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Abstract In this paper, a theoretical framework is constructed on how to develop
C0-nonconforming elements for the fourth order elliptic problem. By using the bub-
ble functions, a simple practical method is presented to construct one tetrahedral
C0-nonconforming element and two cuboid C0-nonconforming elements for the
fourth order elliptic problem in three spacial dimensions. It is also proved that one
element is of first order convergence and other two are of second order convergence.
From the best knowledge of us, this is the first success in constructing the second-order
convergent nonconforming element for the fourth order elliptic problem.
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1 Introduction

In this paper we consider the following three-dimensional fourth order elliptic bound-
ary value problem: {

�2u = f in �,

u = ∂u
∂n = 0 on ∂�,

(1.1)
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100 H. Chen et al.

where � ⊂ R3 is a bounded convex domain with Lipschitz continuous boundary ∂�,
f ∈ L2(�), n is the unit vector outer normal to ∂� and � is the standard Laplacian
operator. The fourth order elliptic problem is not only important from the mathematical
point of view but also potentially of practical importance with many applications. It has
been widely used to model the linear plates in the two-dimensional space [8] and the
three-dimensional biharmonic operator has shown its importance in the study of the
complex microstructure evolutions for many material processes [3]. For the detailed
description, please refer to [21] and the reference therein.

There have been an enormous amount of research work, and still growing, on the
numerical analysis of the finite element methods for the fourth order elliptic problems.
When a conforming finite element is employed to discretize the fourth order problem
(1.1), it should consist of piecewise polynomials that are globally continuously differ-
entiable (C1). To meet this smoothness requirement, it is forced to use polynomials of
degree five or higher in the two-dimensional space. For example, the Argyris element
[6] with 5-degree polynomials and 21 degrees of freedom, the Bell element [6] with
incomplete 5-degree polynomials and 18 degrees of freedom are conforming triangu-
lar elements; the Bogner-Fox-Schmit (BFS) element [6] with bicubic polynomials and
16 degrees of freedom is a conforming rectangular element. A conforming rectangu-
lar element with biquadratic polynomials and 25 degrees of freedom was constructed
in [5]. The convergence rate of this element is one order higher than that of the BFS
element. In the three-dimensional case, the situation is more complicated. Even higher
order polynomials are needed to construct a conforming finite element. A conforming
tetrahedral element was constructed in [23] using 9-degree polynomials and requiring
C1 globally, C2 on all element edges and C4 on all element vertices. The number
of degrees of freedom is 220. A three-dimensional conforming BFS element on the
cuboid mesh with tri-cubic polynomials and 64 degrees of freedom was constructed
in [5]. This element is of second order convergence.

Using higher order derivatives, the constructions of conforming elements for the
fourth order problems are complicated and not computationally desirable. As a result,
many lower degree nonconforming elements in the two-dimensional case have been
constructed and used in practice. The Morley element [6,7,9] with 2-degree poly-
nomials and 6 degrees of freedom, the Veubeke-1 element [4,18] with incomplete
3-degree polynomials and 9 degrees of freedom, and the Veubeke-2 element [4,18]
with 3-degree polynomials and 10 degrees of freedom, are triangular elements and
even not C0-continuous. The Zienkiewicz element [6,9] with incomplete 3-degree
polynomials and 9 degrees of freedom is a C0-triangular element, but it is convergent
only on some special meshes [12], because the mean values of normal derivatives on
the boundary of the element are not continuous across the element. The Adini or ACM
element [6,9] with incomplete 4-degree polynomials and 12 degrees of freedom is a
C0-rectangular element, the mean values of normal derivatives on the boundary of the
element are not continuous across the element. Its convergence depends on the spe-
cial geometric property of the rectangular mesh. Quasi-conforming elements [17,24],
generalized-conforming elements [10,14] and double set parameter elements [4] are
nonstandard elements, we do not describe them in detail here.

In [15], Stummel presented a sufficient and necessary condition for the conver-
gence of nonconforming finite elements, named Generalized Patch-Test, but it is
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C0-nonconforming tetrahedral and cuboid elements 101

difficult to use in practice. In [13], Shi presented a sufficient condition, named
F-E-M Test, which is easier to use in practice. For the fourth order elliptic problem,
to satisfy the strong F-E-M Test, the function values and the first-order derivatives
of the shape functions should be continuous in the mean across the elements. In the
three-dimensional case, it makes the order of element interpolation matrix very high.
As a result, it is difficult to check the nonsingularity of this matrix. So it is a night-
mare to construct nonconforming elements for the fourth order elliptic problem in
the three-dimensional space. Recently, great efforts have been made in successfully
constructing some nonconforming elements for the three-dimensional fourth order
elliptic problem, see e.g., [19–22]. On the tetrahedral meshes, the three-dimensional
Morley element was presented in [22]; a 3-degree polynomial element, an incom-
plete 3-degree polynomial element, the three-dimensional Zienkiewicz element, and a
quasi-conforming element by modifying the three-dimensional Zienkiewicz element
were presented in [19,21]; in [16], a C0-element was presented for the Darcy–Stokes
flow problem. It is a modified form of three-dimensional Morley element. It was also
pointed out in [16] that this element can potentially be used to the three-dimensional
fourth order elliptic singular perturbation problem. On the cuboid meshes, the three-
dimensional Morley-type element, the three-dimensional Adini element, and the
three-dimensional BFS-type element were presented in [20]. All of the above non-
conforming elements are first order convergent and are the generalizations of the cor-
responding two-dimensional elements. Among them, three-dimensional Zienkiewicz
element and three-dimensional BFS-type element are C0-continuous, while others are
non-C0-continuous. It should be pointed out that the above three-dimensional BFS-
type element is different from that in [5]. This BFS-type element is nonconforming
and only first order convergent, while the one in [5] is conforming and of second order
convergence.

In this paper we present a method to construct C0-nonconforming elements for the
fourth order elliptic problem. The idea of this method is to divide the shape function
space into two subspaces by using bubble functions. One subspace is responsible for
the C0-continuity of the shape functions and getting the approximation error. Another
one which contains the bubble functions is responsible for the continuity in the mean
of the normal derivatives of the shape functions across the elements and getting the
consistence error. The resulting element interpolation matrix is a block lower triangular
matrix which greatly simplifies the proof of the nonsingularity of this matrix. Using this
method, we construct one tetrahedral C0-nonconforming element and two cuboid C0-
nonconforming elements for the three-dimensional fourth order problem. The method
to construct the C0 nonconforming element with the bubble function was also used in
[11] for the two-dimensional fourth order elliptic singular perturbation problem. We
also prove that one element is of first order convergence and other two are of second
order convergence.

The main contributions of this paper are: an abstract convergence theorem is given,
which builds a theoretical frame to construct C0-nonconforming elements for the
fourth order elliptic problem; the use of the bubble function gives a simple practi-
cal method to construct C0-nonconforming elements for the three-dimensional fourth
order elliptic problem. The rest of the paper is organized as follows. Section 2 gives
an abstract convergence theorem. Sections 3 and 4 give detailed descriptions of one
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102 H. Chen et al.

tetrahedral element and two cuboid elements, respectively. Section 5 gives the con-
vergent analysis and Sect. 6 contains some concluding remarks.

2 An abstract convergence theorem

The weak form of (1.1) is: find u ∈ H2
0 (�) such that

a(u, v) = f (v), ∀v ∈ H2
0 (�), (2.1)

where

a(u, v) =
∫
�

3∑
i, j=1

∂i j u∂i jvdx, f (v) =
∫
�

f vdx . (2.2)

Here ∂i j = ∂2

∂xi ∂x j
. We adopt the standard notation Hm(�) for the Sobolev space [1]

on � with norm

‖v‖2
m,� =

∑
|α|≤m

‖Dαv‖2
0,�,

and semi-norm

|v|2m,� =
∑

|α|=m

‖Dαv‖2
0,�,

where α = (α1, α2, α3) is an index, |α| = ∑3
i=1 αi , Dα = ∂ |α|

∂x
α1
1 ∂x

α2
2 ∂x

α3
3

, ‖w‖2
0,� =∫

�
w2dx .

We set

Hm
0 (�) =

{
v ∈ Hm(�); v = ∂ jv

∂n j
= 0, on ∂�, 1 ≤ j ≤ m − 1

}
.

The energy norm of (2.1) is defined by

|||v||| = a(v, v)
1
2 = |v|2,�.

By Poincar é inequality, it is well known that | · |2,� is a norm on H2
0 (�) and is

equivalent to ‖·‖2,�, so (2.1) has the unique solution by the Lax–Milgram Theorem [6].
Let Th be a triangulation of � into tetrahedrons or cuboids with mesh size h,

� = ⋃
T ∈Th

T , T be an element. The nonconforming finite element space Vh is a
piecewise polynomial space such that Vh �⊂ H2

0 (�). The discrete problem of (2.1) is:
find uh ∈ Vh satisfying

ah(uh, vh) = f (vh), ∀vh ∈ Vh, (2.3)
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C0-nonconforming tetrahedral and cuboid elements 103

where

ah(uh, vh) =
∑
T ∈Th

∫
T

3∑
i, j=1

∂i j uh∂i jvhdx . (2.4)

The corresponding discrete energy norm is:

|||vh |||h =
⎛
⎝ ∑

T ∈Th

|vh |22,T

⎞
⎠

1
2

. (2.5)

Throughout this paper, we assume that Th is regular and quasi-uniform, namely, it
satisfies that:

hT /ρT ≤ σ1, hT /hT ′ ≤ σ2, ∀T, T
′ ∈ Th, ∀h. (2.6)

where hT andρT are the diameters of T and the largest ball contained in T , respectively,
σ1 > 0, σ2 > 0 are constants independent of h.

Let F ⊂ ∂T be a face of T and Fh = {F; F ⊂ ∂T, T ∈ Th}. Suppose F = T ∩ T
′
,

define

[w]|F = w|T ∩F − w|T ′∩F ; [w]|F = w|F , if F ⊂ ∂�.

The following result is the well known Strang Lemma (see [2] or [6]).

Lemma 2.1 Assume that ||| · |||h is a norm of Vh. Let u and uh be the solutions of
(2.1) and (2.3), respectively, then

|||u − uh |||h ≤ C

(
inf

vh∈Vh
|||u − vh |||h + sup

wh∈Vh

|ah(u, wh) − f (wh)|
|||wh |||h

)
, (2.7)

where C > 0 is a constant independent of h.

The first term of (2.7) is the approximation error and the second term of (2.7) is the
consistence error.

For any F ∈ Fh , let n = (n1, n2, n3)
T be the unit vector outer normal to F and

τ, s be two unit vectors and orthogonal to each other on F , then we have

∂ j = βτ j∂τ + βs j∂s + βnj∂n, β2
τ j + β2

s j + β2
nj = 1, 1 ≤ j ≤ 3.

where

∂ j = ∂

∂x j
, ∂τ = ∂

∂τ
, ∂s = ∂

∂s
, ∂n = ∂

∂n
.
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By Green’s formula, for u ∈ H4(�),

ah(u, wh) =
∑
T ∈Th

∫
T

3∑
i, j=1

∂i j u∂i jwhdx

=
∑
T ∈Th

3∑
i, j=1

⎧⎪⎨
⎪⎩

∫
∂T

(∂i j u∂ jwhni − ∂i i j uwhn j )ds +
∫
T

∂i i j j uwhdx

⎫⎪⎬
⎪⎭

=
∑
T ∈Th

∫
∂T

⎧⎨
⎩

3∑
i, j=1

∂i j u(βτ j∂τwh +βs j∂swh +βnj∂nwh)ni −∂n�uwh

⎫⎬
⎭ ds

+
∑

T ∈Th

∫
T

�2uwhdx .

Since �2u = f , we have

ah(u, wh) − f (wh)

=
∑
T ∈Th

∫
∂T

⎧⎨
⎩

3∑
i, j=1

∂i j u(βτ j∂τwh + βs j∂swh + βnj∂nwh)ni − ∂n�uwh

⎫⎬
⎭ ds.

If Vh ⊂ H1
0 (�), then

∀F ⊂ ∂T, ∀T ∈ Th, [wh]|F = [∂τwh]|F = [∂swh]|F = 0,

we get

ah(u, wh)− f (wh) =
∑
T ∈Th

3∑
i, j=1

βnj

∑
F⊂∂T

∫
F

∂i j u∂nwhni ds, ∀wh ∈ Vh ⊂ H1
0 (�).

(2.8)

Since H4(�) is dense in H3(�) with norm || · ||3,� and

|ah(u, wh)| ≤ c|u|2,�|||wh |||h,∣∣∣∣∣∣
∑
T ∈Th

3∑
i, j=1

βnj

∑
F⊂∂T

∫
F

∂i j u∂nwhni ds

∣∣∣∣∣∣ ≤ c(h)||u||3,�

⎛
⎝ ∑

T ∈Th

||wh ||22,T

⎞
⎠

1
2

,

we know that the formula (2.8) is also true for u ∈ H3(�).
For the tetrahedral mesh, let Ik be the usual C0 piecewise k-degree polynomial

interpolation operator, and for the cuboid mesh, let Ik be the usual C0 piecewise
tri-k-degree polynomial interpolation operator, then it is well known that [2,6]:

|v − Ikv|l,T ≤ Chk+1−l |v|k+1,T , 0 ≤ l ≤ k, ∀v ∈ Hk+1(T ). (2.9)
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C0-nonconforming tetrahedral and cuboid elements 105

Now we give the following abstract convergence theorem for C0-nonconforming
elements for the fourth order elliptic problem.

Theorem 2.1 Assume that ||| · |||h is a norm of Vh. Suppose that there is an integer
m ≥ 2, such that

(H1) Vh ⊂ H1
0 (�),

(H2) |||v − 
hv|||h ≤ Chm−1|v|m+1,�, ∀v ∈ Hm+1(�),

(H3)
∫

F p[∂nwh]ds = 0, ∀p ∈ Pm−2(F), ∀F ∈ Fh, ∀wh ∈ Vh,

then

|||u − uh |||h ≤ Chm−1|u|m+1,�. (2.10)

Here u and uh are the solutions of (2.1) and (2.3), respectively, C > 0 is a constant
independent of h and 
h is the finite element interpolation operator on Vh .

Proof By (H2),

inf
vh∈Vh

|||u − vh |||h ≤ |||u − 
hu|||h ≤ Chm−1|u|m+1,�. (2.11)

Let T̂ be the reference element, GT be the affine transformation from T̂ to T and
under GT : x̂ �→ x, T̂ → T, F̂ → F, where F̂ is the face of T̂ . Let

PFv = 1

|F |
∫
F

vds,

then

PFv = 1

|F |
∫
F

vds = 1

|F̂ |
∫
F̂

v̂dŝ = PF̂ v̂.

By (H3), we have

∑
T ∈Th

3∑
i, j=1

βnj

∑
F⊂∂T

∫
F

(∂i j u)(PF∂nwh)ni ds

=
∑

F

3∑
i, j=1

ci j

⎛
⎝∫

F

∂i j u

⎞
⎠

⎛
⎝∫

F

[∂nwh]
⎞
⎠ = 0,

∑
T ∈Th

3∑
i, j=1

βnj

∑
F⊂∂T

∫
F

(Im−2∂i j u)(∂nwh − PF∂nwh)ni

=
∑

F

3∑
i, j=1

ci j

⎧⎨
⎩

∫
F

(Im−2∂i j u)[∂nwh]−
⎛
⎝∫

F

Im−2∂i j u

⎞
⎠

⎛
⎝∫

F

[∂nwh]
⎞
⎠ /|F |

⎫⎬
⎭=0.
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Then from (2.8), we get

ah(u, wh) − f (wh)

=
∑
T ∈Th

3∑
i, j=1

βnj

∑
F⊂∂T

∫
F

(∂i j u − Im−2∂i j u)(∂nwh − PF∂nwh)ni ds. (2.12)

Put μ = ∂i j u, ϕ = ∂nwh, then by (2.9), trace Theorem [1] and scaling, we have

∣∣∣∣∣∣
∫
F

(∂i j u − Im−2∂i j u)(∂nwh − PF∂nwh)ds

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
F

(μ − Im−2μ)(ϕ − PFϕ)ds

∣∣∣∣∣∣
≤ Ch

∫
F̂

|(μ̂ − ˆIm−2μ̂)(ϕ̂ − PF̂ ϕ̂)|dŝ

≤ Ch‖μ̂ − ˆIm−2μ̂‖0,F̂‖ϕ̂ − PF̂ ϕ̂‖0,F̂

≤ Ch‖μ̂ − ˆIm−2μ̂‖1,T̂ ‖ϕ̂ − PF̂ ϕ̂‖1,T̂

≤ Ch|μ̂|m−1,T̂ |ϕ̂|1,T̂ ≤ Chm−1|μ|m−1,T |ϕ|1,T

≤ Chm−1|u|m+1,T |wh |2,T . (2.13)

Substituting (2.13) into (2.12) we get

sup
wh∈Vh

|ah(u, wh) − f (wh)|
|||wh |||h ≤ Chm−1|u|m+1,�. (2.14)

Then (2.10) follows from (2.7), (2.11) and (2.14). 
�
Remark 2.1 Theorem 2.1 is also true for the C0-triangular and rectangular noncon-
forming elements for the two-dimensional fourth order elliptic problem.

3 A C0-nonconforming tetrahedral element

Let T be the tetrahedral element with nodes ai , 1 ≤ i ≤ 4. The face of T opposites to
ai is denoted by Fi , 1 ≤ i ≤ 4. The volume coordinates, named λi , 1 ≤ i ≤ 4, have
the following properties [6]:

λi ∈ P1(T ), λi (a j ) = δi j ,

4∑
i=1

λi = 1, λi |Fi = 0, 1 ≤ i, j ≤ 4, (3.1)

where Pk(T ) is the polynomial space of degree not greater than k.

123



C0-nonconforming tetrahedral and cuboid elements 107

Fig. 1 Degrees of freedom of
C0T 2 element

The shape function space of C0T 2 element is taken as

PT 2 = P3(T ) ⊕ bT {λiλi+1, λiλi+1λi+2, λ
2
i λi+1λi+2, 1 ≤ i ≤ 4, mod 4}, (3.2)

It is easy to see that the dimension of PT 2 is 32. The degrees of freedom are given as
follows:

vi , vi x j , 1 ≤ j ≤ 3, vi0,

∫
Fi

∂v

∂n
pds, p ∈ P1(Fi ), 1 ≤ i ≤ 4. (3.3)

Here vi = v(ai ), vi x j = ∂v
∂x j

(ai ), 1 ≤ j ≤ 3, vi0 = v(ai0), and ai0 is the barycenter
of Fi , 1 ≤ i ≤ 4 (Fig. 1).

The corresponding interpolation operator 
T 2 : H4(T ) → PT 2 is defined by

⎧⎨
⎩

(v− 
T 2v)(ai )=0, (v − 
T 2v)(ai0) = 0,
∂(v−
T 2v)

∂x j
(ai ) = 0, 1 ≤ j ≤ 3,

∫
Fi

∂(v−
T 2v)
∂n pds = 0, p ∈ P1(Fi ), 1 ≤ i ≤ 4.

(3.4)

Lemma 3.1 The interpolation operator 
T 2 is well posed, namely, the degrees of
freedom (3.3) are PT 2-unisolvent.

Proof It is easy to see that the number of degrees of freedom (3.3) is also 32, so it is
sufficient to show that if v ∈ PT 2 such that all the degrees of freedom of v are zero,
then v ≡ 0.

Let b1, b2, b3 be the vertices of Fi and b0 be the barycenter of Fi , τ and s be the
unite vectors on Fi and orthogonal each other, by (3.3) we have

v(bi ) = ∂v

∂τ
(bi ) = ∂v

∂s
(bi ) = v(b0) = 0, 1 ≤ i ≤ 3.
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108 H. Chen et al.

Since v|Fi ∈ P3(Fi ), we get

v|Fi = 0, 1 ≤ i ≤ 4. (3.5)

By (3.2), v has the following expression

v = bT q, q =
4∑

i=1

(αiλiλi+1 + αi+4λiλi+1λi+2 + αi+8λ
2
i λi+1λi+2).

By (3.3) we have

∫
Fi

∂v

∂n
pds = 0, p = λi+1, λi+2, λi+3.

Since bT |Fi = λi |Fi = 0, we get

∫
Fi

∂v

∂n
pds =

∫
Fi

∂bT

∂n
qpds = ∂λi

∂n

∫
Fi

λi+1λi+2λi+3qp|λi =0ds

= 0, 1 ≤ i ≤ 4, p = λi+1, λi+2, λi+3. mod 4.

The above linear systems can be expressed by

AX = 0,

where X = (α1, α2, α3, . . . , α12)
T ,

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 2 0 0 2
3 0 0 0 4

15 0 0 0

3 3 0 0 2
3 0 0 0 1

5 0 0 0

2 3 0 0 2
3 0 0 0 1

5 0 0 0

0 3 2 0 0 2
3 0 0 0 4

15 0 0

0 3 3 0 0 2
3 0 0 0 1

5 0 0

0 2 3 0 0 2
3 0 0 0 1

5 0 0

0 0 3 2 0 0 2
3 0 0 0 4

15 0

0 0 3 3 0 0 2
3 0 0 0 1

5 0

0 0 2 3 0 0 2
3 0 0 0 1

5 0

2 0 0 3 0 0 0 2
3 0 0 0 4

15

3 0 0 3 0 0 0 2
3 0 0 0 1

5

3 0 0 2 0 0 0 2
3 0 0 0 1

5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Fig. 2 Reference cube element

By simple computations, we get

det A =
(

2

45

)4

�= 0.

Hence X = 0, namely, αi = 0, 1 ≤ i ≤ 12, then v ≡ 0. 
�

4 C0-nonconforming cuboid elements

Let T̂ = [−1, 1]3 be the reference cube element with nodes â1(−1,−1,−1),
â2(1,−1,−1), â3(1, 1,−1), â4(−1, 1,−1), â5(−1,−1, 1), â6(1,−1, 1), â7(1, 1, 1),
â8(−1, 1, 1). The 6 faces of T̂ are defined by F̂1 = �â1â2â3â4, F̂2 = �â5â6â7â8,
F̂3 = �â1â5â6â2, F̂4 = �â4â8â7â3, F̂5 = �â1â4â8â5, F̂6 = �â2â3â7â6. The 12
edges of T̂ are defined by l̂1 = â1â2, l̂2 = â3â4, l̂3 = â7â8, l̂4 = â5â6, l̂5 = â1â4,
l̂6 = â2â3, l̂7 = â6â7, l̂8 = â5â8, l̂9 = â1â5, l̂10 = â2â6, l̂11 = â3â7, l̂12 = â4â8. The
middle points of l̂i is denoted by ĝi , 1 ≤ i ≤ 12. See Fig. 2.

Let

bT̂ = (1 − x̂2
1 )(1 − x̂2

2 )(1 − x̂2
3 ).

Then bT̂ is the bubble function such that

bT̂ ∈ Q2(T̂ ), bT̂ |F̂i
= 0, 1 ≤ i ≤ 6,

where Qk(T̂ ) is the polynomial space of degree in each coordinate not greater than k.
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Fig. 3 Degrees of freedom of C0C1 element

4.1 C0C1 Element

The shape function space of C0C1 element is taken as:

P̂C1 = P̂∗
2 ⊕ bT̂ {x̂i , x̂2

i , 1 ≤ i ≤ 3}, (4.1)

where P̂∗
2 = P2(T̂ ) ⊕ {x̂1 x̂2 x̂3, x̂2

i x̂i+1, x̂2
i x̂i+2, x̂2

i x̂i+1 x̂i+2, 1 ≤ i ≤ 3, mod 3}.
The dimension of P̂C1 is 26. The degrees of freedom are given as follows (Fig. 3):

v̂(âi ), 1 ≤ i ≤ 8, v̂(ĝi ), 1 ≤ i ≤ 12,

∫
F̂i

∂v̂

∂ n̂
dŝ, 1 ≤ i ≤ 6. (4.2)

The corresponding interpolation operator 
̂C1 : H3(T̂ ) → P̂C1 is defined by

⎧⎨
⎩

(v̂ − 
̂C1v̂)(âi ) = 0, 1 ≤ i ≤ 8, (v̂ − 
̂C1v̂)(ĝi ) = 0, 1 ≤ i ≤ 12,

∫
F̂i

∂(v̂−
̂C1v̂)
∂ n̂ dŝ = 0, 1 ≤ i ≤ 6

(4.3)

Lemma 4.1 The interpolation operator 
̂C1 is well posed, namely, the degrees of
freedom (4.2) are P̂C1-unisolvent.

Proof Because the number of the degrees of freedom (4.2) are also 26, it is sufficient
to show that if v̂ ∈ P̂C1 and
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v̂(âi ) = 0, 1 ≤ i ≤ 8, v̂(ĝi ) = 0, 1 ≤ i ≤ 12,

∫
F̂i

∂v̂

∂ n̂
dŝ = 0, 1 ≤ i ≤ 6.

Then v̂ ≡ 0.

Suppose that F̂i is on (x̂ j , x̂ j+1) plane, it is easy to see that

v̂|F̂i
∈ P2(F̂i ) ⊕ {x̂2

j x̂ j+1, x̂ j x̂2
j+1},

and v̂ = 0, at the four vertices of F̂i and the middle points of four sides of F̂i , hence

v̂|F̂i
= 0, 1 ≤ i ≤ 6. (4.4)

By (4.1) v̂ has the following expression

v̂ = bT̂ q̂, q̂ =
3∑

i=1

(αi x̂i + αi+3 x̂2
i )

Since bT̂ |F̂i
= 0, 1 ≤ i ≤ 6, we have

∫
F̂i

∂v̂

∂ n̂
dŝ =

∫
F̂i

∂bT̂

∂ n̂
q̂dŝ = 0, 1 ≤ i ≤ 6.

The above linear systems can be expressed by

Â X̂ = 0,

where X̂ = (α1, α2, . . . , α6)
T ,

Â =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −1 1
5

1
5 1

0 0 1 1
5

1
5 1

0 −1 0 1
5 1 1

5

0 1 0 1
5 1 1

5

−1 0 0 1 1
5

1
5

1 0 0 1 1
5

1
5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is easy to get

det Â = 14 · 43

125
�= 0,

then X̂ = 0, namely, αi = 0, 1 ≤ i ≤ 6, and v̂ ≡ 0. 
�
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Fig. 4 Degrees of freedom of C0C2 element

4.2 C0C2 element

The shape function space of C0C2 element is taken as :

P̂C2 = P̂∗
3 ⊕ bT̂ {x̂i , x̂2

i , x̂2
i x̂i+1, x̂2

i x̂i+2, x̂3
i x̂i+1, x̂3

i x̂i+2,

1 ≤ i ≤ 3 mod 3}, (4.5)

where

P̂∗
3 = P3(T̂ ) ⊕ {x̂2

i x̂i+1 x̂i+2, x̂3
i x̂i+1, x̂3

i x̂i+2, x̂3
i x̂i+1 x̂i+2,

1 ≤ i ≤ 3, mod 3}.

The dimension of P̂C2 is 32 + 18 = 50. The degrees of freedom are given as follows:

v̂i , v̂i x̂ j , 1 ≤ i ≤ 8, 1 ≤ j ≤ 3,

∫
F̂i

∂v̂

∂ n̂
p̂dŝ, p̂ ∈ P1(F̂i ) 1 ≤ i ≤ 6, (4.6)

where v̂i = v̂(âi ), v̂i x̂ j = ∂v̂
∂ x̂ j

(âi ), 1 ≤ i ≤ 8, 1 ≤ j ≤ 3 (Fig. 4).

The corresponding interpolation operator 
̂C2 : H3(T̂ ) → P̂C2 is defined by

⎧⎪⎨
⎪⎩

(v̂ − 
̂C2v̂)(âi )=0,
∂(v̂−
̂C2v̂)

∂ x̂ j
(âi )=0, 1 ≤ i ≤ 8, 1 ≤ j ≤ 3

∫
F̂i

∂(v̂−
̂C2v̂)
∂ n̂ p̂dŝ =0, p̂ ∈ P1(F̂i ), 1 ≤ i ≤ 6.

(4.7)
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Lemma 4.2 The interpolation operator 
̂C2 is well posed, namely, the degrees of
freedom (4.6) are P̂C2-unisolvent.

Proof Because the number of the degrees of freedom (4.6) is also 50, it is sufficient
to show that if v̂ ∈ P̂C2 and

v̂i =0, v̂i x̂ j =0, 1≤ i ≤8, 1≤ j ≤3,

∫
F̂i

∂v̂

∂ n̂
p̂dŝ =0, p̂ ∈ P1(F̂i ), 1≤ i ≤6,

then v̂ ≡ 0.

Suppose that F̂i is on (x̂ j , x̂ j+1) plane, it is easy to see that

v̂|F̂i
∈ P3(F̂i ) ⊕ {x̂3

j x̂ j+1, x̂ j x̂3
j+1},

and

v̂ = ∂v̂

∂ x̂ j
= ∂v̂

∂ x̂ j+1
= 0,

at the four vertices of F̂i , it is just the construction of Adini element, then

v̂|F̂i
= 0, 1 ≤ i ≤ 6. (4.8)

By (4.5), v̂ has the following expression

v̂ = bT̂ q̂, q̂ =
3∑

i=1

(αi x̂i + αi+3 x̂2
i + αi+6 x̂2

i x̂i+1 + αi+9 x̂2
i x̂i+2

+αi+12 x̂3
i x̂i+1 + αi+15 x̂3

i x̂i+2)

Since bT̂ |F̂i
= 0, 1 ≤ i ≤ 6, we have

∫
F̂i

∂v̂

∂ n̂
p̂dŝ =

∫
F̂i

∂bT̂

∂ n̂
q̂ p̂dŝ = 0, p̂ ∈ P1(F̂i ), 1 ≤ i ≤ 6. (4.9)

We arrange (4.9) according to the following order:

(1) on F̂1, x̂3 = −1, p̂ = 1, (2) on F̂2, x̂3 = 1, p̂ = 1, (3) on F̂1, x̂3 = −1, p̂ = x̂1,
(4) on F̂2, x̂3 = 1, p̂ = x̂1, (5) on F̂1, x̂3 = −1, p̂ = x̂2, (6) on F̂2, x̂3 = 1, p̂ = x̂2,
(7) on F̂3, x̂2 = −1, p̂ = 1, (8) on F̂4, x̂2 = 1, p̂ = 1, (9) on F̂3, x̂2 = −1, p̂ = x̂1,
(10) on F̂4, x̂2 = 1, p̂ = x̂1, (11) on F̂3, x̂2 = −1, p̂ = x̂3, (12) on F̂4, x̂2 = 1,

p̂ = x̂3, (13) on F̂5, x̂1 = −1, p̂ = 1, (14) on F̂6, x̂1 = 1, p̂ = 1, (15) on F̂5,

x̂1 = −1, p̂ = x̂2, (16) on F̂6, x̂1 = 1, p̂ = x̂2, (17) on F̂5, x̂1 = −1, p̂ = x̂3,
(18) on F̂6, x̂1 = 1, p̂ = x̂3.
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(4.9) can be expressed as

Â X̂ = 0,

where X̂ = (α1, α2, . . . , α18)
T , and

Â =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −1 1
5

1
5 1 0 − 1

5 − 1
5 0 0 0 0 0 0 0 0 0

0 0 1 1
5

1
5 1 0 1

5
1
5 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 1 1
5 0 0 0 −1 − 3

7 0 0

1 0 0 0 0 0 0 0 0 1 1
5 0 0 0 1 3

7 0 0

0 1 0 0 0 0 1
5 0 0 0 0 1 0 − 3

7 0 0 0 −1

0 1 0 0 0 0 1
5 0 0 0 0 1 0 3

7 0 0 0 1

0 −1 0 1
5 1 1

5 − 1
5 0 0 0 0 − 1

5 0 0 0 0 0 0

0 1 0 1
5 1 1

5
1
5 0 0 0 0 1

5 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 1
5 1 0 − 3

7 0 0 0 −1 0

1 0 0 0 0 0 0 0 0 1
5 1 0 3

7 0 0 0 1 0

0 0 1 0 0 0 0 1 1
5 0 0 0 0 −1 0 0 0 − 3

7

0 0 1 0 0 0 0 1 1
5 0 0 0 0 1 0 0 0 3

7

−1 0 0 1 1
5

1
5 0 0 0 − 1

5 − 1
5 0 0 0 0 0 0 0

1 0 0 1 1
5

1
5 0 0 0 1

5
1
5 0 0 0 0 0 0 0

0 1 0 0 0 0 1 0 0 0 0 1
5 −1 0 0 0 − 3

7 0

0 1 0 0 0 0 1 0 0 0 0 1
5 1 0 0 0 3

7 0

0 0 1 0 0 0 0 1
5 1 0 0 0 0 0 − 3

7 −1 0 0

0 0 1 0 0 0 0 1
5 1 0 0 0 0 0 3

7 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

By some computations, we obtain

det Â = 234

75 · 56
�= 0.

Then X̂ = 0, namely, αi = 0, 1 ≤ i ≤ 18, and v̂ ≡ 0. 
�

5 Convergence analysis

For the tetrahedral mesh Th , the finite element space for the C0T 2 element is defined
by
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VhT 2 =
⎧⎨
⎩vh : vh |T ∈ PT 2, [vh]|∂T = 0,

∫
∂T

[
∂vh

∂n

]
pds = 0,

∀p ∈ P1(∂T ), ∀T ∈ Th

⎫⎬
⎭ . (5.1)

The finite element interpolation operator 
hT 2 : H4(�) → VhT 2 is defined by


hT 2|T = 
T 2, ∀T ∈ Th .

For the cuboid mesh Th , let T ∈ Th be an element with the center (x10, x20, x30)

and hT 1, hT 2, hT 3 be the lengths of T along x1, x2, x3 coordinates, respectively.
The affine transformation x = F(x̂) : T̂ → T is

xi = hT i x̂i + xi0, 1 ≤ i ≤ 3.

Under x = F(x̂), let âi ↔ ai , 1 ≤ i ≤ 8; F̂i ↔ Fi , 1 ≤ i ≤ 6; l̂i ↔ li , ĝi ↔
gi , 1 ≤ i ≤ 12; P̂C1 ↔ PC1, P̂C2 ↔ PC2; v̂(x̂) = v(x). Then the degrees of
freedom of PC1 on T are

vi , 1 ≤ i ≤ 8, v(gi ), 1 ≤ i ≤ 12,

∫
Fi

∂v

∂n
ds, 1 ≤ i ≤ 6. (5.2)

The corresponding interpolation operator 
C1 : H3(T ) → PC1 satisfies that

{
(v − 
C1v)(ai ) = 0, 1 ≤ i ≤ 8, (v − 
C1v)(gi ) = 0, 1 ≤ i ≤ 12,∫

Fi

∂(v−
C1v)
∂n ds = 0, 1 ≤ i ≤ 6.

(5.3)

It is easy to see that

(I − 
C1)v(x) = ( Î − 
̂C1)v̂(x̂), x = F(x̂). (5.4)

Namely, the interpolation operate 
C1 is affine interpolation equivalent [2].
The finite element space for C0C1 element is defined by

VhC1 =
⎧⎨
⎩vh : vh |T ∈ PC1, [vh]|∂T = 0,

∫
∂T

[
∂vh

∂n

]
ds = 0,∀T ∈ Th

⎫⎬
⎭ . (5.5)

The corresponding finite element interpolation operator 
C1 : H3(�) → VhC1 is
defined by


hC1|T = 
C1, ∀T ∈ Th .
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For C0C2 element, the degrees of freedom are :

vi , vi x j , 1 ≤ i ≤ 8, 1 ≤ j ≤ 3,

∫
Fi

∂v

∂n
pds, p ∈ P1(Fi ) 1 ≤ i ≤ 6.

(5.6)

where vi = v(ai ), vi x j = ∂v
∂x j

(ai ), 1 ≤ i ≤ 8, 1 ≤ j ≤ 3.

The corresponding interpolation operator 
C2 : H4(T ) → PC2 satisfies that⎧⎨
⎩

(v − 
C2v)(ai ) = 0,
∂(v−
C2v)

∂x j
(ai ) = 0, 1 ≤ i ≤ 8, 1 ≤ j ≤ 3∫

Fi

∂(v−
C2v)
∂n pds = 0, p ∈ P1(Fi ), 1 ≤ i ≤ 6.

(5.7)

It is easy to see that

(I − 
C2)v(x) = ( Î − 
̂C2)v̂(x̂), x = F(x̂). (5.8)

Namely, the interpolation operate 
C2 is affine interpolation equivalent [2].
The finite element space for C0C2 element is defined by

VhC2 =
⎧⎨
⎩vh : vh |T ∈ PC2, [vh]|∂T = 0,

∫
∂T

[
∂vh

∂n

]
pds = 0, ∀p ∈ P1(∂T ), ∀T ∈ Th

⎫⎬
⎭ . (5.9)

The corresponding finite element interpolation operator 
C2 : H4(�) → VhC2 is
defined by


hC2|T = 
C2, ∀T ∈ Th .

The discrete variational problems using the C0T 2, C0C1, C0C2 elements to solve
(2.1) are:

Find uhT 2 ∈ VhT 2 such that

ah(uhT 2, vh) = f (vh), ∀vh ∈ VhT 2. (5.10)

Find uhC1 ∈ VhC1 such that

ah(uhC1, vh) = f (vh), ∀vh ∈ VhC1. (5.11)

Find uhC2 ∈ VhC2 such that

ah(uhC2, vh) = f (vh), ∀vh ∈ VhC2. (5.12)
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It is easy to check that ||| · |||h is a norm of VhT 2, VhC1, VhC2, respectively, so
(5.10)–(5.12) are unisolvent by the Lax–Milgram Theorem [6].

To get the error estimates of the C0T 2, C0C1 and C0C2 elements, it is only needed
to check (H1) (H2) (H3) of Theorem 2.1.

By (3.5), (4.4) and (4.8), it is easy to prove that

VhT 2 ⊂ H1
0 (�), VhC1 ⊂ H1

0 (�), VhC2 ⊂ H1
0 (�). (5.13)

Because P3(T ) ⊂ PT 2, P2(T ) ⊂ PC1, P3(T ) ⊂ PC2, by the well-known interpolation
theorem [2,6], we have ⎧⎪⎪⎨

⎪⎪⎩
|||u − 
hT 2u|||h ≤ Ch2|u|r,�,

|||u − 
hC1u|||h ≤ Ch|u|r,�,

|||u − 
hC2u|||h ≤ Ch2|u|r,�.

(5.14)

Here u ∈ H2
0 (�) is the solution of (2.1) with the additional regularity u ∈ Hr (�),

where r = 3 for the C0C1 element and r = 4 for the C0T 2 and C0C2 elements. By
the last sets of the degrees of freedom (3.3), (5.2) and (5.6), we obtain that

⎧⎪⎨
⎪⎩

∫
F

[
∂wh
∂n

]
ds = 0, ∀F ∈ Fh, ∀wh ∈ VhC1,

∫
F p

[
∂wh
∂n

]
ds = 0, ∀F ∈ Fh, ∀p ∈ P1(F), ∀wh ∈ VhT 2 or VhC2.

(5.15)

By (5.13), (5.14), (5.15), we know that (H1) (H2) and (H3) are satisfied for C0C1
with m = 2 and for C0T 2 and C0C2 with m = 3. Then by Theorem 2.1, we obtain
the following convergence theorem for the C0T 2, C0C1 and C0C2 elements.

Theorem 5.1 Suppose that the mesh Th, into tetrahedrons for the C0T 2 element
and into cuboids for the C0C1 and C0C2 elements, is regular in the sense of (2.6),
u ∈ H2

0 (�) is the solution of (2.1) with the additional regularity u ∈ Hr (�), and
uhT 2, uhC1 and uhC2 are the solutions of (5.10)–(5.12), respectively, then⎧⎪⎪⎨

⎪⎪⎩
|||u − uhT 2|||h ≤ Ch2|u|r,�,

|||u − uhC1|||h ≤ Ch|u|r,�,

|||u − uhC2|||h ≤ Ch2|u|r,�,

(5.16)

where r = 3 for the C0C1 element and r = 4 for the C0T 2 and C0C2 elements.

6 Conclusion

In this paper, we proved an abstract convergence theorem, which builds a theoretical
frame to construct C0-nonconforming elements for the fourth order elliptic problem.
It gives a direction on how to construct nonconforming elements for the fourth order
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elliptic problem with expected convergence order. Then we presented a method to con-
struct the C0-nonconforming elements for the fourth order elliptic problem by using
the bubble functions which makes the element interpolation matrix being block lower
triangular and easy to choose the matched shape function space and degrees of free-
dom. One tetrahedral C0-nonconforming element and two cuboid C0-nonconforming
elements for the fourth-order elliptic problem in three spacial dimensions were con-
structed. The unisolvent of the degrees of freedom for these elements was proved
clearly. And we have proved that one element are first order convergent and other two
are second order convergent.

The method to construct the element with the bubble function can be used to any
dimensional fourth-order elliptic problems. Furthermore, since the elements in this
paper are C0-nonconforming elements, the convergence results can be obtained easily
for the second order elliptic problem. So it makes the application of these elements on
the fourth order elliptic perturbation problem possible. It is our ongoing work.
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