section 5.2]. A detailed proof making precise the dependence
of the bound on the coefficients is given in Sect. 5.1. The remainder of the theorem
follows by Hölder’s inequality from Assumptions A1–A3.

Theorem 2.1 can now be used to prove convergence of finite element (FE) approxi-
mations of u in the standard way. We will only consider lowest order elements in detail.
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Introduce a triangulation Th of D, and let Vh be the space of continuous, piecewise
linear functions on D that satisfy the boundary conditions in (2.1), i.e.

Vh,φ :=
{
vh ∈ C(D) : vh |T linear, for all T ∈ Th, and vh |Γ j = φ j ,

for all j = 1, . . . ,m
}
.

For simplicity we assume that the functions {φ j }m
j=1, are piecewise linear with respect

to the triangulation Th restricted to Γ j . To deal with more general boundary conditions
is a standard exercise in finite element analysis (see e.g. [4, §10.2]).

The finite element approximation of u in Vh,φ , denoted by uh , is now found by
solving

bω
(
uh(ω, ·), v

) = Lω(v) , for all v ∈ Vh,0.

Using Cea’s lemma and standard interpolation results on Vh,φ , we then have (as in
[6]) the following.

Theorem 2.2 Let Assumptions A1–A3 hold for some 0 < t ≤ 1. Then,

|(u − uh)(ω, ·)|H1(D) �
(

amax(ω)

amin(ω)

)1/2

‖u(ω, ·)‖H1+s (D) hs,

for almost all ω ∈ Ω and for all 0 < s < t such that s ≤ λΔ(D). Hence,

‖u − uh‖L p(Ω,H1
0 (D))

≤ Ca, f,φ j hs, for all p < p∗ ,

with Ca, f,φ j < ∞ a constant that depends on the input data, but is independent of h.
If A1–A3 hold with t = λΔ(D) = 1, then ‖u − uh‖L p(Ω,H1

0 (D))
≤ Ca, f,φ j h.

The key novel result here (extending the results in [6]) is that the rate of convergence
of the finite element error on polygonal/polyhedral domains D is the same as on C2

domains provided the order of the strongest singularity for the Laplacian on D is no
stronger than t in A1–A3. No additional or stronger singularities are triggered by the
random coefficient provided a satisfies A2. A sufficient (but not necessary) condition
for t = 1 is that D is convex. For t < 1, even certain concave domains are allowed.

Remark 2.1 The results can easily be extended also to Neumann and mixed Dirich-
let/Neumann boundary conditions. We will comment on this in Sect. 5.1 and confirm
it numerically in Sect. 3.5. There is also no fundamental difficulty in extending the
analysis to higher order finite elements. For an extension to mixed finite elements see
[21].
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2.2 Multilevel Monte Carlo algorithm

Before we go on to the main part of this paper, we will briefly recall the multilevel
Monte Carlo algorithm. We also give a review of the main results on its convergence
when applied to elliptic PDEs of the form described in the previous section.

Suppose we are interested in finding the expected value of some functional Q =
M(u) of the solution u to our model problem (2.1). Since u is not easily accessible, Q
is often approximated by the quantity Qh := M(uh), where uh is a finite dimensional
approximation to u, such as the finite element solution on a sufficiently fine spatial
grid Th defined above. However, uh may also include further approximations such as
an inexact bilinear form bh

ω(·, ·) ≈ bω(·, ·), e.g. due to quadrature or approximation
of the input random field a. We will return to this issue in Sect. 4.

To estimate E [Q], we then compute approximations (or estimators) Q̂h to E [Qh],
and quantify the accuracy of our approximations via the root mean square error
(RMSE)

e(Q̂h) :=
(
E
[
(Q̂h − E(Q))2

])1/2
.

The computational cost Cε(Q̂h) of our estimator is then quantified by the number of
floating point operations that are needed to achieve a RMSE of e(Q̂h) ≤ ε. This will
be referred to as the ε-cost.

The classical Monte Carlo (MC) estimator for E [Qh] is

Q̂MC
h,N := 1

N

N∑
i=1

Qh(ω
(i)), (2.7)

where Qh(ω
(i)) is the i th sample of Qh and N independent samples are computed in

total.
There are two sources of error in the estimator (2.7), the approximation of Q by Qh ,

which is related to the spatial discretisation, and the sampling error due to replacing
the expected value by a finite sample average. This becomes clear when expanding the
mean square error (MSE) and using the fact that for Monte Carlo E[Q̂MC

h,N ] = E[Qh]
and V[Q̂MC

h,N ] = N−1
V[Qh], where V[X ] := E[(X − E[X ])2] denotes the variance

of the random variable X : Ω → R. We get

e(Q̂MC
h,N )

2 = N−1
V[Qh] + (

E[Qh − Q])2
. (2.8)

A sufficient condition to achieve a RMSE of ε with this estimator is that both of these
terms are less than ε2/2. For the first term, this is achieved by choosing a large enough
number of samples, N = O(ε−2). For the second term, we need to choose a fine
enough finite element mesh Th , such that E[Qh − Q] = O(ε).

The main idea of the MLMC estimator is very simple. We sample not just from
one approximation Qh of Q, but from several. Linearity of the expectation operator
implies that
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576 A. L. Teckentrup et al.

E[Qh] = E[Qh0 ] +
L∑

=1

E[Qh
 − Qh
−1], (2.9)

where {h
}
=0,...,L are the mesh widths of a sequence of increasingly fine triangulations
Th
 with h := hL , the finest mesh width, and k1 ≤ h
−1/h
 ≤ k2, for all 
 = 1, . . . , L
and some 1 < k1 ≤ k2 < ∞. Hence, the expectation on the finest mesh is equal to the
expectation on the coarsest mesh, plus a sum of corrections adding the difference in
expectation between simulations on consecutive meshes. The multilevel idea is now to
independently estimate each of these terms such that the overall variance is minimised
for a fixed computational cost.

Setting for convenience Y0 := Qh0 and Y
 := Qh
 − Qh
−1 , for 1 ≤ 
 ≤ L , we
define the MLMC estimator simply as

Q̂ML
h,{N
} :=

L∑

=0

Ŷ MC

,N
 =

L∑

=0

1

N


N
∑
i=1

Y
(ω
(
,i)), (2.10)

where importantly Y
(ω(i)) = Qh
 (ω
(i)) − Qh
−1(ω

(i)), i.e. using the same sample
on both meshes.

Since all the expectations E[Y
] are estimated independently in (2.9), the variance
of the MLMC estimator is

∑L

=0 N−1


 V[Y
] and expanding as in (2.8) leads again to

e(Q̂ML
h,{N
})

2 := E

[(
Q̂ML

h,{N
}−E[Q])2
]
=

L∑

=0

N−1

 V[Y
]+

(
E[Qh −Q])2

. (2.11)

As in the classical MC case, we see that the MSE consists of two terms, the variance
of the estimator and the error in mean between Q and Qh . Note that the second term
is identical to the second term for classical MC in (2.8).

Let now C
 denote the cost to obtain one sample of Qh
 . Then we have the following
results on the ε-cost of the MLMC estimator (cf. [8,16]).

Theorem 2.3 Suppose that there are positive constants α, β, γ, cM1, cM2, cM3 > 0
such that α≥ 1

2 min(β, γ ) and

M1.
∣∣E[Qh
 − Q]∣∣ ≤ cM1 hα
 ,

M2. V[Qh
 − Qh
−1] ≤ cM2 hβ
 ,

M3. C
 ≤ cM3 h−γ

 .

Then, for any 0 < ε < exp(−1), there exist an L and a sequence {N
}L

=0, such that

e(Q̂ML
h,{N
}) < ε and

Cε(Q̂ML
h,{N
}) �

⎧
⎨
⎩
ε−2, if β > γ,

ε−2(log ε)2, if β = γ,

ε−2−(γ−β)/α, if β < γ,

where the hidden constant depends on cM1, cM2 and cM3.
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In [6], it was shown that for our model problem and for the functional Q :=
|u|q

H1(D)
it follows immediately from the finite element error result in Theorem 2.2

that Assumptions M1–M2 in Theorem 2.3 hold with α < t and β < 2t and for
1 ≤ q < p∗/2, provided Assumptions A1–A3 hold with 0 < t < 1 and p∗ ∈ (0,∞).
For t = 1, we can even choose α = 1 and β = 2. Using a duality argument we
also showed that under the same hypotheses we could expect twice these rates for the
functional Q := ‖u‖q

L2(D)
. The aim is now to extend this theory to cover also other

functionals of the solution u (see §3) as well as level-dependent estimators (see §4).

3 Output functionals

In practical applications, one is often interested in the expected value of functionals
of the solution. A standard technique to prove convergence for finite element approx-
imations of output functionals is to use a duality argument, similar to the classic
Aubin-Nitsche trick used to prove optimal convergence rates for the L2-norm.

We denote the functional of interest by Mω(v), for v ∈ H1(D). Like the bilinear
form bω(·, ·), the functional Mω(·) is again parametrised byω, and the analysis is done
almost surely in ω. When the functional does not depend on ω, we will simply write
M(·) instead of Mω(·). Our analysis follows mainly [18].

3.1 Duality argument for linear functionals

Since it is simpler, we will first look at linear functionals. Let us assume for the moment
that Mω : H1(D) → R is linear and bounded on H1(D), i.e. Mω(v) � ‖v‖H1(D),
for all v ∈ H1(D). Now, let us associate with our primal problem (2.4) the following
dual problem: find z(ω, ·) ∈ H1

0 (D) such that

bω
(
v, z(ω, ·)) = Mω(v) , for all v ∈ H1

0 (D), (3.1)

and denote by zh(ω, ·) ∈ Vh,0 the finite element approximation to (3.1). We can
again apply the Lax-Milgram Theorem to ensure existence and uniqueness of a weak
solution z(ω, ·) ∈ H1

0 (D), for almost all ω. Moreover, since bω(·, ·) is symmetric, we
will also be able to apply Theorems 2.1 and 2.2. However, first we make the following
observation.

Lemma 3.1 Let Mω : H1(D) → R be linear and bounded. Then, for almost all
ω ∈ Ω ,

|Mω (u(ω, ·))− Mω (uh(ω, ·))|
≤ amax(ω) |u(ω, ·)− uh(ω, ·)|H1(D) |z(ω, ·)− zh(ω, ·)|H1(D) . (3.2)

Proof Dropping for brevity the dependence of the FE functions on ω and using the
linearity of Mω, the dual problem (3.1), as well as Galerkin orthogonality for the
primal problem, we have
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578 A. L. Teckentrup et al.

|Mω(u)− Mω(uh)| = |bω(u − uh, z)| = |bω(u − uh, z − zh)|
≤ amax(ω)|u − uh |H1(D) |z − zh |H1(D) ,

where in the last step we have used the definition of amax(ω) and the Cauchy-Schwarz
inequality.

This simple argument will be crucial to obtain optimal convergence rates for func-
tionals. However, the assumption that Mω is linear is not necessary, and so we will
first generalise the above to nonlinear functionals.

3.2 Duality argument for nonlinear functionals

For nonlinear functionals, following [32], the dual problem is not defined as in (3.1)
above. Instead, a different functional is chosen on the right hand side (which reduces
to Mω in the linear case). It is related to the derivative of the functional of interest and
so we need to assume a certain differentiability of Mω. We will assume here that Mω is
continuously Fréchet differentiable. In particular, this implies that Mω is also Gateaux
differentiable, with the two derivatives being the same. We will see in Remark 3.1
below that it is in fact not necessary that Mω is continuously Fréchet differentiable
everywhere, but it simplifies the presentation greatly.

Let v, ṽ ∈ H1(D). Then the Gateaux derivative of Mω at ṽ and in the direction v
is defined as

DvMω(ṽ) := lim
ε→0

Mω(ṽ + εv)− Mω(ṽ)

ε
.

We define

DvMω(u, uh) :=
1∫

0

DvMω(u + θ(uh − u)) dθ,

which is in some sense an average derivative of Mω on the path from u to uh , and
define the dual problem now as: find z(ω, ·) ∈ H1

0 (D) such that

bω
(
v, z(ω, ·)) = DvMω(u, uh), for all v ∈ H1

0 (D). (3.3)

For any linear functional Mω, we have DvMω(u, uh) = Mω(v), for all v ∈ H1(D),
and so (3.3) is equivalent to (3.1).

For our further analysis, we need to make the following assumption on Mω.

F1. Let u (resp. uh) be the exact (resp. the FE) solution of (2.1). Let Mω be
continuously Fréchet differentiable, and suppose that there exists t∗ ∈ [0, 1], q∗ ∈
(0,∞] and CF ∈ Lq∗(Ω), such that

|DvMω(u, uh)| � CF(ω)‖v‖H1−t∗ (D) , for all v ∈ H1
0 (D)

and for almost all ω ∈ Ω.
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To get well-posedness of the dual problem, as well as existence and uniqueness of
the dual solution z(ω, ·) ∈ H1

0 (D), for almost all ω ∈ Ω , it is sufficient (as in the
linear case, courtesy of the Lax-Milgram Theorem) to assume that |DvMω(u, uh)| is
bounded in H1(D). However, in order to apply Theorem 2.2 and to prove convergence
of the finite element approximation of the dual solution, it is necessary to require
stronger spatial regularity for z. This is only possible if we assume boundedness of
|DvMω(u, uh)| in H1−t∗(D) for some t∗ > 0. In particular, if Assumptions A1–A3
and F1 are satisfied with t ∈ (0, 1] and t∗ ≥ t , then by Theorem 2.1 we have for almost
all ω ∈ Ω ,

‖z(ω, ·)‖H1+s (D) �
amax(ω)‖a(ω, ·)‖2

C t (D)

amin(ω)4
CF(ω),

for any 0 < s < t such that s ≤ λΔ(D) and for almost all ω ∈ Ω . Hence,

‖z − zh‖L p(Ω,H1
0 (D))

≤ Ca,CF hs, for all p < q∗ , (3.4)

for some constant Ca,CF < ∞ depending on a and the constant CF in F1.
Recall that we assumed that the boundary data {φ j }m

j=1 are piecewise linear with

respect to Th , and so u − uh ∈ H1
0 (D). From the Fundamental Theorem of Calculus

for Fréchet derivatives, it follows that

Mω(u)− Mω(uh) =
1∫

0

Du−uh Mω(u + θ(uh − u)) dθ = Du−uh Mω(u, uh)

= bω(u − uh, z), (3.5)

and so we have again the following error bound.

Lemma 3.2 Let Assumption F1 be satisfied. Then

|Mω (u(ω, ·))− Mω (uh(ω, ·))|
≤ amax(ω) |u(ω, ·)− uh(ω, ·)|H1(D) |z(ω, ·)− zh(ω, ·)|H1(D) , (3.6)

for almost all ω ∈ Ω .

Remark 3.1 As already mentioned above, continuous Fréchet differentiability is not
a necessary condition to obtain the bound in Lemma 3.2. It is possible to weaken
Assumption F1 and to assume only slant differentiability of Mω(·), which is equivalent
to Lipschitz continuity (see e.g.[7]).

3.3 Multilevel Monte Carlo convergence for functionals

We are now ready to prove optimal convergence rates for the MLMC algorithm for
Fréchet differentiable (and thus also for linear) functionals as defined above.
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580 A. L. Teckentrup et al.

Lemma 3.3 Let Assumptions A1–A3 hold for some 0 < t ≤ 1 and p∗ ∈ (0,∞], and
let Mω(·) satisfy Assumption F1 with t∗ ≥ t and q∗ ∈ (0,∞]. Then

‖Mω(u)− Mω(uh)‖L p(Ω) � Ca, f,φ j ,CF h2s,

for any p <
(

1
p∗ + 1

q∗

)−1
and 0 < s < t such that s ≤ λ�(D). If A1–A3 hold with

t = 1, then ‖Mω(u)− Mω(uh)‖L p(Ω) � Ca, f,φ j ,CF h2.

Proof Using Lemma 3.2 and Hölder’s inequality, we have

‖Mω(u)−Mω(uh)‖p
L p(Ω)

≤ ‖a p
max‖Lq1 (Ω)‖

(
uh
−uh
−1

)p ‖Lq2 (Ω,H1
0 (D))

‖ (zh
−zh
−1

)p ‖Lq3 (Ω,H1
0 (D))

= ‖amax‖p
L pq1 (Ω)

‖uh
−uh
−1‖p
L pq2 (Ω,H1

0 (D))
‖zh
−zh
−1‖p

L pq3 (Ω,H1
0 (D))

, (3.7)

where
∑3

i=1 q−1
i = 1. The norms on the right hand side of (3.7) are finite, if we choose

q1 < ∞, q2 < p∗/p, and q3 < q∗/p. The claim of the proposition now follows from
(3.4) and Theorem 2.2.

The following corollary of Lemma 3.3, follows immediately using the triangle
inequality.

Corollary 3.1 Let Assumptions A1–A3 hold for some 0 < t ≤ 1, λ�(D) ≥ t and
p∗ > 2, and let Mω(·) satisfy Assumption F1 with t∗ ≥ t and q∗ > 2p∗

p∗−2 . Then
Assumptions M1–M2 in Theorem 2.3 hold for any α < 2t and β < 4t . For t = 1, we
can choose α = 2 and β = 4.

Remark 3.2 In practice, it is necessary to use quadrature to compute the integrals in
the bilinear form bω(u, v). As a consequence we will compute only an approximate
finite element solution ũh ∈ Vh,φ and Galerkin orthogonality for the primal problem
is lost. In general, it is then only possible to prove

|Mω (u(ω, ·))− Mω (ũh(ω, ·))| ≤ CF (ω) ‖u(ω, ·)− ũh(ω, ·)‖H1(D),

instead of (3.6), where CF is the constant from Assumption F1. It is sufficient that
F1 holds with t∗ = 0 in this case. The higher rates of convergence from Corollary 3.1
can be recovered, also in the presence of quadrature error, if the coefficient function
has additional regularity, i.e. if a(ω, ·) ∈ Cr (D), with r ≥ 2t . For an example of a
log-normal random field which has this additional regularity, see §4.1.

One can also generalise the results in this section to the case where the dual solution
has less spatial regularity than the primal solution. For example, if F1 holds only for
some t∗ ∈ [0, t), Assumptions M1–M2 in Theorem 2.3 can still be verified, for any
α < t + t∗ and β < 2(t + t∗).
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Further analysis of multilevel Monte Carlo 581

3.4 Examples of output functionals

Before we go on to show some numerical results, we give examples of output func-
tionals which fit into the framework of §3.1–3.3. We start with linear functionals.

(a) Point evaluations: Since a(ω, ·) ∈ C t (D) ⊂ C(D), we know that trajectories
of the solution u are in C1(D) (see e.g. [14]), and it is meaningful to consider
point values. Consider M (1)(u) := u(x∗), for some x∗ ∈ D. For D ⊂ R, i.e. in
one space dimension, we have the compact embedding H1/2+δ(D) ↪→ Cδ(D),
for any δ > 0, and so

M (1)(v) = v(x∗) ≤ ‖v‖sup � ‖v‖H1/2+δ(D), for all v ∈ H1(D).

Hence, Assumption F1 is satisfied for any t∗ < min( 1
2 , t) with CF = 1 and

q∗ = ∞.
In space dimensions higher than one, point evaluation of the pressure u is not a
bounded functional on H1

0 (D). One often regularises this type of functional by
approximating the point value by a local average,

M (2)(v) := 1

|D∗|
∫

D∗
v(ω, x) dx

[
≈ v(ω, x∗)

]
,

where D∗ is a small subdomain of D that contains x∗ [18]. Here, M (2) satisfies
F1 with CF = 1, t∗ = 1 and q∗ = ∞, due to the Cauchy-Schwarz inequality.
Similarly, point evaluations of the flux −a∇u can be approximated by a local
average. However, in this case F1 only holds for t∗ = 0 with CF = amax and
q∗ = ∞, and the convergence rate thus is the same as for the H1-seminorm.

Next we give some examples of non-linear functionals. The first obvious example is
to estimate higher order moments of linear functionals.

(b) Second moment of average local pressure: Let Mω be an arbitrary linear func-
tional and let q > 1. Then

Dv
(
Mω(ṽ)

q) = lim
ε→0

Mω(ṽ + εv)q − Mω(ṽ)
q

ε
= q Mω(ṽ)

q−1 Mω(v).

Thus, in case of the second moment of the average local pressure M (3)(v)

:= M (2)(v)2, this gives

DvM (3)(ṽ) = 2

|D∗|2

⎛
⎝
∫

D∗
v(x) dx

⎞
⎠
⎛
⎝
∫

D∗
ṽ(x) dx

⎞
⎠ ,

and so
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|DvM (3)(u, uh)| = 2

|D∗|2

∣∣∣∣∣∣

⎛
⎝
∫

D∗
v(x) dx

⎞
⎠
⎛
⎝

1∫

0

∫

D∗
(u + θ(uh − u))(x) dxdθ

⎞
⎠
∣∣∣∣∣∣

= 1

|D∗|2

∣∣∣∣∣∣

⎛
⎝
∫

D∗
v(x) dx

⎞
⎠
⎛
⎝
∫

D∗
(u(ω, x)+ uh(ω, x)) dx

⎞
⎠
∣∣∣∣∣∣

�
(‖u(ω, ·)‖L2(D) + ‖uh(ω, ·)‖L2(D)

) ‖v‖L2(D) .

Now, it follows from the Lax-Milgram Theorem that CF(ω) := ‖u(ω, ·)‖L2(D) +
‖uh(ω, ·)‖L2(D) � ‖ f (ω, ·)‖H−1(D)/amin(ω), and so Assumption F1 is satisfied
for all t∗ ≤ 1 and q∗ < p∗ .

(c) Outflow through boundary: Consider M (4)
ω (v) := Lω(ψ)−bω(ψ, v), for some

given function ψ ∈ H1(D). Note that for the solution u of (2.4), by Green’s
formula, we have

M (4)
ω (u) =

∫

D

ψ(x) f (x, ω) dx−
∫

D

a(ω, x)∇ψ(x)·∇u(ω, x) dx

=−
∫

D

ψ(x)∇·(a(ω, x)∇u(ω, x)) dx−
∫

D

a(ω, x)∇ψ(x)·∇u(ω, x) dx

=−
∫

Γ

ψ(x)a(ω, x)∇u(ω, x) · ν ds . (3.8)

Thus, M (4)
ω (u) is equal to the outflow through the boundary Γ weighted by ψ ,

and so M (4)
ω can be used to approximate the flux through a part Γout ⊂ Γ of the

boundary, by setting ψ |Γout ≈ 1 and ψ |Γ \Γout ≈ 0, see e.g. [1,12,18].
Note that for f �≡ 0 this functional is only affine, not linear. When f ≡ 0, then it
is linear.
In any case,

DvM (4)
ω (ṽ) := lim

ε→0

M (4)
ω (ṽ+εv)−M (4)

ω (ṽ)

ε

= lim
ε→0

− ∫
D a(ω, x)∇ψ(x) · ∇(εv(ω, x)) dx

ε

= −
∫

D

a(ω, x)∇ψ(x) · ∇v(x) dx =
∫

D

v(x)∇ · (a(ω, x)∇ψ(x)) dx,

for v, ṽ ∈ H1
0 (D). Since this is independent of ṽ, we have in particular

DvM (4)
ω (u, uh) =

∫

D

v(x)∇ · (a(ω, x)∇ψ(x)) dx .
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If we now assume that Assumptions A1-A3 are satisfied for some 0 < t ≤ 1
and that ψ ∈ H1+t (D), then using Theorems 9.1.12 and 6.2.25 in [25] (see also
Lemmas A.1 and A.2 in [6]), we have ∇ψ ∈ Ht (D) and for any t∗ < t ,

|DvM (4)
ω (u, uh)| ≤ ‖∇ · (a(ω, ·)∇ψ) ‖Ht∗−1(D)‖v‖H1−t∗ (D)

� ‖ (a(ω, ·)∇ψ) ‖Ht∗ (D)‖v‖H1−t∗ (D)
� ‖a(ω, ·)‖C t (D)‖∇ψ‖Ht∗ (D)‖v‖H1−t∗ (D). (3.9)

Hence, Assumption F1 is satisfied, for any q∗ < ∞ and t∗ < t , with CF(ω) =
‖a(ω, ·)‖C t (D). If t = 1, then estimate (3.9) holds with t∗ = t = 1, and Assump-
tion F1 is satisfied with t∗ = 1. Our assumption on ψ is satisfied for example if
ψ is linear, which is a suitable choice for the numerical test in the next section.

The functional 1
Γout

∫
Γout

a(ω, x)∇u(ω, x) · ν ds (or its regularised equivalent over
a narrow region near Γout), which also approximates the flux through Γout, can only
be bounded in H1(D) and will converge with a slower rate than M (4)

ω .

3.5 Numerics

We consider two different model problems in 2D, both in the unit square D = (0, 1)2:
either (2.1) with f ≡ 1 and φ ≡ 0, i.e.

− ∇ · (a(ω, x)∇u(ω, x))=1, for x ∈ D, and u(ω, x)=0 for x ∈ ∂D, (3.10)

or the mixed boundary value problem

−∇ · (a(ω, x)∇u(ω, x)) = 0, for x ∈ D,

and u
∣∣
x1=0 = 1, u

∣∣
x1=1 = 0,

∂u

∂ν

∣∣∣
x2=0

= 0,
∂u

∂ν

∣∣∣
x2=1

= 0. (3.11)

We take a(ω, x) to be a log-normal random field, where the underlying Gaussian field
has mean zero and exponential covariance function [(using the 2-norm in (2.3)]. We
choose λ = 0.3 and σ 2 = 1. The finite element solutions are computed on a family of
uniform triangular grids Th with mesh widths h = 1/2, 1/4, . . . , 1/128. The sampling
from a(ω, x) is done using a circulant embedding technique (for details see [11,20]).
To assemble the stiffness matrix we use a quadrature rule. We chose the trapezoidal
rule, evaluating the coefficient function at the vertices of the grids.

First, we consider the approximation of the pressure at the centre of the domain for
model problem (3.10). As described in §3.4 for functional M (2), we approximate it by
the average of uh over the region D∗, which is chosen to consist of the six elements (of
a uniform grid with h∗ = 1/256) adjacent to the node at (1/2, 1/2). To estimate the
errors we approximated the exact solution u by a reference solution uh∗ on a grid with
mesh width h∗ = 1/256. In Fig. 1, we see that

∣∣E[M (3)(uh∗)− M (3)(uh)
]∣∣ converges

linearly in h and V
[
M (3)(uh) − M (3)(u2h)

]
converges quadratically, as predicted
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Fig. 1 Left plot
∣∣E[M(2)(uh∗ )2 − M(2)(uh)

2]∣∣ for 2D model problem (3.10) with λ = 0.3, σ 2 = 1 and

h∗ = 1/256. Right plot Corresponding variance V
[
M(2)(uh)

2 − M(2)(u2h)
2]. The gradient of the dotted

(resp. dashed) line is −1 (resp. −2).

Fig. 2 Left Plot of
∣∣E[M(4)

ω (uh∗ )− M(4)
ω (uh)

]∣∣, for 2D model (3.11) problem with λ = 0.3, σ 2 = 1, ψ =
x1 and h∗ = 1/256. Right Corresponding variance V

[
M(4)
ω (uh)− M(4)

ω (u2h)
]
. The gradient of the dotted

(resp. dashed) line is −1 (resp. −2)

by Lemma 3.1 for the “exact” FE solution. However, in the context of numerical
quadrature this is better than expected (cf. Remark 3.2).

For the second model problem (3.11), we consider an approximation of the average
outflow through the boundary Γout := {x1 = 1} computed via the functional M (4)

ω in
§3.4. As the weight function, we choose the linear functionψ(x) = x1, which is equal
to 1 at all nodes on Γout and equal to 0 at all other Dirichlet nodes. Thus, M (4)

ω (u) is
exactly equal to the flow through Γout. As predicted we see again linear convergence
in h for

∣∣E[M (4)
ω (uh∗) − M (4)

ω (uh)
]∣∣, and quadratic convergence for V

[
M (4)
ω (uh) −

M (4)
ω (u2h)

]
in Fig. 2.

4 Level dependent estimators

The key ingredient in the multilevel Monte Carlo algorithm is the telescoping sum
(2.9),

123



Further analysis of multilevel Monte Carlo 585

E[Qh] = E[Qh0 ] +
L∑

=1

E[Qh
 − Qh
−1].

We are free to choose how to approximate Q on the different levels, without violating
the above identity, as long as the approximation of Qh
 is the same in the two terms in
which it appears on the right hand side, for 
 = 0, ..., L − 1. In particular, this implies
that we can approximate the coefficient a(ω, x) differently on each level. Even though
this strategy does not introduce any additional bias in the final result E[Qh], it may
influence the values of the convergence rates α and β in Theorem 2.3. One has to
be careful not to introduce any additional model/approximation errors that decay at a
slower rate than the discretisation error.

It is particularly useful when the random field a(ω, x) is highly oscillatory and
varies on a fine scale. Coarse grids will not be able to resolve the coefficient well. As
a consequence of this, one needs to choose the coarsest grid size h0 smaller than a
certain threshold to get the MLMC estimator with the smallest absolute cost. Numer-
ical investigations in [8], for example, show that for log-normal random fields with
underlying exponential, 1-norm covariance function and correlation length λ, the opti-
mal choice is h0 ≈ λ. This limits the benefit that the MLMC estimator potentially
offers. A possible solution to this problem is to use smoother approximations of the
coefficient on the coarser levels. We will present one way of doing this in §4.1, by
using level-dependent truncations of the Karhunen–Lòeve expansion of a(ω, x).

4.1 Truncated KL-expansions

As an exemplary case, let us now consider log-normal random fields a, where log(a)
has exponential, 1-norm covariance, i.e. covariance function (2.3) with ‖x‖ = ‖x‖1 :=∑d

i=1 |xi |. We will comment on the general case at the end of the section.
For a Gaussian random field g, the Karhunen–Lòeve (KL) expansion (see e.g. [13])

is an expansion in terms of a countable set of independent, standard Gaussian random
variables {ξn}n∈N. It is given by

g(ω, x) = E [g(ω, x)] +
∞∑

n=1

√
θnbn(x)ξn(ω),

where {θn}n∈N are the eigenvalues and {bn}n∈N are the corresponding normalised
eigenfunctions of the covariance operator with kernel function

C(x, y) := E

[
(g(ω, x)− E[g(ω, x)])(g(ω, y)− E[g(ω, y)])

]
.

The log-normal coefficient field shall then be written as

a(ω, x) = exp

[
E [g(ω, x)] +

∞∑
n=1

√
θnbn(x)ξn(ω)

]
,
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and the random fields resulting from truncated expansions with K ∈ N terms shall be
denoted by

gK (ω, x) :=E [g(ω, x)]+
K∑

n=1

√
θnbn(x)ξn(ω) and aK (ω, x) :=exp [gK (ω, x)] .

Moreover, we denote by uK ∈ H1
φ(D) the weak solution to

− ∇ · (aK (ω, x)∇uK (ω, x)) = f (ω, x), for x ∈ D,

uK (ω, x) = φ j (ω, x), for x ∈ Γ j . (4.1)

i.e. our model problem (2.1) with the coefficient a replaced by its K -term approxima-
tion. The finite element approximation of uK in Vh,φ is denoted by uK ,h . Recall that
we assumed that {φ j }m

j=1 are piecewise linear, and so uK −uK ,h ∈ H1
0 (D). It has been

shown in [5,6] that in the case of the 1-norm exponential covariance, Assumptions
A1–A2 are satisfied also for aK , for any t < 1/2 (independent of K ). Therefore the
theory in the earlier sections applies also to (4.1).

Since the convergence with respect to K is quite slow (see below), to get a good
approximation to E[Qh] we need to include a large number of terms on the finest grid,
both in the case of the standard and the MLMC estimator. The eigenvalues {θn}n∈N

are all non-negative with
∑

n≥1 θn < +∞, and if they are ordered in decreasing order
of magnitude, the corresponding eigenfunctions {bn}n∈N will be ordered in increasing
order of oscillations over D. By truncating the KL-expansion after fewer terms, we are
hence disregarding the contributions of the most oscillatory eigenfunctions, leading to
smoother problems that can be solved more accurately on the coarser levels. In order to
determine a suitable strategy for the level dependent truncation of the KL-expansion,
we make use of results from [5,6].

Proposition 4.1 Let a be a log-normal random field s.t. log(a)has 1-norm exponential
covariance. Then,

‖u − uK ‖L p(Ω,H1
0 (D))

� Ca, f,φ j K −r and ‖u − uK ‖L p(Ω,L2(D)) � Ca, f,φ j K −r ,

for all p < p∗ and 0 < r < 1/2. The hidden constant is independent of K .

As in the previous sections this result can again be extended in a straightforward way
to functionals.

Corollary 4.1 Let a be as in Proposition 4.1. Suppose Assumption A3 is satisfied
for some p∗ ∈ (0,∞] and t ≥ 1/2, and suppose that for the truncated problem
(4.1) and for the functional Mω(·) we have Assumption F1 satisfied with t∗ ≥ 1

2 and
q∗ ∈ (0,∞], i.e. Mω is Fréchet differentiable and DvMω(uK , uK ,h) is bounded in
H1−t∗(D). Assume further that there exists C ′

F ∈ Lq∗(Ω) such that DvMω(u, uK ) ≤
C ′

F |v|H1(D), for all v ∈ H1
0 (D). Then

‖Mω(u)− Mω(uK ,h)‖L p(Ω) � Ca, f,φ j ,CF ,C ′
F

(
h2s + K −r

)
,
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for any p <
(

1
p∗ + 1

q∗

)−1
, 0 < s < 1/2 and 0 < r < 1/2. The hidden constant is

again independent of h and K .

Proof First note that due to the triangle inequality, we have of course

|Mω(u)−Mω(uK ,h)|≤ |Mω(u)−Mω(uK )|+|Mω(uK )−Mω(uK ,h)|. (4.2)

To bound the first term in (4.2), we can use (3.5) so that by assumption

|Mω(u)− Mω(uK )| = |Du−uK Mω(u, uK )| ≤ C ′
F |u − uK |H1(D) . (4.3)

It follows from Proposition 4.1 that ‖u − uK ‖L p(Ω,H1
0 (D))

≤ Ca, f,φ j K −r , for any
p < p∗ and 0 < r < 1/2. Thus, Hölder’s inequality implies that the L p-norm of the
first term is O(K −r ), for any p <

(
p−1∗ + q−1∗

)−1
and 0 < r < 1/2, with a constant

that is independent of h and K .
As noted above, it follows from [5, §7] that Assumptions A1–A2 are satisfied for

the truncated expansion aK of a log-normal random field whose logarithm has 1-norm
exponential covariance. Since Assumption A3 is also assumed to hold, it follows as in
Corollary 3.1 from Hölder’s inequality that the L p-norm of the second term in (4.2)
is O(h2s), for any p <

(
p−1∗ + q−1∗

)−1
and 0 < s < 1/2, with a constant that is

independent of h and K .

These results suggest that to balance out the two error contributions, we should
choose K
 as a power of h
. Note that a similar strategy was already suggested in
the context of the related Brinkman problem in [19]. However, there, a certain decay
rate for the error with respect to the number of KL-modes K was assumed. Here we
make no such assumption and instead use Proposition 4.1 for the 1-norm exponential
covariance. We have the following results for the multilevel Monte Carlo convergence
rates in Theorem 2.3.

Proposition 4.2 Provided Assumption F1 is satisfied with t∗ ≥ 1
2 and K
 � h−2


 , for
all 
 = 0, . . . , L, then the convergence rate of the multilevel Monte Carlo method
in §2.2 does not deteriorate when approximating the functional Mω(uh
 ) by Qh
 :=
Mω(uK
,h
 ) on each level 
. In particular, let the assumptions of Corollary 4.1 be
satisfied with p∗ > 2 and q∗ > 2p∗

p∗−2 . Then the Assumptions M1–M2 in Theorem 2.3
hold for any α < 1 and β < 2. If Assumption F1 is satisfied only for some t∗ < 1/2,
then K
 � h−(1+2t∗)


 is a sufficient condition.

Proof The proof is analogous to that of Corollary 3.1 using Corollary 4.1. The final
statement follows from Remark 3.2.

As before, in the presence of quadrature error (cf. Remark 3.2), we will not be
able to get O(h2s) convergence for the second term in (4.2) for the approximate
finite element solution ũK ,h . Due to the loss of Galerkin orthogonality for the primal
problem, it is in general only possible to prove |Mω(u)−Mω(ũK ,h)| = O

(
hs + K −s

)
.

Thus with the quadrature error taken into account the optimal choice is K
 � h−1

 for
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all functionals which satisfy assumption F1 with t∗ ≥ 1/2 and we will always use that
in our numerical tests in the next section.

Let us finish this section with some comments on truncated expansions aK =
exp(gK ) of log-normal fields with other covariance functions. The convergence rate
of |Mω(u)− Mω(uK )| depends in general on the rate of decay of the KL-eigenvalues
θn and on the rate of growth of ‖∇bn‖∞. If we assume that |Mω(uK )− Mω(uK ,h)| =
O(hs) and |Mω(u) − Mω(uK )| = O(K −σ ), for some 0 < s ≤ 1 and 0 < σ < ∞,
then the number of KL-terms in a multilevel Monte Carlo method on each level should
satisfy K
 � h

− s
σ


 . For smoother fields (e.g. with covariance functions from the Matérn
class with large parameters), s

σ
will usually be significantly smaller than 1, and thus

the number of KL-terms only needs to grow very slowly from level to level.
The only other rigorous results regarding convergence rates for truncated expan-

sions aK = exp(gK ) of log-normal fields— except those for the 1-norm exponential
covariance above—are for the case of a Gaussian covariance function

E

[
(g(ω, x)−E[g(ω, x)])(g(ω, y)−E[g(ω, y)])

]
= σ 2 exp(−‖x−y‖2

2/λ
2), (4.4)

for g with σ 2 and λ as in (2.3). In this case, provided the mean is sufficiently smooth,
we have a(ω, ·) ∈ C∞(D) and

|Mω(u)− Mω(uK ,h)| � Ca, f,φ j

(
h2 + exp

(− c1 K 1/d)) ,

for some c1 > 0 (cf. [6]), where d is again the spatial dimension. Thus, K
 only needs
to be increased logarithmically with h−d


 in this case.
However, all these results are asymptotic results, as h
 → 0, and thus they only

guarantee that level-dependent truncations do not deteriorate the performance of the
multilevel Monte Carlo method asymptotically as the tolerance ε → 0. The real benefit
of using level-dependent truncations is in absolute terms for a fixed tolerance ε, since
the smoother fields potentially allow the use of coarser levels and thus significant gains
in the absolute cost of the algorithm. In the next section, we see that this is in fact the
case and we show the gains that are possible, especially for covariance functions with
short correlation length λ.

4.2 Numerics

To be able to deal with very short correlation lengths in a reasonable time, we start
with the 1D equivalent of model problem (3.10), on D = (0, 1). We take a to be a
log-normal random field, with log[a] having exponential covariance function (2.3),
with correlation length λ = 0.01 and variance σ 2 = 1. The results in Fig. 3 are for
point evaluation of the pressure, i.e. M (1)(u) from §3.4 with x∗ = 2049/4096. Similar
gains can be obtained for other quantities of interest.

In the left plot in Fig. 3, we study the behaviour of V[Qh
 − Qh
−1] and V[Qh
].
When V[Qh
 − Qh
−1] ≥ V[Qh
], there is no benefit including level 
 − 1 in the
multilevel estimator, since it would only increase the cost of the estimator. We can see
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Fig. 3 Left Plot of V
[
M(1)(uh)

]
and V

[
M(1)(uh)−M(1)(u2h)

]
, for (3.10) with d = 1, λ = 0.01, σ 2 = 1,

K
 = h−1


, h∗ = 1/4096, K ∗ = 4,096 and x∗ = 2,049/4,096. Right Plot of cost versus 1/h for a fixed

tolerance of the sampling error of δ = 10−3, for the same model problem

that if we approximate a with a (large) fixed number of modes on each level (labelled
“keep” in Fig. 3), we should not include any levels coarser than h0 = 1/64 (≈ λ) in the
estimator, as was already observed in [8]. With the level-dependent regime (labelled
“drop”), however, it is viable to include levels as coarse as h0 = 1/2. This leads to
significant reductions in computational cost, as is shown in the right plot in Fig. 3.

In the right plot in Fig. 3, we fix the required tolerance for the sampling error (i.e.
the standard deviation of the estimator) at δ = 10−3, and look at how the cost of the
different estimators grows as we decrease the mesh size h := hL of the finest grid, with
each line in the plot using a fixed number of grid levels in the multilevel simulation (e.g.
4L means 4 levels). The computational cost of the multilevel estimator is calculated
as N0h−1

0 +∑L

=1 N
(h

−1

 + h−1


−1) work units, since we know that γ = 1 in M3 for
d = 1. To make the estimators comparable, for each finest grid hL , the standard Monte
Carlo estimator is computed with KL = h−1

L modes, the “MLMC keep” estimator is
computed with K
 = h−1

L modes on all levels, and the “MLMC drop” estimator is
computed with a varying number K
 = h−1


 modes on the levels. We clearly see the
benefit of using the level-dependent multilevel estimator. For example, on the grid of
size h = 1/2048, the cheapest multilevel estimator with a fixed number of modes is
the 4 level estimator, which has a cost of 8.6 × 105 work units. The cheapest level-
dependent multilevel estimator, on the other hand, is the 7 level estimator, whose
computational cost is only 1.8×105 units. For comparison, the cost of the single-level
MC estimator on this grid is 2.8 × 106 units.

An important point we would like to make here, is that not only do the level-
dependent estimators have a smaller absolute cost than the estimators with a fixed
number of modes, they are also a lot more robust with respect to the coarse grids
included. On the h = 1/2048 grid, the 11 level estimator (i.e. h0 = 1/2) with fixed
K , costs 1.1 × 107 units, which is 4 times the cost of the standard MC estimator.
The 11 level estimator with level-dependent K
 costs 2.4 × 105 units, which is only
marginally more than the best level-dependent estimator (the 7 level estimator).

For practical purposes, the real advantage of the level-dependent approach is evident
on coarser grids. We see in Fig. 3 that on grids coarser than h = 1/256, all multilevel
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Fig. 4 Left Plot of V
[
M(4)
ω (uh)

]
and V

[
M(4)
ω (uh)− M(4)

ω (u2h)
]
, for (3.11) with d = 2, λ = 0.1, σ 2 = 1,

ψ = x1, K
 = 4h−1


, h∗ = 1/256 and K ∗ = 1,024. Right Plot of cost CPU-time versus 1/h for a fixed

tolerance of the sampling error of δ = 10−3, for the same model problem

estimators with a fixed number of modes are more expensive than the standard MC
estimator. With the level-dependent multilevel estimators on the other hand, we can
make use of (and benefit from) multilevel estimators on grids as coarse as h = 1/64.
This is very important, especially in the limit as the correlation length λ → 0, as
eventually all computationally feasible grids will be “coarse” with respect to λ. With
the level-dependent estimators, we can benefit from the multilevel approach even for
very small values of λ.

Let us now move on to a model problem in 2D. We will study the flow cell model
problem (3.11) on D = (0, 1)2, and take the outflow functional M (4)

ω (u) from §3.4
as our quantity of interest. As in §3.5, we choose the weight function ψ = x1. We
choose a to be a log-normal random field s.t. log(a) has 1-norm exponential covariance
function (2.3), with λ = 0.1 and σ 2 = 1.

The left plot in Fig. 4 is similar to the left plot in Fig. 3. We again see that the level-
dependent regime allows for much coarser grids. In the right plot, we see the gains in
computational cost that are possible with the level-dependent estimators. Since we do
not know the value of γ in (M3) theoretically, we quantify the cost of the estimators
by the CPU-time. The results shown are calculated with a Matlab implementation on
a 3GHz Intel Core 2 Duo E8400 processor with 3.2 GByte of RAM, using the sparse
direct solver provided in Matlab through the standard backslash operation to solve
the linear systems for each sample. On the finest grid h = 1/256, we clearly see a
benefit from the level-dependent estimators. The cheapest multilevel estimator with a
fixed number of modes is the 5 level estimator, with takes 13.5 min. The cheapest level-
dependent estimator is the 7 level estimator, which takes only 2.5 min. For comparison,
the standard MC estimator takes more than 7.5 h.

5 Domains with corners and discontinuous coefficients

We now come to the last and most technical part of the paper. The first aim is to prove
Theorem 2.1, i.e. to extend the regularity results in [6] to piecewise C2 domains.
In this situation, the solution u can have singularities near the non-smooth parts of
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the boundary Γ , i.e. near corners in 2D and near corners and edges in 3D. These
singularities can reduce the overall regularity of u, and hence need to be analysed.
However, we will see in §5.1 that under Assumptions A1–A2, this question can be
reduced to analysing the singularities of the Laplace operator on D. We will follow
[23, §5.2], and as in [6] we will again establish the result first “pointwise” almost
surely in ω ∈ Ω . The key technicality will again be to track how the constants in all
the necessary estimates, in particular in the semi-Fredholm property of the underlying
random differential operator, depend on ω. In §5.2, we then extend the results also to
the practically very important case where the coefficient a(ω, x) is discontinuous.

5.1 Regularity of random differential operators in domains with corners

Let us recall that D was assumed to be a bounded, Lipschitz polygonal/polyhedral
domain in R

d , d = 2, 3, and that λΔ(D) ∈ (0, 1] is the largest number such that
for all 0 < s ≤ λΔ(D), s �= 1

2 , the Laplace operator with homogeneous Dirichlet
boundary conditions is surjective as an operator from H1+s(D)∩ H1

0 (D) to Hs−1(D)
(cf. Definition 2.1). As in [23, §5.2], for simplicity we actually consider D to be a
piecewise C2 domain and restrict ourselves for the most part to R

2. However, we
will also comment on the case d = 3 in Remark 5.2(c) below. We again write the
boundary Γ as Γ = ∪m

j=1Γ j , where now in 2D each Γ j is an open arc of curve of

class C2, and Γ j meets Γ j+1 at S j (where we identify Γm+1 and Γ1). We consider
only domains with boundaries that are rectilinear near the corners, which of course
includes Lipschitz polygonal/polyhedral domains. This means that at each corner S j ,
we can find a polygonal domain W j ⊂ D such that the boundary ∂W j coincides with
Γ near S j .

Applying the Lax-Milgram Theorem, a unique variational solution u(ω, ·) ∈
H1

0 (D) to our model problem (2.1) in the curvilinear polygon D exists, for almost all
ω ∈ Ω (i.e. for all ω ∈ Ω with amin(ω) > 0 and amax(ω) < ∞). Using Assumptions
A1–A3, we can conclude as in [6] that u ∈ L p(Ω, H1(D)), for all p < p∗. The fact
that D is no longer C2 is of no relevance here. To prove more spatial regularity on u,
we will now follow the proof in §5.2 of [23].

For a given ω ∈ Ω , with amin(ω) > 0 and amax(ω) < ∞, we define the differential
operator

Aωu = −∇ · (a(ω, ·)∇u)).

The following key result, which is based on [28, Theorem 5.26], is proved via a
homotopy method in the proof of [23, Lemma 5.2.5], for s = 1. The proof for s < 1
is analogous.

Lemma 5.1 Let m = 1 andω ∈ Ω . If 0 < s ≤ λΔ(D) and if there exists Csemi(ω) > 0
such that

‖v‖H1+s (D) ≤ Csemi(ω)‖Aωv‖Hs−1(D), for all v ∈ H1+s(D) ∩ H1
0 (D), (5.1)

then Aω is surjective from H1+s(D) ∩ H1
0 (D) to Hs−1(D).
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Thus, if we can establish (5.1), which essentially means that Aω is semi-Fredholm
as an operator from H1+s(D) ∩ H1

0 (D) to Hs−1(D), for some s ≤ λΔ(D), then we
can also conclude on the regularity of solutions of the stochastic variational problem
(2.1). The following lemma essentially follows [23, Lemma 5.2.3]. However, in the
case of a random coefficient, we crucially need to make sure that the constant Csemi(ω)

in (5.1) has sufficiently many moments as a random field on Ω . To ensure this we
need to carefully track the dependence on a in the bounds in [23, Lemma 5.2.3].

Lemma 5.2 Let m ∈ N and let Assumptions A1–A2 hold for some 0 < t ≤ 1. Then
(5.1) holds for all 0 < s < t and s ≤ λΔ(D), s �= 1

2 , with

Csemi(ω) :=
amax(ω)‖a(ω, ·)‖2

C t (D)

amin(ω)4
. (5.2)

In the case t = λΔ(D) = 1, (5.1) also holds for s = 1, i.e. for the H2(D)-norm.

Proof We first consider the case where m = 1 and t = λΔ(D) = 1. Note that the
case m = 1 is all that is needed to prove Lemma 5.1. We prove the more general case
m ∈ N so that we can apply the bound (5.1) to any polygonal domain in the proof of
Theorem 2.1. For ease of notation, we suppress the dependence onω in the coefficient,
and denote Aω simply by A and a(ω, x) by a(x).

We will prove (5.1) by combining the regularity results of A in C2 domains, with
regularity results of the Laplace operator −Δ on polygonal domains. Since we assume
that Γ is rectilinear near S1, we can find a polygonal domain W such that W ⊂ D
and ∂W coincides with Γ near S1. Let v ∈ H2(D) ∩ H1

0 (D) and let η be a smooth
cut-off function with support in W , such that η ≡ 1 near S1 and then consider ηv and
(1 − η)v separately. We start with ηv.

Let w ∈ H2(W ) ∩ H1
0 (W ). Since λΔ(D) = 1, we have for any polygonal domain

W the estimate

‖w‖H2(W ) � ‖Δw‖L2(W ) , (5.3)

where the hidden constant depends only on W (cf. [23]). Hence,

a(S1) ‖w‖H2(W ) � ‖Aw‖L2(W ) + ‖Aw − a(S1)Δw‖L2(W )

� ‖Aw‖L2(W ) + |(a(·)− a(S1))∇w|H1(W ) .

Now, using [6, Lemma A.2] (see also Theorem 6.2.25 in [25]) we get

a(S1) ‖w‖H2(W ) � ‖Aw‖L2(W ) + |a|C 1(W )|w|H1(W )

+‖a − a(S1)‖C 0(W )‖∇w‖H1(W ) . (5.4)

Using integration by parts and the fact that w = 0 on ∂W , we have

amin |w|2H1(W )
≤
∫

W

a|∇w|2 dx =
∫

W

w∇ · (a∇w) dx,
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and so via the Cauchy-Schwarz and the Poincaré inequalities

|w|H1(W ) � 1

amin
‖Aw‖L2(W ). (5.5)

Denote now by C the best constant such that (5.4) holds. Since a was assumed to be
in C 1(W ), we can choose W (and hence the support of η) small enough so that

C‖a − a(S1)‖C 0(W ) ≤ 1

2
a(S1). (5.6)

Then, substituting (5.5) and (5.6) into (5.4) and using ‖∇w‖H1(W ) ≤ ‖w‖H2(W ) and
amin ≤ amax we have

a(S1) ‖w‖H2(W ) ≤ 2C
(

1+ |a|C 1(W )

amin

)
‖Aw‖L2(W )�

‖a‖C 1(W )

amin
‖Aw‖L2(W ) . (5.7)

Since v ∈ H2(D)∩ H1
0 (D) and W contains the support of η, we have ηv ∈ H2(W )∩

H1
0 (W ) and so estimate (5.7) applies to ηv. Thus

‖ηv‖H2(D) �
‖a‖C 1(W )

a2
min

‖A(ηv)‖L2(W ).

Let us move on to (1−η)v. Let D′ ⊂ D be a C2 domain that coincides with D outside
of the region where η = 1. This is always possible due to our assumptions on the
geometry of D near S1. Then (1−η)v ∈ H2(D′)∩ H1

0 (D
′), and using [6, Proposition

3.1] we have

‖(1 − η)v‖H2(D) �
amax‖a‖C 1(D

′
)

a3
min

‖A ((1 − η)v) ‖L2(D′).

Adding the last two estimates together and using the triangle inequality, we have

‖v‖H2(D) �
‖a‖C 1(D)

a2
min

(
‖A(ηv)‖L2(W ) + amax

amin
‖A((1 − η)v)‖L2(D′)

)
. (5.8)

It remains to bound the term in the bracket on the right hand side of (5.8) in terms of
‖Av‖L2(D). Note that

A(ηv) = η(Av)+ 2a∇η · ∇v + (Aη)v.

Thus, applying the triangle inequality and using the fact that η was assumed to be
smooth with 0 ≤ η ≤ 1, we get

‖A(ηv)‖L2(W ) � ‖Av‖L2(W ) + amax|v|H1(W ) + ‖a‖C 1(D)‖v‖L2(W ). (5.9)
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The hidden constant depends on ‖∇η‖L∞(W ) and on ‖Δη‖L∞(W ). Finally using
Poincaré’s inequality on all of D, as well as an elliptic estimate similar to (5.5) for v,
i.e. |v|H1(D) ≤ ‖Av‖L2(D)/amin, leads to

‖A(ηv)‖L2(W ) �
‖a‖C 1(D)

amin
‖Av‖L2(D).

Substituting this and the corresponding bound for ‖A((1 − η)v)‖L2(D′) into (5.8), we
finally get

‖v‖H2(D) �
amax‖a‖2

C 1(D)

a4
min

‖Av‖L2(D),

for all v ∈ H2(D) ∩ H1
0 (D). This completes the proof for the case m = 1 and

t = λΔ = 1.
The proof for t < 1 and/or λΔ(D) < 1 follows exactly the same lines. Instead of

(5.3), we start with the estimate

‖w‖H1+s (W ) � ‖Δw‖Hs−1(W ), (5.10)

which holds for any 0 < s ≤ λΔ(D), s �= 1
2 , and the hidden constant depends again

only on W (cf. [3] for example). Using [6, Lemma A.1] (see also Theorem 9.1.12 in
[25]), one can derive the following equivalent of (5.4), for any s �= 1

2 :

a(S1) ‖w‖H1+s (W ) � ‖Aw‖Hs−1(W ) + |a|C t (W )|w|H1(W )

+‖a − a(S1)‖C 0(W )‖∇w‖Hs (W ) .

As before, the |w|H1(W ) term can be bounded using integration by parts, Hölder’s
inequality and the Poincaré inequality:

amin |w|2H1(W )
≤ ‖w‖H1−s (W )‖Aw‖Hs−1(W ) � ‖w‖H1(W )‖Aw‖Hs−1(W )

� |w|H1(W )‖Aw‖Hs−1(W ).

The remainder of the proof requires only minor modifications.
The case m > 1 is treated by repeating the above procedure with a different cut-off

function η j at each corner S j . Estimate (5.7) applies to η jv, for all j = 1, . . . ,m, and
the regularity estimate for C2 domains from [6] applies to (1 −∑m

j=1 η j )v.

Remark 5.1 Lemma 5.2 excludes the case s = 1
2 . However, an inequality very similar

to (5.1) can easily be proved also in this case. Since ‖v‖H1+s (D) ≤ ‖v‖H1+t (D), for
any s ≤ t, ‖v‖H3/2(D) can also be bounded, as in (5.1), if the H1/2(D)-norm on the
right hand side is replaced by the H1/2+δ(D)-norm, for some δ > 0.

We are now ready to prove Theorem 2.1 for d = 2. For the case d = 3, see Remark
5.2(c).
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Proof of Theorem 2.1 Let d = 2 and suppose u = u(ω, ·) is the unique solution of
(2.1). Let us first consider the case φ ≡ 0. In this case, the fact that u ∈ H1+s(D) ∩
H1

0 (D) and the bound on ‖u‖H1+s (D) in (2.6) follow immediately from Lemmas 5.1
and 5.2, for any s < t and s ≤ λΔ(D), as well as for s = 1 if t = λΔ(D) = 1, since
f = Au.

The case φ �= 0 now follows from a simple trace theorem, see e.g. §1.4 in [24]. We
will only show the proof for t = λΔ(D) = 1 in detail. Due to Assumption A3 we can
choose φ ∈ H2(D) with ‖φ‖H2(D) �

∑m
j=1 ‖φ j‖H3/2(Γ j )

, and so f0 := f − Aφ ∈
L2(D). Since u0 := u − φ ∈ H1

0 (D) we can apply the result we just proved for the
case φ ≡ 0 to the problem Au0 = f0 to get

‖u0‖H2(D) � Csemi(ω)
(‖Au0‖L2(D) + ‖Aφ‖L2(D)

)

� Csemi(ω)
(
‖ f ‖L2(D) + ‖a‖C 1(D) ‖φ‖H2(D)

)
,

where in the last step we have used [6, Lemma A.2]. The claim of the Theorem then
follows by the triangle inequality.

Remark 5.2 (a) The behaviour of the Laplace operator near corners is described in
detail in [23,24]. In particular, in the pure Dirichlet case for convex domains we
always get λΔ(D) = 1. For non-convex domains λΔ(D) = minm

j=1 π/θ j , where
θ j is the angle at corner S j . Hence, λΔ(D) > 1/2 for any Lipschitz polygonal
domain.

(b) In a similar manner one can prove regularity of u also for Neumann and mixed
Dirichlet/Neumann boundary conditions provided the boundary conditions are
compatible, like in our model problem (3.11). For example, in order to apply the
same proof technique used here at a point where a Dirichlet and a homogeneous
Neumann boundary meet, we can first reflect the problem across the Neumann
boundary. Then we apply the above theory on the union of the original and the
reflected domain. The regularity for the Laplacian is in general lower in the mixed
Dirichlet/Neumann case than in the pure Dirichlet case. In particular, full regularity
(i.e. λΔ(D) = 1) is only possible, if all mixed angles are less than π/2. For an
arbitrary Lipschitz polygonal domain we can only guarantee λΔ(D) > 1/4.

(c) The 3D case is similar, but in addition to singularities at corners (for which the
analysis is identical to the above) we also need to consider edge singularities. This
is more involved and we refer to [23, §8.2.1] for more details. However, provided
D is convex, we obtain again λΔ(D) = 1 in the pure Dirichlet case.

5.2 Discontinuous coefficients

We now shift our attention to the random coefficient a(ω, x).
In practice, one is often interested in models with discontinuous coefficients, e.g.

modelling different rock strata in the subsurface. Such coefficients do not satisfy
Assumption A2, and the regularity results from Theorem 2.1 can not be applied
directly. However, this loss of regularity is confined to the interface between different
strata and it is still possible to prove a limited amount of regularity even globally.
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Let us consider (2.1) on a Lipschitz polygonal domain D ⊂ R
2 that can be

decomposed into disjoint Lipschitz polygonal subdomains Dk, k = 1, . . . , K . Let
PC t (D) ⊂ L∞(D) denote the space of piecewise C t functions with respect to the
partition {Dk}K

k=1 (up to the boundary of each region Dk). We replace Assumption A2
by the following milder assumption on the coefficient function a:

A2*. a ∈ L p(Ω, PC t (D)), for some 0 < t ≤ 1 and for all p ∈ (0,∞).

Our regularity results for discontinuous coefficients rely on the following result from
[23,31]. The proof of this result uses the fact that for 0 ≤ s < 1/2, w ∈ Hs(Di ) if
and only if the extension w̃ of w by zero is in Hs(Rd).

Lemma 5.3 Let v ∈ H1(D) and s < 1/2, and suppose that v ∈ H1+s(Dk), for all
k = 1, . . . , K . Then v ∈ H1+s(D) and

‖v‖H1+s (D) = ‖v‖H1(D) +
K∑

k=1

|v|H1+s (Dk )
.

Thus, we cannot expect more than H3/2−δ(D) regularity globally in the discontinu-
ous case. However, as in the case of continuous fields, the regularity of the solution will
also depend on the parameter t in Assumptions A2* and A3 (i.e. on the Hölder/Sobolev
regularity of a and f , respectively), as well as on the behaviour of Aω at any sin-
gular points. Since Lemma 5.3 restricts us to s < 1/2 and since λΔ(D) > 1/2
for any Lipschitz polygonal D in the case of a pure Dirichlet problem, we do not
have to worry about corners. Instead we define the set of singular (or cross) points
S× := {S×


 : 
 = 1, . . . , L} to consist of all points S×

 in D where three or more

subdomains meet, as well as all those points S×

 on ∂D where two or more subdomains

meet. By the same arguments as in §5.1, the behaviour of Aω at these singular points
is again fully described by studying transmission problems for the Laplace operator,
i.e. elliptic problems with piecewise constant coefficients, locally near each singular
point (cf. [9,30,31]).

Definition 5.1 Denote by T (α1, . . . , αK ) the operator corresponding to the trans-
mission problem for the Laplace operator with (constant) material parameter αk on
subdomain Dk, k = 1, . . . , K . Let 0 ≤ λT (D) ≤ 1 be such that T (α1, . . . , αK ) is a
surjective operator from H1+s(D)∩H1

0 (D) to Hs−1(D), for any choice ofα1, . . . , αK

and for s ≤ λT (D), s �= 1/2. In other words, λT (D) is a bound on the order of the
strongest singularity of T (α1, . . . , αK ).

Without any assumptions on the partition {Dk}K
k=1 or any bounds on the constants

{αk}K
k=1 it is in general not possible to choose λT (D) > 0. However, if no more than

three regions meet at every interior singular point and no more than two at every
boundary singular point, then we can choose λT (D) ≤ 1/4. If in addition each of the
subregions Dk is convex, then we can choose any λT (D) < 1/2, which due to the
restrictions in Lemma 5.3 is the maximum we can achieve anyway. See for example
[9,30,31] for details.
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The following is an analogue of Theorem 2.1 on the regularity of the solution
u of (2.1) for piecewise C t coefficients. All the other results on the finite element
convergence error discussed above follow of course again from this.

Theorem 5.1 Let D ⊂ R
2 be a Lipschitz polygonal domain and let λT (D) > 0.

Suppose Assumptions A1, A2*,A3 hold with t ≤ 1. Then, the solution u of (2.1) is in
L p(Ω, H1+s(D)), for 0 < s < t such that s ≤ λT (D) and for all p < p∗.

Proof Let us first consider φ ≡ 0 again. Then, the existence of a unique solution
u(ω, ·) ∈ H1(D) of (2.1) follows again from the Lax-Milgram Theorem, for almost
all ω ∈ Ω . Also note that restricted to Dk the transmission operator T (α1, . . . , αK ) =
αkΔ, for all k = 1, ..., K . Therefore, using Assumption A2* we can prove as in §5.1
via a homotopy method that u(ω, ·) restricted to Dk is in H1+s(Dk), for any s < t and
s ≤ λT (D), for almost all ω ∈ Ω . The result then follows from Lemma 5.3 and an
application of Hölder’s inequality. The case φ �≡ 0 follows as in the proof to Theorem
2.1 via a trace estimate.

As an example of a random coefficient that satisfies Assumption A2* for any t <
1/2, we can consider a random field a = exp(g) such that g|Dk := gk , for all k =
1, . . . , K , where each gk is an independent Gaussian random field with mean μk ∈
C1/2(Dk) and exponential covariance function (2.3). In a similar manner, if we let each
gk be a Gaussian field with mean μk ∈ C 1(Dk) and Gaussian covariance function
(4.4), then Assumption A2* is satisfied for any t ≤ 1. The mean μk(x), the variance
σ 2

k and the correlation length λk can be vastly different from one subregion to another.

5.3 Numerics

A rock formation which is often encountered in applications is a channelised medium.
To simulate this, we divide D = (0, 1)2 into 3 horizontal layers, and model the
permeabilities in the 3 layers by 2 different log-normal distributions. The middle
layer occupies the region {1/3 ≤ x2 ≤ 2/3}. The parameters in the top and bottom
layer are taken to be μ1 = 0, λ1 = 0.3 and σ 2

1 = 1, and for the middle layer we
take μ2 = 4, λ2 = 0.1 and σ 2

2 = 1 (assuming no correlation across layers). As a test
problem we again choose the flow cell model problem (3.11). Samples from fields with
2-norm exponential covariance are produced using the circulant embedding technique
already used in §3.5. Fields with Gaussian covariance are approximated by Karhunen–
Loève expansions truncated after K ∗ = 170 terms. The eigenpairs of the covariance
operator are computed numerically using a spectral collocation method.

Figures 5 and 6 show results for fields with exponential and Gaussian covariance
functions, respectively. For comparison, we have added the graphs for the case where
there is no “channel”, i.e. where the permeability field is one continuous log-normal
field withμ = μ1 = 0, λ = λ1 = 0.3 and σ 2 = σ 2

1 = 1. As expected from the global
regularity results in Theorem 5.1, we observe the same convergence rates for both
the continuous and the discontinuous permeability fields in the case of an exponential
covariance in Fig. 5. For the Gaussian covariance, however, we indeed observe slower
convergence rates for the layered medium (Fig. 6).
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Fig. 5 Left Plot of E
[|uh∗ − uh |H1(D)

]
versus 1/h for model problem (3.11) with 2-norm exponential

covariance, with μ = μ1 = 0, μ2 = 4, λ = λ1 = 0.3, λ2 = 0.1, σ 2 = σ 2
1 = σ 2

2 = 1 and h∗ = 1/256.
Right Plot of E

[‖uh∗ − uh‖L2(D)

]
. The gradient of the dash-dotted (resp. dotted) line is −1/2 (resp. −1)

Fig. 6 Left Plot of E
[|uh∗ − uh |H1(D)

]
versus 1/h for model problem (3.11) with Gaussian covariance,

with μ = μ1 = 0, μ2 = 4, λ = λ1 = 0.3, λ2 = 0.1, σ 2 = σ 2
1 = σ 2

2 = 1, h∗ = 1/256 and K ∗ = 170.
Right Plot of E

[‖uh∗ − uh‖L2(D)

]
. The gradient of the dash-dotted (resp. dotted and dashed) line is −1/2

(resp. −1 and−2)

6 Conclusions and further work

Multilevel Monte Carlo methods have the potential to significantly outperform stan-
dard Monte Carlo methods in a variety of contexts. In this paper, we considered the
application of multilevel Monte Carlo methods to elliptic PDEs with random coeffi-
cients, in the practically relevant and technically demanding case of log-normal random
coefficients with short correlation lengths, where realisations of the diffusion coeffi-
cient have limited regularity and are not uniformly bounded or elliptic. We extended
the theory from [6] to cover more difficult model problems, including corner domains
and discontinuous means, and we offered one possible remedy for the problem of
correlation length dependent coarse mesh size restrictions in the standard multilevel
estimator. This was done by using level-dependent truncations of the Karhunen–Loève
expansion of the coefficient, resulting in smoother approximations of the coefficient on
coarser levels. It is possible to achieve smoother approximations of the random coeffi-
cient on the coarser grids in a similar way using the circulant embedding method used
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in §3, and this is the subject of a future publication. Another area of future research is
the adaptive choice of spatial grids in the multilevel estimator.
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