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Abstract We derive new trace inequalities for NURBS-mapped domains. In addition
to Sobolev-type inequalities, we derive discrete trace inequalities for use in NURBS-
based isogeometric analysis. All dependencies on shape, size, polynomial degree, and
the NURBS weighting function are precisely specified in our analysis, and explicit
values are provided for all bounding constants appearing in our estimates. As hexahe-
dral finite elements are special cases of NURBS, our results specialize to parametric
hexahedral finite elements, and our analysis also generalizes to T-spline-based isoge-
ometric analysis. We compare the bounding constants appearing in our explicit trace
inequalities with numerically computed optimal bounding constants, and we discuss
application of our results to a Laplace problem. We finish this paper with a brief
exploration of so-called patch-wise trace inequalities for isogeometric analysis.

Mathematics Subject Classification 65N30 · 65N12

1 Introduction

Since its introduction in 2005 by Hughes et al. [24], isogeometric analysis has emerged
as a powerful design-through-analysis technology. The underling concept behind iso-
geometric analysis is simple: utilize the same basis for finite element analysis (FEA) as
is used to describe computer-aided design (CAD) geometry. The first instantiations of
isogeometric analysis were based upon Non-Uniform Rational B-Splines (NURBS),
and isogeometric analysis has since been extended to T-spline [4,16] and subdivision
[13] discretizations. Isogeometric analysis has shown much promise in a wide variety
of application areas such as structural analysis [15,17,28], fluid-structure interaction
[5], and electromagnetism [12], and isogeometric analysis now has a firm theoretical
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260 J. A. Evans, T. J. R. Hughes

basis [6,11,21]. However, a number of research challenges remain. Among these chal-
lenges is the imposition of strong boundary conditions. Unlike Lagrange finite ele-
ments, NURBS, T-spline, and subdivision basis functions do not interpolate function
values at nodal points. Imposition of strong boundary conditions is even less straight-
forward for fourth-order systems (such as those arising in Cahn–Hilliard phase-field
models [22] and Kirchhoff plate and shell theories [25]) where strong boundary con-
ditions involving normal derivatives naturally arise. Hence, special care must be taken
in order to ensure an isogeometric discretization satisfies prescribed strong boundary
conditions.

Recently, Nitsche’s method [29] has been explored as a means of weakly enforcing
strong boundary conditions in isogeometric analysis [8,18]. This procedure has been
found to be especially powerful in isogeometric flow simulation where a close connec-
tion with so-called turbulent wall models has been discovered [7]. In Nitsche’s method,
a stabilization parameter appears which must be chosen large enough to ensure coer-
civity. Notably, the parameter should be chosen large enough such that a discrete trace
inequality is satisfied. This requirement results in Nitsche parameters which necessar-
ily depend locally on the shape of the element and the chosen discretization, but such
dependencies have not yet been made explicit in the context of isogeometric analy-
sis. In this paper, new trace inequalities for NURBS-based isogeometric analysis are
derived where all dependencies on shape, size, polynomial degree, and the NURBS
weighting function are precisely specified. Furthermore, explicit values are provided
for bounding constants appearing in our estimates and, as such, these inequalities can
be directly utilized in the design of Nitsche’s stabilization parameter.

An outline of this paper is as follows. In Sect. 2, we briefly introduce requisite
terminology and definitions. In Sect. 3, we derive a new Sobolev trace inequality for
H1 functions defined on NURBS-mapped domains. In Sect. 4, we derive discrete trace
inequalities specifically for use in NURBS-based isogeometric analysis. In Sect. 5, we
discuss the application of our discrete trace inequalities in the numerical solution of a
Laplace problem, and in Sect. 6, we conduct a short exploration of so-called patch-wise
trace inequalities for isogeometric analysis. Finally, in Sect. 7, we draw conclusions.
Before proceeding, we would like to make a couple of remarks. First of all, the focus of
this paper will be the three-dimensional setting. Similar results to those presented here
hold in the two-dimensional setting, albeit with different constants. Second, while we
only discuss NURBS-based isogeometric analysis, our results immediately apply to
any isogeometric discretization technique based on rational functions. Notably, they
apply to T-spline and parametric hexahedral finite element discretizations. Unfor-
tunately, our results do not extend to subdivision discretizations as they are not
rational.

2 Preliminaries

Throughout this paper, we make use of the classical Lebesgue spaces Lq(D) endowed
with norm ‖ · ‖Lq (D) where 1 ≤ q ≤ ∞ and D ⊂ R

d is a generic open domain for
integer d ≥ 1. We will also utilize the Sobolev spaces Hk(D) for k a positive integer,
endowed with norm
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Explicit trace inequalities for isogeometric analysis 261

‖u‖Hk (D) :=
⎛
⎝ ∑

α1+···+αd≤k

∥∥∥∥
∂α1

∂xα1
1

· · · ∂αd

∂αd xd
u

∥∥∥∥
2

L2(D)

⎞
⎠

1/2

(1)

and semi-norm

|u|Hk(D) :=
⎛
⎝ ∑

α1+···+αd=k

∥∥∥∥
∂α1

∂xα1
1

· · · ∂αd

∂αd xd
u

∥∥∥∥
2

L2(D)

⎞
⎠

1/2

. (2)

We denote by ∂ D the boundary of an open domain D ⊂ R
d , and we further denote

by ‖ · ‖L2(∂ D) the Lebesgue norm of order 2 on ∂ D. We will occasionally employ the
Sobolev spaces W k,∞(D) for k a positive integer, and we endow these spaces with
norm

‖u‖W k,∞ :=
⎛
⎝ ∑

α1+···+αd≤k

∥∥∥∥
∂α1

∂xα1
1

· · · ∂αd

∂αd xd
u

∥∥∥∥
2

L∞(D)

⎞
⎠

1/2

(3)

and semi-norm

|u|W k,∞ :=
⎛
⎝ ∑

α1+···+αd=k

∥∥∥∥
∂α1

∂xα1
1

· · · ∂αd

∂αd xd
u

∥∥∥∥
2

L∞(D)

⎞
⎠

1/2

.

Note that these are not the classically defined norms and semi-norms for the W k,∞
spaces. For matrix-valued functions M : D → R

m×n , we define a spectral L∞
operator norm

‖M‖L∞(D),l :=
∥∥∥∥∥∥

sup
x∈Rm

(∑n
j=1

(∑m
i=1 Mi j xi

)2

∑m
i=1 x2

i

)1/2
∥∥∥∥∥∥

L∞(D)

≡ ‖σmax(M)‖L∞(D) (4)

where Mi j and xi denote component-wise entries of M and x respectively and σmax
denotes maximum singular value. For third-order tensor-valued functions T : D →
R

m×n×o, we define an analogous L∞ operator norm

‖T‖L∞(D),l :=
∥∥∥∥∥∥

sup
x,y∈Rm

(∑n
j=1

(∑o
k=1

∑m
i=1 Ti jk xi yk

)2

(∑m
i=1 x2

i

) (∑o
k=1 y2

k

)
)1/2

∥∥∥∥∥∥
L∞(D)

(5)

where Ti jk denotes a component-wise entry of T. The norms defined by (4) and (5)
have been specially chosen as to simplify the analysis presented in this paper. The rest
of this section will be devoted to a brief introduction of univariate and multivariate
B-spline basis functions, NURBS basis functions, and the NURBS geometrical map F.

123



262 J. A. Evans, T. J. R. Hughes

A more complete introduction to NURBS and B-splines may be found in [30], and for
an introductory text on NURBS-based isogeometric analysis, see [14].

2.1 Univariate B-splines

For two positive integers p and n, representing degree and dimensionality respectively,
let us introduce the ordered knot vector

� := {0 = ξ1, ξ2, . . . , ξn+p+1 = 1} (6)

where

ξ1 ≤ ξ2 ≤ · · · ξn+p+1.

Given � and p, univariate B-spline basis functions are constructed recursively starting
with piecewise constants (p = 0):

B0
i (ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 otherwise.
(7)

For p = 1, 2, 3, . . ., they are defined by

B p
i (ξ) = ξ − ξi

ξi+p − ξi
B p−1

i (ξ) + ξi+p+1 − ξ

ξi+p+1 − ξi+1
B p−1

i+1 (ξ). (8)

When ξi+p − ξi = 0,
ξ−ξi

ξi+p−ξi
is taken to be zero, and similarly, when ξi+p+1 − ξi+1 =

0,
ξi+p+1−ξ

ξi+p+1−ξi+1
is taken to be zero. B-spline basis functions are piecewise polynomials

of degree p, form a partition of unity, have local support, and are non-negative.
Let us now introduce the vector ζ = {ζ1, . . . , ζm} of knots without repetitions and

a corresponding vector {r1, . . . , rm} of knot multiplicities. That is, ri is defined to be
the multiplicity of the knot ζi in �. By construction,

∑m
i=1 ri = n + p +1. We assume

that ri ≤ p + 1. Let us further assume throughout that r1 = rm = p + 1, i.e, that �

is an open knot vector. At the point ζi , B-spline basis functions have α j := p − r j

continuous derivatives. Therefore, −1 ≤ α j ≤ p − 1, and the maximum multiplicity
allowed, r j = p + 1, gives a discontinuity at ζ j . By construction, α1 = αm = −1.

2.2 Multivariate tensor-product B-splines

The definition of multivariate B-splines follows easily through a tensor-product
construction. Let us focus on the three-dimensional case. Notably, let us consider
the unit cube �̂ = (0, 1)3 ⊂ R

3, which we refer to as the patch. Mimicking
the one-dimensional case, given integers pd and nd for d = 1, 2, 3, let us intro-
duce open knot vectors �d = {ξ1,d , . . . , ξnd+pd+1,d} and the associated vectors
ζ d = {ζ1,d , . . . , ζmd ,d}, {r1,d , . . . , rmd ,d}, and αd = {α1,d , . . . , αmd ,d}. There is a
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Explicit trace inequalities for isogeometric analysis 263

parametric Cartesian mesh Qh associated with these knot vectors partitioning the
parametric domain �̂ into rectangular parallelepipeds. Visually,

Qh = {Q = ⊗d=1,2,3(ζid ,d , ζid+1,d), 1 ≤ id ≤ md − 1}. (9)

For each element Q ∈ Qh we associate a parametric mesh size hQ = hQ,max where
hQ,max denotes the length of the largest edge of Q. Also, for each element, we define
a shape regularity constant

λQ = hQ

hQ,min
(10)

where hQ,min denotes the length of the smallest edge of Q.
We associate with each knot vector �d (d = 1, 2, 3) univariate B-spline basis

functions B pd
i,d of degree pd for i = 1, . . . , nd . On the mesh Qd , we define the tensor-

product B-spline basis functions as

B p1,p2,p3
i, j,k := B p1

i,1 B p2
j,2 B p3

k,3, i = 1, . . . , n1, j = 1, . . . , n2, k = 1, . . . , n3. (11)

Like their univariate counterparts, multivariate B-spline basis functions are piecewise
polynomial, form a partition of unity, have local support, and are non-negative.

2.3 NURBS

Let us define a set of positive weights wi jk for 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, 1 ≤ k ≤ n3.
The so-called NURBS basis functions are defined to be

R p1 p2 p3
i, j,k := wi jk B p1,p2,p3

i, j,k

w
, i = 1, . . . , n1, j = 1, . . . , n2, k = 1, . . . , n3, (12)

where B p1 p2 p3
i jk are the B-spline basis functions defined in the previous subsection and

w is the weighting function defined by

w =
n1,n2,n3∑

i=1, j=1,k=1

wi jk B p1,p2,p3
i, j,k . (13)

Note that as multivariate B-spline basis functions form a partition of unity, the NURBS
basis reduces to the B-spline basis when the weights are chosen to be unity. Also note
that the NURBS basis functions are pointwise positive and form a partition of unity.

In NURBS-based isogeometric analysis, the physical domain is defined through a
NURBS geometrical mapping

F =
n1,n2,n3∑

i=1, j=1,k=1

Pi jk R p1 p2 p3
i jk (14)
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264 J. A. Evans, T. J. R. Hughes

where Pi jk ∈ R
3 are the so-called control points. F is a parametrization of the physical

domain � of interest, that is,

F : (0, 1)3 → �.

We assume throughout that F is invertible, with smooth inverse F−1, on each element
Q ∈ Qh . NURBS are capable of representing all conic sections, such as circles
and ellipses, and cylinders, spheres, tori, ellipsoids, are also exactly representable. In
general, more than one patch must be utilized to represent a chosen geometry. In this
situation, proper constraints should be enforced in order to ensure global continuity.
For more on multi-patch geometries, see Chapter 2 of [14].

For each element Q in the parametric domain there is a corresponding physical
element K = F(Q). We define the physical mesh to be

Kh = {K : K = F(Q), Q ∈ Qh} = F(Qh). (15)

We define for each physical element K ∈ Kh a physical mesh size

hK = ‖∇F‖L∞(Q),l hQ (16)

where Q is the pre-image of K and ∇F is the matrix of partial derivatives of the
coordinate components of F (i.e., (∇F)i j = ∂ Fi

∂ξ j
). We introduce the space Vh of

NURBS on � (which is the push-forward of the space of NURBS on the patch (0, 1)3)

Vh := span
{

R p1 p2 p3
i, j,k ◦ F−1

}n1,n2,n3

i=1, j=1,k=1
. (17)

In isogeometric analysis, the space Vh is utilized as the trial space in a Galerkin or
Petrov–Galerkin method. Note that the functions in Vh are smooth on each physical
element K ∈ Kh , and the NURBS basis functions and weighting function are smooth
on each parametric element Q ∈ Qh .

3 A Sobolev trace inequality for NURBS-mapped domains

Sobolev trace inequalities play an important role in the analysis of partial differential
equations and their numerical solution. Generally speaking, these inequalities involve
bounding the trace norm of a function by a constant multiplied by its interior norm. The
precise value of this constant and its dependency on domain shape and size has been
the focus of a collection of papers in the mathematics literature. Optimal Sobolev trace
constants for the half-plane were derived by Beckner [10] and Escobar [20] based on
earlier work of Lions [27]. Optimal constants for general domains were derived in [3],
but the derived constants are specified in terms of an awkward and computationally
prohibitive limiting procedure. Explicit, but not necessarily optimal, Sobolev trace
constants for simplices and parallelepipeds were presented by Vesser and Verfürth in
[32] for use in finite element a posteriori error estimation. In this section, we present
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Explicit trace inequalities for isogeometric analysis 265

a new Sobolev trace inequality for NURBS-mapped domains. This trace inequality is
completely explicit with respect to mesh size, parametric shape regularity, and local
measures of the NURBS parametric mapping F, and appropriate values are provided
for the bounding constant appearing in our estimate. It should be noted that while
the derived inequality is not necessarily sharp, special care is taken to ensure that the
estimate is easily computable for utilization in numerical simulation.

3.1 General Lipschitz domains and the unit cube

We begin with the standard Sobolev trace theorem for general Lipschitz domains. Its
proof may be found in [1], for example.

Theorem 3.1 If D ⊂ R
3 is a Lipschitz domain, then H1(D) is continuously embedded

in L2(∂ D). That is, there exists a positive constant C∗(D) such that, for all f ∈
H1(D),

‖ f ‖2
L2(∂ D)

≤ C∗(D)‖ f ‖2
H1(D)

. (18)

The constant C∗(D) appearing above necessarily depends on the domain D, but
the theorem does not explicitly specify such a dependence. In order to arrive at such a
dependence for NURBS-mapped domains, let us first present the following corollary
to Theorem 3.1.

Corollary 3.1 There exists a positive constant Cu such that, for all f ∈ H1((0, 1)3),

‖ f ‖2
L2(∂(0,1)3)

≤ Cu‖ f ‖2
H1((0,1)3)

. (19)

Note that the optimal constant appearing in (19) is precisely the maximizer of the
Rayleigh quotient

‖ f ‖2
L2(∂(0,1)3)

‖ f ‖2
H1((0,1)3)

(20)

where f ∈ H1((0, 1)3. Hence, the optimal constant is equivalent to the largest eigen-
value λmax of the generalized variational eigenproblem: find f ∈ H1((0, 1)3), λ ∈ R

+
such that

( f, g)L2(∂(0,1)3) = λ( f, g)H1((0,1)3), ∀g ∈ H1((0, 1)3). (21)

In order to arrive at the value of λmax , we have numerically solved (21) using Galerkin’s
method in conjunction with a sequence of nested tri-cubic B-spline spaces. These
computations reveal that the value of λmax , up to ten significant figures, is

λmax = 6.165748028 . . . (22)

This value provides a sharp lower bound for the constant Cu appearing in Corollary 3.1.
It is interesting that the Rayleigh quotient (20) is nearly maximized for constant f .
This is also true for the unit line and the unit square.
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266 J. A. Evans, T. J. R. Hughes

3.2 The rectangular parallelepiped

We now derive a Sobolev trace inequality for the rectangular parallelepiped by utilizing
a scaling argument. We note that the trace inequality is similar in nature to that of
Corollary 4.5 of [32], but our method of proof and final result are ultimately different.

Lemma 3.1 Let D ⊂ R
3 denote a rectangular parallelepiped whose length, width,

and height are h1, h2, and h3 respectively. Then, for all f ∈ H1(D),

‖ f ‖2
L2(∂ D)

≤ Cu M

V

(
‖ f ‖2

L2(D)
+ N | f |2H1(D)

)
(23)

where Cu is a positive constant chosen large enough such that inequality (19) of
Corollary 3.1 is satisfied and

M := max{h1h2, h2h3, h1h3},
N := max{h2

1, h2
2, h2

3},
V := h1h2h3 = the volume of D.

Proof Let f ∈ H1(D) denote an arbitrary function. We write

‖ f ‖2
L2(∂ D)

=
∫

∂ D

f 2 ds.

We now expand the surface integral. We write

∫

∂ D

f 2 ds =
∫

Dtop

+
∫

Dbottom

+
∫

Dleft

+
∫

Dright

+
∫

Dfront

+
∫

Dback

f 2 ds (24)

where Dtop denotes the top of the parallelepiped D and the other notation follows.
Before proceeding, let g : [0, 1]3 → D̄ denote the unique face-preserving affine
function mapping the (closed) unit cube onto D̄, the closure of the open domain D.
That is, g maps the top face of the unit cube to the top face of D and so on. Let us now
parameterize the surface integral using g. We write:

∫

Dtop

f 2 ds = h1h2

1∫

0

1∫

0

f 2(g(x1, x2, 1)) dx1 dx2

∫

Dbottom

f 2 ds = h1h2

1∫

0

1∫

0

f 2(g(x1, x2, 0)) dx1 dx2

∫

Dleft

f 2 ds = h2h3

1∫

0

1∫

0

f 2(g(0, x2, x3)) dx2 dx3
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∫

Dright

f 2 ds = h2h3

1∫

0

1∫

0

f 2(g(1, x2, x3)) dx2 dx3

∫

Dfront

f 2 ds = h1h3

1∫

0

1∫

0

f 2(g(x1, 0, x3)) dx1 dx3

∫

Dback

f 2 ds = h1h3

1∫

0

1∫

0

f 2(g(x1, 1, x3)) dx1 dx3.

Noting the double integrals in the above expressions correspond to integration of the
pullback F = f ◦ g over the faces of the unit cube, we may insert the above six
equations into (24) to obtain

‖ f ‖2
L2(∂ D)

≤ M
∫

∂(0,1)3

F2 dS = M‖F‖2
L2(∂(0,1)3)

(25)

where

M = max{h1h2, h2h3, h1h3}.

By Corollary 3.1,

‖F‖2
L2(∂(0,1)3)

≤ Cu

(
‖F‖2

L2((0,1)3)
+ |F |2H1((0,1)3)

)
(26)

where Cu is a positive constant chosen large enough such that (19) is satisfied. Applying
a change of variables using the inverse of g to map back from the unit cube to D, we
obtain

‖F‖2
L2((0,1)3)

= 1

V
‖ f ‖2

L2(D)
(27)

and

|F |2H1((0,1)3)
= h2

1

V
‖∂x f ‖2

L2(D)
+ h2

2

V
‖∂y f ‖2

L2(D)
+ h2

3

V
‖∂z f ‖2

L2(D)

≤ N

V
| f |2H1(D)

(28)

where V = h1h2h3 and N = max{h2
1, h2

2, h2
3}. The proof follows from combining

(25)–(28). ��
As a direct corollary of the above lemma, we have the following.

Corollary 3.2 Let D ⊂ R
3 denote a rectangular parallelepiped whose length, width,

and height are h1, h2, and h3 respectively. Let hD = max{h1, h2, h3} and let λD ≥ 1
denote the local shape regularity constant
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λD = hD

min{h1, h2, h3} . (29)

Then, for all f ∈ H1(D),

‖ f ‖2
L2(∂ D)

≤ CuλD

(
h−1

D ‖ f ‖2
L2(D)

+ hD| f |2H1(D)

)
(30)

where Cu is a positive constant chosen large enough such that (19) is satisfied.

3.3 NURBS-mapped domains

Armed with the theoretical results appearing in the previous subsection, we can finally
prove a trace inequality for H1 functions living on the physical mesh Kh which is
explicit with respect to size and shape. The inequality is a simple consequence of pull-
back operations between physical space and parametric space. Before proceeding, we
would like to remark that the trace inequality provided here naturally extends to any
rectangular parallelepiped mapped using a smooth mapping F. Hence, it extends to iso-
and subparametric hexahedral finite elements which are commonly used in practice.

Theorem 3.2 Let K ∈ Kh and let Q = F−1(K ). Then, for all f ∈ H1(K ),

‖ f ‖2
L2(∂K )

≤ CuλQλK

(
h−1

K ‖ f ‖2
L2(K )

+ hK | f |2H1(K )

)
(31)

where Cu is a positive constant chosen large enough such that (19) is satisfied, λQ is
the local shape regularity constant of Q,

λK = ‖cof(∇F)‖L∞(Q),l‖det(∇F−1)‖L∞(K )‖∇F‖L∞(Q),l , (32)

cof(∇F) is the cofactor matrix of ∇F, and det(∇F−1) is the determinant of ∇F−1.

Proof Let f ∈ H1(K ). We write

‖ f ‖2
L2(∂K )

=
∫

∂K

f 2 ds.

Let us separate the surface integral into a collection of integrals over “faces”. That is,
let us write

∫

∂K

f 2 ds =
∫

Ktop

+
∫

Kbottom

+
∫

Kleft

+
∫

Kright

+
∫

Kfront

+
∫

Kback

f 2 ds

where we have defined, for example, Ktop = F(Qtop) where Qtop is the top face of
the rectangular parallelepiped Q. Note that, by construction,

Q = ⊗d=1,2,3(ζid ,d , ζid+1,d)
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for some 1 ≤ id ≤ md − 1 where d = 1, 2, 3. We can then write the surface integral
for the top face of K as

∫

Ktop

f 2 ds =
ζi2+1,2∫

ζi2,2

ζi1+1,1∫

ζi1,1

f 2(F(ξ1, ξ2, ζi3+1,3))J (ξ1, ξ2, ζi3+1,3) dξ1 dξ2

where

J (ξ1, ξ2, ξ3) =
∣∣∣∣
∂F(ξ1, ξ2, ξ3)

∂ξ1
× ∂F(ξ1, ξ2, ξ3)

∂ξ2

∣∣∣∣ .

As DF is smooth on Q, we have that

J (ξ1, ξ2, ζi3+1,3) ≤ ‖cof(∇F)‖L∞(Q),l

for all ξ1 ∈ (ζi1,1, ζi1+1,1) and ξ2 ∈ (ζi2,2, ζi2+1,2) where cof(∇F) is the cofactor
matrix of ∇F. Thus,

∫

Ktop

f 2 ds ≤ ‖cof(∇F)‖L∞(Q),l

ζi2+1,2∫

ζi2,2

ζi1+1,1∫

ζi1,1

f 2(F(ξ1, ξ2, ζi3+1,1)) dξ1 dξ2.

Note that the remaining double integral in the above expression is precisely the surface
integral for the square of the pullback f ◦ F over the top face of Q. If we repeat the
above process for the other faces of K and sum all of the resulting expressions, we
obtain the inequality

‖ f ‖2
L2(∂K )

≤ ‖cof(∇F)‖L∞(Q),l‖ f ◦ F‖2
L2(∂ Q)

. (33)

Now let us apply the trace inequality given by Corollary 3.2. This gives

‖ f ◦ F‖2
L2(∂ Q)

≤ CuλQ

(
h−1

Q ‖ f ◦ F‖2
L2(Q)

+ hQ | f ◦ F|2H1(Q)

)
(34)

where λQ is the shape regularity constant for element Q and Cu is a positive constant
chosen large enough such that (19) is satisfied. An application of change of variables,
Hölder’s inequality (see Appendix 8), and the definition of the spectral norm for
matrices results in

‖ f ◦ F‖2
L2(Q)

≤ ‖det(∇F−1)‖L∞(K )‖ f ‖2
L2(K )

(35)

| f ◦ F|2H1(Q)
≤ ‖det(∇F−1)‖L∞(K )‖∇F‖2

L∞(Q),l | f |2H1(K )
(36)

where det(∇F−1) is the determinant of ∇F−1. Combining (33)–(36) gives

‖ f ‖2
L2(∂K )

≤ CuλQ‖cof(∇F)‖L∞(Q),l

(
C1h−1

Q ‖ f ‖2
L2(K )

+ C2hQ | f |2H1(K )

)
. (37)
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where

C1 = ‖det(∇F−1)‖L∞(K )

and

C2 = ‖det(∇F−1)‖L∞(K )‖∇F‖2
L∞(Q),l ,

and combining (37) with the definition

hK = ‖∇F‖L∞(Q),l hQ

finally gives the desired result. ��

It should be noted that the constant λQλK appearing in the above theorem is a
dimensionless measure of physical shape regularity. This can be seen by observ-
ing that ‖cof(∇F)‖L∞(Q),l is a measure of how planes in Q are expanded under
F, ‖∇F‖L∞(Q),l is a measure of how lines in Q are lengthened under F, and
‖det(∇F−1)‖L∞(K ) is an inverse measure of how volumes in Q are expanded
under F. The multiplication of these three quantities by the local parametric shape
regularity gives the physical shape regularity. Also, recall that we have a sharp
lower bound estimate for the bounding constant Cu appearing in (31). Hence,
Theorem 3.2 gives a practically computable trace constant. Finally, note that if F
is taken to be the identity mapping, then λK = 1. If we had utilized alternative
matrix norms in our analysis such as the Frobenius norm, we would have obtained
λK > 1.

Remark Technically, F is a mapping of the open set (0, 1)3 and consequently not a
vector field. That being said, ∇F is a common abuse of notation meaning DF in the
sense of calculus on manifolds [26].

4 Discrete trace inequalities for isogeometric analysis

Discrete trace inequalities belong to a special class of inverse-type inequalities which
are posed over discrete function spaces. Discrete trace inequalities play an impor-
tant role in the selection of stabilization parameters for Nitsche’s method [29], and
they also play a critical role in the design of symmetric interior penalty methods
[2,34]. Heretofore, the derivation of explicit discrete trace inequalities has been
largely limited to simplex elements [19,31,33]. In this section, we derive new explicit
discrete trace inequalities for use in NURBS-based isogeometric analysis where
all dependencies on shape, size, polynomial degree, and the NURBS weighting
function are precisely specified. As in the previous section, special care is taken
to ensure that the derived estimates are easily computable for use in numerical
simulation.
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4.1 Discrete trace inequalities for tensor-product polynomials
on rectangular parallelepipeds

We begin this section by deriving discrete trace inequalities for tensor-product poly-
nomials on rectangular parallelepipeds. In order to conduct such a derivation, we will
need the following lemma.

Lemma 4.1 Let Ph = P p1,p2,p3 denote the space of tensor-product polynomials of
degree (p1, p2, p3) defined on R

3. Then, for all ph ∈ Ph,

‖ph‖2
L2(∂(0,1)3)

≤ Cinv(p1, p2, p3)‖ph‖2
L2((0,1)3)

(38)

where
Cinv(p1, p2, p3) = 2((p1 + 1)2 + (p2 + 1)2 + (p3 + 1)2). (39)

Proof Let ph ∈ Ph . Since ph is a tensor-product polynomial of degree (p1, p2, p3),
we can write

ph(x1, x2, x3) =
p1,p2,p3∑

i=0, j=0,k=0

Ci jk Ni (x1)N j (x2)Nk(x3)

where Nl is the normalized shifted Legendre polynomial of degree l such that

1∫

0

Ni (x)N j (x) dx =
{

1 if i = j

0 else

and Ci jk ∈ R are appropriately chosen constants. By construction,

‖ph‖2
L2((0,1)3)

=
p1,p2,p3∑

i=0, j=0,k=0

C2
i jk .

Now let us decompose

‖ph‖2
L2(∂(0,1)3)

=
1∫

0

1∫

0

⎛
⎝

p1,p2,p3∑
i=0, j=0,k=0

Ci jk Ni (0)N j (x2)Nk(x3)

⎞
⎠

2

dx2 dx3

+
1∫

0

1∫

0

⎛
⎝

p1,p2,p3∑
i=0, j=0,k=0

Ci jk Ni (1)N j (x2)Nk(x3)

⎞
⎠

2

dx2 dx3

+
1∫

0

1∫

0

⎛
⎝

p1,p2,p3∑
i=0, j=0,k=0

Ci jk Ni (x1)N j (0)Nk(x3)

⎞
⎠

2

dx1 dx3
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+
1∫

0

1∫

0

⎛
⎝

p1,p2,p3∑
i=0, j=0,k=0

Ci jk Ni (x1)N j (1)Nk(x3)

⎞
⎠

2

dx1 dx3

+
1∫

0

1∫

0

⎛
⎝

p1,p2,p3∑
i=0, j=0,k=0

Ci jk Ni (x1)N j (x2)Nk(0)

⎞
⎠

2

dx1 dx2

+
1∫

0

1∫

0

⎛
⎝

p1,p2,p3∑
i=0, j=0,k=0

Ci jk Ni (x1)N j (x2)Nk(1)

⎞
⎠

2

dx1 dx2.

(40)

If we take advantage of the orthonormality properties of our shifted Legendre poly-
nomials, we can write

1∫

0

1∫

0

⎛
⎝

p1,p2,p3∑
i=0, j=0,k=0

Ci jk Ni (0)N j (x2)Nk(x3)

⎞
⎠

2

dx2 dx3

=
p2,p3∑

j=0,k=0

( p1∑
i=0

Ci jk Ni (0)

)2

.

Now we employ Theorem 3.1 of [33], which states that

| f (0)| ≤ (p + 1)‖ f ‖L2(0,1) (41)

for every polynomial f of degree p. Since
∑p1

i=0 Ci jk Ni is a polynomial of degree p1
for every j, k, we can utilize Theorem 3.1 of [33] and orthonormality to obtain

p2,p3∑
j=0,k=0

( p1∑
i=0

Ci jk Ni (0)

)2

≤ (p1 + 1)2
p2,p3∑

j=0,k=0

1∫

0

p1∑
i=0

(Ci jk Ni (x1))
2 dx1

= (p1 + 1)2
p1,p2,p3∑

i=0, j=0,k=0

C2
i jk

= (p1 + 1)2‖ph‖2
L2((0,1)3)

By repeating this process to bound the other five terms appearing in (40), we obtain
the desired expression. ��

We would like to mention that while the constant Cinv appearing in the above trace
inequality is not necessarily sharp, it is completely explicit with respect to polynomial
degree. We believe this to be a significant advantage of our derived estimate. Alterna-
tively, one can solve the generalized eigenvalue problem inferred by (38) to arrive at
an optimal bounding constant (see, for example, [23]). In Table 1, we have compared
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Table 1 Explicit values for the
bounding constant in (38) versus
the optimal value

Polynomial degree Explicit bounding Optimal bounding
(p1, p2, p3) constant constant

(0, 0, 0) 6 6

(1, 1, 1) 24 18

(2, 2, 2) 54 36

(3, 3, 3) 96 60

(4, 4, 4) 150 90

(5, 5, 5) 216 126

(6, 6, 6) 294 168

(7, 7, 7) 384 216

(8, 8, 8) 486 270

(1, 1, 2) 34 24

(1, 1, 3) 48 32

(1, 2, 2) 44 24

(1, 2, 3) 58 32

(2, 2, 3) 68 44

(2, 3, 3) 82 45.797958. . .

our explicit bounding constant with the optimal bounding constant for a wide range of
polynomial degrees. From the table, we observe that our explicit bounding constant is
of the same order of magnitude as the optimal bounding constant and scales optimally
with polynomial degree.

Lemma 4.2 Let D ⊂ R
3 denote a rectangular parallelepiped whose length, width,

and height are h1, h2, and h3 respectively, and define Ph = P p1,p2,p3 to be the space
of tensor-product polynomials of degree (p1, p2, p3). Let hD = max{h1, h2, h3} and
let λD ≥ 1 denote the local shape regularity constant

λD = hD

min{h1, h2, h3} . (42)

Then, for all ph ∈ Ph,

‖ph‖2
L2(∂ D)

≤ CinvλDh−1
D ‖ph‖2

L2(D)
. (43)

where Cinv = Cinv(p1, p2, p3) is the positive constant defined by Eq. (39).

Proof Let ph ∈ Ph . We utilize the same scaling argument as in the proof of
Lemma 3.1. Notably, letting g : [0, 1]3 → D̄ denote the unique face-preserving
affine function mapping the closed unit cube onto D̄ (the closure of D) and defining
Ph = ph ◦ g, we can write

‖ph‖2
L2(∂ D)

≤ M
∫

∂(0,1)3

(Ph)2 dS = M‖Ph‖2
L2(∂(0,1)3)
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Table 2 Explicit values for the
bounding constant in (43) versus
the optimal value

Polynomial degree (p1, p2, p3)

is chosen to be (3, 3, 3) and the
length, width, and height of the
parallelepiped are chosen to be
h1 = 1/λD , h2 = 1/λD, and
h3 = 1

Shape regularity Explicit bounding Optimal bounding
λD constant constant

1 96 60

2 192 100

4 384 180

8 768 340

16 1,536 660

32 3,072 1,300

where

M = max{h1h2, h2h3, h1h3}.

By Lemma 4.1,

‖Ph‖2
L2(∂(0,1)3)

≤ Cinv‖Ph‖2
L2((0,1)3)

where Cinv = Cinv(p1, p2, p3) is the positive constant defined by Eq. (39). A simple
change of variables formula gives

‖Ph‖2
L2((0,1)3)

= 1

h1h2h3
‖ph‖2

L2(D)

and the desired result follows by concatenating all of the above equalities and inequal-
ities. ��
In Table 2, we have compared our explicit bounding constant with the optimal bound-
ing constant for a wide range of shape regularity factors and for polynomial degree
(p1, p2, p3) = (3, 3, 3). From the table, we observe our explicit bounding constant is
of the same order of magnitude as the optimal bounding constant and scales optimally
with shape regularity.

4.2 Discrete trace inequalities for NURBS-based isogeometric analysis
with locally constant weighting function

In this subsection, we derive discrete trace inequalities for isogeometric functions
defined on NURBS-mapped domains where the weighting function is locally constant.
This setting arises frequently in practice such as when polynomial-based B-splines are
employed instead of more general NURBS discretizations. Furthermore, this setting
makes for a much more straight-forward analysis which will be expanded upon later.
We begin with the following lemma, which bounds the element trace of an isogeometric
function by its interior L2 norm.

Lemma 4.3 Let K ∈ Kh and Q = F−1(K ). Suppose that the NURBS weighting
function w, defined by (13), is chosen such that it is constant over Q. Then, for all
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uh ∈ Vh, defined in (17),

‖uh‖2
L2(∂K )

≤ CinvλQλK h−1
K ‖uh‖2

L2(K )
(44)

where Cinv = Cinv(p1, p2, p3) is the positive constant defined by (39), λQ is the
local shape regularity constant of Q, and λK is the shape regularity constant defined
by (32).

Proof Let uh ∈ Vh . To begin, we employ a change of variables from physical space to
parametric space and utilize a similar argument to that used in the proof of Theorem 3.2
to arrive at

‖uh‖2
L2(∂K )

≤ ‖cof(∇F)‖L∞(Q),l‖uh ◦ F‖2
L2(∂ Q)

.

Noting that by supposition uh ◦ F is a polynomial over Q, we invoke Lemma 4.2 to
obtain the expression

‖uh‖2
L2(∂K )

≤ CinvλQh−1
Q ‖cof(∇F)‖L∞(Q),l‖uh ◦ F‖2

L2(Q)

where Cinv = Cinv(p1, p2, p3) is the positive constant defined by (39), λQ is the local
shape regularity constant of Q, and hQ is the length of the largest side of Q. Finally,
mapping back to physical space, we have

‖uh‖2
L2(∂K )

≤ CinvλQh−1
Q ‖cof(∇F)‖L∞(Q),l‖det(∇F−1)‖L∞(K )‖uh‖2

L2(K )
.

The lemma follows by recalling the definitions of λK and hK . ��
Before proceeding, we would like to note the similarity in form between the inequal-

ities appearing in Theorem 3.2 and Lemma 4.3. Notably, both contain a bounding con-
stant, a shape regularity factor, and mesh scaling terms. Furthermore, the bounding
constants appearing in both inequalities are explicitly given.

We now present an inequality which bounds the element boundary normal derivative
of an isogeometric function by its interior H1 semi-norm. Such an inequality plays an
important role in the design and analysis of Nitsche’s method as applied to second-
order elliptic problems.

Lemma 4.4 Let K ∈ Kh and Q = F−1(K ). Suppose that the NURBS weighting
function w is chosen such that is constant over Q. Then, for all uh ∈ Vh,

‖∇uh · n‖2
L2(∂K )

≤ CBCinvλQλK h−1
K |uh |2H1(K )

(45)

where n is the unit outward-facing normal, Cinv = Cinv(p1, p2, p3) is the positive
constant defined by (39), λQ is the local shape regularity constant of Q, λK is the
shape regularity constant defined by (32),

CB = (1 + √
3‖∇F‖L∞(Q),l‖∇2F−1‖L∞(K ),l hK )2, (46)
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and ∇2F−1 is the third-order tensor-valued function

(∇2F−1)i jk = ∂2 F−1
i

∂x j∂xk
. (47)

Proof Let uh ∈ Vh . To begin, we employ a change of variables from physical space
to parametric space:

‖∇uh · n‖2
L2(∂K )

≤
∫

∂K

|∇uh |2 ds

≤ ‖cof(∇F)‖L∞(Q),l

∫

∂ Q

|(∇F−1 ◦ F)T ∇(uh ◦ F)|2 dt. (48)

Note that we cannot immediately utilize Lemma 4.2 as the components of the vector

(∇F−1 ◦ F)T ∇(uh ◦ F)

are not necessarily polynomial. For this reason, we employ the decomposition

∇F−1 ◦ F = D = D + D′ (49)

where

D = D(ξ c)

and ξ c is the centroid of Q. Inserting the decomposition (49) into (48), applying the
Cauchy–Schwarz inequality, invoking the definition of the spectral norm for matrices,
and then applying Hölder’s inequality on the resulting term involving D′, we obtain

‖∇uh · n‖2
L2(∂K )

≤ Ccof

⎛
⎜⎝

⎛
⎜⎝

∫

∂ Q

|DT ∇
(

uh ◦ F
)

|2 dt

⎞
⎟⎠

1/2

+ ‖D′‖L∞(Q),l |uh ◦ F|H1(∂ Q)

⎞
⎟⎠

2

where

Ccof = ‖cof(∇F)‖L∞(Q),l
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We can now finally invoke Lemma 4.2, giving us the result

‖∇uh · n‖2
L2(∂K )

≤ CtraceCcof

⎛
⎜⎝

⎛
⎜⎝

∫

Q

|DT ∇
(

uh ◦ F
)

|2dξ

⎞
⎟⎠

1/2

+ ‖D′‖L∞(Q),l |uh ◦ F|H1(Q)

⎞
⎟⎠

2

(50)

where

Ctrace = Cinv(p1, p2, p3)λQh−1
Q .

Again invoking the decomposition (49), the Cauchy–Schwarz inequality, the definition
of the spectral norm for matrices, and Hölder’s inequality, we obtain

⎛
⎜⎝

∫

Q

|DT ∇
(

uh ◦ F
)

|2dξ

⎞
⎟⎠

1/2

≤
⎛
⎜⎝

∫

Q

|DT ∇
(

uh ◦ F
)

|2dξ

⎞
⎟⎠

1/2

+‖D′‖L∞(Q),l |uh ◦ F|H1(Q). (51)

By concatenating (50) and (51), we arrive at

‖∇uh · n‖2
L2(∂K )

≤ CtraceCcof

⎛
⎜⎝

⎛
⎜⎝

∫

Q

|DT ∇
(

uh ◦ F
)

|2 dξ

⎞
⎟⎠

1/2

+2‖D′‖L∞(Q),l |uh ◦ F|H1(∂ Q)

⎞
⎟⎠

2

(52)

Note that a change of variables gives

⎛
⎜⎝

∫

Q

|DT ∇
(

uh ◦ F
)

|2 dξ

⎞
⎟⎠

1/2

≤ ‖det(∇F−1)‖1/2
L∞(K )|uh |H1(K ) (53)

and (36) gives

|uh ◦ F|H1(Q) ≤ ‖det(∇F−1)‖1/2
L∞(K )‖∇F‖L∞(Q),l |uh |H1(K ). (54)
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To complete the proof, we recognize that, by Taylor’s theorem,

‖D′‖L∞(Q),l = ‖D − D‖L∞(Q),l

≤
√

3

2
hQ‖∇D‖L∞(Q),l

≤
√

3

2
hQ‖∇F‖L∞(Q),l‖∇2F−1‖L∞(K ),l

≤
√

3

2
hK ‖∇2F−1‖L∞(K ),l (55)

Combining (52)–(55) with the definitions of the physical mesh size hK and the physical
shape regularity constant λK results in the desired final expression. ��

Note that if we take the physical mesh size hK → 0 and keep the parametric
mapping F fixed, the constant CB appearing in the above theorem will tend to 1.0.
Hence, we recover a similar inequality to that appearing in Lemma 4.3. This suggests
that we may be able to ignore in practice higher-order terms due to the nonlinear
geometrical mapping.

By employing a similar method of proof to that of Lemma 4.4, we can obtain
discrete trace inequalities for higher-order boundary derivatives. For example, we can
show that for a given element K ∈ Kh with Q = F−1(K ),

‖
uh‖2
L2(∂K )

≤ CBCinvλQλK h−1
K ‖uh‖2

H2(K )

for every uh ∈ Vh where

CB = 1 + O(hK ).

Such an inequality plays an important role in the design and analysis of Nitsche’s
method as applied to fourth-order elliptic problems. It can be shown that the explicit
form for the constant CB appearing in the above inequality is substantially more
complicated than the corresponding constant appearing in Lemma 4.4, and this trend
only worsens with further differentiation. Moreover, note that a full H2 norm appears
rather than just the H2 semi-norm. However, in practice, it may be sufficient to replace
CB with 1.0.

Note that when the parametric mapping F exhibits a singularity, the constants
appearing in the discrete trace inequalities given by Lemmata 4.3 and 4.4 blow up.
This blow up is expected. Indeed, in the presence of a parametric singularity, the
functions uh ∈ Vh no longer lie in H1(K ). This lack of regularity can be remedied
by coalescing degrees of freedom (see Section 4.2 and Appendix 10.A of [14] for
examples). This coalescence is analogous to the degenerated element concept. An
alternate analysis must be conducted in order to derive trace inequalities which do not
blow up for these configurations. Such an analysis is beyond the scope of the current
paper.
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4.3 Discrete trace inequalities for NURBS-based isogeometric analysis
with general weighting function

Finally, we are ready to derive discrete trace inequalities for NURBS-based isogeo-
metric analysis with general weighting function. We begin with the following theorem,
which is a straight-forward extension of Lemma 4.3 to the general setting.

Theorem 4.1 Let K ∈ Kh and Q = F−1(K ). Then, for all uh ∈ Vh,

‖uh‖2
L2(∂K )

≤ CwCinvλQλK h−1
K ‖uh‖2

L2(K )
(56)

where Cinv = Cinv(p1, p2, p3) is the positive constant defined by (39), λQ is the local
shape regularity constant of Q, λK is the shape regularity constant defined by (32),
and

Cw =
∥∥∥∥

1

w

∥∥∥∥
2

L∞(Q)

‖w‖2
L∞(Q). (57)

Proof The proof proceeds in a similar manner to that of Lemma 4.3. Let uh ∈ Vh . We
employ a change of variables from physical space to parametric space to arrive at

‖uh‖2
L2(∂K )

≤ ‖cof(∇F)‖L∞(Q),l‖uh ◦ F‖2
L2(∂ Q)

.

Now, we utilize Hölder’s inequality to obtain

‖uh‖2
L2(∂K )

≤ ‖cof(∇F)‖L∞(Q),l

∥∥∥∥
1

w

∥∥∥∥
2

L∞(Q)

‖w(uh ◦ F)‖2
L2(∂ Q)

.

Noting that w(uh ◦ F) is a polynomial over Q, we invoke Lemma 4.2 to obtain the
expression

‖uh‖2
L2(∂K )

≤ CinvλQh−1
Q ‖cof(∇F)‖L∞(Q),l

∥∥∥∥
1

w

∥∥∥∥
2

L∞(Q)

‖w(uh ◦ F)‖2
L2(Q)

where Cinv = Cinv(p1, p2, p3) is the positive constant defined by (39), λQ is the local
shape regularity constant of Q, and hQ is the length of the largest side of Q. Finally,
using Hölder’s inequality again and then mapping back to physical space, we have

‖uh‖2
L2(∂K )

≤ CwCinvλQh−1
Q ‖cof(∇F)‖L∞(Q),l‖det(∇F−1)‖L∞(K ),l‖uh‖2

L2(K )

where

Cw =
∥∥∥∥

1

w

∥∥∥∥
2

L∞(Q)

‖w‖2
L∞(Q) .

The lemma follows by recalling the definitions of λK and hK . ��

We now present an extension of Lemma 4.4 to the general setting.
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Theorem 4.2 Let K ∈ Kh and Q = F−1(K ). Then, for all uh ∈ Vh,

‖∇uh · n‖2
L2(∂K )

≤ CN CinvλQλK h−1
K |uh |2H1(K )

(58)

where Cinv = Cinv(p1, p2, p3) is the positive constant defined by (39), λQ is the local
shape regularity constant of Q, λK is the shape regularity constant defined by (32),

CN =
(

C1/2
1 + C1/2

2

)2
, (59)

C1 = CB

∥∥∥∥
1

w

∥∥∥∥
2

L∞(Q)

(
‖w‖L∞(Q) + π−1Cdet‖∇F−1‖L∞(K ),l |w|W 1,∞(Q) hK

)2
,

(60)

C2 =
(

π−1Cdet‖∇F−1‖L∞(K ),l

∣∣∣∣
1

w

∣∣∣∣
W 1,∞(Q)

‖w‖L∞(Q)hK

)2

, (61)

CB =
(

1 + √
3‖∇F‖L∞(Q),l‖∇2F−1‖L∞(K ),l hK

)2
, (62)

and
Cdet = ‖det(∇F)‖1/2

L∞(Q)‖det(∇F−1)‖1/2
L∞(K ). (63)

Proof Let uh ∈ Vh . We employ a change of variables from physical space to para-
metric space to arrive at

‖∇uh · n‖2
L2(∂K )

≤
∫

∂K

|∇uh |2 ds

≤ ‖cof(∇F)‖L∞(Q),l

∫

∂ Q

|DT ∇
(

uh ◦ F
)

|2 dt

≤ ‖cof(∇F)‖L∞(Q),l

∫

∂ Q

∣∣∣∣DT ∇
(

1

w
w(uh ◦ F)

)∣∣∣∣
2

dt (64)

where we have denoted

D = ∇F−1 ◦ F.

The product rule gives

∇
(

1

w
w(uh ◦ F)

)
= 1

w
∇

(
w(uh ◦ F)

)
+ w(uh ◦ F)∇

(
1

w

)

which in conjunction with (64) and the Cauchy–Schwarz inequality provides the
expression

‖∇uh · n‖2
L2(∂K )

≤ (A1/2 + B1/2)2 (65)
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where

A = ‖cof(∇F)‖L∞(Q),l

∫

∂ Q

∣∣∣∣
1

w
DT ∇(w(uh ◦ F))

∣∣∣∣
2

dt

and

B = ‖cof(∇F)‖L∞(Q),l

∫

∂ Q

∣∣∣∣w(uh ◦ F)DT ∇
(

1

w

)∣∣∣∣
2

dt.

Invoking Hölder’s inequality and the definition of the spectral norm for matrices, we
can write

A ≤ ‖cof(∇F)‖L∞(Q),l

∥∥∥∥
1

w

∥∥∥∥
2

L∞(Q)

∫

∂ Q

∣∣∣DT ∇(w(uh ◦ F))

∣∣∣2
dt (66)

and

B ≤ ‖cof(∇F)‖L∞(Q),l

∣∣∣∣
1

w

∣∣∣∣
2

W 1,∞(Q)

‖∇F−1‖2
L∞(K ),l‖w(uh ◦ F)‖2

L2(∂ Q)
(67)

where we have taken advantage of our special definition for the W 1,∞ semi-norm. We
now proceed on separate paths to bound the A and B terms. We begin with the A term
(66). Using an argument identical to the one appearing in the proof of Lemma 4.4, we
obtain the bound

A ≤ CBCinvλQλK h−1
K

∥∥∥∥
1

w

∥∥∥∥
2

L∞(Q)

|(w ◦ F−1)uh |2H1(K )

where Cinv = Cinv(p1, p2, p3) is the positive constant defined by (39), λQ is the local
shape regularity constant of Q, λK is the shape regularity constant defined by (32),
and

CB =
(

1 + √
3‖∇F‖L∞(Q),l‖∇2F−1‖L∞(K ),l hK

)2
.

The product-rule, Cauchy–Schwarz, and Hölder’s then give

A ≤ CBCinvλQλK h−1
K

∥∥∥∥
1

w

∥∥∥∥
2

L∞(Q)

(
A1/2

1 + A1/2
2

)2
(68)

where

A1 = ‖w‖2
L∞(Q)|uh |2H1(K )
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and

A2 = |w|2W 1,∞(Q)
‖∇F−1‖2

L∞(K ),l‖uh‖2
L2(K )

.

We now proceed to bounding the B term. Recalling (67) and employing Lemma 4.2,
we have

B ≤ CinvλQh−1
Q ‖cof(∇F)‖L∞(Q),l

∣∣∣∣
1

w

∣∣∣∣
2

W 1,∞(Q)

‖∇F−1‖2
L∞(K ),l‖w(uh ◦ F)‖2

L2(Q)
.

Invoking Hölder’s inequality, we further write

B ≤ CinvλQh−1
Q ‖cof(∇F)‖L∞(Q),l

∣∣∣∣
1

w

∣∣∣∣
2

W 1,∞(Q)

‖w‖2
L∞(Q)‖∇F−1‖2

L∞(K ),l‖uh ◦ F‖2
L2(Q)

.

We finally map back to physical space, obtaining the expression

B ≤ CinvλQλK h−1
K

∣∣∣∣
1

w

∣∣∣∣
2

W 1,∞(Q)

‖w‖2
L∞(Q) ‖∇F−1‖2

L∞(K ),l‖uh‖2
L2(K )

. (69)

Collecting Eqs. (65), (68), and (69) and rearranging terms, we have

‖∇uh · n‖2
L2(∂K )

≤ CinvλQλK h−1
K ( Ã1/2 + B̃1/2)2 (70)

where

Ã=CB

∥∥∥∥
1

w

∥∥∥∥
2

L∞(Q)

(
‖w‖L∞(Q) |uh |H1(K )+|w|W 1,∞(Q) ‖∇F−1‖L∞(K ),l‖uh‖L2(K )

)2

and

B̃ =
(∣∣∣∣

1

w

∣∣∣∣
W 1,∞(Q)

‖w‖L∞(Q) ‖∇F−1‖L∞(K ),l‖uh‖L2(K )

)2

.

Our objective is to bound the ‖uh‖L2(K ) terms in Ã and B̃ with terms proportional to
|uh |H1(K ). We recognize that

‖∇uh · n‖2
L2(∂K )

= ‖∇(uh − zh) · n‖2
L2(∂K )

(71)

for all constant zh ∈ Vh . Let us choose zh to be equal to

zh = 1

|Q|
∫

Q

(uh ◦ F) dξ
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where |Q| is the volume of the parallelepiped Q. Using change of variables and
Hölder’s inequality, we have

‖uh − zh‖L2(K ) ≤ ‖det(∇F)‖1/2
L∞(Q)‖uh ◦ F − zh‖L2(Q).

Since zh is equal to the average of uh ◦F over Q, we can employ Poincaré’s inequality
for a rectangular parallelepiped domain [9] to further write

‖uh − zh‖L2(K ) ≤ π−1hQ‖det(∇F)‖1/2
L∞(Q)|uh ◦ F|H1(Q).

Finally, we map back to K :

‖uh − zh‖L2(K ) ≤ π−1hK ‖det(∇F)‖1/2
L∞(Q)‖det(∇F−1)‖1/2

L∞(K )|uh |H1(K ). (72)

By replacing uh with uh − zh in (70) and applying inequality (72), we obtain the
desired final expression. ��

Note that if we take the physical mesh size hK → 0 and keep the paramet-
ric mapping F fixed, the constant CN appearing in the above theorem will tend to∥∥ 1

w

∥∥2
L∞(Q)

‖w‖2
L∞(Q). Hence, we recover a similar inequality to that appearing in

Theorem 4.1 with mesh refinement. This suggests that we may be able to ignore in
practice higher-order terms due to the nonlinear geometrical mapping. Moreover, if
the NURBS weighting function is chosen such that it is locally constant, we recover
the inequality appearing in Lemma 4.4. Finally, by employing a similar method of
proof to that of Theorem 4.2, we can obtain discrete trace inequalities for higher-order
boundary derivatives. For example, we can show that for a given element K ∈ Kh

with Q = F−1(K ),

‖
uh‖2
L2(∂K )

≤ CN CinvλQλK h−1
K ‖uh‖2

H2(K )

for every uh ∈ Vh where

CN =
∥∥∥∥

1

w

∥∥∥∥
2

L∞(Q)

‖w‖2
L∞(Q) + O(hK ).

5 Application to a Laplace problem

In this section, we discuss the application of our explicit trace inequalities in the numer-
ical solution of a simple Laplace problem driven by Dirichlet boundary conditions:
given g : ∂� → R, find u : � → R such that

− 
u = 0 in � (73)

u = g on ∂�. (74)
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As was discussed in the introduction, strong imposition of Dirichlet boundary condi-
tions is cumbersome and non-intuitive in NURBS-based isogeometric analysis. Unlike
Lagrange finite elements, NURBS basis functions do not interpolate function values at
nodal points. Strong imposition of Dirichlet boundary conditions is made even more
difficult to implement in the context of complex, three-dimensional geometries. For
this reason, we choose to instead utilize Nitsche’s method [29] as a means of weakly
enforcing the Dirichlet boundary conditions appearing in our boundary value problem.
The corresponding discrete problem is as follows: find uh ∈ Vh such that

bh(uh, vh) = lh(vh), ∀vh ∈ Vh (75)

where

bh(uh, vh) =
∫

�

∇uh · ∇vh dx −
∫

∂�

(∇uh · n)vh ds −
∫

∂�

(∇vh · n)uh ds

+
∑

K

CK

∫

∂K

uhvh I∂� ds (76)

and

lh(vh) = −
∫

∂�

(∇vh · n)g ds +
∑

K

CK

∫

∂K

gvh I∂� ds (77)

in which n denotes the outward pointing normal to ∂�, CK denotes an element-wise
tunable parameter, and

I∂�(s) =
{

1 if s ∈ ∂�

0 otherwise.
(78)

It is easily shown that the discrete formulation given by (75) is consistent. The
following lemma provides sufficient lower bounds for CK in order to ensure ellip-
ticity.

Lemma 5.1 Suppose that, for every element K ∈ Kh,

CK ≥ 4CN CinvλQλK h−1
K (79)

where Cinv = Cinv(p1, p2, p3) is the positive constant defined by (39), λQ is the local
shape regularity constant of Q, λK is the shape regularity constant defined by (32),
and CN is the positive constant defined by (59). Then

bh(vh, vh) ≥ 1

2
‖vh‖2

E (80)
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where

‖vh‖E =
⎛
⎝|vh |2H1(K )

+
∑

K

CK

∫

∂K

|vh |2 I∂� ds

⎞
⎠

1/2

. (81)

Proof Let vh ∈ Vh . By definition, we have

bh(vh, vh) =
∫

�

|∇vh |2 dx − 2
∫

∂�

(∇vh · n)vh ds +
∑

K

CK

∫

∂K

|vh |2 I∂� ds. (82)

An application of Young’s inequality yields

∫

∂�

(∇vh · n)vh ds ≤
∑

K

1

CK

∫

∂K

|∇vh · n|2 I∂� ds +
∑

K

CK

4

∫

∂K

|vh |2 I∂� ds.

(83)

By Theorem 4.2 and (79), we can write

∫

∂�

(∇vh · n)vh ds ≤ 1

4
|vh |2H1(K )

+
∑

K

CK

4

∫

∂K

|vh |2 I∂� ds. (84)

Collecting all of our inequalities, we arrive at the desired estimate. ��
Under reasonable regularity assumptions, it is a simple exercise to show that the

discrete solution of the Laplace problem converges to the exact solution when CK

scales inversely with the local mesh size and the hypothesis of the above lemma is
satisfied. Furthermore, optimal error estimates in both the H1-norm and the L2-norm
can be derived. To verify these estimates, we have numerically solved a Laplace prob-
lem subject to Dirichlet boundary conditions on a three-dimensional quarter annulus.
The inner radius of the quarter annulus is taken to be one and the outer radius and
height of the quarter annulus are taken to be two. The exact solution, taken to be
u = sin(x) exp(y), is visualized in Fig. 1. In accordance with Lemma 5.1, we utilized
a penalty parameter of

CK = 4CN CinvλQλK h−1
K

in our numerical simulations. We ignored the higher-order terms appearing in CN in
calculating the penalty parameter CK , and we approximated all max-norm quantities
by sampling at Gauss quadrature points. As is standard in isogeometric analysis, we
employed p +1 quadrature points per element in each parametric direction. In Fig. 2a
and b, we have plotted the H1 error and L2 error versus the mesh size for C p−1-
continuous NURBS discretizations of uniform degree p = 2, 3, 4. From the given
plots, it is apparent that the discrete solution optimally converges to the exact solution
in both the H1-norm and the L2-norm.
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Fig. 1 Exact solution of the Laplace problem on a three-dimensional quarter annulus

6 Patch-wise trace inequalities

The trace inequalities that have been discussed so far in this paper have been element-
wise in nature. It is an immediate corollary of these inequalities that analogous trace
inequalities exist at the global patch-wise level, with possibly smaller trace constants.
In what follows, we consider discrete trace inequalities of the form:

‖uh‖2
L2(∂�)

≤ C patch‖uh‖2
L2(�)

. (85)

We further restrict ourselves to the two-dimensional setting, setting � = (0, 1)2.
In Table 3, we have, for uniform C p−1-continuous B-spline discretizations, listed
optimal values for the bounding constant in (85) normalized by the global mesh size h.
Note that for polynomial degrees p > 0, the optimal normalized bounding constant
decreases in magnitude as the patch increases in size. Furthermore, for the higher-
refined meshes, it appears that the optimal normalized bounding constant linearly
scales with p in contrast with the standard quadratic scaling. To better see this trend,
we have graphically depicted the normalized optimal bounding constants in Fig. 3.
From this plot, it is evident that for a given patch size, the optimal bounding constant
pre-asymptotically scales like p and asymptotically scales like p2. The theoretical
tools employed in this paper are unable to explain this pre-asymptotic behavior, and
we surmise that any successful analytical investigation will likely require a B-spline
analogue of orthogonal polynomials. Such an investigation is beyond the scope of the
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(a)

(b)

Fig. 2 Error of the discrete solution of the Laplace problem: a H1 error, b L2 error

current paper. We have found that the enhanced pre-asymptotic behavior exhibited
by B-spline discretizations of maximal continuity is not shared for low-continuity
discretizations.

7 Conclusions

In this paper, we have derived new trace inequalities for use in NURBS-based isogeo-
metric analysis. All dependencies on shape, size, polynomial degree, and the NURBS
weighting function are precisely specified in our analysis, and explicit values are
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Table 3 Optimal values for the bounding constant in (85) normalized by the global mesh size h

Polynomial
degree

1 × 1 Mesh 2 × 2 Mesh 4 × 4 Mesh 8 × 8 Mesh 16 × 16 Mesh

0 6 6 6 6 6

1 12 8 7 6.93. . . 6.93. . .

2 24 16 13.71. . . 13.36. . . 13.35. . .

3 40 26 21.74. . . 20.92. . . 20.86. . .

4 60 38 30.91. . . 29.40. . . 29.24. . .

5 84 52 41.14. . . 38.64. . . 38.32. . .

6 112 68 52.40. . . 48.55. . . 48.01. . .

7 144 86 64.68. . . 59.08. . . 58.23. . .

8 180 106 77.98. . . 70.19. . . 68.93. . .

9 220 128 92.28. . . 81.86. . . 80.05. . .

10 264 152 107.59. . . 94.07. . . 91.56. . .

Fig. 3 Optimal values for the bounding constant in (85) normalized by the global mesh size h

provided for all bounding constants appearing in our estimates. Consequently, these
inequalities can be directly utilized in the design of stabilization parameters appear-
ing in Nitsche’s method, an attractive candidate for the weak enforcement of strong
boundary conditions in isogeometric analysis. As hexahedral finite elements are spe-
cial cases of NURBS, our results specialize to parametric hexahedral finite elements.
Moreover, as our results are local in the sense that they apply element-wise, our analy-
sis generalizes to T-spline-based isogeometric analysis. We compared the bounding
constants appearing in our explicit inequalities with numerically computed optimal
bounding constants and found that our explicit bounding constants scale optimally with
both polynomial degree and shape regularity. We finished this paper with a numerical
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investigation of trace inequalities on the patch level which revealed that patch-wise
optimal trace constants pre-asymptotically scale like p in contrast with the standard
quadratic scaling provided that B-spline discretizations of maximal continuity are
employed. A theoretical exploration of this phenomena is underway.

Acknowledgments J.A. Evans and T.J.R. Hughes were partially supported by the Office of Naval
Research under Contract No. N00014-08-0992. This support is gratefully acknowledged.

8 Appendix A: An alternate Hölder inequality

Lemma A.1 Let D ⊂ R
d denote an open domain for d a positive integer. If f ∈

L∞(D) and g ∈ L2(D), then

‖ f g‖L2(D) ≤ ‖ f ‖L∞(D)‖g‖L2(D). (86)

Proof Let f ∈ L∞(D) and g ∈ L2(D). By construction,

‖ f g‖L2(D) = ‖ f 2g2‖1/2
L1(D)

.

By the classical Hölder Inequality,

‖ f g‖L2(D) ≤ (‖ f 2‖L∞(D)‖g2‖L1(D))
1/2

= (‖ f ‖2
L∞(D)‖g‖2

L2(D)
)1/2

= ‖ f ‖L∞(D)‖g‖L2(D). (87)

��
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