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Abstract This paper addresses consistency and stability of W-methods up to order
three for nonlinear ODE-constrained control problems with possible restrictions on
the control. The analysis is based on the transformed adjoint system and the con-
trol uniqueness property. These methods can also be applied to large-scale PDE-
constrained optimization, since they offer an efficient way to compute gradients of the
discrete objective function.
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1 Introduction

Suppose one is given the nonlinear optimal control problem

minimize C(x(1)) (1.1)

subject to x′(t) = f(x(t),u(t)), u(t) ∈ U, t ∈ (0, 1], (1.2)

x(0) = x0, (1.3)
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where the state x(t) ∈ R
d , the control u(t) ∈ R

m , f : R
d × R

m �→ R
d , the objective

function C : R
d �→ R, and U ⊂ R

m is closed and convex. Assuming sufficient
smoothness for f and C (see, e.g. [4]), there exists associated Lagrange multipliersψ∗
such that the first-order optimality conditions are satisfied at (x∗,ψ∗,u∗):

x′(t) = f(x(t),u(t)), t ∈ (0, 1], x(0) = x0, (1.4)

ψ ′(t) = −ψ∇x f(x(t),u(t)), t ∈ [0, 1), ψ(1) = ∇C(x(1)), (1.5)

−ψ∇uf(x(t),u(t)) ∈ NU (u(t)), t ∈ [0, 1]. (1.6)

Here,ψ is a row vector in R
d ,∇x f and ∇uf are the Jacobian matrices of f with respect

to x and u, and the normal cone mapping NU (u) is defined for any u ∈ U as follows

NU (u) = {w ∈ R
m : wT (v − u) ≤ 0 for all v ∈ U }. (1.7)

In the first-optimize-then-discretize approach the system (1.4)–(1.6) is discretized by
applying the numerical solver of choice. The focus of this paper is to analyze discrete
adjoints which are derived from W-method discretizations of (1.2)–(1.3). They are
useful in optimization since they allow the efficient computation of gradients of the
discretized objective function, i.e., the numerical function that is being numerically
minimized. This approach is known as first-discretize-then-optimize.

Hager [4] has studied discrete Runge–Kutta adjoints with strictly positive weights
and found that additional order conditions have to be satisfied to achieve order three
and higher for optimal control problems, while any first- or second-order Runge–Kutta
scheme retains its order. All fourth-order four-stage explicit Runge–Kutta schemes
automatically satisfy the order conditions for optimal control. His analysis utilizes a
transformed adjoint system and the control uniqueness property, which will be also
used in our context of W-methods. It turned out that the consistency analysis of Runge–
Kutta schemes coming from the discretization of optimal control problems can be
elegantly done in the class of partitioned symplectic Runge–Kutta schemes. Applying
the technique of oriented free trees, Bonnans and Laurent-Varin [1] have computed
the corresponding order conditions up to order seven by means of an appropriate com-
puter program. The same number of conditions were already given by Murua [12].
A larger class of non-symplectic second-order Runge–Kutta methods has been investi-
gated by Pulova [13]. Reverse mode automatic differentiation on explicit Runge–Kutta
methods has been considered by Walther [24], who concluded that the order of the dis-
cretization is always preserved by the discrete adjoints. For problems where only the
initial conditions are the control variables, consistency properties of discrete adjoint
Runge–Kutta and linear multistep methods are presented by Sandu [15,16].

Many practical optimal control problems demand for stiff ODE integrators,
especially when the constraints are derived from semi-discretizations of nonlin-
ear time-dependent parabolic PDEs. In this case, the inherent nonlinear coupling
of all stage values of a fully implicit Runge–Kutta scheme may become a severe
structural disadvantage and computational bottleneck. Linearly implicit methods of
Runge–Kutta–Rosenbrock type are much less expensive and have proven successful
at the numerical solution of a wide range of stiff and large-scale systems [7,11,14,22].
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W-methods in optimal control 339

Among this class of time integrators, W-methods are very popular, since they allow
the use of an arbitrary matrix in place of the Jacobian matrix while maintaining the
order of accuracy and thus have the potential to significantly reduce the computational
costs [7,21]. W-methods fulfill the order conditions for explicit Runge–Kutta methods.
This makes them also attractive for (automatic) partitioning strategies, where stiff and
nonstiff components are treated in an implicit and explicit way, respectively [2,22].

2 Discrete optimal control problem

We discretize the differential equations (1.2) using an s-stage W-method [21] on a
uniform mesh of width h = 1/N , where N is a natural number. Let xn denote the
sequence of approximations to the exact solution values x(tn) with tn = nh. Then the
discrete optimal control problem reads

minimize C(xN ) (2.1)

subject to xn+1 = xn +
s∑

i=1

bi yni , x0 given, (2.2)

yni = hf

⎛

⎝xn +
i−1∑

j=1

αi j ynj ,uni

⎞

⎠+hTn

i∑

j=1

γi j ynj , uni ∈ U, (2.3)

1 ≤ i ≤ s, 0 ≤ n ≤ N − 1. (2.4)

The vectors yni and uni are intermediate state and control variables on the interval
[tn, tn+1]. If h is small enough, the yni in (2.3) are uniquely determined in the neigh-
bourhood of (x∗,u∗). The coefficients bi , αi j , and γi j are chosen to obtain a desired
order of consistency and A-stability or even L-stability. As usual, all coefficients γi i

are taken constant, γi i = γ , so that per time step only linear systems with the same
matrix I −hγ Tn have to be solved. We formally setαi j = 0, j ≥ i , and γi j = 0, j > i .
The matrices Tn are arbitrary and constant within each time step. Thus in the analysis
that follows, we will exploit the property that all derivatives of Tn vanish. Note that
Tn = 0 yields a standard explicit Runge–Kutta method.

The main idea of W-methods is to use the matrix Tn to assure stability of the scheme.
An illustrative example are large systems that can be partitioned into a small stiff and
a large nonstiff system,

y′ = f(y, z), (2.5)

z′ = g(y, z), (2.6)

where y and z are the stiff and nonstiff components, respectively. Assuming that
‖∂yf‖ � ‖(∂yg, ∂zg)‖, we can apply an implicit scheme for y and an explicit one for
z. In this case, an appropriate choice of the matrix Tn is

Tn =
(

T1 0
0 0

)
, (2.7)
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with T1 ≈ ∂yf(yn, zn). Here, yn and zn are approximate solutions at tn . Since the order
conditions are satisfied for arbitrary Tn, T1 can be computed by finite differences with-
out loosing accuracy and can often be maintained (together with its decomposition)
over several time steps, which in general gives a spectacular reduction of the work
necessary to solve the small linear systems of the size of the stiff components y. In
a similar way the idea also applies to systems with f(y) = f1(y) + f2(y), where f1
represents the stiff and f2 the nonstiff part. Reaction–diffusion equations with nonstiff
reactions are a typical example for this kind of problems. Several applications are
given in our numerical illustrations.

Suppose that multipliersλni are introduced for the intermediate state equations (2.3)
and that ψn+1 is the associated (discrete) multiplier for Eq. (2.2). Then the first-order
optimality conditions are the following:

xn+1 = xn +
s∑

i=1

bi yni , x0 given, (2.8)

yni = hf

⎛

⎝xn +
i−1∑

j=1

αi j ynj ,uni

⎞

⎠ + hTn

i∑

j=1

γi j ynj , (2.9)

ψn − ψn+1 = h
s∑

i=1

λni∇x f

⎛

⎝xn +
i−1∑

j=1

αi j ynj ,uni

⎞

⎠ , ψN = ∇C(xN ), (2.10)

λni = biψn+1 + h
s∑

j=1

λnj

⎛

⎝α j i∇x f

⎛

⎝xn +
j−1∑

k=1

α jkynk,unj

⎞

⎠ + γ j i Tn

⎞

⎠,

(2.11)

uni ∈ U, −λni∇uf

⎛

⎝xn +
i−1∑

j=1

αi j ynj ,uni

⎞

⎠ ∈ NU (uni ), (2.12)

1 ≤ i ≤ s, 0 ≤ n ≤ N − 1. (2.13)

Remember that all dual multipliers are treated as row vectors. In the case that
bi 
= 0 for each i , Eqs. (2.10)–(2.11) can be reformulated in terms of new variables
ξni = λni/bi , 1 ≤ i ≤ s,

ψn = ψn+1 + h
s∑

i=1

biξni∇x f

⎛

⎝xn +
i−1∑

j=1

αi j ynj ,uni

⎞

⎠ , ψN = ∇C(xN ),

(2.14)

ξni = ψn+1 + h
s∑

j=1

b j

bi
ξnj

⎛

⎝α j i∇x f

⎛

⎝xn +
j−1∑

k=1

α jkynk,unj

⎞

⎠ + γ j i Tn

⎞

⎠ .

(2.15)
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Condition (2.12) is replaced by

uni ∈ U, −biξni∇uf

⎛

⎝xn +
i−1∑

j=1

αi j ynj ,uni

⎞

⎠ ∈ NU (uni ). (2.16)

Remark 2.1 A usual way to solve the first-order optimality conditions is to apply a
gradient method. Let u ∈ R

ms N denote the vector of all intermediate control variables
uni . Since xN depends on all components of u, we can consider the minimization of
the discrete cost function Ĉ(u) = C(xN (u)). A short calculation shows

∇uni Ĉ(u) = hbiξni∇uf

⎛

⎝xn +
i−1∑

j=1

αi j ynj ,uni

⎞

⎠ . (2.17)

Suppose a current iterate of the control variables is given. Using these values, the
discrete state equations (2.8)–(2.9) can be solved for xn and yni by marching forward
from n = 0 to n = N − 1. Then all variables are given to solve the discrete costate
equations (2.14)–(2.15) forψn and ξni by marching backward from n = N −1 to n =0.
Notice that the special structure of the parameters α j i and γ j i allows a convenient way
to successively compute the intermediate values ξni for i = s, s − 1, . . . , 1, in each
time step. Finally, the gradient is computed from (2.17) and the control iterate is
updated.

We observe that the transformed adjoint equations (2.14)–(2.15) march backwards
in time while the W-method (2.8)–(2.9) marches forwards in time. Following the
approach used in [4] to facilitate the consistency analysis, we first reverse the order
of time in the discrete adjoint equations. That is, we solve for ψn+1 in (2.14) and
substitute in (2.15) to obtain the following forward marching scheme:

ψn+1 = ψn − h
s∑

i=1

biξni∇x f

⎛

⎝xn +
i−1∑

j=1

αi j ynj ,uni

⎞

⎠, (2.18)

ξni = ψn − h
s∑

j=1

ᾱi jξnj∇x f

⎛

⎝xn +
j−1∑

k=1

α jkynk,unj

⎞

⎠ − h
s∑

j=1

γ̄i jξnj Tn .

(2.19)

with the new coefficients

ᾱi j = bi b j − b jα j i

bi
, γ̄i j = −b jγ j i

bi
. (2.20)

Next we will remove the control variables u by use of the control uniqueness prop-
erty introduced in [4]. If (x,ψ) is sufficiently close to (x∗,ψ∗), then under suitable
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assumptions there exists a locally unique minimizer u = u(x,ψ) of the Hamiltonian
ψf(x,u) over all u ∈ U and we can define functions

φ(x,ψ) = −ψ∇x f(x,u)|u=u(x,ψ), g(x,ψ) = f(x,u(x,ψ)). (2.21)

We assume that the intermediate control variables have the special form

uni = u

⎛

⎝xn +
i−1∑

j=1

αi j ynj , ξni

⎞

⎠ , 0 ≤ n ≤ N − 1, 1 ≤ i ≤ s, (2.22)

and the weights bi are strictly positive to assure that the associated controls are mini-
mizers of the Hamiltonian.

Remark 2.2 Theorems 2.1 and 7.2. in [4] show for Runge–Kutta schemes that if bi > 0
for each i then convergence to (x∗,ψ∗,u∗) can be achieved for both unconstrained,
i.e., U = R

m , and constrained control problems. Strictly positive weights must also be
assumed in the context of automatic differentiation [24]. In [17] Runge–Kutta methods
with strictly positive summarized weights that correspond to distinct control variables
uni are studied. We will use this approach to construct a third-order W-method suitable
for optimal control.

Introducing intermediate values xni for the state, the complete forward marching
scheme can be written as

xn+1 = xn +
s∑

i=1

bi yni , x0 given, (2.23)

ψn+1 = ψn + h
s∑

i=1

biφ(xni , ξni ), ψN = ∇C(xN ), (2.24)

yni = hg(xni , ξni )+ hTn

i∑

j=1

γi j ynj , (2.25)

ξni = ψn + h
s∑

j=1

ᾱi jφ(xnj , ξnj )− h
s∑

j=1

γ̄i jξnj Tn, (2.26)

xni = xn +
i−1∑

j=1

αi j ynj , (2.27)

1 ≤ i ≤ s, 0 ≤ n ≤ N − 1. (2.28)

The key for consistency analysis is the observation that this scheme can be viewed as
a discretization of the following two-point boundary-value problem:

x′(t) = g(x(t),ψ(t)), x(0) = x0, (2.29)

ψ ′(t) = φ(x(t),ψ(t)), ψ(1) = ∇C(x(1)). (2.30)
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The same problem can be derived by solving (1.6) for u in terms of (x,ψ) and sub-
stituting in (1.4)–(1.5).

In order to make sure that the control approximations have the same order of
accuracy as that of the discrete state and costate, we compute discrete controls un ,
obtained by minimization of the Hamiltonian ψnf(xn,u). In other words, we solve

un ∈ U, −ψn∇uf(xn,un) ∈ NU (un), 0 ≤ n ≤ N , (2.31)

for given pairs (xn,ψn).
Eventually, we would like to emphasize that there are essentially two main hypothe-

ses in the analysis presented so far. The class of considered W-methods has to be
restricted to those methods having weights bi > 0 for i = 1, . . . , s. Second, we have
to assume sufficient smoothness of the optimal control problem, so that the Hamil-
tonian has a locally unique minimizer in the control and an equivalent, reduced scheme
for state and costate can be established. This is in accordance with the analysis used
by Hager [4] for Runge–Kutta discretizations.

3 Order conditions

In this section we shall derive order conditions for the discretization (2.23)–(2.28)
to reach order two and three. Since the scheme does not fit into any classical form,
we follow the general approach of substituting the continuous solution into the dis-
crete equations, applying Taylor expansions and comparing the error terms with those
obtained from the Taylor expansion of the exact solution.

Let z and δ denote the following pairs:

z =
(

x
ψ

)
, δ(z) =

(
g(z)
φ(z)

)
. (3.1)

Then the system of differential equations (2.29)–(2.30) has the form z′(t) = δ(z(t)).
The standard Taylor expansion for z(t) around t = tn reads

z(tn+1) = z(tn)+ δh+ 1

2
∇zδδh2 + 1

6

(
∇2

zδδ
2+∇zδ∇zδδ

)
h3 + O(h4), (3.2)

where ∇zδ is the Jacobian matrix of δ with respect to z and ∇2
zδ denotes its Hessian

tensor which operates on the pair δ2 (to give a vector). The function δ and all its
derivatives are evaluated at z(tn).

An analogous expansion can be derived for the numerical solution zn+1 =
(xn+1,ψn+1) when the initial values xn and ψn in (2.23)–(2.28) are replaced by the
exact solutions x(tn) and ψ(tn). For given values xn and ψn , the intermediate values
yni , ξni and xni are functions of the step size h. Substituting yni (h) in (2.23) gives

zn+1(h)=z(tn)+hG(yn1(h), ξn1(h), xn1(h), . . . , yns(h), ξns(h), xns(h)), (3.3)
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where

G(h) =
s∑

i=1

bi

(
δ(xni (h), ξni (h))+

(
Tn

∑i
j=1 γi j ynj (h)

0

))
. (3.4)

Combining successive substitution of the intermediate values yni (h), ξni (h) and xni (h)
in G with Taylor expansions around h = 0, we have

zn+1(h) = z(tn)+ C1h + C2h2 + C3h3 + O(h4), (3.5)

where the vector-valued coefficients Ci depend on the function δ, its first and second
derivatives (all evaluated at z(tn)), the matrix Tn and its transpose, and the coefficients
bi , αi j , and γi j . We say that the W-method (2.23)–(2.28) for the system (2.29)–(2.30)
has the order p if the expansions (3.2) and (3.5) agree through terms of order h p, i.e.,
z(tn+1)− zn+1(h) = O(h p+1).

Let us define

βi j = αi j + γi j , βi =
i−1∑

j=1

βi j , ci =
i−1∑

j=1

αi j , (3.6)

β̄i j = ᾱi j + γ̄i j , β̄i =
s∑

j=1

β̄i j , c̄i =
s∑

j=1

ᾱi j . (3.7)

As usual, we formally set βi j = 0 for all i ≤ j .
Following straightforward the approach described above to derive the expansion of

the local error z(tn+1)− zn+1(h), we can state (after a quite lengthy calculation).

Theorem 3.1 The W-method (2.23)–(2.28) has order p = 1, 2, or 3, if the order
conditions of Table 1 are satisfied.

Notice that, except the positivity requirement on the weights bi , the order conditions
A1–A8 are the usual order conditions associated with a W-method when applied
to a system of ordinary differential equations [7]. As a consequence, any classical
W-method of order p = 2 with strictly positive weights maintains its order for optimal
control. Only at order p = 3, three new conditions emerge in the control context.
Condition A9 yields together with A2 the additional order condition for Runge–Kutta
methods of order p = 3 as found in [4]. Clearly, this reflects the fact that with Tn = 0
all explicit Runge–Kutta methods are covered. Conditions A10 and A11 guarantee
order p = 3 for arbitrary matrices Tn .

4 Stability

Since we aim at handling stiff and even very stiff problems in (1.2), we would like to
construct L-stable methods (see [7, Section IV.3], for a discussion). From Remark 2.1,
we observe that in practical computations the discrete state and costate equations
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Table 1 Order conditions of
W-methods for optimal control.
The summation is over each
index, taking values from 1 to s

Order Number Order conditions

1 A1
∑

bi = 1, bi > 0, i = 1, . . . , s

2 A2
∑

bi ci = 1
2

A3
∑

biβi = 1
2 − γ

3 A4
∑

bi c2
i = 1

3

A5
∑

biαi j c j = 1
6

A6
∑

biαi jβ j = 1
6 − γ

2

A7
∑

biβi j c j = 1
6 − γ

2

A8
∑

biβi jβ j = 1
6 − γ + γ 2

A9
∑

bi c̄2
i = 1

3

A10
∑

biβ
2
i = 1

3

A11
∑

bi β̄
2
i = 1

3

are solved one after the other if iterates of the control variables are given. Thus it is
reasonable to consider the famous Dahlquist test equation

x(t) ∈ R
1 : x ′ = λx, x(0) = x0, λ ∈ C, Re(λ) < 0, t > 0, (4.1)

for stability investigations. As in [22], we follow classical stability concepts for
W-methods and set Tn = λ, which is now a constant. The corresponding adjoint
test equation acting backwards in time reads

ψ(t) ∈ R
1 : ψ ′ = −λψ, ψ(0) = ψ0, λ ∈ C, Re(λ) < 0, t < 0, (4.2)

where ψ0 is given.
Let us introduce the notations

bT = (b1, . . . , bs), B = (βi j )
s
i, j=1, z = λh, 1T = (1, . . . , 1) ∈ R

s . (4.3)

If we apply method (2.8)–(2.9) to the test equation (4.1) then the numerical solution
becomes xn+1 = Rx (z)xn with the stability function

Rx (z) = 1 + zbT (I − zB)−11. (4.4)

Properties of such functions are well known from diagonally implicit Runge–Kutta
methods (see e.g. [7, Section IV.6]). Applying method (2.10)–(2.11) to the test equation
(4.2), we find ψn = Rψ(z)ψn+1 with

Rψ(z) = 1 + z1T (I − zBT )−1b. (4.5)

Since (I − zBT )−1 = ((I − zB)−1)T , the stability functions are equal, i.e., Rx (z) =
Rψ(z). Thus it is sufficient to consider Rx (z) defined by the discrete state solver.
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Table 2 Regions of γ for
L-stability with as = 0

s p = s − 1 p = s

2 1 − 1
2

√
2 ≤ γ ≤ 1 + 1

2

√
2 γ = 1 ± 1

2

√
2

4 0.22364780 ≤ γ ≤ 0.57281606 γ = 0.57281606

A W-method with Tn = λ and stability function Rx (z) is called A-stable if its
stability domain S = {z ∈ C : |Rx (z)| ≤ 1} is a subset of the left complex half-plane
C

− = {z ∈ C : Re(z) ≤ 0}. If in addition Rx (−∞) = 0 then it is called L-stable. For
W-methods of order p, Rx (z) is a rational function which satisfies

ez − Rx (z) = C z p+1 + O(z p+2) for z → 0, (4.6)

where C 
= 0 is the error constant. Its form is given by

Rx (z) = P(z)

(1 − γ z)s
, P(z) = det(I − zB + z1bT ), (4.7)

where the numerator P(z) is a polynomial of degree s at most. Let P(z) =∑
i=0,...,s ai zi . In order to have Rx (−∞) = 0 for L-stability, the highest coefficient

as of the numerator is set to zero, which can be ensured by a proper choice of the
matrix B and the vector b. Then, if the method has order p ≥ s − 1, the remaining
coefficients and the error constant in (4.6) are uniquely determined by γ and we have

ai = (−1)s L(s−i)
s

(
1

γ

)
γ i , i = 0, . . . , s − 1, C = (−1)s Ls

(
1

γ

)
γ s . (4.8)

Here,

Ls(y) =
s∑

j=0

(−1) j
(

s

j

)
y j

j ! (4.9)

denotes the s-degree Laguerre polynomial and L(k)s (y) its kth derivative. As a con-
sequence, regions of L-stability and small error constants can now be determined by
varying the parameter γ . For an overview of known results, we refer to Table 6.4 in
[7]. For later use, we collect the corresponding γ -values for s = 2, 4 in Table 2.

Next we will describe a method of order 2, which belongs to a family of already
known ROS2-methods, and construct a new method of order 3 for optimal control.

5 Construction of W-methods for optimal control

5.1 Second-order W-method

As stated above, any classical second-order W-methods with strictly positive weights
is also suitable for optimal control. Let s = 2. Then method (2.23)–(2.28) is second-
order consistent for any Tn iff
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b1 = 1 − b2, γ21 = − γ

b2
, c2 = α21 = 1

2b2
, (5.1)

where b2 ∈ (0, 1) and γ are free parameters. We choose γ = 1 − √
2/2 to get an

L-stable method with a small error constant and select b2 = 1/2 as proposed in [23]
for ROS2.

5.2 Third-order W-method

From a practical point of view, we would like to have an as small as possible stage
number s. The method’s coefficients have to satisfy the 11 order conditions given
in Table 1, besides a few restrictions on the stability parameter γ . Let us start with
s = 3. In this case, we have 10 parameters to be chosen. Not surprising, there is only
a negative result.

Theorem 5.1 There is no third-order three-stage W-method (2.23)–(2.28) which sat-
isfies the order conditions A1–A11 with γ 
= 0.

Proof To prove this statement, it is sufficient to consider conditions A5–A8. They
read

(A5) b3c2α32 = 1

6
, (A6) b3α32β2 = 1

6
− γ

2
, (5.2)

(A7) b3β32c2 = 1

6
− γ

2
, (A8) b3β32β2 = 1

6
− γ + γ 2. (5.3)

We compute α32 from A5 and substitute it in A6. This gives β2 = c2(1 − 3γ ). Then,
from A8, we derive a condition for the product b3β32c2, which can be compared to
that given in A7. Thus, we find

(
1

6
− γ

2

)
(1 − 3γ ) = 1

6
− γ + γ 2. (5.4)

This relation gives γ = 0 as unique solution. ��
Hence, it is reasonable to look for a third-order W-method with s = 4. Now 17

parameters are available to fit all conditions. Our main design criteria are the following:
(i) L-stability, i.e., γ ∈ [0.22364780, 0.57281606] and a4 = 0 (highest coefficient of
the polynomial P(z) in (4.7)), (ii) small error constant, and (iii) ci ∈ [0, 1], which is
a desirable property for non-autonomous differential equations.

The condition bi > 0, i = 1, . . . , 4, appears to be quite restrictive for satisfying all
desired criteria. Therefore, we follow the advise given in [17, Remark 4.13] for Runge–
Kutta methods, and ensure positivity of the summarized weights that correspond to dis-
tinct values of the constants ci . We set α21 = 0, which gives c1 = c2 = 0, and request
b1 + b2 > 0, b3 > 0, and b4 > 0. Since now xn2 = xn1 = xn , which are defined in
(2.27), we also identify un1 with un2, yielding the control vector un = (un2,un3,un4).
As a consequence, the first two relations for i = 1, 2, in (2.16) sum up to
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Table 3 Coefficients for the L-stable third-order four-stage ROS3WO-method with b1 + b2 > 0, b3 > 0
and b4 > 0

γ = 0.223759330902105371590

α21 = 0.000000000000000000000 γ21 = 0.623049256951860600835

α31 = 0.698846114833891907304 γ31 = −0.216811733839707314472

α32 = −0.010792511694314818149 γ32 = −0.124384420370820678006

α41 = −0.875766153727439547710 γ41 = 1.082999399651621891524

α42 = −0.284712566376614012866 γ42 = 0.477656694656746273489

α43 = 1.711394585188391020112 γ43 = −1.148821521873721639940

b1 = 0.361905316834060643619 c1 = 0.000000000000000000000

b2 = −0.116803401606996147966 c2 = 0.000000000000000000000

b3 = 0.613359019695417437058 c3 = 0.688053603139577089154

b4 = 0.141539065077518067289 c4 = 0.550915865084337459535

un2 ∈ U, −(b1ξn1 + b2ξn2)∇uf(xn2,un2) ∈ NU (un2). (5.5)

Introducing the new variable ηn = (b1ξn1 +b2ξn2)/(b1 +b2) being an approximation
of the costate ψ at tn , the condition reads

un2 ∈ U, −(b1 + b2)ηn∇uf(xn2,un2) ∈ NU (un2). (5.6)

Since b1 +b2 > 0, the associated control un2 is well defined by the control uniqueness
property as local minimizer of the Hamiltonian ψf(x,u) with ψ = ηn and x = xn2.

Newton’s method is applied to find appropriate roots of the system of nonlinear
equations. The new W-method constructed along these principles is called ROS3WO,
which is an abbreviation for Rosenbrock, W-method and optimal control. In Table 3,
we give the method defining coefficients with 20-digit accuracy.

6 Numerical illustrations

Numerical results are given for optimal control problems, where the underlying ODE
system ranges from linear and nonstiff to nonlinear and very stiff. We study (i) a
nonstiff problem with known exact solution [4], (ii) the nonlinear Rayleigh problem
[8], (iii) the stiff van der Pol oscillator, and (iv) a nonlinear boundary control problem
for the heat equation with control constraints [3,9]. These types of problems are often
used in optimal control benchmarking.

To report on numerically observed convergence orders, we perform a least square fit
of the errors to a function of the form ch p. The order thus obtained is denoted by pfit.

6.1 A nonstiff problem

We first study a simple test problem from [4] to illustrate the convergence behaviour
of classical explicit and implicit Runge–Kutta–Rosenbrock methods and our newly
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designed W-methods. Let us consider the following quadratic problem with a linear
ODE given as constraint:

Minimize
1

2

1∫

0

u(t)2 + 2x(t)2 dt (6.1)

subject to x ′(t) = 1

2
x(t)+ u(t), t ∈ (0, 1], (6.2)

x(0) = 1, (6.3)

with the optimal solution

x∗(t) = 2e3t + e3

e3t/2(2 + e3)
, u∗(t) = 2(e3t − e3)

e3t/2(2 + e3)
. (6.4)

The first-order optimality system reads

x ′(t) = 1

2
x(t)+ u(t), t ∈ (0, 1], x(0) = 1, (6.5)

ψ ′(t) = −1

2
ψ(t)− 2x(t), t ∈ [0, 1), ψ(1) = 0, (6.6)

0 = u(t)+ ψ(t). (6.7)

That is, we have u(t) = −ψ(t) and therefore the following boundary-value problem:

x ′(t) = 1

2
x(t)− ψ(t), x(0) = 1, (6.8)

ψ ′(t) = −1

2
ψ(t)− 2x(t), ψ(1) = 0. (6.9)

Numerical results for the classical Runge–Kutta-methods RK3a, RK3b, RK4 (for
example, see [4] and references therein), the fourth-order Rosenbrock method RODAS
[7], ROS2 and ROS3WO are given in Tables 4 and 5. Only RK3a, RK4, ROS2, and
ROS3WO fulfill the additional consistency conditions for optimal control and show
their full order. In contrast, the control discretization of the explicit RK3b and the
implicit RODAS drops down to second-order accuracy. This behaviour is typical for
all Runge–Kutta and Rosenbrock methods that violate one of the new conditions.

We also varied the arbitrary matrix Tn , i.e., we used Tn = 0 (which yields the
embedded explicit method), Tn = 0.5 (the exact Jacobian), and Tn = 1.0. In all cases,
the full order is obtained for the state and control variables.

6.2 The nonlinear unconstrained Rayleigh problem

The following problem is taken from [8]. It describes the behaviour of a so-called
tunnel-diode oscillator. The state variable is the electric current x1(t) at time t ∈ [0, T ]
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Table 4 Test problem 1: order of L∞ convergence of the discrete state errors x(tn)− xn , n = 0, . . . , N ,
for classical Runge–Kutta and Rosenbrock methods, ROS2 and ROS3WO applied to solve (6.8)–(6.9). The
exact Jacobian is Tn = 0.5

N 10 20 40 80 160 pfit

RK3a 8.82e−5 9.72e−6 1.11e−6 1.32e−7 1.61e−8 3.10

RK3b 7.24e−4 1.73e−4 4.23e−5 1.05e−5 2.60e−6 2.03

RK4 5.98e−6 3.85e−7 2.44e−8 1.54e−9 3.98

RODAS 9.93e−4 2.65e−4 6.82e−5 1.73e−5 4.35e−6 1.96

ROS2, Tn = 0 2.96e−3 7.23e−4 1.78e−4 4.42e−5 1.10e−5 2.02

ROS2, Tn = 0.5 2.60e−3 6.16e−4 1.50e−4 3.68e−5 9.13e−6 2.04

ROS2, Tn = 1 2.38e−3 5.43e−4 1.29e−4 3.15e−5 7.77e−6 2.06

ROS3WO, Tn = 0 5.78e−5 8.39e−6 1.12e−6 1.45e−7 1.84e−8 2.91

ROS3WO, Tn = 0.5 6.53e−5 8.80e−6 1.14e−6 1.44e−7 1.82e−8 2.95

ROS3WO, Tn = 1 1.05e−4 1.29e−5 1.60e−6 1.98e−7 2.47e−8 3.01

Table 5 Test problem 1: order of L∞ convergence of the discrete control errors u(tn)−un , n = 0, . . . , N ,
for classical Runge–Kutta and Rosenbrock methods, ROS2 and ROS3WO applied to solve (6.8)–(6.9). The
exact Jacobian is Tn = 0.5

N 10 20 40 80 160 pfit

RK3a 2.06e−4 2.78e−5 3.58e−6 4.52e−7 5.68e−8 2.96

RK3b 3.65e−3 9.59e−4 2.46e−4 6.21e−5 1.56e−5 1.97

RK4 2.02e−6 1.37e−7 8.82e−9 5.58e−10 3.94

RODAS 6.08e−3 1.50e−3 3.74e−4 9.32e−5 2.33e−5 2.01

ROS2, Tn = 0 2.11e−3 6.09e−4 1.63e−4 4.21e−5 1.07e−5 1.91

ROS2, Tn = 0.5 1.90e−3 5.12e−4 1.32e−4 3.37e−5 8.49e−6 1.95

ROS2, Tn = 1 1.49e−3 3.75e−4 9.41e−5 2.35e−5 5.89e−6 2.00

ROS3WO, Tn = 0 5.00e−5 4.97e−6 5.35e−7 6.14e−8 7.33e−9 3.18

ROS3WO, Tn = 0.5 9.18e−5 9.49e−6 1.05e−6 1.23e−7 1.48e−8 3.15

ROS3WO, Tn = 1 1.84e−4 1.94e−5 2.20e−6 2.60e−7 3.16e−8 3.12

and the control u(t) is a transformed voltage at the generator. The unconstrained
Rayleigh problem is defined as follows:

Minimize

T∫

0

u(t)2 + x1(t)
2 dt (6.10)

subject to x ′′
1 (t) = −x1(t)+ x ′

1(1.4 − 0.14x ′
1(t)

2)+ 4u(t), t ∈ (0, T ],
(6.11)

x1(0) = x ′
1(0) = −5. (6.12)
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The ODE is of second order and nonlinear. To transform this problem to our setting,
we introduce x2(t) = x ′

1(t) and the additional equation x ′
3(t) = u(t)2 + x1(t)2 with

the initial value x3(0) = 0. This gives the new formulation

Minimize x3(T ) (6.13)

subject to x ′
1(t) = x2(t), (6.14)

x ′
2(t) = −x1(t)+ x2(1.4 − 0.14x2(t)

2)+ 4u(t), (6.15)

x ′
3(t) = u(t)2 + x1(t)

2, t ∈ (0, T ], (6.16)

x1(0) = −5, x2(0) = −5, x3(0) = 0. (6.17)

As final time we set T = 2.5.
Computing the gradients of the right hand side in (6.14)–(6.16) with respect to x

and u, the adjoint equations and the condition for the control can be easily derived.
We find

ψ ′
1(t) = ψ2(t)− 2x1(t)ψ3(t), (6.18)

ψ ′
2(t) = −ψ1(t)− (1.4 − 0.42x2(t)

2)ψ2(t), (6.19)

ψ ′
3(t) = 0, (6.20)

ψ1(T ) = 0, ψ2(T ) = 0, ψ3(T ) = 1, (6.21)

0 = 4ψ2(t)+ 2u(t)ψ3(t), t ∈ (0, T ]. (6.22)

We get the trivial solutionψ3(t) ≡ 1. The control is then computed from (6.22), which
yields u(t) = −2ψ2(t). We can separate Eq. (6.16) for x3(t), which only serves to
compute the objective function, from the set of ordinary differential equations and
eliminate the control in the first order optimality conditions. This finally gives the
following nonlinear boundary value problem in [0, T ]:

x ′
1(t) = x2(t), (6.23)

x ′
2(t) = −x1(t)+ x2(1.4 − 0.14x2(t)

2)− 8ψ2(t), (6.24)

x1(0) = −5, x2(0) = −5, (6.25)

ψ ′
1(t) = ψ2(t)− 2x1(t), (6.26)

ψ ′
2(t) = −ψ1(t)− (1.4 − 0.42x2(t)

2)ψ2(t), (6.27)

ψ1(T ) = 0, ψ2(T ) = 0. (6.28)

To study convergence orders of our W-methods, we computed a reference solution
by applying the classical fourth-order RK4 with N = 320. In our numerical tests, we
chose for Tn the zero matrix, the exact Jacobian and a partitioned matrix that treats
the first state variable implicitly and the second one explicitly. More precisely, we
used

T1,n =0, T2,n =
(

0 1
−1 1.4 − 0.42x2

2,n

)
, T3,n =

(
0 0

−1 0

)
, 0 ≤ n ≤ N − 1.
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Table 6 Rayleigh problem: order of L∞ convergence of the discrete state errors xi (tn)−xi,n , i = 1, 2, n =
0, . . . , N , and the discrete control errors u(tn)−un , n = 0, . . . , N , for ROS2 applied to solve (6.23)–(6.28)

N 20 40 80 160 320 pfit

ROS2, Tn = T1,n

1st state variable 2.23e−1 6.28e−2 1.27e−2 2.90e−3 6.98e−4 2.11

2nd state variable 6.59e−1 1.62e−1 3.12e−2 7.08e−3 1.71e−3 2.17

Control variable 2.28e−0 3.46e−1 4.82e−2 1.03e−2 2.46e−3 2.48

ROS2, Tn = T2,n

1st state variable 5.60e−2 3.41e−2 8.99e−3 2.20e−3 5.43e−4 1.73

2nd state variable 3.94e−1 1.50e−1 3.73e−2 9.10e−3 2.25e−3 1.89

Control variable 2.05e−0 4.74e−1 8.89e−2 1.85e−2 4.20e−3 2.25

ROS2, Tn = T3,n

1st state variable 2.19e−1 6.17e−2 1.24e−2 2.82e−3 6.78e−4 2.11

2nd state variable 6.47e−1 1.59e−1 3.06e−2 6.93e−3 1.67e−3 2.17

Control variable 2.27e−0 3.42e−1 4.69e−2 1.01e−2 2.42e−3 2.48

Table 7 Rayleigh problem: order of L∞ convergence of the discrete state errors xi (tn)−xi,n , i = 1, 2, n =
0, . . . , N , and the discrete control errors u(tn)− un , n = 0, . . . , N , for ROS3WO applied to solve (6.23)–
(6.28)

N 20 40 80 160 320 pfit

ROS3WO, Tn = T1,n

1st state variable 7.69e−1 2.52e−2 1.13e−3 1.01e−4 1.06e−5 4.02

2nd state variable 4.33e−0 8.35e−2 2.96e−3 2.46e−4 2.54e−5 4.32

Control variable 9.10e−0 4.40e−1 1.63e−2 1.30e−3 1.31e−4 4.06

ROS3WO, Tn = T2,n

1st state variable 1.85e−2 3.03e−3 3.83e−4 4.63e−5 5.46e−6 2.95

2nd state variable 1.54e−2 3.26e−3 4.15e−4 4.82e−5 5.42e−6 2.90

Control variable 4.95e−1 4.86e−2 4.61e−3 4.87e−4 5.45e−5 3.29

ROS3WO, Tn = T3,n

1st state variable 7.76e−1 2.60e−2 1.15e−3 1.01e−4 1.07e−5 4.03

2nd state variable 4.38e−0 8.64e−2 3.04e−3 2.51e−4 2.59e−5 4.32

Control variable 9.10e−0 4.54e−1 1.67e−2 1.33e−3 1.34e−4 4.05

Numerical results for ROS2 and ROS3WO are given in Tables 6 and 7. They clearly
show orders close to two and three independently from the choice of the matrix Tn

as predicted by the theory. The better order four for ROS3WO in the case of inexact
Jacobian matrices results from a relatively huge improvement in the first two refine-
ment steps. The last three values are close to order three.
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6.3 The stiff van der Pol oscillator

Our third example is an optimal control problem for the van der Pol oscillator, which
is considered in the stiff region. The unconstrained problem reads as follows:

Minimize

T∫

0

u(t)2 + x(t)2 + x ′(t)2 dt (6.29)

subject to εx ′′(t)− (1 − x(t)2)x ′(t)+ x(t) = u(t), t ∈ (0, T ], (6.30)

x(0) = 0, x ′(0) = 2. (6.31)

Small positive values of ε give rise to extremely steep profiles in x(t), making the van
der Pol equation a challenging test example for any ODE integrator [7]. The control
u(t) is used to smooth the solution again. We introduce Lienhard’s coordinates x2(t) =
x(t), x1(t) = εx ′(t) + x(t)3/3 − x(t), and the variable x3(t) through the ordinary
differential equation x ′

3(t) = u(t)2 + x(t)2 + x ′(t)2 with initial value x3(0) = 0, to
derive the following first order setting:

Minimize x3(T ) (6.32)

subject to x ′
1(t) = −x2(t)+ u(t), (6.33)

x ′
2(t) = 1

ε

(
x1(t)+ x2(t)− x2(t)3

3

)
, (6.34)

x ′
3(t)=

1

ε2

(
x1(t)+x2(t)− x2(t)3

3

)2

+x2(t)
2+u(t)2, t ∈(0, T ],

(6.35)

x1(0) = 2ε, x2(0) = 0, x3(0) = 0. (6.36)

We defined T = 2 as final time and considered the case ε = 0.01.
Applying the approach described above and eliminating the control and the auxiliary

variable x3(t) and its adjoint, we finally get the following nonlinear boundary value
problem in [0, T ] for the state and costate variables:

x ′
1(t) = −x2(t)− ψ1(t)

2
, (6.37)

x ′
2(t) = 1

ε

(
x1(t)+ x2(t)− x2(t)3

3

)
, (6.38)

x1(0) = 2ε, x2(0) = 0, (6.39)

ψ ′
1(t) = −1

ε
ψ2(t)− 2

ε2

(
x1(t)+ x2(t)− x2(t)3

3

)
, (6.40)
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Table 8 Van der Pol oscillator: order of L∞ convergence of the discrete state errors xi (tn) − xi,n , i =
1, 2, n = 0, . . . , N , and the discrete control errors u(tn) − un , n = 0, . . . , N , for ROS2 applied to solve
(6.37)–(6.42)

N 160 320 640 1,280 2,560 pfit

ROS2, Tn = T1,n

1st state variable 6.30e−3 1.59e−3 3.73e−4 8.74e−5 2.03e−5 2.07

2nd state variable 6.24e−3 1.59e−3 3.73e−4 8.79e−5 2.05e−5 2.07

Control variable 4.62e−1 1.06e−1 2.44e−2 5.65e−3 1.31e−3 2.12

ROS2, Tn = T2,n

1st state variable 6.27e−3 1.59e−3 3.70e−4 8.67e−5 2.01e−5 2.08

2nd state variable 6.21e−3 1.58e−3 3.71e−4 8.72e−5 2.03e−5 2.07

Control variable 4.64e−1 1.05e−1 2.42e−2 5.59e−3 1.30e−3 2.12

ψ ′
2(t) = ψ1(t)− 1

ε
(1 − x2(t)

2)ψ2(t)

− 2

ε2

(
x1(t)+ x2(t)− x2(t)3

3

)
(1 − x2(t)

2)− 2x2(t), (6.41)

ψ1(T ) = 0, ψ2(T ) = 0. (6.42)

For later use in our convergence study, we note that u(t) = −0.5ψ1(t). Since the factor
ε−2 appears in the adjoint equations, this system is even stiffer and hence harder to
solve than the original van der Pol equation. Due to the stiffness, an explicit integrator
as RK4 works no longer efficiently.

We computed a reference solution by applying ROS3WO with N = 2,560. To test
the robustness with respect to the choice of the matrix Tn , we considered the exact
Jacobian and a partitioned matrix that treats the first equation explicitly and the second
one implicitly. More precisely, we used

T1,n =
(

0 −1
ε−1 ε−1(1 − x2

2,n)

)
, T2,n =

(
0 0
ε−1 ε−1(1 − x2

2,n)

)
, 0 ≤ n ≤ N − 1.

Numerical results for ROS2 and ROS3WO are given in Tables 8 and 9. In accor-
dance to the theory, ROS2 clearly shows orders close to two. The observed order
for ROS3WO is slightly better than three independently from the choice of the
matrix Tn .

6.4 Nonlinear boundary control for the heat equation

For a practical illustration, we consider the nonlinear boundary control problem

minimize
1

2

1∫

0

(
x(y, T )− 1

2
(1 − y2)

)2

dy + λ

2

T∫

0

u(t)2 dt (6.43)
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Table 9 Van der Pol oscillator: order of L∞ convergence of the discrete state errors xi (tn) − xi,n , i =
1, 2, n = 0, . . . , N , and the discrete control errors u(tn) − un , n = 0, . . . , N , for ROS3WO applied to
solve (6.37)–(6.42)

N 160 320 640 1,280 pfit

ROS3WO, Tn = T1,n

1st state variable 1.47e−2 1.02e−3 1.01e−4 9.27e−6 3.52

2nd state variable 1.46e−2 1.01e−3 1.00e−4 9.17e−6 3.52

Control variable 1.35e−0 9.29e−2 9.08e−3 8.18e−4 3.54

ROS3WO, Tn = T2,n

1st state variable 1.48e−2 1.02e−3 1.01e−4 9.31e−6 3.53

2nd state variable 1.48e−2 1.02e−3 1.01e−4 9.20e−6 3.53

Control variable 1.36e−0 9.26e−2 9.06e−3 8.18e−4 3.54

subject to the heat equation with nonlinear boundary conditions of Stefan–Boltzmann
type

∂t x(y, t)− ∂yy x(y, t) = 0, (y, t) ∈ (0, 1)× (0, T ], (6.44)

∂y x(0, t) = 0, t ∈ (0, T ], (6.45)

∂y x(1, t)+ x(1, t)+ x4(1, t) = u(t), t ∈ (0, T ], (6.46)

x(y, 0) = 0, y ∈ [0, 1], (6.47)

and the box constraints for the control,

− 0.5 ≤ u(t) ≤ 0.5, for almost all t ∈ [0, T ]. (6.48)

We considered this problem for final time T = 1.58 and regularization parameter
λ = 0.1 as stated in [9] (see also [3] for theoretical aspects). Standard second order
finite differences on an equidistant mesh yi = i�y, i = 0, . . . ,M , with �y = 1/M
and M being a natural number, are used to discretize the nonlinear heat equation in
space, which gives approximations xi+1(t) ≈ x(yi , t), i = 0, . . . ,M . Approximating
the spatial integral of the objective function by the linear interpolating spline associated
with the spatial mesh, and introducing an additional component xM+2(t) to transform
the remaining control term, we get the following optimal control problem:

Minimize C(x(T )) = 1

2
(x(T )− xy)

T My(x(T )− xy)+ xM+2(T ) (6.49)

subject to x′(t) = Ayx(t)+ G y(x(t), u(t)), t ∈ (0, T ], (6.50)

x(0) = 0, (6.51)
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where xy = 1
2 (1 − y2

0 , . . . , 1 − y2
M , 0)T and

My = �y

6

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

2 1
1 4 1

. . .

1 4 1
1 2

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

Ay = 1

(�y)2

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

−2 2
1 −2 1

. . .

1 −2 1
2 −2

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

as well as

(G y)i =

⎧
⎪⎪⎨

⎪⎪⎩

0, i = 1, . . . ,M,

2
�y (u(t)− xM+1 − x4

M+1), i = M + 1,

λ
2 u(t)2, i = M + 2.

The dimension of the ODE system is d = M + 2. We set M = 400 to keep spatial
discretization errors small with respect to the overall error.

We discretized the optimal control problem using the methods ROS2, ROS3WO
and GRK4A [10]. The latter method is a classical four-stage fourth-order Rosenbrock
solver with strictly positive weights suitable for stiff equations, but it does not fulfill
the additional order conditions for optimal control. The exact Jacobian was used for
the matrix Tn , i.e.,

Tn = Ay + diag

(
0, . . . , 0,− 2

�y
(1 + 4x3

M+1,n), 0

)
, 0 ≤ n ≤ N − 1.

The discrete first-order optimality system (2.8)–(2.13) was solved using the source
code for ASA_CG, Version 1.3, based on CG_DESCENT [6]. ASA_CG is an active
set algorithm for solving bound constrained optimization problems [5]. We checked
the results with those obtained by the DONLP2 software package [18]. In DONLP2,
a sequential quadratic programming with an active set strategy and only equality
constrained subproblems is implemented [19,20]. Both, ASA_CG and DONLP2, gave
similar results for a gradient tolerance 1.0e−11.

To apply the optimization routines, we have to provide the value and the gradient of
the reduced objective function Ĉ(u) = C(xN (u)) and the control constraints. Given
a vector u, the final state vector xN (u) is derived from the discrete state equations
(2.8)–(2.9) by marching forward from n = 0 to n = N −1. Within each time step, the
stage variables yni , i = 1, . . . , s, can be computed one after another by solving linear
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systems with one and the same (tridiagonal) matrix I − hγ Tn . Then all variables are
given to solve the discrete costate equations (2.10)–(2.11) forψn and λni by marching
backward from n = N −1 to n = 0. Again, the intermediate values λni , i = s, . . . , 1,
are successively computable by solving a sequence of linear systems with the matrix
I − hγ T T

n within each time step. The gradient of the objective function for ROS2 and
GRK4A is determined by the following expressions:

∇uni Ĉ(u) = hλni∇uf(xni ,uni ), i = 1, . . . , s. (6.52)

For ROS3WO we have with the control vector un = (un2,un3,un4),

∇un2 Ĉ(u) = h(λn1 + λn2)∇uf(xn2,un2), (6.53)

∇uni Ĉ(u) = hλni∇uf(xni ,uni ), i = 3, 4. (6.54)

Here f is the right hand side in the ODE system (6.50).
For comparison purposes, we computed a reference solution with the exact Jacobian

for N = 800, from which we derived the reference value for the objective function,
Cref = 0.02319494. All methods converge to this value. The corresponding optimal
control is plotted in Fig. 1.

The gradient of the reduced version of the objective function in (6.49) can be
computed from ∇uĈ(u) = −2ψN+1/�y − ψN+2λu. Since ψN+2 ≡ 1, the optimal
control satisfies the projection relation

u(t) = P[−0.5,0.5]{−2ψN+1(t)/(λ�y}. (6.55)

The piecewise linear continuous approximation of −2ψM+1(t)/(λ�y) using numeri-
cal approximations of the values ψM+1(tn) at the time points, is also shown in Fig. 1.
Outside the active region of the control constraints, it fits the numerical approximation
of the control very well.

Numerical results for the time integrators tested are given in Fig. 2. ROS3WO con-
verges to the reference solution faster than the other methods. ROS2 performs also
remarkably well and even much better than GRK4A. We have also tested various
approximations Tn of the Jacobian. Although the absolute values are worse, conver-
gence is maintained for ROS2 and ROS3WO. Not surprisingly, the Rosenbrock solver
GRK4A gives unsatisfactory results in this case due to its loss of consistency.

7 Summary and main conclusions

We have developed and discussed W-methods of linearly implicit structure for the
numerical approximation of optimal control problems within the first-discretize-then-
optimize approach. Following the concept of transformed adjoint equations, which
was introduced in [4] for Runge–Kutta methods, we analyzed the approximation order
and derived novel order conditions that have to be satisfied by the coefficients of the
W-method so that the Taylor expansions of the continuous and discrete state and costate
solutions match to order three. On the basis of this analysis, two main conclusions can
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Fig. 1 Nonlinear heat equation: reference optimal control computed with 401 equidistant spatial points
and 800 uniform time steps, and piecewise linear continuous approximation of −2ψM+1(t)/(λ�y) using
numerical approximations of the values ψM+1(tn) at the time points. The control constraints are active in
two regions
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Fig. 2 Nonlinear heat equation: comparison of different time integrators, which are applied to solve (6.49)–
(6.51). The methods tested are ROS2, GRK4A and ROS3WO. Exact Jacobian is used. Values of the discrete
objective function for different numbers of time steps, N = 100, 150, . . . , 400, are shown. The reference
value is Cref = 0.02319494

be drawn: (i) any classical W-method of second order with strictly positive weights
maintains its order for optimal control. (ii) For order three, three additional order
conditions have to be fulfilled. These conditions include the one already found in
[4] for Runge–Kutta methods. There is no implicit third-order three-stage W-method
suitable for optimal control.

As base integrators for comparisons, we have taken an L-stable two-stage
W-method of second order from the ROS2 family [23] and have constructed a novel
L-stable four-stage W-method ROS3WO of third-order. Both methods and other
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selected Runge–Kutta and Rosenbrock methods were applied to four example prob-
lems, ranging from linear and nonstiff to nonlinear and stiff. A semi-discretized nonlin-
ear heat equation was considered to demonstrate the use of the developed W-methods
in numerical optimization techniques that require the gradient of the discrete objective
functional. From our numerical experience, we have come to two main conclusions.
(i) All methods tested show their theoretical orders when they are applied to solve
the two-point boundary-value problem (2.29)–(2.30), which is derived from the first-
order optimality system. The W-methods are remarkably robust with respect to varying
approximations of the Jacobian matrix. This allows for partitioning to treat stiff and
nonstiff components more efficiently in the linear algebra. One even could set the Jaco-
bian equal to zero and mimic an explicit method without loosing the order. (ii) Most
notable for the W-methods is their structural advantage when they are applied within
a gradient approach to solve state and costate equations separately. Only a sequence
of linear equations with one and the same system matrix has to be solved to compute
the stages values. We expect that this property will become even more important for
the numerical solution of large scale PDE-constrained optimal control problems.
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