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Abstract We present a mixed finite element method for the thin film epitaxy problem.
Comparing to the primal formulation which requires C2 elements in the discretization,
the mixed formulation only needs to use C1 elements, by introducing proper dual
variables. The dual variable in our method is defined naturally from the nonlinear term
in the equation, and its accurate approximation will be essential for understanding the
long-time effect of the nonlinear term. For time-discretization, we use a backward-
Euler semi-implicit scheme, which involves a convex–concave decomposition of the
nonlinear term. The scheme is proved to be unconditionally stable and its convergence
rate is analyzed.
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1 Introduction

Molecular beam epitaxy (MBE) [11,12] is a technology of depositing high-purity
crystalline films with atomic thicknesses onto the surface of a base material. One dis-
tinguishing feature of MBE is the slow deposition rate of atoms or molecules, which
allows the thin film on surface to grow epitaxially, or in other words, to grow as orga-
nized high-quality crystal. In this process, it is essential to have precise control on the
surface morphology during epitaxial growth. This requires mathematical modeling,
over multiple temporal and spatial scales, of particle adsorption, desorption, surface
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diffusion, and step dynamics (the Ehrlich–Schwoebel barrier). Many different models,
describing part or all of the above-mentioned physical phenomena, have been devel-
oped. Generally speaking, these models can be classified into three categories. The
atomistic models [13,26,38] describe molecular dynamics using kinetic Monte Carlo
methods. However, their applicability is limited due to high computational costs. The
continuum models ([28,29,32,33,36,37,42,45] and references therein) are based on
partial differential equations and the conservation of mass. They are able to capture
large scale features of the crystal growth, and hence are interesting to physicists and
mathematicians as well. There are also the hybrid models [9,22] that seek a compro-
mise between atomistic and continuum models.

Here we consider a continuum model. Although the continuum model contains
many inherent simplifications and heuristics, it can still provide a unique insight into
the long-term evolution of the physical problem, especially into certain types of insta-
bilities during the epitaxial growth. For decades, there have been large amount of
research work on building the continuum model for thin film epitaxial growth. Most
of them are conducted by physicists. Only in recent years, there has been an emerg-
ing trend of mathematician’s involvement in this area. Most of these mathematical
research has been focused on the existence, uniqueness and regularity of the solution
to different types of governing evolution equations for MBE.

In 2002, Blömker and Gugg [6] have proved the global existence of the solution
to a solid-on-solid model equation derived from [41]. The proof is based on Galerkin
approximation and a priori estimates, using techniques similar to the proof of 2D
Navier–Stokes equations. Later, Hoppe and Nash [24] proposed a combined spectral
element/finite element approach for Blömker and Gugg’s model. In 2003, King, Stein
and Winkler [27] have studied the existence, uniqueness and regularity of the fourth-
order governing equation proposed by Ortiz, Repetto and Si [36]. Their proof is based
on an asymptotic analysis. However, the continuum model that probably has received
most of the attention from mathematicians is a simplification with linearized surface
diffusion [28,30–33]. In [28], Kohn and Yan proved there is an upper bound of the
averaged coarsening rate for this model with finite Ehrlich–Schwoebel barrier and with
slope selection. Another important work was done by Li and Liu [32], in which they
have proved the well-posedness of the model for finite Ehrlich–Schwoebel barrier,
with or without slope selection. The proof is based on a Galerkin spectral approxima-
tion and its a priori bounds. Numerical results using this spectral method are presented.
Also given in [32] is the regularity of the global solution, which lays the foundation for
further numerical study of the model problem. For the case of finite Ehrlich–Schwoebel
barrier without slope selection, Li and Liu in another paper [33] has obtained two main
theoretical results. First, by using the energy method and the convexity argument, they
have derived the bounds for several important physical quantities including the inter-
face width, average slope and average energy. These theoretical predictions agree with
heuristic arguments. Second, by using the perturbation theory, they have shown that the
system evolves in such a way that it always stays close to a sequence of periodic equi-
libria. In [30,31], Li has made further progress by generalizing the above results to the
case of infinite Ehrlich–Schwoebel barriers and also for higher-order surface diffusion.

Numerical schemes for the simplified model problem proposed in [32] has been
studied in [10,43–45], for the finite Ehrlich–Schwoebel barrier case, either with or
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without slope selection. All these previous research are based on the primal formula-
tion. In [10], an energy-stable semi-implicit scheme, which has linear implicit parts,
was developed for the without-slope-selection case only. In [43], an unconditionally
stable semi-implicit scheme has been developed for both with and without slope selec-
tion cases. In [44], a fully implicit, stable scheme was analyzed for the without-slope-
selection case only. And in [45], the authors studied the time-stability of the large time-
stepping method. We mention that for the semi-implicit schemes presented in [10,43],
a convex–concave decomposition is the key to the time-stability analysis. Indeed, we
will also use this technique in our numerical method, and details shall be given later.

In this paper, we consider a mixed finite element method for the model problem, for
the finite Ehrlich–Schwoebel barrier case and either with or without slope selection,
as presented in [32]. Let Ω be a rectangular domain and u(x, t) be the height function
of the thin film. The thin film epitaxy problem defined on Ω × (0, T ] can be written as

∂t u = −δΔ2u + ∇ · ∇FG(∇u)

= ∇ · [∇FG(∇u) − δ∇Δu] , (1)

where δ is a positive constant, ∇F is the Fréchet gradient, and G(∇u) is defined by

G(∇u) =
⎧
⎨

⎩

− 1
2 ln(1 + |∇u|2) without slope selection,

1
4 (|∇u|2 − 1)2 with slope selection.

It is easy to check that their Fréchet gradients are, respectively

∇FG(∇u) =
⎧
⎨

⎩

− ∇u
1+|∇u|2 without slope selection,

(|∇u|2 − 1)∇u with slope selection.

Throughout the paper, we adopt the convention that a bold Latin or Greek character
denotes a vector. Let n be the unit outward normal on ∂Ω . To close the problem, we
impose the following initial and boundary conditions. At t = 0, let u = u0. Two
different type of boundary conditions will be considered:

1. Dirichlet boundary condition. Let u = ∂u
∂n = 0 on ∂Ω for all time t .

2. Periodic boundary condition, where u is Ω-periodic for all time t . Since u is unique
up to a constant, it is convenient to set it to be mean value zero.

Obviously, the initial condition u0 should satisfy the same boundary condition for
compatibility.

We adopt the usual notation Hs(Ω) for the Sobolev space with index s, equipped
with the norm ‖ · ‖Hs (Ω) and sometimes also the semi-norm | · |Hs (Ω). When s =
0, H0(Ω) coincides with L2(Ω), and for simplicity of the notation, we suppress the
subscript in ‖ · ‖L2(Ω) and denote the norm by ‖ · ‖. Denote (·, ·) to be the L2 inner-
product on Ω . Define L p(0, T ; Hs(Ω)), 1 ≤ p ≤ ∞, to be the space of functions
which are Hs in space and L p in time. Finally, notice that all these notations can easily
be extended to vector functions, by using product spaces. For convenience, when it
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is not ambiguous, some notations for product spaces will appear the same as those
for a single space. For example, we write ‖∇u‖H1(Ω) instead of ‖∇u‖(H1(Ω))2 , and
‖∇u‖L∞(0,T ;H1(Ω)) instead of ‖∇u‖L∞(0,T ;(H1(Ω))2).

For the periodic boundary problem, it has been proved [32] that for u0 ∈
Hs(Ω), s ≥ 2,

the initial-boundary value problem of (1) has a unique solution u,

u ∈ L∞(0, T ; Hs(Ω)) ∩ L2(0, T ; Hs+2(Ω)),

∂t u ∈ L2(0, T ; Hs−2(Ω)). (2)

Such a result has not yet been proved for the Dirichlet boundary problem. However,
the analysis in this paper will be based on the existence and regularity assumption (2),
which is known to be true for at least the periodic boundary problem.

An important observation is that, the operator G can be decomposed into a convex
(+) and a concave (−) part [43]:

G(w) = G+(w) + G−(w),

such that the Fréchet Hessian ∇2
F

G+ and ∇2
F

G− are positively and negatively semi-
definite, respectively. Moreover, similar to [43], we assume both ∇2

F
G+(w) and

∇2
F

G−(w) have at most polynomial growth inw, that is, there exists a positive integer
m such that

|∇2
F

G+(w)| + |∇2
F

G−(w)| ≤ CG(1 + |w|m), (3)

where CG is a positive constant independent of w, |w| is the vector 2-norm and
|∇2

F
G+(w)|, |∇2

F
G−(w)| are matrix 2-norms. An example of such a decomposition is

to simply set [43]

G−(w) = −1

2
|w|2, G+(w) = G(w) − G−(w). (4)

Then ∇2
F

G+ and ∇2
F

G− are positively and negatively semi-definite, respectively, and
satisfy Inequality (3). Furthermore, it is easy to check that for both with and without
slope selection, the decomposition defined in (4) satisfies

G+(w) ≥ 0 (5)

and

(∇FG(w) − ∇FG(ϕ),w − ϕ)

= (∇FG+(w) − ∇FG+(ϕ),w − ϕ) + (∇FG−(w) − ∇FG−(ϕ),w − ϕ)

≥ (∇FG−(w) − ∇FG−(ϕ),w − ϕ)

= −‖w − ϕ‖2. (6)
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The convex–concave decomposition defined above is essential in developing stable
numerical schemes for problem (1). In the time discretization, the convex term will
be approximated implicitly and the concave term explicitly. Such technique has been
widely used in the time-discretization for Cahn–Hilliard equations [14,15,17–21].
For the thin film epitaxy problem, the use of convex–concave decomposition was
first proposed in [43] for discretizing the primal formulation of problem (1). In this
paper, we shall combine this decomposition with the mixed finite element method,
and develop stable numerical schemes.

Although many ideas are borrowed from the previous research on primal finite
element methods for the thin file epitaxy problem, we would like to point out that, the
analysis of mixed finite element methods is quite different, due to its different finite
element space settings. The time-stability and convergence analysis in this paper is
relatively complicated. We are not sure whether an easier proof is possible or not, or
whether a better convergence rate estimate can be achieved. The main contribution of
this paper lies in that, it is the first in developing a mixed finite element method for
thin film epitaxy model (1). New schemes, ideas and tools are introduced. Notice that
the model problem (1) is essentially a fourth-order equation. A mixed formulation
will break the fourth-order equation into more than one lower-order equations, hence
avoiding the use of C1 conforming or non-conforming finite elements in the numerical
approximation. Also, as it will be explained in the next section, our mixed method
involves a dual variable ∇u, which provides a natural and accurate approximation to
the nonlinear term G(∇u).

The paper is organized as follows. In Sect. 2, we introduce a mixed formulation for
problem (1). Its finite element discretization, together with its time-stability, will be
discussed in Sect. 3. Finally, in Sect. 4, we analyze the convergence rate of the discrete
scheme.

2 The mixed formulation

In this section, we consider a mixed formulation for Eq. (1). Equation (1) is essentially
a time-dependent fourth-order problem with a nonlinear second order term. Let us first
recall the mixed formulation for the biharmonic problem

Δ2u = f.

One popular method [39] is to define w = Δu. Then the biharmonic problem can be
rewritten into

{
w − Δu = 0,

Δw = f.

Another [23,25] is to define w = ∇u,λ = Δw and it gives

⎧
⎪⎨

⎪⎩

w − ∇u = 0,

λ− Δw = 0,

∇ · λ = f,
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where the last equation follows from ∇ · (Δw) = Δ(∇ · w) = Δ2u. This mixed
formulation is similar to the reduced integration method proposed in [25,35] for the
biharmonic problem, which is also a popular numerical method for approximating
the Reissner-Mindlin plate problems [1–4,7,8,16]. Indeed, we will use some existing
theoretical results from these works. However, our analysis shall concentrate on the
nonlinear well-posedness and the time-stability issue.

Since the nonlinear term in Eq. (1) depends solely on ∇u, it will be natural to use
the second mixed formulation. Indeed, by definingw = ∇u and λ = δΔw−∇FG(w),
Equation (1) can be rewritten into

⎧
⎪⎨

⎪⎩

−δΔw + ∇FG(w) + λ = 0,

∂t u + ∇ · λ = 0,

w − ∇u = 0.

(7)

It is not hard to see that for the Dirichlet boundary problem,w = 0 on the boundary,
and for the periodic boundary problem,w = ∇u is also periodic and each of its entries
has mean value zero in Ω . Let Ċ∞

per (Ω) be the space of infinitely differentiable periodic

functions with mean value zero in Ω . Define H1
per (Ω) to be the closure of Ċ∞

per (Ω)

in H1(Ω). Denote spaces

S =
{

H1
0 (Ω) for the Dirichlet boundary problem,

H1
per (Ω) for the periodic boundary problem,

and Q = (L2(Ω))2. We have the Poincaré inequality in S, that is, there exists a
positive constant C such that

‖v‖ ≤ C‖∇v‖ for all v ∈ S.

By testing system (7) with (v,ϕ,μ) ∈ S × S2 × Q, we end up with the following
weak formulation: find (u,w,λ) ∈ L2(0, T ; S) × L2(0, T ; S2) × L2(0, T ; Q) such
that

⎧
⎪⎨

⎪⎩

δ(∇w,∇ϕ) + (∇FG(w),ϕ) + (λ,ϕ) = 0 for all ϕ ∈ S2,

(∂t u, v) − (λ,∇v) = 0 for all v ∈ S,

−(w − ∇u,μ) = 0, for all μ ∈ Q,

(8)

almost everywhere for t ∈ (0, T ]. Notice that the weak solution should satisfy the
initial condition

u|t=0 = u0, w|t=0 = ∇u0, λ|t=0 = δΔ(∇u0) − ∇FG(∇u0).

Hence by the compatibility requirement, the entire mixed formulation is well-posed
only when

u0 ∈ H2(Ω) and δΔ(∇u0) − ∇FG(∇u0) ∈ L2(Ω). (9)
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This is mainly because of the introduction of the auxiliary variable λ. For simplicity,
we assume u0 ∈ H3(Ω) in this paper, which is enough to guarantee (9).

Theorem 2.1 Given u0 ∈ H3(Ω), system (8) has a unique weak solution.

Proof The existence of the solution follows from the existence and regularity assump-
tio n (2). By defining w = ∇u and λ = δΔw − ∇FG(w), one immediately ends up
with a weak solution for (8).

The uniqueness of the solution follows from a stability result: let u(i)
0 ∈ H3(Ω), i =

1, 2, be two initial data, and (u(i),w(i),λ(i)) be the corresponding weak solutions. Then

‖u(1)−u(2)‖L∞(0,T ;L2(Ω))+‖w(1)−w(2)‖L2(0,T ;H1(Ω)) ≤C(δ, T )‖u(1)
0 −u(2)

0 ‖L2(Ω),

where C(δ, T ) is a positive constant. Next, we shall prove this stability result.
Denote ũ = u(1) − u(2), w̃ = w(1) − w(2) and λ̃ = λ(1) − λ(2). Clearly,

⎧
⎪⎨

⎪⎩

δ(∇w̃,∇ϕ) + (∇FG(w(1)) − ∇FG(w(2)),ϕ) + (λ̃,ϕ) = 0,

(∂t ũ, v) − (λ̃,∇v) = 0,

−(w̃ − ∇ũ,μ) = 0.

By setting ϕ = w̃, v = ũ and μ = λ̃, and adding up all three equations, one gets

1

2

d

dt
‖ũ‖2 + δ‖∇w̃‖2 + (∇FG(w(1)) − ∇FG(w(2)), w̃) = 0.

By the lower bound (6), we have

1

2

d

dt
‖ũ‖2 + δ‖∇w̃‖2 ≤ (w̃, w̃) = (∇ũ, w̃)

= −(ũ,∇ · w̃) ≤ ‖ũ‖ (2‖∇w̃‖)
≤ 2

δ
‖ũ‖2 + δ

2
‖∇w̃‖2.

The stability result then follows from the Gronwall’s inequality. This completes the
proof of the theorem. 	


3 Finite element discretization

We use the rectangular finite element spaces defined in [23] to discretize the mixed
problem (8). Given a quasi-uniform rectangular mesh Th in Ω with characteristic mesh
size h. Define Sh ∈ S and Qh ∈ Q as follows:

Sh = {v ∈ S, v|K ∈ Q1(K ) for all K ∈ Th},
Qh = {μ ∈ Q,μ|K =

(
a + by
c + dx

)

for all K ∈ Th},

123



778 W. Chen, Y. Wang

where Q1(K ) is the space of bilinear polynomials on K . It is clear that ∇Sh ⊂ Qh .
Let Ih : S ∩ H2(Ω) → Sh be the nodal value interpolation and Ph : Q → Qh be
the L2 orthogonal projection. We have the following approximation properties [23]:

‖v − Ihv‖ + h‖∇(v − Ihv)‖ ≤ Ch2|v|H2(Ω) for all v ∈ S ∩ H2(Ω),

‖μ− Phμ‖ ≤ Ch|μ|H1(Ω) for all μ ∈ (H1(Ω))2,

(∇(v − Ihv),μh) ≤ Ch2|v|H3(Ω)‖μh‖ for all v ∈ S ∩ H3(Ω)

and all μh ∈ Qh,

(10)

where C > 0 is a general constant independent of h.
Now we are able to introduce a fully-discrete scheme for the mixed problem (8).

A convex-splitting semi-implicit scheme will be considered, whose main idea is to
use implicit time discretization in G+ and the fourth-order term, and to use explicit
time discretization in G−. Such an idea has been used in [14,15,17–21] for the Cahn–
Hilliard flow, and in [43] for the primal formulation of the thin film epitaxy.

Denote (un
h,wn

h,λn
h) ∈ Sh × S2

h × Qh to be the approximation to the weak solution
at time tn = nΔt , the discrete problem for (8) can be written as:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

δ(∇wn+1
h ,∇ϕh) + (∇FG+(wn+1

h ),ϕh) + (λn+1
h ,ϕh)

= −(∇FG−(wn
h),ϕh) for all ϕh ∈ S2

h ,
(

un+1
h −un

h
Δt , vh

)
− (λn+1

h ,∇vh) = 0 for all vh ∈ Sh,

ε(λn+1
h ,μh) − (wn+1

h − ∇un+1
h ,μh) = 0, for all μh ∈ Qh,

(11)

where ε = O(h2) is a penalty constant which is needed to ensure the solvability of the
discrete problem [23,25]. Notice that given un+1

h andwn+1
h ,λn+1

h is uniquely solvable
from the third equation of (11). In other words, the third equation can be decoupled
from the system.

Equation (11) is a stabilized formulation. In practice, any stabilized finite element
spaces [23,25,35] for fourth-order elliptic equations can be used to discretize problem
(8) and the discretization leads to system (11). There are also stable finite element
spaces available for the mixed formulation of Reissner–Mindlin plate [1–4,7,8,16],
which can be adopted for discretizing problem (8). However, here we prefer the stabi-
lized finite elements, because system (11) can easily be reduced to a simple minimiza-
tion problem, which will be discussed later. The drawback is that, the stabilization
term limits the finite element approximation rate. In the future, researchers can work
towards increasing the approximation rate or adopting stable finite elements.

Define functional

Fn+1(u,w,λ) =
∫

Ω

(

G+(w) + δ

2
|∇w|2 +

[
(w − ∇u) · λ− ε

2
|λ|2

]

+ 1

2Δt
|u|2 + ∇FG−(wn

h) · w − 1

Δt
un

hu

)

dx .
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Then the Fréchet gradient ∇FFn+1 = 0, which can be written as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
Fn+1

u (u,w,λ)
]
(vh) = d

dk Fn+1(u + kvh,w,λ)
∣
∣
k=0 = 0 for all vh ∈ Sh,

[
Fn+1
w (u,w,λ)

]
(ϕh) = d

dk Fn+1(u,w + kϕh,λ)
∣
∣
k=0 = 0 for all ϕh ∈ S2

h ,

[Fn+1
λ (u,w,λ)](μh) = d

dk Fn+1(u,w,λ+ kμh)
∣
∣
k=0 = 0 for all μh ∈ Qh,

leads to exactly system (11) when being expanded. Indeed, given (un
h,wn

h), the solu-
tion (un+1

h ,wn+1
h ,λn+1

h ) for system (11) can be characterized as the solution to the
following saddle point problem

min
u ∈ Sh

w ∈ S2
h

max
λ∈ Qh

Fn+1(u,w,λ). (12)

It is not hard to see that maxλ∈ Qh
Fn+1(u,w,λ) is reached at λ = Ph(w − ∇u)/ε,

hence the saddle problem (12) is also equivalent to the following minimization problem

min
u ∈ Sh
w ∈ S2

h

Fn+1(u,w) (13)

where

Fn+1(u,w) =
∫

Ω

(

G+(w) + δ

2
|∇w|2 + 1

2ε
|Ph(w − ∇u)|2

+ 1

2Δt
|u|2 + ∇FG−(wn

h) · w − 1

Δt
un

hu

)

dx .

Therefore, to prove the existence and uniqueness of the solution to problem (11),
we only need to show that problem (13) has a unique solution. Indeed, we have the
following theorem:

Theorem 3.1 Given (un
h,wn

h), the minimization problem (13) has a unique solution
at tn+1.

Proof The minimization problem is an unconstrained convex optimization problem on
finite dimensional spaces. According to the standard theory [5], we only need to prove
the coercivity, which implies that Fn+1(u,w) goes to infinity as ‖u‖H1 or ‖w‖H1

goes to infinity, and the strict convexity of Fn+1(u,w).
We first prove the coercivity of Fn+1(u,w). Let c1 be a positive constant such that

c1‖w‖2 ≤ δ

2
‖∇w‖2 for all w ∈ S2

h .

This is possible because of the Poincaré inequality. Then, by using the Schwarz inequal-
ity and the Young’s inequality,
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Fn+1(u,w) ≥
∫

Ω

(

G+(w) + δ

2
|∇w|2 + 1

2ε
|Ph(w − ∇u)|2 + 1

2Δt
|u|2

− 1

2c1
|∇FG−(wn

h)|2 − c1

2
|w|2 − 1

Δt
|un

h |2 − 1

4Δt
|u|2

)

dx

≥
∫

Ω

(
δ

4
|∇w|2 + 1

2ε
|Ph(w − ∇u)|2 + 1

4Δt
|u|2 − β

)

dx,

where β is a constant depending only onwn
h and un

h . Let c2 > 1 be a constant satisfying

c2 − 1

2ε
‖Phw‖2 ≤ δ

8
‖∇w‖2 for all w ∈ S2

h .

Again, this is possible by the stability of the L2 projection Ph and the Poincaré
inequality. Clearly, c2 is independent of the mesh size h. Then, since Ph∇u = ∇u for
all u ∈ Sh ,

Fn+1(u,w) ≥
∫

Ω

(
δ

4
|∇w|2 + 1

2ε
(|Phw|2 − 2Phw · ∇u + |∇u|2)

+ 1

4Δt
|u|2 − β

)

dx,

≥
∫

Ω

(
δ

4
|∇w|2 + 1

2ε

(

(1 − c2)|Phw|2 +
(

1 − 1

c2

)

|∇u|2
)

+ 1

4Δt
|u|2 − β

)

dx,

≥
∫

Ω

(
δ

8
|∇w|2 + c2 − 1

2εc2
|∇u|2 + 1

4Δt
|u|2 − β

)

dx .

This completes the proof of coercivity.
Next, we prove that the functional Fn+1(u,w) is strictly convex on Sh × S2

h , then
the minimization problem (13) admits a unique solution. This can be done by showing
that the Hessian of Fn+1 is positively definite. Indeed, for any (v, ϕ) ∈ Sh × S2

h ,

∇FFn+1(u,w)

(
v

ϕ

)

= d

dk
Fn+1(u + kv,w + kϕ)

∣
∣
∣
∣
k=0

=
∫

Ω

[

∇FG+(w) · ϕ + δ∇w · ∇ϕ + 1

ε
Ph(w − ∇u) · Ph(ϕ − ∇v)

+ 1

∇t
uv + ∇FG−(wn

h) · ϕ − 1

Δt
un

hv

]

dx .
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Therefore

[

∇2
F

Fn+1(u,w)

(
v

ϕ

)] (
v

ϕ

)

= d

dk

(

∇FFn+1(u + kv,w + kϕ)

(
v

ϕ

)) ∣
∣
∣
∣
k=0

= d

dk

∫

Ω

[

∇FG+(w + kϕ) · ϕ + δ∇(w + kϕ) · ∇ϕ

+1

ε
Ph (w − ∇u + k(ϕ − ∇v)) · Ph(ϕ − ∇v)

+ 1

∇t
(u + kv)v + ∇FG−(wn

h) · ϕ − 1

Δt
un

hv

]

dx

∣
∣
∣
∣
k=0

=
∫

Ω

[

ϕ · ∇2
F

G+(w) · ϕ + δ|∇ϕ|2 + 1

ε
|Ph(ϕ − ∇v)|2 + 1

Δt
v2

]

dx

≥
∫

Ω

[

δ|∇ϕ|2 + 1

ε

(

(1 − c3)|Phϕ|2 +
(

1 − 1

c3

)

|∇v|2
)

+ 1

Δt
v2

]

dx

≥
∫

Ω

[
δ

2
|∇ϕ|2 + c3 − 1

εc3
|∇v|2 + 1

Δt
v2

]

dx

≥ min

(
δ

2
,

c3 − 1

εc3

)

(‖∇ϕ‖2 + ‖∇v‖2),

where c3 > 1 is a constant satisfying

c3 − 1

ε
‖Phϕ‖2 ≤ δ

2
‖∇ϕ‖2 for all ϕ ∈ S2

h .

Finally, by applying the Poincaré inequality, we have shown that Fn+1(u,w) is strictly
convex. This completes the proof of the theorem. 	


Next, we show that the numerical scheme is time-stable. Let (un
h,wn

h,λn
h) be the

solution to problem (11). Define an “energy” functional

En =
∫

Ω

(

G(wn
h) + δ

2
|∇wn

h |2 + 1

2ε
|Ph(wn

h − ∇un
h)|2

)

dx

=
∫

Ω

(

G(wn
h) + δ

2
|∇wn

h |2 + ε

2
|λn

h |2
)

dx .

Note that by definition, G(wn
h) is always non-negative in the case with slope selection,

but is negative in the case without slope selection. However, even when G(wn
h) is

negative, as long as En satisfies certain conditions, it can still be considered an “energy”
functional and thus be used to prove the time-stability. We shall explain this in details
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below. For the case with slope selection, clearly,

En ≥
∫

Ω

(
δ

2
|∇wn

h |2 + ε

2
|λn

h |2
)

dx . (14)

Now consider the case without slope selection. Using elementary Calculus, one can
show that for any constant c > 0 and x ≥ 0,

cx − 1

2
ln(1 + x) ≥

{
1
2 − c + 1

2 ln(2c) > 1
2 ln(2c) for 0 < c < 1

2

0 for c ≥ 1
2

.

Set c = δ/4, then the “energy” functional En for the case without slope selection
satisfies

En ≥ |Ω| min

{
1

2
ln

δ

2
, 0

}

+
∫

Ω

(
δ

4
|∇wn

h |2 + ε

2
|λn

h |2
)

dx

≥
∫

Ω

(
δ

4
|∇wn

h |2 + ε

2
|λn

h |2
)

dx − Cδ, (15)

where |Ω| is the measure of domain Ω , and Cδ is a non-negative constant that only
depends on δ and Ω . We point out that such an observation has been used before
in [43] to define a similar “energy” functional for thin film epitaxy in the primal
formulation. Next, we prove that the “energy” functional En is non-increasing and
thus the numerical scheme (11) is time-stable.

Theorem 3.2 The energy functional En is non-increasing in time. Indeed,

En+1 ≤ En − 1

2Δt
‖un+1

h − un
h‖2. (16)

Consequently,

‖un
h‖2

H1(Ω)
+ ‖wn

h‖2
H1(Ω)

+ ε‖λn
h‖2 ≤ C, (17)

where C is a positive constant depending on Ω, δ and E0, but not on h, n or Δt .

Proof Since Fn+1(un+1
h ,wn+1

h ) ≤ Fn+1(un
h,wn

h), we have

En+1 +
∫

Ω

(

−G−(wn+1
h ) + 1

2Δt
|un+1

h |2 + ∇FG−(wn
h) · wn+1

h − 1

Δt
un

hun+1
h

)

dx

≤ En +
∫

Ω

(

−G−(wn
h) + 1

2Δt
|un

h |2 + ∇FG−(wn
h) · wn

h − 1

Δt
|un

h |2
)

dx .
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Then, Inequality (16) follows from

∫

Ω

(G−(wn+1
h ) − G−(wn

h) − ∇FG−(wn
h) · (wn+1

h − wn
h)) dx

=
∫

Ω

((∇FG−(wn
h + s1(w

n+1
h − wn

h)) − ∇FG−(wn
h)) · (wn+1

h − wn
h)) dx

=
∫

Ω

s1(w
n+1
h − wn

h) · ∇2
F

G−(wn
h + s2(w

n+1
h − wn

h)) · (wn+1
h − wn

h) dx

≤ 0,

where 0 ≤ s2 ≤ s1 ≤ 1 are constants from the mean-value theorem.
For (17), by using (14) and (15), we only need to prove that ‖un

h‖H1(Ω) is bounded.
This is because

‖un
h‖2

H1(Ω)
≤ C‖∇un

h‖2 = C‖Phw
n
h − ελn

h‖2 ≤ C‖wn
h‖2 + Cε2‖λn

h‖2.

As long as ε ≤ O(1), Inequality (17) is true. 	


4 Convergence

In this section, we analyze the convergence rate of the fully-discrete, mixed finite
element approximation (11). Notice that the well-posedness and time-stability results
in the previous section is proved for arbitrary convex–concave decomposition G =
G++G−. However, for the convergence rate, so far we limit our analysis for the special
decomposition defined in (4). Convergence rate analysis for general convex–concave
decomposition can be non-trivial.

Let (u,w, λ) be the solution to (8) and (un
h,wn

h,λn
h) be the solution to (11). Denote

un = u(·, tn),wn = w(·, tn) and λn = λ(·, tn). Define the error terms

un = un − un
h, wn = wn − wn

h, λn = λn − λn
h .

By subtracting (11) from (8), we have

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

δ(∇wn+1,∇ϕh) + (∇FG+(wn+1) − ∇FG+(wn+1
h ),

ϕh) + (λn+1,ϕh) = −(∇FG−(wn+1) − ∇FG−(wn
h),ϕh) for all ϕh ∈ S2

h ,

(∂t un+1 − un+1
h −un

h
Δt , vh) − (λn+1,∇vh) = 0 for all vh ∈ Sh,

−ε(λn+1
h ,μh) − (wn+1 − ∇un+1,μh) = 0, for all μh ∈ Qh .

(18)

We first introduce several technical lemmas. For simplicity, use C to denote a
general positive constant that depends only on δ, CG , m,Ω, T, ‖u‖L∞(0,T ;H3(Ω)),

‖w‖L∞(0,T ;H2(Ω)), ‖λ‖L∞(0,T ;H1(Ω)) and E0.
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Lemma 4.1 ‖∇FG+(wn) − ∇FG+(wn
h)‖ ≤ C‖∇wn‖.

Proof In two-dimension, H1(Ω) is continuously embedded in the Hölder space
Lq(Ω) for all 1 ≤ q < ∞. By Assumption (3), the Sobolev embedding theorem,
Poincaré inequality, and Inequality (17),

‖∇FG+(wn) − ∇FG+(wn
h)‖

≤
∥
∥
∥
∥ max

0≤s≤1
|∇2

F
G+(swn + (1 − s)wn

h)| |wn|
∥
∥
∥
∥

≤ C
∥
∥(1 + |wn|m + |wn

h |m)|wn|∥∥
≤ C(1 + ‖wn‖m

L4m (Ω)
+ ‖wn

h‖m
L4m (Ω)

)‖wn‖L4(Ω)

≤ C(1 + ‖wn‖m
H1(Ω)

+ ‖wn
h‖m

H1(Ω)
)‖∇wn‖

≤ C(1 + ‖w‖m
L∞(0,T ;H1(Ω))

)‖∇wn‖.

Here w is the solution to the mixed problem (8). By the regularity assumption (2),
‖w‖L∞(0,T ;H1(Ω)) is bounded as long as u0 ∈ H3(Ω). This completes the proof of
the lemma. 	

Lemma 4.2 ‖∇un‖ ≤ ‖wn‖ + C(h + √

ε).

Proof Note that by definition, ∇un = wn . By Eq. (11) and the fact that λn
h ∈

Qh,∇un
h ∈ Qh , we have

0 = Ph(ελn
h − wn

h + ∇un
h) = ελn

h − Phw
n
h + ∇un

h .

Combining the above and using the triangle inequality, the property of the L2 orthog-
onal projection Ph , and Inequality (17),

‖∇un‖ = ‖∇un − ∇un
h‖ = ‖wn − (Phw

n
h − ελn

h)‖
≤ ‖wn‖ + ‖(I − Ph)wn

h‖ + ε‖λn
h‖ ≤ ‖wn‖ + C(h + √

ε).

	

Lemma 4.3 Let G− be defined as in (4), then

1

4
(3‖∇wn+1‖2 − ‖∇wn‖2) + ε

2δ
‖Phλ

n+1‖2

≤ C

(

h2 + h4

ε
+ ε

)

+ CΔt

tn+1∫

tn

‖wt (·, s)‖2 ds + C‖un+1‖2

−2

δ
(∇un+1, Phλ

n+1).

123



A mixed finite element method for thin film epitaxy 785

Proof For all ψh ∈ S2
h ,

‖∇(wn+1 − ψh)‖2

= ‖∇wn+1‖2 + ‖∇(wn+1
h − ψh)‖2 + 2(∇wn+1,∇(wn+1

h − ψh)).

By setting ψh to be the nodal value interpolation of wn+1 and the test function ϕh =
wn+1

h − ψh in (18), we have

‖∇wn+1‖2

≤ ‖∇(wn+1 − ψh)‖2 − 2(∇wn+1,∇(wn+1
h − ψh))

≤ Ch2 + 2

δ
(∇FG+(wn+1) − ∇FG+(wn+1

h ),wn+1
h − ψh)

+2

δ
(λn+1,wn+1

h − ψh) + 2

δ
(∇FG−(wn+1) − ∇FG−(wn

h),wn+1
h − ψh)

≤ Ch2 + 2

δ
(∇FG+(wn+1) − ∇FG+(wn+1

h ),wn+1 − ψh)

+2

δ
(λn+1,wn+1

h − ψh) + 2

δ
(∇FG−(wn+1) − ∇FG−(wn

h),wn+1
h − ψh)

= Ch2 + I1 + I2 + I3, (19)

where the second last step follows from the fact that G+ is convex.
For I1, by Lemma 4.1, we have

I1 ≤ C‖∇FG+(wn+1) − ∇FG+(wn+1
h )‖ ‖wn+1 − ψh‖

≤ C‖∇wn+1‖ ‖wn+1 − ψh‖
≤ Ch2. (20)

Now we consider I2. By the triangle inequality, Schwarz inequality, Poincaré
inequality, and the Young’s inequality, we have

(λn+1,wn+1
h − ψh) = (λn+1 − Phλ

n+1,wn+1
h − ψh)

+(Phλ
n+1,wn+1

h − wn+1) + (Phλ
n+1,wn+1 − ψh)

≤ ‖(I − Ph)λn+1‖(‖wn+1
h − wn+1‖ + ‖wn+1 − ψh‖)

+(Phλ
n+1,wn+1

h − wn+1) + ε

4
‖Phλ

n+1‖2 + 1

ε
‖wn+1 − ψh‖2

≤ δ

16
‖∇wn+1‖2 + 1

2
‖wn+1 − ψh‖2 + C‖(I − Ph)λn+1‖2

+(Phλ
n+1,wn+1

h − wn+1) + ε

4
‖Phλ

n+1‖2 + 1

ε
‖wn+1 − ψh‖2

≤ δ

16
‖∇wn+1‖2 + C

(

h2 + h4

ε

)

+ ε

4
‖Phλ

n+1‖2

+(Phλ
n+1,wn+1

h − wn+1).
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By setting μh = Phλ
n+1 in (18), we have

(Phλ
n+1,wn+1

h − wn+1)

= ε(λn+1
h , Phλ

n+1) − (∇un+1, Phλ
n+1)

= −ε‖Phλ
n+1‖2 + ε(Phλ

n+1, Phλ
n+1) − (∇un+1, Phλ

n+1)

≤ −ε

2
‖Phλ

n+1‖2 + ε

2
‖Phλ

n+1‖2 − (∇un+1, Phλ
n+1)

≤ −ε

2
‖Phλ

n+1‖2 + Cε − (∇un+1, Phλ
n+1).

Combining the above, we have

I2 ≤ 1

8
‖∇wn+1‖2 + C

(

h2 + h4

ε
+ ε

)

− ε

2δ
‖Phλ

n+1‖2 − 2

δ
(∇un+1, Phλ

n+1).

(21)

Finally, we consider I3. The analysis of I3 depends on the definition of G−. It is
not trivial to get an upper bound of I3 when G− satisfying only (3), without making
further assumptions. However, if G− is defined as in (4), then ∇FG−(w) = −w and
the analysis is given as following:

I3 = C(wn
h − wn+1,wn+1

h − ψh)

= C((wn − wn+1,wn+1 − ψh) − (wn − wn+1,wn+1)

+(wn,wn+1) − (wn,wn+1 − ψh))

≤ Ch2 + C(wn+1 − wn,wn+1) + C‖wn‖ ‖wn+1 − ψh‖
+C((I − Ph)wn,wn+1) + C(Phw

n,wn+1)

≤ Ch2 + C(wn+1 − wn,wn+1) + 1

16
‖∇wn+1‖2 + C(Phw

n,wn+1).

Notice that by (18), the triangle inequality, Schwarz inequality, Poincaré inequality,
Young’s inequality, Theorem 3.2 and Lemma 4.2,

C(Phw
n,wn+1)

= C((∇un+1, Phw
n) − ε(λn+1

h , Phw
n))

= C((∇un+1,wn) − (∇un+1, (I − Ph)wn) − ε(λn+1
h ,wn))

= C(−(un+1,∇ · wn) − (∇un+1, (I − Ph)wn) − ε(λn+1
h ,wn))

≤ 1

4
‖∇wn‖2 + C‖un+1‖2 + Cε2‖λn+1

h ‖2

+C(‖wn+1‖ + C(h + √
ε))‖(I − Ph)wn‖

≤ 1

4
‖∇wn‖2 + C‖un+1‖2 + 1

32
‖∇wn+1‖2 + C(h2 + ε).
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Also,

C(wn+1 − wn,wn+1) = C

⎛

⎝

tn+1∫

tn

wt (·, s) ds, wn+1

⎞

⎠

≤ C

tn+1∫

tn

‖wt (·, s)‖ ‖wn+1‖ ds

≤ 1

32
‖∇wn+1‖2 + CΔt

tn+1∫

tn

‖wt (·, s)‖2 ds.

Combining the above,

I3 ≤ CΔt

tn+1∫

tn

‖wt (·, s)‖2 ds + 1

4
‖∇wn‖2 + 1

8
‖∇wn+1‖2

+C‖un+1‖2 + C(h2 + ε). (22)

Combining (19), (20), (21), (22), we have proved the lemma. 	

Finally, we are able to prove the main result of this section. The following dis-

crete Gronwall’s inequality will be needed [34]: let yn, an, bn, cn , be non-negative
sequences satisfying

yn + Δt
n∑

i=1

ai ≤ y0 + Δt
n∑

i=1

(bi yi + ci )

with Δtbi < 1, then

yn + Δt
n∑

i=1

ai ≤ eCbΔt
∑n

i=1 bi

(

Δt
n∑

i=1

ci + y0

)

,

where Cb = max0≤i≤n(1 − Δtbi )−1.

Theorem 4.4 Let G− be defined as in (4). Then there exists a constant C independent
of h or ε such that for O(h2) ≤ Δt ≤ C,

‖un‖2 +
n∑

i=1

Δt‖∇wi‖2 +
n∑

i=1

Δtε‖Phλ
i‖2

≤ CeCtn

⎛

⎝‖u0‖2 + Δt‖∇w0‖2 + Δtε‖Phλ
0‖2 + tn

(

h2 + h4

ε
+ ε

)

+Δt2

tn∫

0

(‖utt (·, s)‖2 + ‖wt (·, s)‖2) ds

⎞

⎠. (23)
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Here again, all general constant C may depend on δ, CG , m,Ω, ‖u‖L∞(0,T ;H3(Ω)),

‖w‖L∞(0,T ;H2(Ω)), ‖λ‖L∞(0,T ;H1(Ω)) and E0, but not on h,Δt or ε.

Proof By setting vh = Ihun+1 in (18), we have

1

Δt
(un+1 − un, Ihun+1) = (λn+1,∇(Ihun+1)) − (ξn+1, Ihun+1)

= (Phλ
n+1,∇(Ihun+1)) − (ξn+1, Ihun+1), (24)

where the local truncation error ξn+1 is

ξn+1 = ∂t u
n+1 − un+1 − un

Δt
= 1

Δt

tn+1∫

tn

(s − tn)utt (·, s) ds.

By the Schwarz inequality, Lemma 4.2, Poincaré inequality and Young’s inequality,
it is not hard to see that

(ξn+1, Ihun+1)

≤ 1

Δt

tn+1∫

tn

‖(s − tn)utt (·, s)‖‖Ihun+1‖ ds

≤ C

Δt

tn+1∫

tn

‖(s − tn)utt (·, s)‖(‖∇un+1‖ + ‖un+1 − Ihun+1‖) ds

≤ C

Δt

tn+1∫

tn

‖(s − tn)utt (·, s)‖(‖∇wn+1‖ + (h + √
ε)) ds

≤ δ

8
‖∇wn+1‖2 + C(h2 + ε) + C

Δt

tn+1∫

tn

‖(s − tn)utt (·, s)‖2 ds

≤ δ

8
‖∇wn+1‖2 + C(h2 + ε) + CΔt

tn+1∫

tn

‖utt (·, s)‖2 ds.

Then by using the Schwarz inequality and the Young’s inequality,

1

2Δt
(‖un+1‖2 − ‖un‖2 + ‖un+1 − un‖2)

= 1

Δt
(un+1 − un, (I − Ih)un+1) + 1

Δt
(un+1 − un, Ihun+1)

= 1

Δt
(un+1 − un, (I − Ih)un+1) + 1

Δt
(un+1 − un, Ihun+1)
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≤ Ch2

Δt2 (‖un‖2 + ‖un+1‖2) + Ch2 + (Phλ
n+1,∇(Ihun+1))

+ δ

8
‖∇wn+1‖2 + C(h2 + ε) + CΔt

tn+1∫

tn

‖utt (·, s)‖2 ds. (25)

Combine the above with Lemma 4.3, we have

1

2Δt
(‖un+1‖2 − ‖un‖2 + ‖un+1 − un‖2)

+ δ

8
(2‖∇wn+1‖2 − ‖∇wn‖2) + ε

4
‖Phλ

n+1‖2

≤ Ch2

Δt2 (‖un‖2 + ‖un+1‖2) + CΔt

tn+1∫

tn

‖utt (·, s)‖2 ds

+C

(

h2 + h4

ε
+ ε

)

+ CΔt

tn+1∫

tn

‖wt (·, s)‖2 ds + C‖un+1‖2

+(Phλ
n+1,∇(Ihun+1) − ∇un+1)

Since by Inequality (10) and the Young’s inequality

(Phλ
n+1,∇(Ihun+1) − ∇un+1) = (Phλ

n+1,∇(Ihun+1 − un+1))

≤ Ch2‖un+1‖H3‖Phλ
n+1‖,

≤ C
h4

ε
+ ε

8
‖Phλ

n+1‖2,

then we can conclude that

1

2Δt
(‖un+1‖2 − ‖un‖2) + δ

8
(2‖∇wn+1‖2 − ‖∇wn‖2) + ε

8
‖Phλ

n+1‖2

≤ C

(

1 + h2

Δt2

)

(‖un‖2 + ‖un+1‖2) + C

(

h2 + h4

ε
+ ε

)

+CΔt

tn+1∫

tn

(‖utt (·, s)‖2 + ‖wt (·, s)‖2) ds.

Finally, by taking summation of the above inequality with respect to n, and setting

y0 = 1

2
‖u0‖2 + δΔt

4
‖∇w0‖2 + εΔt

8
‖Phλ

0‖2,
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and for n ≥ 1,

yn = 1

2
‖un‖2,

an = ε

8
‖Phλ

n‖2 + δ

8
‖∇wn‖2,

bn = C

(

1 + h2

Δt2

)

,

cn = C

(

h2 + h4

ε
+ ε

)

+ CΔt

tn+1∫

tn

(‖utt (·, s)‖2 + ‖wt (·, s)‖2) ds,

and using the Gronwall’s inequality, we get Inequality (23). Notice that in order to
guarantee Δtbn < 1, we need O(h2) < Δt < C . However, the upper bound of Δt
does not depend on h. 	


The constraint O(h2) ≤ Δt is unusual, since most numerical schemes performs
better when fixing h and decreasing Δt . Indeed, if we assume further regularity of the
solution, then this condition can be dropped.

Theorem 4.5 Let G− be defined as in (4) and assume ut ∈ L∞(0, T ; H1+s(Ω)),
where s > 0. Then there exists a constant C independent of h or ε such that for all
Δt ≤ C,

‖un‖2 +
n∑

i=1

Δt‖∇wi‖2 +
n∑

i=1

Δtε‖Phλ
i‖2

≤ CeCtn

⎛

⎝‖u0‖2 + Δt‖∇w0‖2 + Δtε‖Phλ
0‖2 + tn

(

h2 + h4

ε
+ ε

)

+Δt2

tn∫

0

(‖Ihutt (·, s)‖2 + ‖wt (·, s)‖2) ds

⎞

⎠ .

The general constant in the above inequality may depend on all parameters mentioned
as in Theorem 4.4 plus ‖ut‖L∞(0,T ;H1+s (Ω)), but not on h,Δt , or ε.

Proof Similar to Eq. (24) in the beginning of the proof for Theorem 4.4, we have

1

Δt
(Ihun+1 − Ihun, Ihun+1)

= 1

Δt
(Ih(un+1 − un), Ihun+1) − 1

Δt
(un+1

h − un
h,∇(Ihun+1))

= (Ih(∂t u
n+1 − ξn+1), Ihun+1) − (λn+1

h ,∇(Ihun+1))

= (λn+1,∇(Ihun+1)) − ((I − Ih)∂t u
n+1, Ihun+1) − (Ihξn+1, Ihun+1)

−(λn+1
h ,∇(Ihun+1))
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= (λn+1,∇(Ihun+1)) − (Ihξn+1, Ihun+1) − ((I − Ih)∂t u
n+1, Ihun+1)

= (Phλ
n+1,∇(Ihun+1)) − (Ihξn+1, Ihun+1) − ((I − Ih)∂t u

n+1, Ihun+1).

Here (Ihξn+1, Ihun+1) can be bounded similarly as the term (ξn+1, Ihun+1) in the
proof of Theorem 4.4, with ‖utt (·, s)‖ being replaced by ‖Ihutt (·, s)‖. We also have
an extra term, which can be bounded by

((I − Ih)∂t u
n+1, Ihun+1) ≤ Ch‖ut‖L∞(0,T ;H1+s (Ω))‖Ihun+1‖

≤ Ch2 + ‖Ihun+1‖2.

Then, Eq. (25) in the proof of Theorem 4.4 can then be rewritten as

1

2Δ
(‖Ihun+1‖2 − ‖Ihun‖2 + ‖Ihun+1 − Ihun‖2)

= 1

Δt
(Ihun+1 − Ihun, Ihun+1)

≤ Ch2 + ‖Ihun+1‖2 + (Phλ
n+1,∇(Ihun+1))

+ δ

8
‖∇wn+1‖2 + C(h2 + ε) + CΔt

tn+1∫

tn

‖Ihutt (·, s)‖2 ds.

The rest of the proof is the same as the proof of Theorem 4.4, with the only differences
that ‖un+1‖2 and ‖un‖2 are now substituted by ‖Ihun+1‖2 and ‖Ihun‖2 and we no

longer have the term 1 + h2

Δt2 . The Gronwall’s inequality will now be applied with

yn = 1
2‖Ihun‖2 and bn = C . Since

‖un‖ ≤ ‖(I − Ih)un‖ + ‖Ihun‖2 ≤ Ch2 + ‖Ihun‖,
‖Ihun‖ ≤ ‖(I − Ih)un‖ + ‖un‖2 ≤ Ch2 + ‖un‖,

we will be able to get the error estimation in this theorem. 	

Remark 4.6 If

‖u0‖2 + Δt‖∇w0‖2 + Δtε‖Phλ
0‖2 ≤ Ch2, ε = Ch2,

and

tn∫

0

(‖Ihutt (·, s)‖2 + ‖wt (·, s)‖2) ds ≤ C,

then we have

‖un‖2 +
n∑

i=1

Δt‖∇wi‖2 +
n∑

i=1

Δtε‖Phλ
i‖2 ≤ C(h2 + Δt2).
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Furthermore, by Lemma 4.2 and the Poincaré inequality, it is easy to see that

n∑

i=1

Δt‖∇ui‖2 ≤ C(h2 + Δt2).

Remark 4.7 One may be able to slightly improve the result in Theorem 4.5, by defining
Ih to be a Clément-type interpolation preserving homogeneous or periodic boundary
conditions. Such an interpolation has been constructed in [40]. However, the advantage
of doing so is not very obvious. For smooth solutions, Theorem 4.5 already gives the
optimal convergence rate. For the future research, a more interesting direction would
be to explore the role of parameters δ and ε.
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