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Abstract In the present survey, we consider a rank approximation algorithm for
tensors represented in the canonical format in arbitrary pre-Hilbert tensor product
spaces. It is shown that the original approximation problem is equivalent to a finite
dimensional �2 minimization problem. The �2 minimization problem is solved by a
regularized Newton method which requires the computation and evaluation of the
first and second derivative of the objective function. A systematic choice of the
initial guess for the iterative scheme is introduced. The effectiveness of the approach
is demonstrated in numerical experiments.
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1 Introduction

Let d ≥ 3 and T := ⊗d
μ=1 Vμ be the algebraic tensor space constructed from arbi-

trary pre-Hilbert spaces Vμ. In algebraic tensor spaces every tensor can be written
as a finite sum of elementary tensors, where an elementary tensor is of the form
w = ⊗d

μ=1wμ, wμ ∈ Vμ. Since by definition of T only linear combinations of
finitely many terms are allowed, we have

T = span {v ∈ Tr : r ∈ N} ,

where Tr is the set of tensors which can be represented as a sum of r elementary
tensors, see Definition 2.2. In this article, we consider the canonical tensor for-
mat with representation rank r , where for variable r the format is explained by the
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490 M. Espig, W. Hackbusch

mapping

C :
d×
μ=1

V r
μ → Tr

v̂ := (viμ : 1 ≤ i ≤ r, 1 ≤ μ ≤ d) �→ C(v̂) :=
r∑

i=1

d⊗

μ=1

viμ.

Note that the representation rank refers to the representation system (viμ : 1 ≤ i ≤ r,
1 ≤ μ ≤ d), not to the represented tensor. The following two approximation problems
in the canonical tensor format are discussed in this paper. In the first problem, for a
given v ∈ TR we fix the representation rank r < R and look for approximations in Tr ,
i.e. we want to determine a representation system x̂∗ ∈ ×d

μ=1 V r
μ such that

ε(r) := ε(C(x̂∗), r) := ‖v − C(x̂∗)‖ = dist (v, Tr ) = inf
x̂∈×d

μ=1 V r
μ

‖v − C(x̂)‖.

In the second problem the roles of r and ε(r) are reversed. For given v ∈ TR and ε > 0
we are looking for minimal rε ≤ R and x̂∗ ∈ ×d

μ=1 V rε
μ such that:

(i) ‖v − C(x̂∗)‖ ≤ ε‖v‖,
(ii) ‖v − C(x̂∗)‖ = dist

(
v, Trε

)
.

We briefly summarize existing approaches for solving the first approximation problem
in finite dimensional tensor spaces. One of the most popular minimization method for
solving the lower rank approximation problem with fixed representation rank is the
alternating least squares (ALS) algorithm. In [11], the ALS method was applied for
principle component analysis of order three tensors and in [1,2] for tensors presented
in the canonical format. Furthermore, the minimization problem was also solved by a
Gauss-Newton method in [15,16] and by Newton method in [14].

2 Pre-Hilbert tensor product spaces and the canonical tensor format

In the present paper, we are focusing on the algebraic tensor space T := ⊗d
μ=1 Vμ of

arbitrary real-valued pre-Hilbert spaces (V1, 〈·, ·〉1), . . . , (Vd , 〈·, ·〉d) for d ≥ 3.

Definition 2.1 (Elementary Tensor, Representation System) We call a tensor v ∈ T
an elementary tensor if there exits (vμ ∈ Vμ : 1 ≤ μ ≤ d) such that

v =
d⊗

μ=1

vμ. (1)

Further, we call the d-tuple of vectors (v1, . . . , vd) from Eq. (1) a representation
system of v.

Due to the multilinearity of the mapping ⊗, a representation system of a given ele-
mentary tensor is not uniquely determined.
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A regularized Newton method for the efficient approximation 491

The following notations and definitions will be useful. Since (V1, 〈·, ·〉1), . . . , (Vd ,

〈·, ·〉d) are pre-Hilbert spaces, we equip the tensor product space T with the induced
scalar product, i.e. the induced scalar product of T is defined on elementary tensors
v = ⊗d

μ=1 vμ and w = ⊗d
μ=1wμ by

〈v,w〉 :=
d∏

μ=1

〈
vμ,wμ

〉
μ
.

This definition introduces a bilinear form and has a unique extension 〈·, ·〉 : T ×T →
R. It is known from the text books that this bilinear form is a scalar product in T .
Further, we equip T with the norm ‖ · ‖ associated with the induced scalar product.

We recall that L(V,W ) is the space of linear maps from V to W . For given Aμ ∈
L(Vμ,Wμ) we define the elementary tensor

A :=
d⊗

μ=1

Aμ :
d⊗

μ=1

Vμ →
d⊗

μ=1

Wμ

by

A

⎛

⎝
d⊗

μ=1

vμ

⎞

⎠ :=
d⊗

μ=1

Aμvμ. (2)

The mapping defined by (2) extends uniquely to a linear mapping A : ⊗d
μ=1 Vμ →

⊗d
μ=1 Wμ. In tensor product spaces we embed the vector spaces

⊗d
μ=1 L(Vμ,Wμ)

into L
(⊗d

μ=1 Vμ,
⊗d

μ=1 Wμ

)
, where the embedding is described by (2), i.e

Eq. (2) introduces a unique defined injective linear mapping T : ⊗d
μ=1 L(Vμ,Wμ) →

L
(⊗d

μ=1 Vμ,
⊗d

μ=1 Wμ

)
. This mapping T is called the canonical homomorphism,

see [8] for more details. Obviously, T is bijective if dim Vμ < ∞ and dim Wμ < ∞
since we have dim

⊗d
μ=1 L(Vμ,Wμ) = dim L

(⊗d
μ=1 Vμ,

⊗d
μ=1 Wμ

)
.

By definition of the tensor space, every tensor v ∈ T can be written as a sum of ele-
mentary tensors. Hence the question of the minimal number of producing elementary
tensors arises. This question leads us to the definition of the tensor rank of v.

Definition 2.2 (r-Terms, Tensor Rank, Canonical Tensor Format, Representation
System) The set Tr of tensors which can be represented in T with r-terms is defined
as

Tr :=
⎧
⎨

⎩

r∑

i=1

d⊗

μ=1

viμ ∈ T : viμ ∈ Vμ

⎫
⎬

⎭
. (3)

Let v ∈ T . The tensor rank of v in T is

rankT (v) := min {r ∈ N0 : v ∈ Tr } . (4)
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The canonical tensor format in T for variable r is defined by the mapping

C :
d×
μ=1

V r
μ → Tr , (5)

v̂ := (viμ : 1 ≤ i ≤ r, 1 ≤ μ ≤ d) �→ C(v̂) :=
r∑

i=1

d⊗

μ=1

viμ.

We call the sum of elementary tensors v = ∑r
i=1 ⊗d

μ=1viμ ∈ Tr a tensor
represented in the canonical tensor format with r terms. The system of vectors(
viμ : 1 ≤ i ≤ r, 1 ≤ μ ≤ d

)
is a representation system of v with representation

rank r .

Note that the symbol of the set of tensors with r-terms Tr is combined with the symbol
which we use for the tensor product space T . Later, if there is a tensor product space
S defined, then the symbol Sr identifies the set of tensors with r -terms in S.

Similarly to the case of elementary tensors, a representation system of a sum of
elementary tensors is not uniquely determined.

Remark 2.3 Note that the definition of the tensor rank of v is associated with the
tensor space T . This classification is imported since the tensor rank of v depends on
the considered tensor space. For instance, let {a, b} ⊂ Rn be linearly independent and
define the tensor

v := a ⊗ b ⊗ b + b ⊗ a ⊗ b + b ⊗ b ⊗ a = a ⊗ (b ⊗ b)+ b ⊗ (a ⊗ b + b ⊗ a).

We have for the two isomorphic tensor spaces V := Rn ⊗ Rn ⊗ Rn and W :=
Rn ⊗ (Rn ⊗ Rn)

rankV (v) = 3 �= 2 = rankW (v).

In this article, the tensor product of finite dimensional subspaces is of importance. Let
Uμ be a subspace of Vμ with finite dimension tμ := dim Uμ and Bμ := (ulμ : 1 ≤
l ≤ tμ) be a basis of Uμ. Every tensor v ∈ U := ⊗d

μ=1 Uμ has a representation

v =
t1∑

l1=1

· · ·
td∑

ld=1

a(l1,...,ld )

d⊗

μ=1

ulμμ (6)

with uniquely defined coefficients a(l1,...,ld ). In the following let

S :=
d⊗

μ=1

Rtμ. (7)

Definition 2.4 (Coefficient Tensor) The coefficients a(l1,...,ld ) from Eq. (6) create a
tensor a ∈ S. We call a ∈ S the coefficient tensor of v with respect to the basis
B := (⊗d

μ=1ulμμ : (l1, . . . , ld) ∈ ×d
μ=1{lμ ∈ N : 1 ≤ lμ ≤ tμ}). If it is clear from

the context which basis B is considered, we simply say a is the coefficient tensor of v.
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A regularized Newton method for the efficient approximation 493

To store the coefficient tensor a of v, one needs
∏d
μ=1 tμ memory entries, i.e. the

memory requirement grows exponentially with d. But for v ∈ Tr one needs only
r · ∑d

μ=1 tμ entries, see Lemma 2.5.

Lemma 2.5 Let v ∈ ⊗d
μ=1 Uμ and a ∈ S the coefficient tensor of v. We have

rankS(a) = rankT (v).

Proof Let v := ∑r
i=1 ⊗d

μ=1viμ ∈ ⊗d
μ=1 Uμ with rankT (v) = r and Bμ as described

above. Since tμ = dim Uμ, there is the canonical isomorphism �μ : Rtμ → Uμ
introduced by the canonical basis of Rtμ and Bμ. Furthermore, there exist aiμ ∈ Rtμ

such that viμ = �μaiμ. We have

v =
r∑

i=1

d⊗

μ=1

viμ =
r∑

i=1

d⊗

μ=1

�μaiμ =
⎛

⎝
d⊗

μ=1

�μ

⎞

⎠

⎛

⎝
r∑

i=1

d⊗

μ=1

aiμ

⎞

⎠ = � a,

where � := ⊗d
μ=1�μ. Consequently, we have rankS(a) ≤ rankT (v) and

rankT (v) ≤ rankS(a) since a = �−1v and the tensor rank of � is one. ��

3 Characteristics of best approximations

Let 〈·, ·〉 be the induced inner product of T = ⊗d
μ=1 Vμ and ‖ · ‖ := √〈·, ·〉.

Lemma 3.1 Let Uμ ⊆ Vμ be a linear subspace of Vμ, Pμ : Vμ → Uμ the orthogonal
projection of Vμ onto Uμ and define U := ⊗d

μ=1 Uμ. Then P := ⊗d
μ=1 Pμ : T → U

is the orthogonal projection of T onto U . If Uμ �= {0}, the tensor rank of P is exactly
one.

Proof Obviously, we have P2 = P and P = Pt . ��
Corollary 3.2 Let v = ∑r

i=1
⊗d

μ=1 viμ ∈ Tr and Uμ ⊆ Vμ be a linear subspace
of Vμ such that {viμ : 1 ≤ i ≤ r} ⊂ Uμ. Furthermore, let Pμ : Vμ → Uμ be the
orthogonal projection of Vμ onto Uμ and P := ⊗d

μ=1 Pμ. Then

‖v − Px‖ ≤ ‖v − x‖ (8)

holds for all x ∈ T . Moreover, if additionally x ∈ T \U , then the inequality

‖v − Px‖ < ‖v − x‖ (9)

is satisfied.

Theorem 3.3 Let v = ∑R
i=1

⊗d
μ=1 viμ ∈ TR and x∗ = ∑r

j=1
⊗d

μ=1 x∗
jμ ∈ Tr , with

r ≤ R, such that ‖v − x∗‖ = infx∈Tr ‖v − x‖. Then we have for all μ ∈ {1, . . . , d}
and all j ∈ {1, . . . , r}

123



494 M. Espig, W. Hackbusch

x∗
jμ ∈ Uμ := span{viμ : 1 ≤ i ≤ R}, (10)

i.e. x∗ ∈ U := ⊗d
μ=1 Uμ.

Proof Let Pμ : Vμ → Uμ the orthogonal projection of Vμ onto Uμ and P :=
⊗d

μ=1 Pμ : T → U as in Lemma 3.1. Assuming that there are μ′ ∈ {1, . . . , d} and
j ∈ {1, . . . , r} with x∗

jμ′ /∈ Uμ′ , i.e. x∗ /∈ U , we have

x̂ := Px∗ =
⎛

⎝
d⊗

μ=1

Pμ

⎞

⎠
r∑

j=1

d⊗

μ=1

x∗
jμ =

r∑

j=1

d⊗

μ=1

Pμx∗
jμ

︸ ︷︷ ︸
∈Uμ

∈ Ur ⊂ U .

With Corollary 3.2 the inequality ‖v − x̂‖ < ‖v − x∗‖ holds true, which contradicts
the fact that ‖v − x∗‖ = infx∈Tr ‖v − x‖. ��
Using Theorem 3.3, we can restrict our search to the finite dimensional tensor subspace
U = ⊗d

μ=1 Uμ as explained in Remark 3.4 and Corollary 3.5.

Remark 3.4 Under the notations and premises of Theorem 3.3, let�μ : Rtμ → Uμ be
the canonical isomorphism introduced by the canonical basis of Rtμ and an orthonor-
mal basis of Uμ, where tμ := dim Uμ. According to Theorem 3.3, we have v, x∗ ∈ U .
Therefore, there exist αiμ, ξ

∗
jμ ∈ Rtμ such that

viμ = �μαiμ and x∗
jμ = �μξ

∗
jμ.

Further, let� := ⊗d
μ=1�μ, α := ∑R

i=1
⊗d

μ=1 αiμ ∈ SR and ξ∗ := ∑r ′
j=1

⊗d
μ=1 ξ

∗
jμ∈ Sr , where S is defined in Eq. (7). We have

v = �α and x∗ = �ξ∗

and consequently

‖v − x‖2 = 〈�(α − ξ),�(α − ξ)〉 = 〈
α − ξ,�t�(α − ξ)

〉
�2

= ‖α − ξ‖2
�2
. (11)

Corollary 3.5 Let the notations and premises of Theorem 3.3 and Remark 3.4 hold.
We have

‖v − x∗‖ = dist (v, Tr ) ⇔ ‖α − ξ∗‖�2 = dist (α,Sr ) (12)

and

‖v − x∗‖ = ‖α − ξ∗‖�2 . (13)

Note that Eq. (12) states that the best approximation problem in a tensor space(⊗d
μ=1 Vμ, ‖ · ‖

)
of arbitrary pre-Hilbert spaces Vμ is equivalent to a fixed finite
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A regularized Newton method for the efficient approximation 495

dimensional �2 minimization problem in
(⊗d

μ=1 R
tμ, ‖ · ‖�2

)
. For this reason, it is

sufficient to consider the original approximation only on Sr . Hereby we have to assume
that the computation of an orthonormal basis of Uμ and the coefficient tensor α of v
is reasonable, i.e. the numerical cost for the computation of the inner product in Vμ is
not expensive.

Theorem 3.3 can be used in different applications, for instance let � ⊆
R,W kμ,2(�) be a Sobolev space and T := ⊗d

μ=1 W kμ,2(�). Theorem 3.3 states that

a representation system of a lower rank approximation ϕ∗ = ∑r
j=1

⊗d
μ=1 ϕ

∗
jμ ∈ Tr

of ϕ = ∑R
i=1

⊗d
μ=1 ϕiμ ∈ TR satisfying the following regularity property:

ϕ∗
jμ ∈ span{ϕiμ ∈ W kμ,2(�) : 1 ≤ i ≤ R} for all 1 ≤ μ ≤ d, 1 ≤ j ≤ r,

i.e. if the origin function ϕ possesses a special regularity property in theμ-th direction,
then the same regularity property holds true for every lower rank approximation ϕ∗.

In a second example, let M := ⊗d
μ=1 R

n×n be equipped with the Frobenius norm

and A = ∑R
i=1

⊗d
μ=1 Aiμ ∈ MR such that [Ai1μ, Ai2μ] = 0Rn×n for 1 ≤ i1, i2 ≤ R,

where [Ai1μ, Ai2μ] denotes the commutator of Ai1μ and Ai2μ. Using Theorem 3.3 it is
obvious to see that the eigenvectors of A are eigenvectors of all lower rank approxima-
tions of A. A prominent example of such a tensor is the discretized Laplace operator
on a hypercube with Dirichlet boundary conditions.

4 The canonical tensor format with bounded terms and existence
of best approximations

In the following let d ≥ 3 and S := ⊗d
μ=1 R

tμ . The existence of a best approximation
is only expected for closed sets. Unfortunately, the set of sums of elementary tensors
is in general not closed. This fact was analysed in [6]. In order to discuss the arising
difficulties, we will focus on the following tensor:

t := a ⊗ b ⊗ b + b ⊗ a ⊗ b + b ⊗ b ⊗ a,

where the set {a, b} ⊂ Rn is linearly independent. Lim and de Silva showed in [6]
that the tensor rank of t is exactly three. We define a sequence (tk)k∈N of tensors with
tensor rank at most two by

tk :=
(

1

k
a + b

)

⊗
(

b + 1

k
a

)

⊗ kb + b ⊗ b ⊗ (a − kb).

Then

‖t − tk‖ = 1

k
‖a ⊗ a ⊗ b‖ −−−→

k→∞ 0

follows. The specified counter-example is of particular importance and should not be
neglected, since the Laplacian in 3 dimensions is of this form. A simple analysis of
the counterexample shows that for k → ∞ the summands of tk are unbounded, i.e.
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496 M. Espig, W. Hackbusch

∥
∥
∥
∥

(
1

k
a + b

)

⊗
(

b + 1

k
a

)

⊗ kb

∥
∥
∥
∥ −−−→

k→∞ ∞,

‖b ⊗ b ⊗ (a − kb)‖ −−−→
k→∞ ∞.

In summary, we can say that the existence of the best approximation is not guaranteed
and moreover, because of the unboundedness of the terms, the numerical treatment
is not practicable. One obvious approach for solving this problem is given in the
following definition.

Definition 4.1 (Sums of Elementary Tensors with Bounded Terms) Let c > 0 and
r ∈ N. The set of tensors which can be represented with bounded r-terms is defined
as follows:

Sc
r :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

v =
r∑

i=1

d⊗

μ=1

viμ

︸ ︷︷ ︸
vi :=

∈ Sr :
r∑

i=1

‖vi‖2 ≤ c

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (14)

Lemma 4.2 For fixed c > 0 and r ∈ N0, the set Sc
r is closed.

Proof Let (tk)k∈N ⊂ Sc
r and t ∈ S with limk→∞ tk = t , where tk = ∑r

i=1
⊗d

μ=1 tk
iμ.

We can assume without loss of generality that ‖tk
i1‖ = · · · = ‖tk

id‖ holds true and
consequently the sequence (tk

iμ)k∈N is bounded. Hence there exist a subsequence

(tk(l)
iμ )l∈N convergent to t̃iμ ∈ Rtμ . Moreover, we have tk(l) −−−→

l→∞ t̃ and t̃ = t

due to the fact that the canonical tensor format C is a continuous mapping, where
t̃ := ∑r

i=1
⊗d

μ=1 t̃iμ ∈ Sc
r . ��

Corollary 4.3 Let limk→∞ tk = t , where tk = ∑r
i=1

⊗d
μ=1 tk

iμ and r < rankS(t).
There exists i ∈ {1, . . . , r} such that the corresponding term sequence (tk

i )k∈N is not
bounded.

Proof Let us assume that for all i ∈ {1, . . . , r} the sequence (tk
i )k∈N is bounded by

c > 0. According to Lemma 4.2, we have t ∈ Src2

r ⊂ Sr , but this contradicts the fact
that rankS(t) > r . ��

Corollary 4.4 S1 is closed.

Proof Let (tk)k∈N ⊂ S1 with limk→∞ tk = t ∈ S. Then we have for almost all k that
tk is bounded by ‖t‖. The rest of the proof is similar to the one of Lemma 4.2. ��
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Corollary 4.5 From the Weierstrass theorem it follows that there exists a best approx-
imation of α ∈ SR in S1 and Sc

r .

5 Approximation problem and objective function

In this section, the two approximation problems are formulated and the objective func-
tion is defined. Furthermore, for the regularized Newton method the first and second
derivatives of the objective function are stated. In the following, let c > 0,S :=⊗d

μ=1 R
tμ , and

C :
d×
μ=1

(
Rtμ

)r → Sr

the canonical tensor format in S, see Definition 2.2.

Notation 5.1 For short notations we define Rd,r,t := ×d
μ=1

(
Rtμ

)r , where t :=
(t1, . . . , td). Further, elements from Rd,r,t are always marked by the hat symbol, e.g.
ξ̂ ∈ Rd,r,t . If it is obvious from the context, we use the following notation: for given
ξ̂ = (ξ jμ ∈ Rtμ : 1 ≤ μ ≤ d, 1 ≤ j ≤ r) ∈ Rd,r,t the corresponding sum of
elementary tensors C(ξ̂ ) is denoted by ξ , i.e.

ξ = C(ξ̂ ) =
r∑

j=1

d⊗

μ=1

ξ jμ.

The set Rc
d,r,t is defined in analogy to sums of elementary tensors with bounded terms

as follows:

Rc
d,r,t :=

⎧
⎨

⎩
ξ̂ ∈ Rd,r,t :

r∑

j=1

d∏

μ=1

‖ξ jμ‖2 ≤ c

⎫
⎬

⎭
. (15)

5.1 Formulation of the approximation problem

Definition 5.2 (Approximation Problem) Let

α =
R∑

i=1

d⊗

μ=1

αiμ ∈ SR (16)

and r < R be given. We are looking for ξ̂ = (ξ jμ ∈ Rtμ : 1 ≤ μ ≤ d, 1 ≤ j ≤ r) ∈
Rc

d,r,t such that

‖α − C(ξ̂∗)‖ = min
ξ̂∈Rc

d,r,t

‖α − C(ξ̂ )‖, (17)
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498 M. Espig, W. Hackbusch

under the constraints1

‖ξ∗
jμ‖ = ‖ξ∗

jν‖, for all μ, ν ∈ {1, . . . , d}, j ∈ {1, . . . , r}. (18)

In applications it is a priori not obvious how to choose the size or the representation
rank r . Rather, a desired approximation accuracy ε is given. Hence, the following
extended approximation problem is stated.

Definition 5.3 (Extended Approximation Problem) Given α ∈ SR and ε > 0. Find
minimal rε ≤ R and ξ̂ε ∈ Rc

d,rε,t
such that

‖α − C(ξ̂ε)‖ ≤ ε, (19)

‖α − C(ξ̂ε)‖ = min
ξ̂∈Rc

d,rε,t

‖α − C(ξ̂ )‖, (20)

under the constraints from Eq. (18).

5.2 Definition of the objective function

Later, we will see that the solution of the extended approximation problem is reduced
to a finite sequence of approximation problems from Definition 5.2. Therefore, we
first introduce the objective function of the approximation problem with fixed repre-
sentation rank r . The minimization operates on Rd,r,t with respect to the function

1

2
‖α − ·‖2 ◦ C : Rd,r,t → R≥0,

where α is defined in Eq. (16). We can neglect constant terms, 1
2‖α − ξ‖2 =

1

2
‖α‖2

︸ ︷︷ ︸
=const.

−〈ξ, α〉 + 1
2‖ξ‖2. Therefore, the main part of our objective function is

f1 : Rd,r,t → R≥− 1
2

(21)

ξ̂ �→ f1(ξ̂ ) := 1

‖α‖2

[

−〈α, ξ 〉 + 1

2
‖ξ‖2

]

, (22)

1 Especially in high dimensions it is a good advise to balance the representation system of every tensor
which is stored in real computer implementations. Otherwise, one cannot avoid a number overflow in some
entries of the representation system. For example consider the rank-one tensor v := ⊗d

μ=1 vμ ∈ ⊗d
μ=1 R

n

with (vμ)l = 1 for all l ∈ {1, . . . , n}. If one introduces the following constrains for the representation sys-
tem: ‖vμ‖ = 1 for all μ ∈ {2, . . . , d}, we have ‖v1‖ = nd . If n and d are large enough, we will produce
a number overflow on computer systems. With (18) we have a balanced and solid representation system.
Furthermore, with (18) we avoid unnecessary scaling influences in our objective function and consequently
their second derivative with respect to the representation system.
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where we normalized the objective function for numerical reasons. After manipula-
tions, we get

f1(ξ̂ ) = 1

‖α‖2

⎡

⎣−
r∑

j=1

R∑

i=1

d∏

μ=1

〈
αiμ, ξ jμ

〉 + 1

2

r∑

j=1

r∑

j ′=1

d∏

μ=1

〈
ξ jμ, ξ j ′μ

〉
⎤

⎦ . (23)

Normally, in constrained minimization we have to satisfy the Karush–Kuhn–Tucker
conditions (KKT), but our constraints are of very simple structure. Therefore we can
avoid the KKT conditions and treat the constraints as penalty terms in our objective
function. Thus we construct the following function g1 such that g1(ξ̂ ) = 0, if ξ ∈ Sr

meets the constraints (18), i.e. we have

g1 : Rd,r,t → R≥0 (24)

ξ̂ �→ g1(ξ̂ ) := 1

8 d
√‖α‖4

r∑

j=1

∑

1≤ν<μ≤d

(
‖ξ jμ‖2 − ‖ξ jν‖2

)2
. (25)

With g1 we pay attention to the non-uniqueness of the tensor representation. According
to Lemma 4.2, the approximation problem is well-defined only on Sc

r . If the minimum
of the minimization problem does not exist, it follows from Corollary 4.3 that a min-
imizing sequence has an unbounded representation system. One can bound the norm
of the terms by using an additional term g2:

g2 : Rd,r,t → R≥0 (26)

ξ̂ �→ g2(ξ̂ ) := 1

2‖α‖2

r∑

j=1

‖ξ j‖2 = 1

2‖α‖2

r∑

j=1

d∏

μ=1

‖ξ jμ‖2. (27)

This approach has the advantage that the constant c need not to be selected in advance
and we avoid the difficult treatment of the KKT conditions. Thus, the complete
objective function is described by

f : Rd,r,t → R≥− 1
2

(28)

ξ̂ �→ f (ξ̂ ) := f1(ξ̂ )+ λ1g1(ξ̂ )+ λ2g2(ξ̂ ), (29)

where λ1, λ2 > 0. In practice, we choose the parameter λ2 such small that the impact

on the main part f1 is not significant, i.e. we want that for ξ ∈ Sc·‖α‖2

r the influence
of g2 on f1 is (much) smaller than ε. We choose κ ∈ (0, ε) and λ2 ≤ κ/2c, since we

have for ξ ∈ Sc·‖α‖2

r

| f1(ξ̂ )− ( f1(ξ̂ )+ λ2g2(ξ̂ ))| = λ2g2(ξ̂ ) ≤ κ

c
g2(ξ̂ ) ≤ κ < ε.
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5.3 The first and second derivatives of the objective function

In this section, we are specifying the first and second order derivatives of the objective
function. These derivatives are important for the regularized Newton Method.

Notation 5.4 For 1 ≤ μ1, μ2 ≤ d we define 〈·, ·〉μ1μ2 by

〈·, ·〉μ1μ2 :
d×
μ=1

Rtμ ×
d×
μ=1

Rtμ → R, (30)

(v̂, ŵ) �→ 〈
v̂, ŵ

〉
μ1μ2

:=
∏

μ∈{1,...,d}\{μ1,μ2}

〈
vμ,wμ

〉
. (31)

We write shorter 〈v,w〉μ1μ2 := 〈
v̂, ŵ

〉
μ1μ2

if v = ⊗d
μ=1 vμ and w = ⊗d

μ=1wμ. For

μ1 = μ2 we define
〈
v̂, ŵ

〉
μ1

:= 〈
v̂, ŵ

〉
μ1μ2

. We define further

δ̄i j := 1 − δi j , (32)

where δi j is the Kronecker-delta, i.e.

δi j :=
{

1, i = j
0, i �= j.

(33)

Note that the value of 〈v,w〉μ1μ2 depends on the representation system of v and w.

Lemma 5.5 ([7, Lemma 3.3.3, Lemma 3.3.4 and Lemma 3.3.5]) Let 1 ≤ μ1 ≤
d, 1 ≤ j1 ≤ r, f1, g1 and g2 defined as in (21), (24) and (26) respectively. For the first
derivatives we have

f ′
1 j1μ1

(ξ̂ ) = 1

‖α‖2

⎡

⎣−
R∑

i=1

〈
αi , ξ j1

〉
μ1
αiμ1 +

r∑

j=1

〈
ξ j , ξ j1

〉
μ1
ξ jμ1

⎤

⎦ , (34)

g′
1 j1μ1

(ξ̂ ) = 1
d
√‖α‖4

⎡

⎣
d∑

μ=1,μ�=μ1

(
‖ξ j1μ1‖2 − ‖ξ j1μ‖2

)
⎤

⎦ ξ j1μ1 , (35)

g′
2 j1μ1

(ξ̂ ) = 1

‖α‖2

〈
ξ j1, ξ j1

〉
μ1
ξ j1μ1 . (36)

Furthermore, the first order derivative of the objective function f from Eq. (28) is

f ′
j1μ1

(ξ̂ ) = f ′
1 j1μ1

(ξ̂ )+ λ1g′
1 j1μ1

(ξ̂ )+ λ2g′
2 j1μ1

(ξ̂ ). (37)

The second derivative of f describes in a natural way a block matrix of block matrices.
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Lemma 5.6 ([7, Lemma 3.4.3]) Let 1 ≤ μ1, μ2 ≤ d, 1 ≤ j1, j2 ≤ r , and f1 as
defined in Eq. (21). For the second derivative f ′′

1 (ξ̂ ) we have

f ′′
1 μ1μ2 j1 j2

(ξ̂ )

= 1

‖α‖2

[
Aμ1μ2 j1 j2(ξ̂ )+ Bμ1μ2 j1 j2(ξ̂ )+ Cμ1μ2 j1 j2(ξ̂ ) − Dμ1μ2 j1 j2(ξ̂ )

]
, (38)

where

Aμ1μ2 j1 j2(ξ̂ ) := δμ1μ2

〈
ξ j1, ξ j2

〉
μ1

IdR
tμ1 , (39)

Bμ1μ2 j1 j2(ξ̂ ) := δμ1μ2

〈
ξ j1, ξ j2

〉
μ1μ2

ξ j2μ1ξ
t
j1μ2

, (40)

Cμ1μ2 j1 j2(ξ̂ ) := δμ1μ2δ j1 j2

r∑

j=1

〈
ξ j , ξ j1

〉
μ1μ2

ξ jμ1ξ
t
jμ2
, (41)

Dμ1μ2 j1 j2(ξ̂ ) := δμ1μ2δ j1 j2

R∑

i=1

〈
αi , ξ j1

〉
μ1μ2

αiμ1α
t
iμ2
. (42)

Lemma 5.7 ([7, Lemma 3.3.4 and Lemma 3.3.5]) Let 1 ≤ μ1, μ2 ≤ d, 1 ≤ j1, j2 ≤
r . For the second derivatives g′′

1 (ξ̂ ) and g′′
2 (ξ̂ ) we have

g′′
1μ1μ2 j1 j2

(ξ̂ ) = 1
d
√‖α‖4

[
G1μ1μ2 j1 j2(ξ̂ )+ G2μ1μ2 j1 j2(ξ̂ )

]
, (43)

g′′
2μ1μ2 j1 j2

(ξ̂ ) = 1

‖α‖2 δ j1 j2

{ 〈
ξ j1, ξ j1

〉
μ1

IdR
tμ1 , μ1 = μ2;

2
〈
ξ j1, ξ j1

〉
μ1μ2

ξ j1μ1ξ
t
j1μ2

, else,
, (44)

where

G1μ1μ2 j1 j2(ξ̂ )

= δμ1μ2δ j1 j2

⎡

⎣
d∑

μ=1,μ�=μ1

(
‖ξ j1μ1‖2 − ‖ξ j1μ‖2

)
I dRtμ1 + 2(d − 1)ξ j1μ1ξ

t
j1μ1

⎤

⎦ ,

G2μ1μ2 j1 j2(ξ̂ ) = δμ1μ2δ j1 j2(−2)ξ j1μ1ξ
t
j1μ2

.

6 Solution of the approximation problem

6.1 Regularized Newton method

All Newton-like methods are based on approximating the objective function locally
by a quadratic model and then minimizing that model approximately, often by Krylov
subspace methods. The quadratic model of the objective function f at ξ̂ in direction
d is given by the Taylor polynomial of second order:
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f (ξ̂ k + d) ≈ qk(ξ̂ ) := f (ξ̂ k)+
〈

f ′(ξ̂ k), ξ̂ − ξ̂ k
〉
+ 1

2

〈
f ′′(ξ̂ k)

(
ξ̂ − ξ̂ k

)
,
(
ξ̂ − ξ̂ k

)〉
.

The successor ξ̂ k+1 is the minimum of the minimization problem

min
ξ̂∈Rd,r,t

qk(ξ̂ ),

if and only if

ξ̂ k+1 = ξ̂ k − dk

and the Hessian matrix f ′′(ξ̂ k) is positive definite, where dk solves the Newton equa-
tion approximately, i.e.

∥
∥
∥ f ′(ξ̂ k)− f ′′(ξ̂ k)dk

∥
∥
∥ = o(‖dk‖). (45)

It is well known from theory that ξ̂ k −−−→
k→∞ ξ̂∗ converges at least locally superlinearly

and f ′(ξ̂∗) = 0 if f ′′(ξ̂∗) is regular. Note that we treat the non-uniqueness of the
tensor representation with the use of g1(ξ̂ ) in Eq. (28). Furthermore, if in addition f ′′
is local Lipschitz continuous, we have that (ξ̂ k)k∈N converges to ξ̂∗ at least quadrati-
cally. Nevertheless, computational difficulties arise with the above mentioned method
when the function f is strongly nonlinear. These difficulties usually result from a
ill-conditioned Hessian matrix, making the inversion process numerically challenging.
Since our objective function f is non-convex, the Hessian is in general not positive
definite. Therefore, Newton’s method will not converge in general. There are sev-
eral ways to modify the Newton method for unconstrained minimization to achieve
global convergence. For twice continuously differentiable and strongly convex func-
tions, the Newton direction is a descent direction. The local “quality” of the Newton
direction at each point can be estimated by the condition number of the Hessian at this
point. If the condition number is bounded from above uniformly, then by introducing
a step-size, it is possible to guarantee global convergence of the so-called damped
Newton method. By adjusting the step-size of the damped Newton method, using for
example the Armijo rule, the asymptotic quadratic rate of convergence can be achieved.
To guarantee global convergence of the Newton method in case when the function is
not strongly convex, regularization of the Hessian is used. Although this scheme con-
verges globally, it will not necessarily converge to a global optimum. A standard
minimization method fits into the general scheme of a descent method with step-size
strategy, i.e. starting from a given iterant ξ̂ k one first determines a descent direction
dk and then computes a successor ξ̂ k+1 on the ray {ξ̂ k − αdk : α ∈ R≥0} which
is defined by ξ̂ k and dk such that f (ξ̂ k+1) is sufficiently small compared to f (ξ̂ k),
where the descent direction dk is a solution to the unconstrained quadratic optimization
problem

min
d∈Rd,r,t

qk(d). (46)
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In general, the quadratic function qk can approximate the highly non-linear objective
function f only locally. Nevertheless, in standard minimization methods one takes dk

as a search direction and introduces a line search. A regularized Newton method can
be viewed as an extension of this principle. But here, in contrast, the successor ξ̂ k+1

is located on a arbitrary spatial curve, where the curve is not necessarily a ray like
{ξ̂ k − αdk : α ∈ R≥0}. Here, the calculation of the descent direction leads directly
to the successor ξ̂ k+1; a subsequent step-size calculation is unnecessary. However,
this coupling has an evident disadvantage. In order to ensure convergence, one has to
evaluate the successor ξ̂ k+1. If the successor is not admissible, ξ̂ k+1 is discarded and
a new system of linear equations has to be solved. This leads to high computational
cost, but it can be corrected in some respects. We will also use a damped regularized
Newton method and, in addition, we will adopt the ideas of the regularized Newton
method using special properties of our objective function. For the regularized Newton
method the following constrained minimization problem is of vital importance:

min
d(rk )∈Rd,r,t

qk(d(rk)) subject to ‖d(rk)‖Ak ≤ rk,

for some parameter rk ∈ R+ and a positive definite matrix Ak . Note that in regu-
larized Newton methods the descent direction depends on the parameter rk . For this
reason, this method is also called a parameter dependent descent direction method.
The parameter rk defines a trust region and therefore this problem is also called trust
region subproblem. For every rk there exists exactly one solution of the trust region
subproblem. This solution is described by

ξ̂ k+1(rk) = ξ̂ k − dk(rk), (47)

where
∥
∥
∥ f ′(ξ̂ k)− (λk Ak + f ′′(ξ̂ k))dk(rk)

∥
∥
∥ = o(‖dk(rk)‖) (48)

and λk ∈ R+ is uniquely determined by the problem

ϕ(λk) := ‖(λk Ak + f ′′(ξ̂ k))−1 f ′(ξ̂ k)‖Ak = rk,

see Lemma A.1 for more details. The substitution ωk := (1 − λk)/λk leads to

λk Ak + f ′′(ξ̂ k) �→ Ĥ(ξ̂ k, ωk) := ωk f ′′(ξ̂ k)+ (1 − ωk)Ak (49)

with ωk ∈ [0, 1].
In the regularized Newton method the standard choice is Ak := Id which leads for

dk(ωk) to the gradient direction as ωk −−−→
k→∞ 0, but in practice we observe that the

positive definite matrix

Ak := A(ξ̂ k), (50)
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Algorithm 1 Regularized Newton Method (RNM)

1: Choose ξ̂1 ∈ S, γ, β ∈ (0, 1), ε > 0, σ ∈ (0, 1
2 ) δ > 0, define k := 1 and ω0 := 1.

2: while ‖ f ′(ξ̂k )‖ > ε do

3: ωk := min
{
ωk−1
γ , 1

}
.

4: Compute dk as a solution of

Ĥ(ξ̂k , ωk )d
k = f ′(ξ̂k )

by the cg-method. If the cg-method does not converge or the condition

〈
f ′(ξ̂k ), dk

〉

‖ f ′(ξ̂k )‖‖dk‖ ≥ min{δ, ‖ f ′(ξ̂k )‖2} (51)

is false, we set ωk := γωk and continue with Step 1.
5: Compute ω̄k > 0 by the Armijo rule

ω̄k := max
l∈N0

{
βl : f (ξ̂k )− f (ξ̂k − βl dk ) ≥ σβl

〈
f ′(ξ̂k ), dk

〉}
. (52)

6: Set ξ̂k+1 := ξ̂k − ω̄kdk and k �→ k + 1.
7: end while

see Eq. (39), gives much better results. Furthermore, from Lemma A.3 and Lemma A.2
follows that without loss of generality Ak has a condition number uniformly bounded
from above, since dk(0) is a gradient-like descent direction. Note that in cases where
λmin(Ak) < γmin one can use the ideas described in Lemma A.3 and Lemma A.2 to
reduce the tensor rank of the current iterant ξ k = C(ξ̂ k). Thus we obtain a direction
dk(ωk) which for ωk → 1 is the Newton direction and for ωk → 0 a descent direc-
tion. While solving system (48) iteratively by the cg-iteration, one can exploit that the
convergence depends on the positivity of Ĥ . As long as the iteration diverges or the
residual is not properly decreased in a defined number of cg-iterations, we decrease
ωk . Also, when (51) is not fulfilled we restart the process and decrease ωk . Thus,
during the iterative solve the parameter ωk can be adaptively determined.

Remark 6.1 In our numerical experiments with data discussed in [4,5], we noticed
that the following modification of the system matrix from Eq. (49) leads to better
results, see numerical results in Sect. 7. We redefine the system matrix by

Ĥ(ξ̂k, ωk) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ak(ξ̂k)+ ωk

(
Bk(ξ̂k)+ λ1G1k(ξ̂k)+ λ2G2k(ξ̂k)

)
, ωk �= 1

Ak(ξ̂k)+ ωk

(
Bk(ξ̂k)+ Ck(ξ̂k)− Dk(ξ̂k) ωk = 1,

+λ1G1k(ξ̂k)+ λ2G2k(ξ̂k)
)
,

(53)

where Ak, Bk, Ck, Dk, G1k and G2k are stated in Lemma 5.6 and Lemma 5.7. The
idea behind this definition can be explained as follows. For ωk = 1, we expect that the
current iterant is potentially located in an environment where the regularized Newton
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method converges quadratically. Therefore, we choose for the next iteration step the
second derivative of f . If ωk �= 1 we choose only selected terms of the second order
derivative, see Lemma 5.6. Notice that with the new definition of Ĥ(ξ̂k, ωk) we have
that the system matrix is independent of R (the tensor rank of the given tensor α).
Therefore, this choice is also favourably in cases where R is large.

Since we solve Eq. (48) by the cg-method, we have to consider the numerical com-
plexity of a matrix vector multiplication performed by the system matrix Ĥ(ξ̂k, ωk).
With this new definition we will see later that in cases where ωk �= 1, the numer-
ical cost for solving (48) is reduced. According to Lemma A.2 the complexity for
the inversion of the matrix Ak := Ak(ξ̂k) is O(dr3). Therefore an obvious choice
of a preconditioner for the cg-method applied to the linear system (48) is Ak . This
definition leads to

A−1
k Ĥ(ξ̂k, ωk) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Id + ωk A−1
k

(
Bk(ξ̂k)+ λ1G1k(ξ̂k)+ λ2G2k(ξ̂k)

)
, ωk �= 1

Id + ωk A−1
k

(
Bk(ξ̂k)+ Ck(ξ̂k)− Dk(ξ̂k) ωk = 1,

+λ1G1k(ξ̂k)+ λ2G2k(ξ̂k)
)
,

As a consequence, this choice improves the condition number of A−1
k Ĥ(ξ̂k, ωk) espe-

cially in problematic cases, i.e. if we have ωk → 0.

6.2 Convergence of the regularized Newton method

In the following we repeat the results about the convergence of the regularized Newton
method, see [12, Section 9.6], [17, Section 8.2], and [13, Section 14.4] for a detailed
description.

Theorem 6.2 Let the sequence (ξ̂ k)k∈N generated by Algorithms 1. Then every accu-
mulation point ξ̂∗ of (ξ̂ k)k∈N is a critical point, i.e. f ′(ξ̂∗) = 0. Moreover, if f ′′(ξ̂∗)
is positive definite and ‖Ĥ(ξ̂k, ωk)− f ′′(xk)‖ −−−→

k→∞ 0 then we have quadratic con-

vergence of (ξ̂ k)k∈N to ξ̂∗ and ξ̂∗ is a strict local minimum of f from Eq. (28).

6.3 Complexity analysis

In the following, the numerical complexity of the previously described regularized
Newton method applied to our objective function is studied. The main part of the
numerical cost is due to the solution of (48). For (48) we have to compute the first
and second order derivative of f from Eq. (28). Furthermore, for the computation of
the descent direction we use the cg-method, therefore one needs the matrix vector
multiplication of the system matrix from (53). Finally, with the use of the Armijo rule,
we have to compute the step-size parameter ωk . Obviously, this cost is similar to that
for the computation of the gradient and is negligible compared to the complexity of
the inversion of the system matrix. According to Lemma 5.6 and Lemma 5.7, we only
need to compute the inner products 〈·, ·〉μ1μ2 from Notation 5.4 for the system matrix.
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Since the other parts of Ĥ(ξ̂k, ωk) consist of vectors from the given representation
system of α and ξ k . In Corollary A.5 it is shown that the complexity for the compu-

tation of the inner products 〈·, ·〉μ1μ2 is O
(

r · (r + R) ·
(

d2 + ∑d
μ=1 tμ

))
. Below,

we will analyse the numerical cost for the computation of the gradient and the matrix
vector multiplication. Let S := ⊗d

μ=1 R
tμ, ξ ∈ Sr , and α ∈ SR like in Sect. 5.

Lemma 6.3 ([7, Lemma 5.3.2]) The complexity of the computation of the first order
derivative at ξ̂ k is

O

⎛

⎝r · (r + R) ·
d∑

μ=1

tμ

⎞

⎠ . (54)

Lemma 6.4 ([7, Corollary 5.3.14]) The complexity of the matrix vector multiplication
by the system matrix from Eq. (53) is

O

⎛

⎝r · (d + r) ·
d∑

μ=1

tμ

⎞

⎠ (55)

and

O

⎛

⎝r · (d + r + R) ·
d∑

μ=1

tμ

⎞

⎠ (56)

for ωk �= 1 and ωk = 1, respectively.

For the global convergence of a minimization method, the calculation of the step-size
parameter ωk by Armijo’s rule is important. For the Armijo rule, one has to evaluate
the function β �→ f (ξ̂ k − βdk). The numerical cost for one function evaluation for
given ξ̂ k and dk is stated below.

Lemma 6.5 ([7, Corollary 5.3.16]) The number of arithmetic operations in order to
evaluate the function β �→ f (ξ̂ k − βdk) scales as

O

⎛

⎝r ·
⎡

⎣(r + R) ·
d∑

μ=1

tμ + d · (r + R + d)

⎤

⎦

⎞

⎠ . (57)

Corollary 6.6 The overall complexity of a minimization step is

O

⎛

⎝r · (r + R) · d2 + d · r3 + r · (r + R + d) ·
d∑

μ=1

tμ

⎞

⎠ . (58)
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6.4 Solution of the extended approximation problem and systematic
choice of initial guesses

The solution of the extended approximation problem

‖α − C(ξ̂ε)‖ ≤ ε,

‖α − C(ξ̂ε)‖ = min
ξ̂∈Rc

d,rε,t

‖α − C(ξ̂ )‖

from Definition 5.3 is closely related to the choice of the initial guess for the regular-
ized Newton method. We are introducing a scheme which solves the extended approx-
imation problem by the successive use of the regularized Newton method. With the
concrete definition of our initial guess described below, we ensure that the approx-
imation error will not increase. Before we start with the description of the solution
of the extended approximation problem, we will explain some simple but in practice
very useful methods in order to create and improve the initial guess. As we already
mentioned, the choice of initial guesses is very important for iterative methods, in
particular, for the regularized Newton method since every iteration step is relatively
expensive.

Definition 6.7 (Fibre and Cross) Let i := (i1, . . . , id) ∈ ×d
μ=1{1, . . . , tμ} be a

multi-index and 1 ≤ μ ≤ d. The fibre of i in direction μ is defined as the following
set:

iμ :=
(
μ−1×
ν=1

{iν}
)×{1, . . . , tμ}×(

d×
ν=μ+1

{iν}
)

. (59)

The cross κ i of i is the union of the fibres in all directions, i.e.

κ i :=
d⋃

μ=1

iμ. (60)

Algorithm 2 Successive Cross Approximation (SCA)
1: Choose r ∈ N and ξ0 := 0 ∈ S
2: for i = 1 to r do
3: �i := α − ξi−1
4: Compute a rank-one cross approximation ξ of �i as defined in Lemma 6.8

5: ξi := ξi−1 + 〈�i ,ξ〉
‖ξ‖2 ξ

6: end for

Lemma 6.8 Let k ∈ N, β := ∑k
j=1

⊗d
μ=1 β jμ ∈ Sk , and i := (i1, . . . , id) ∈

×d
μ=1{1, . . . , tμ}, with βi ∈ R\{0}. Moreover let
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ξ i := 1
[
βi
]d−1

d⊗

μ=1

ξ
i
μ ∈ S1, where ξ

i
μ :=

k∑

j=1

⎛

⎝
d∏

ν=1,ν �=μ

(
β jν

)
iν

⎞

⎠β jμ ∈ Rtμ. (61)

For all m ∈ κ i we have

ξ i (m) = β(m). (62)

Proof Let m ∈ κ i and without loss of generality m := (i1, . . . , id−1, ld), 1 ≤ ld ≤ td .
We have

ξ
i
m = 1

[
βi
]d−1

d−1∏

μ=1

⎡

⎣
k∑

j=1

d∏

ν=1,ν �=μ

(
β jν

)
iν

(
β jμ

)
iμ

⎤

⎦

⎡

⎣
k∑

j=1

d−1∏

ν=1

(
β jν

)
iν

(
β jd

)
ld

⎤

⎦

= 1
[
βi
]d−1

[
βi
]d−1

⎡

⎣
k∑

j=1

d−1∏

ν=1

(
β jν

)
iν

(
β jd

)
ld

⎤

⎦ =
k∑

j=1

d−1∏

ν=1

(
β jν

)
iν

(
β jd

)
ld

= βm .

��
Remark 6.9 We call the elementary tensor from (61) a rank-one cross interpolation
of β. For the cross approximation it is possible that ‖β − ξ i‖ ≥ ‖β‖. In this case the
zero tensor 0S is a better approximation of β. This fact can be avoided by a simple
scaling of ξ i with

〈
β, ξ i

〉
/‖ξ i‖2, since we have

∥
∥
∥
∥
∥
β −

〈
β, ξ i

〉

‖ξ i‖2
ξ i

∥
∥
∥
∥
∥

2

= ‖β‖2 − 2

〈
β, ξ i

〉2

‖ξ i‖2
+

〈
β, ξ i

〉2

‖ξ i‖4
‖ξ i‖2 = ‖β‖2 −

〈
β, ξ i

〉2

‖ξ i‖2
≤ ‖β‖2.

The first method creates an initial guess by successively computing rank-one cross
approximations (SCA), see Algorithm 2. It is clear that the SCA algorithm produces
only rough approximations of a given tensor. For this reason we introduce a new
scheme which improves a given approximation. This approach is based on tensor
rank-one approximations. We are alternating over the terms of the given approxima-
tion and improve the approximation quality by defining the corresponding residual.
This residual will be approximated further, therefore we need rank-one approximation
methods. A complete algorithmic description of our method is given in Algorithm 3.
There are different well known methods for the rank-one approximation of a tensor, see
[18]. In our implementation, we are using the ALS algorithm. The method described

in Algorithm 3 has a numerical complexity of O
(

kmaxr · R · ∑d
μ=1 tμ

)
. This com-

plexity is negligible compared with the complexity of the regularized Newton method.
Hence, this algorithm is a good choice for the improvement of the initial guess for the
regularized Newton method.
The method which solves the extended approximation problem from Definition 5.3
is stated in Algorithm 4. Starting from an initial guess, we compute a locally best
rank-r approximation ξr , where r is the rank of the initial guess. Further, we compute
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Algorithm 3 Improve Approximation (IA)
1: Given α ∈ SR and ξ := ∑r

j=1 ξ j ∈ Sr . Choose kmax ∈ N.
2: for k = 1 to kmax do
3: for i = 1 to r do
4: �i := α −

(∑i−1
j=1 ξ j + ∑r

j=i+1 ξ j

)

5: Compute a rank-one approximation ξ of �i with ξi as initial guess.
6: ξi := ξ

7: end for
8: end for

a best rank-one approximation ψ1 of the residual �r := α − ξr . Finally, we use the
regularized Newton method to compute a locally best rank-(r + 1) approximation of
α, where ξ (0)r+1 is the initial guess, see Algorithm 4 for the complete description.

Algorithm 4 Computation of an Optimal ε-Approximation

1: Given: ε > 0, α and initial guess ξ̃ .
2: r := rankS (ξ̃ ).
3: Call improve approximation IA(α, ξ̃ ).
4: Compute a local best approximation ξr of α in Sr with the use of the regularized Newton method, see

Algorithm 1, where ξ̃ is the initial guess.
5: Define �r := α − ξr .
6: while ‖�r ‖ > ε and r < R do
7: Compute a rank-one cross interpolation ζ i of �r .

Compute a locally best approximation ζ1 of �r in S1 with the use of the regularized Newton method,
where ζ i is the initial guess, where S1 is defined in Definition 2.2.

8: if ‖�r − ζ1‖ = ‖�r ‖ then
9: Fill ζ1 with random numbers and redefine ζ1 �→ 〈ζ1,�r 〉

‖ζ1‖2 ζ1.

10: end if
11: Define ξ(0)r+1 := ξr + ζ1.

12: Call improve approximation IA(α, ξ(0)r+1).
13: Compute a locally best approximation ξr+1 of α in Sc

r+1 with the use of the regularized Newton

method, where ξ(0)r+1 is the initial guess.
14: Define �r+1 := α − ξr+1 and r �→ r + 1.
15: end while
16: if r = R then
17: Define ξr := α.
18: end if

Remark 6.10 With the definition of the initial guess we ensure that

‖α − ξ
(0)
r+1‖ ≤ ‖α − ξr‖, (63)

even in cases where ξr is only a local minimum of the original approximation problem,
see [7, Lemma 5.4.5].
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Remark 6.11 The complexity of the method described in Algorithm 4 is

O

⎛

⎝
rε∑

r=rankS (ξ̃ )

kr ·
⎡

⎣r · (r + R) · d2 + d · r3 + r · (r + R + d) ·
d∑

μ=1

tμ

⎤

⎦

⎞

⎠ , (64)

where kr is the number of iterations in the regularized Newton method for the rank-r
approximation.

Notation 6.12 For a given α ∈ SR and ε > 0 we will denote the solution of Algo-
rithm 4 by

Appε(α). (65)

7 Numerical experiments

Our numerical experiments are based on the above algorithm’s C++ implementations,
where the computation itself is performed on an Intel Core 2 Duo Processor T7300
2.0 GHz, dual core.

7.1 Model problem

Our model problem is the Poisson equation in d dimensions on � := [0, 1]d with
Dirichlet boundary conditions, i.e.

−�u = h,

u |� = 0.

The function h is defined as follows

h : � → R,

x := (x1, . . . , xd) �→
d∑

μ=1

d∏

ν=1,ν �=μ
ϕ(xν)

⎛

⎝−2 + (4 − 12xμ)
d∏

ν=1,ν �=μ
2xν

⎞

⎠ ,

where ϕ : [0, 1] → R, t �→ ϕ(t) := (1 − t)t . The function h has been chosen such
that the following function u with tensor rank equal to two is the solution of our model
problem:

u : � → R (66)

x := (x1, . . . , xd) �→ u(x) :=
d∏

ν=1

ϕ(xν)

(

1 +
d∏

ν=1

2xν

)

.
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A standard finite difference discretization on a uniform grid leads to a linear system
AU (u) = b with

A = T ⊗ Id ⊗ · · · ⊗ Id + · · · + Id ⊗ · · · ⊗ Id ⊗ T, b =
R∑

i=1

d⊗

μ=1

bi,μ,

where the matrix T is a discretized version of the second derivative, e.g.

T = 1

h2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

The investigated high-dimensional partial differential equation is of relatively simple
nature. Nevertheless, for a first numerical experiment this problem is a good choice,
because:

• After discretization, we can easily represent all tensors in the canonical tensor
format. Even �−1 can be approximated in the canonical format format. For this
purpose, we need the approximation of the function τ �→ 1

τ
by exponential sums

as described in [3].
• We can examine the model error introduced by discretization and approximation

of the inverse of the Laplacian since the solution u is given explicitly. This allows
us to observe the iterative behaviour of our algorithm in particular in cases where
we approximate tensors with additional noisy data.

Lemma 7.1 ([3]) Let sL(τ ) := ∑L
l=1 ωl exp(−αlτ)with αl , ωl > 0. With the optimal

choice of the parameter αl and ωl we have

sup
τ∈[1,c]

∣
∣
∣
∣
1

τ
− sL(τ )

∣
∣
∣
∣ ≤ 16 exp

( −Lπ2

log(8c)

)

.

From this approximation follows that for the optimal choice of αl and ωl ,

‖A−1 − sL(A)‖2 ≤ 16

λmin(A)
exp

( −Lπ2

log(8κ(A))

)

,

where sL(A) = ∑L
l=1 ωl ⊗d

μ=1 exp(−αl T ). The parameters αl and ωl are precom-
puted for different k and c and are available at the web page [9]. The analytic solution
of Eq. (66) is evaluated at the grid points. We denote the resulting tensor by u. Fur-
thermore, we define ũL := sL(A)h, where h is the function generated tensor of h.

The discretization error of our example is EL := ‖ũk−u‖
ũk

. Our numerical examples are
performed for k ∈ {15, 42} and d ∈ {10, 20, 50, 100} such that the model errors are
E42 ≤ 9.3 × 10−7 and E15 ≤ 1.125 × 10−4. Moreover, for the approximations ũ42
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and ũ15 we have ũ42 ∈ S84·d and ũ15 ∈ S30·d , i.e. after the matrix vector multiplica-
tion, the tensor ũ42 is represented by 84 · d elementary tensors and accordingly ũ15
is represented by 30 · d terms. Since u has tensor rank two, we approximate ũk in
the canonical tensor format. In the Tables 1, 2, 3, 4, 5, 6, 7 and 8, the columns are:
the tensor rank r of the optimal low rank approximation ur , the relative approxima-

tion error of the initial guess u(0)r , the relative approximation error of ur , the norm of
the gradient of the objective function f of the limit ur , the number of minimization
steps in the regularized Newton method and the used CPU time in seconds. Inde-
pendently of the dimension d and the accuracy EL , the introduced algorithm finds in
all numerical examples for r = 2 an approximation ur which approximates ũL with
the same quality as the prescribed accuracy. The regularized Newton method needs
a maximum of 10 iterations in these cases. As an example, we state the progression
of the iteration in Table 2. During this calculations the regularized Newton method
does not need the shift described in Algorithm 1, i.e. we have ωk = 1 for all k. As
long as we do not reach the model accuracy, the regularization of the Hessian is not
necessary and our method works like the Newton method. Furthermore, the algorithm
converges quadratically. However, the situation is different if we try to approximate
the tensor ũk below the given accuracy EL . Here the shift parameters is ωk < 1 and

Table 1 Low tensor rank approximation of ũ42 from the model problem for d = 10, R = 840, n = 1000,
and E42 = 2.508 × 10−7

r
‖ũL −u(0)r ‖

‖ũL ‖
‖ũL −ur ‖

‖ũL ‖ ‖ f ′(ur )‖ RNM-iterations CPU-time (s)

1 3.098 × 10−1 1.861 × 10−1 1.642 × 10−9 4 0.07

2 8.722 × 10−2 5.162 × 10−8 1.362 × 10−9 9 0.15

Table 2 Iteration of the RNM for d = 10, R = 840, r = 2, n = 1000,E42 = 2.508 × 10−7, and k is the
iteration index in the regularized Newton method

k
∥
∥
∥ f ′(u(k)r )

∥
∥
∥ ωk ω̄k

∥
∥
∥ũ42−u(k)r

∥
∥
∥

‖ũ42‖

0 3.0571 × 10−2 1.00 − 8.7216 × 10−2

1 7.7305 × 10−2 1.00 0.25 7.5917 × 10−2

2 1.0317 × 10−1 1.00 0.25 6.9140 × 10−2

3 1.0359 × 10−1 1.00 0.25 5.9843 × 10−2

4 1.0125 × 10−1 1.00 0.50 4.6120 × 10−2

5 2.2740 × 10−2 1.00 1.00 9.3248 × 10−3

6 5.8127 × 10−4 1.00 1.00 8.6426 × 10−4

7 5.6276 × 10−5 1.00 1.00 2.5567 × 10−5

8 1.4504 × 10−8 1.00 1.00 6.9094 × 10−8

9 1.3624 × 10−9 1.00 1.00 5.1619 × 10−8

The example is the iteration from Table 1 for r = 2
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Table 3 Low tensor rank approximation of ũ15 from the model problem for d = 10, R = 300, n = 1000,
and E15 = 5.981 × 10−5

r
‖ũL −u(0)r ‖

‖ũL ‖
‖ũL −ur ‖

‖ũL ‖ ‖ f ′(ur )‖ RNM-iterations CPU-time (s)

1 2.199 × 10−1 1.861 × 10−1 7.447 × 10−9 10 0.04

2 1.346 × 10−1 1.587 × 10−5 1.917 × 10−9 7 0.06

3 1.344 × 10−5 1.241 × 10−5 9.401 × 10−9 35 0.68

4 1.101 × 10−5 9.789 × 10−6 9.799 × 10−9 146 3.29

Table 4 Iteration of the RNM for d = 10, R = 300, r = 4, n = 1000, and E15 = 5.981 × 10−5

k
∥
∥
∥ f ′(u(k)r )

∥
∥
∥ ωk ω̄k

∥
∥
∥ũ42−u(k)r

∥
∥
∥

‖ũ42‖

0 2.8259 × 10−8 1.0 − 1.1014 × 10−5

30 2.0969 × 10−8 (0.8)3 0.50 1.0490 × 10−5

60 1.7256 × 10−8 (0.8)4 0.25 1.0217 × 10−5

90 2.0321 × 10−8 (0.8)3 0.50 1.0029 × 10−5

120 1.0128 × 10−8 (0.8)4 0.25 9.8876 × 10−6

146 9.7994 × 10−9 (0.8)5 0.25 9.7889 × 10−6

The example is the iteration from Table 3 for r = 4

Table 5 Low tensor rank approximation of ũ42 from the model problem for d = 20, R = 1680, n = 1000
and E42 = 8.789 × 10−7

r
‖ũL −u(0)r ‖

‖ũL ‖
‖ũL −ur ‖

‖ũL ‖ ‖ f ′(ur )‖ RNM-iterations CPU-time (s)

1 5.163 × 10−1 1.990 × 10−1 5.546 × 10−9 10 1.07

2 9.536 × 10−1 1.490 × 10−8 8.088 × 10−9 4 0.97

Table 6 Low tensor rank approximation of ũ15 from the model problem for d = 20, R = 600, n = 1000
and E15 = 1.125 × 10−4

r
‖ũL −u(0)r ‖

‖ũL ‖
‖ũL −ur ‖

‖ũL ‖ ‖ f ′(ur )‖ RNM-iterations CPU-time (s)

1 2.311 × 10−1 1.990 × 10−1 3.847 × 10−9 9 0.24

2 2.107 × 10−1 4.609 × 10−5 3.548 × 10−9 2 0.12

3 3.131 × 10−5 2.384 × 10−5 9.906 × 10−9 84 6.9

4 1.597 × 10−5 1.183 × 10−5 9.836 × 10−9 102 8.3

we need appreciably more iterations, at most 146. In these cases one cannot expect
that the method converges superlinearly or even quadratically. In Table 4 the iterative
behaviour of the regularized Newton method is documented for such a case. Typical
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Table 7 Low tensor rank approximation of ũ42 from the model problem for d = 50, R = 4200, n = 1000
and E42 = 9.261 × 10−7

r
‖ũL −u(0)r ‖

‖ũL ‖
‖ũL −ur ‖

‖ũL ‖ ‖ f ′(ur )‖ RNM-iterations CPU-time (s)

1 9.144 × 10−1 3.540 × 10−2 1.051 × 10−8 5 8.21

2 3.530 × 10−3 1.125 × 10−8 2.187 × 10−8 2 9.13

Table 8 Low tensor rank approximation of ũ42 from the model problem for d = 100, R = 8400, n = 1000
and E42 = 2.013 × 10−7

r
‖ũL −u(0)r ‖

‖ũL ‖
‖ũL −ur ‖

‖ũL ‖ ‖ f ′(ur )‖ RNM-iterations CPU-time (s)

1 9.644 × 10−1 1.271 × 10−3 2.888 × 10−8 3 83.23

2 6.308 × 10−6 1.577 × 10−8 7.925 × 10−11 1 101.28

in this case is, that with our choice of the initial guess the norm of the gradient is very
small for all iterates.

As already mentioned, Algorithm 4 is used in [4,5] for lower rank approximations
of tensors from the Hartree–Fock equation. In [4,5] we made the same observation as
for the model problem. As long as we approximate the given tensor with an approxi-
mation error which is of the same level as the underlying model accuracy, our method
needs only few iterations and converges quadratically. If we approximate the original
tensor below the accuracy introduced by the model discretisation, the behaviour of the
iteration process changes. In these cases, the regularization of the system matrix from
Eq. (49) is applied.

To complete the numerical experiments for the model problem, the results for
d ∈ {20, 50, 100} are documented in Tables 5, 6, 7 and 8.

7.2 Inexact iterations

In this section, we want to study the numerical behaviour of Algorithm 4 in the con-
text of inexact iterations in the canonical tensor format. Let T := ⊗d

μ=1 R
n and

(xk)k∈N ⊂ T be a recursively defined sequence, i.e. there is �k : Trk → Trk+1 and
x0 ∈ Tr0 with

xk := �k(xk−1), lim
k→∞ xk = x∗.

In practice, the sequence of tensor ranks (rk)k∈N grows that fast such that the iterative
process cannot be performed on computer systems. Therefore, one introduces inexact
iterations as defined below:
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y0 := Appε0
(x0),

zk := �k(yk−1), (67)

yk := Appεk
(zk),

where Appεk
is defined in Notation 6.12. If one makes sure that ‖zk − Appεk

‖ ≤
c‖zk − x∗‖ and if xk −−−→

k→∞ x∗ at least quadratically, we have that yk −−−→
k→∞ x∗ with

the same rate of convergence as xk −−−→
k→∞ x∗. For a complete convergence analysis

of inexact iterations we refer to [10].
The computation of the pointwise inverse of a tensor u ∈ T with ui �= 0 for all

i ∈ {1, . . . , n}d is of interest in several applications, e.g. for the pointwise sign-func-
tion of u, where the pointwise sign-function of u has important applications in the
data analysis of high-order tensors. A naive computation of this problem would have
a complexity which grows exponentially with the order d of the tensor u. If u is given
in some efficient tensor format like the canonical tensor format, one can compute the
pointwise inverse iteratively. For the pointwise inverse, the function�k from Eq. (67)
is defined as follows

x �→ �k(x) := x � (21 − u � x), (68)

where � is the pointwise Hadamard product and 1 is the constant rank-one tensor
with all values equal to one. The recursion function � is motivated by the Newton
method applied to the function τ �→ a − τ−1, see [10] for more details. If one defines
the error ek := 1 − u � xk , we have

ek = 1 − uxk = 1 − uxk−1 (1 + ek−1) = ek−1 − uxk−1ek−1

= (1 − uxk−1) ek−1 = e2
k−1 = e2k

0 ,

where we set for simplicity ab := a � b for any a, b ∈ T . For ‖e0‖ < 1 it follows
that xk −−−→

k→∞ u−1, where u−1 is defined pointwise. For the numerical test we used

the following two function-generated tensors u1 and u2 defined by the evaluation of
the functions

ϕ1 : [0, 1]d → R, x �→ ϕ1(x) := 1 +
2∑

l=1

d∏

μ=1

(xμ)
l
d ,

ϕ2 : [0, 1]d → R, x �→ ϕ1(x) := 1 + 9

d

d∑

μ=1

xμ

on the uniform grid

�n :=
{
η(i1 − 1, i2 − 1, . . . , id − 1)t ∈ [0, 1]d : (i1, . . . , id) ∈ {1, . . . , n}d

}
,

η := 1/(n − 1).
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The approximation error is determined by �i := ‖1−ui y‖
‖1‖ for i ∈ {1, 2}. The compu-

tation of an initial guess y(i)0 with �i (y
(i)
0 ) < 1 is necessary for the convergence

of the method. In the present case it is sufficient to find a locally best rank-one
approximation of ui and to compute the pointwise inverse of this rank-one approx-
imation. The pointwise inverse of an elementary tensor v = ⊗d

μ=1 vμ is easy to

compute, since we have v−1 = ⊗d
μ=1 v

−1
μ . In inexact iterations as described in

(67), one can expect that the predecessor yk−1 is a good initial guess for the low
rank approximation of zk . Therefore, we choose yk−1 as the initial guess for the low
rank approximation of zk in Algorithm 4. The numerical tests are documented in
Tables 9, 10 and 11 for d ∈ {100, 150} and n := 100. The proposed Algorithm 1
needs only few iterations in order to compute a local best approximation of zk in all
examples.

7.3 Comparison of the descent directions

In regularized Newton method, the standard choice for the system matrix method is

Ĥ (1)(ξ̂k, ωk) := (1 − ωk)Ak(ξ̂k)+ ωk f ′′(ξ̂k)

= Ak(ξ̂k)+ ωk

(
Bk(ξ̂k)+Ck(ξ̂k)−Dk(ξ̂k)+λ1G1k(ξ̂k)+λ2G2k(ξ̂k)

)
.

In Eq. (53) we have introduced the following new system matrix

Table 9 Computation of u−1
1 with d = 100, n = 100, and �1(y(3)) = 2.137 × 10−6

k rankT (zk ) rankT (yrk )

∥
∥
∥zk−y(0)rk

∥
∥
∥

‖zk‖

∥
∥
∥zk−yrk

∥
∥
∥

‖zk‖
∥
∥ f ′(yrk )

∥
∥ RNM-

iterations
CPU-time (s)

1 102 1 6.63 × 10−6 6.63 × 10−6 1.15 × 10−7 1 0.33

1 102 2 5.61 × 10−6 4.43 × 10−6 3.54 × 10−7 25 11.05

2 406 2 4.43 × 10−6 4.17 × 10−6 4.50 × 10−7 21 23.28

2 406 3 2.14 × 10−6 2.13 × 10−6 3.44 × 10−7 2 6.07

Table 10 Computation of u−1
1 with d = 150, n = 100, and �1(y(2)) = 3.141 × 10−6

k rankT (zk ) rankT (yrk )

∥
∥
∥zk−y(0)rk

∥
∥
∥

‖zk‖

∥
∥
∥zk−yrk

∥
∥
∥

‖zk‖
∥
∥ f ′(yrk )

∥
∥ RNM-

iterations
CPU-time (s)

1 152 1 4.44 × 10−6 4.44 × 10−6 4.26 × 10−7 1 0.81

1 152 2 3.77 × 10−6 3.15 × 10−6 3.79 × 10−7 11 20.08
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Table 11 Computation of u−1
2 with d = 150, n = 100, and �2(y(3)) = 1.384 × 10−6

k rankT (zk ) rankT (yrk )

∥
∥
∥zk−y(0)rk

∥
∥
∥

‖zk‖

∥
∥
∥zk−yrk

∥
∥
∥

‖zk‖
∥
∥ f ′(yrk )

∥
∥ RNM-itera-

tions
CPU-time (s)

1 4 1 1.66 × 10−3 1.66 × 10−3 1.02 × 10−7 1 0.04

1 4 2 9.33 × 10−4 2.34 × 10−6 2.93 × 10−7 5 2.03

2 14 2 3.72 × 10−6 1.88 × 10−6 1.86 × 10−7 2 1.12

3 14 2 1.89 × 10−6 1.89 × 10−6 2.96 × 10−7 2 0.51

3 14 3 1.57 × 10−6 1.41 × 10−6 2.33 × 10−7 2 2.23
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Fig. 1 Comparison of the descent directions on the model problem from Sect. 7.1 with d = 25, r = 2,
R = 2100 and n = 1000

Ĥ (2)(ξ̂k, ωk) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ak(ξ̂k)+ ωk

(
Bk(ξ̂k)+ λ1G1k(ξ̂k)+ λ2G2k(ξ̂k)

)
, ωk �= 1

Ak(ξ̂k)+ ωk

(
Bk(ξ̂k)+ Ck(ξ̂k)− Dk(ξ̂k) ωk = 1.

+λ1G1k(ξ̂k)+ λ2G2k(ξ̂k)
)
,

The method with Ĥ (2)(ξ̂k, ωk) as system matrix is a combination of Ĥ (1)(ξ̂k, ωk) for
ωk �= 1 and Ĥ (3)(ξ̂k, ωk) for ωk = 1, where

Ĥ (3)(ξ̂k, ωk) := Ak(ξ̂k)+ωk

(
Bk(ξ̂k)+Ck(ξ̂k)−Dk(ξ̂k)+λ1G1k(ξ̂k)+λ2G2k(ξ̂k)

)
.
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Fig. 2 Comparison of the descent directions on example u−1
1 from Sect. 7.2 with d = 50, r = 2, R = 462

and n = 100
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Fig. 3 Comparison of the descent directions on example u−1
2 from Sect. 7.2 with d = 50, r = 4, R = 52

and n = 100

These three different choices lead to different minimization methods. We want to
compare the iterative behaviour of the different methods applied to randomly chosen
examples from the previous sections. In Figs. 1, 2 and 3 the iteration process of the
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A regularized Newton method for the efficient approximation 519

regularized Newton method is plotted. In all calculations the descent direction with
Ĥ (2)(ξ̂k, ωk) leads to the best result. Note that this choice leads to an even better
complexity for the computation of the descent direction, see Lemma 6.4.

A Appendix

Lemma A.1 Let a ∈ R, 0 �= b ∈ Rn, x ∈ Rn, A, B ∈ Rn×n be positive definite,
symmetric and

d �→ q(d) := a + 〈b, d − x〉 + 1

2
〈B (d − x) , d − x〉 (69)

for all d ∈ Rn. For every r ∈ (
0, ‖B−1b‖A

)
there exist a unique minimizer d∗ of q in

K A(x, r) := {d ∈ Rn : ‖d − x‖A ≤ r}. Further we have

d∗ = x − (
λ∗ A + B

)−1
b, (70)

where λ∗ > 0 is uniquely determined as the solution of the non-linear equation

ϕ(λ∗) := ‖(λ∗ A + B)−1b‖A = r. (71)

Proof Let λ > 0, r ∈ (
0, ‖B−1b‖A

)
and d ∈ Rn . The constraint ‖d − x‖2

A ≤ r2

induces the Lagrange function

Lλ(d) := q(d)+ 1

2
λ
(
‖d − x‖2

A − r2
)
.

Since λ > 0 and B is positive definite, Lλ is convex. Therefore, d∗ is a minimizer of
Lλ in Rn if and only if

0 = L ′
λ(d

∗) = q ′(d∗)+ λA(d∗ − x)

= b + B(d∗ − x)+ λA(d∗ − x) ⇔ d∗ = x − (λA + B)−1 b.

Since ϕ(λ) −−−→
λ→0

‖B−1b‖A and ϕ(λ) −−−→
λ→∞ 0, there exists a solution λ∗ > 0 of Eq.

(71). It remains to show uniqueness. We have

ϕ2(λ) = ‖(λA + B)−1b‖2
A = ‖A− 1

2 (λId + A− 1
2 B A− 1

2 )−1 A− 1
2 b‖2

A

= ‖(λId + B̃)−1b̃‖2,

where we define B̃ := A− 1
2 B A− 1

2 and b̃ := A− 1
2 b. B̃ is symmetric and has only

positive eigenvalues. Therefore B̃ is positive definite. Accordingly, we have

ϕ2(λ) = ‖U (λId + D)−1 U t b̃‖2 = ‖ (λId + D)−1 b̂‖2 =
n∑

i=1

(λ+ di )
−2b̂2

i ,
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520 M. Espig, W. Hackbusch

where B̃ = U DU t and b̂ := U t b̃. Furthermore we have

(ϕ2)′(λ) = −2
n∑

i=1

(λ+ di )
−3

︸ ︷︷ ︸
>0

b̂2
i < 0,

since b̂ �= 0 and di > 0, where D = diag (di )
n
i=1. Therefore, ϕ is a strictly monotoni-

cally decreasing function, consequently injective. ��

Lemma A.2 Let c > 0 and (ξ k)k∈N ⊂ Sc
r by a sequence of tensors in the canonical

format with bounded terms and Âk := A(ξ̂ k) as defined in Lemma 5.6. Furthermore,
let rankT (ξ k) = r . We have:

(i) Âk is symmetric and positive definite, consequently regular.
(ii)

Â−1
k =

d∑

μ=1

Eμ ⊗
[
G(k)
μ

]−1 ⊗ IdRtμ , (72)

where (G(k)
μ ) j1 j2 :=

〈
ξ k

j1
, ξ k

j2

〉

μ
for 1 ≤ j1, j2 ≤ r .

(iii) There exists M > 0 such that for all u ∈ Rd,r,t and all k ∈ N we have the
inequality

〈
u, Âku

〉
≤ M‖u‖2. (73)

Proof (i) We have

Ât
k =

d∑

μ=1

Et
μ ⊗ G(k)

μ

t ⊗ Idt
Rtμ =

d∑

μ=1

Eμ ⊗ G(k)
μ ⊗ IdRtμ = Âk .

G(k)
μ is a Gram matrix and positive definite, see Lemma A.3. Consequently, Âk is a

positive definite matrix.

(ii) Let Ãk := ∑d
μ=1 Eμ ⊗

[
G(k)
μ

]−1 ⊗ IdRtμ . We have

Âk · Ãk =
d∑

μ=1

Eμ ⊗
(

G(k)
μ ·

[
G(k)
μ

]−1
)

⊗ IdRtμ

=
d∑

μ=1

Eμ ⊗ IdRr ⊗ IdRtμ = IdRr |t | .
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(iii) Define M := rc2 d−1
d > 0 and let k ∈ N and u ∈ Rd,r,t . The following sequence

of inequalities

〈
u, Âku

〉
≤ ‖ Âk‖‖u‖2 ≤ max

1≤μ≤d
‖G(k)

μ ⊗ IdRtμ ‖‖u‖2

≤ max
1≤μ≤d

‖G(k)
μ ‖‖u‖2 ≤ max

1≤μ≤d
|λmax(G

(k)
μ )|‖u‖2

is valid. Further, we have for ξ k ∈ Sc
r that ‖ξ k

j ‖μ ≤ c
d−1

d holds. From Gerschgorin’s
Theorem it follows that

|λmax(G
(k)
μ )| ∈

r⋃

j=1

{λ ∈ R : |‖ξ k
j ‖2
μ − λ| ≤ ρ j },

where

ρ j :=
r∑

j ′=1, j ′ �= j

∣
∣
∣
∣

〈
ξ k

j , ξ
k
j ′
〉

μ

∣
∣
∣
∣ ≤

r∑

j ′=1, j ′ �= j

‖ξ k
j ‖μ‖ξ k

j ′ ‖μ ≤ (r − 1)c2 d−1
d .

It follows

|λmax(G
(k)
μ )| ≤ rc2 d−1

d = M

and finally we have

〈
u, Âku

〉
≤ M‖u‖2.

��
The following two Lemmata A.3 and A.4 are playing an important role in several direct
minimization methods, e.g. the ALS method [1] and the regularized Newton method
[7]. In particular, Lemma A.3 assures that the system matrix in the ALS method and
the preconditioner in [7] are without loss of generality regular, see Lemma A.4.

Lemma A.3 Let v := ∑r
i=1 vi ∈ T with rankT (v) = r ∈ N, where vi :=

⊗d
μ=1 viμ, viμ ∈ Aμ\{0}. Then we have that {vμi : 1 ≤ i ≤ r} is linearly inde-

pendent for all μ ∈ {1, . . . , d}, where we defined vμi := ⊗d
ν=1, ν �=μ viν .

Proof Assume that there is 1 ≤ μ0 ≤ d with {vμ0
i : 1 ≤ i ≤ r} linearly dependent.

Then there are λ1, . . . , λr ∈ R and 1 ≤ i0 ≤ r with λi0 �= 0 and
∑r

i=1 λiv
μ0
i = 0.

Without loss of generality let i0 = r . We have vμ0
r = ∑r−1

i=1
−λi

λr︸︷︷︸
λ̃i :=

v
μ0
i . Further, it

follows that
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v =
r∑

i=1

vi =
(

r−1∑

i=1

v
μ0
i (viμ0)

)

+ vμ0
r (vrμ0)

=
r−1∑

i=1

(
v
μ0
i (viμ0)+ λ̃iv

μ0
i (vrμ0)

)
=

r−1∑

i=1

ṽi ,

where ṽi := v
μ0
i (viμ0 + λ̃ivrμ0). But this contradicts the fact that rankT (v) = r . ��

The case discussed in Lemma A.3 is an idealized situation. In practice, the set {vμi :
1 ≤ i ≤ r} is almost linearly dependent, i.e. some singular values of the Gram matrix
Gμ := (

〈
vi1 , vi2

〉
μ
)ri1,i2=1 are small. Let l ∈ {1, . . . , r} and

Gμ =
r∑

i=1

σi,μ ui,μut
i,μ (74)

be the singular value decomposition of Gμ. Since uμl �= 0Rr there is ‖ul,μ‖∞ �= 0.
Therefore, the following tensor vl with rankT (v) ≤ r − 1 is well defined:

vl :=
r∑

i=1, i �= j

v
μ
i

(

viμ − [ul,μ]i

‖ul,μ‖∞
v jμ

)

, (75)

where j := argmax1≤i≤r |[ul,μ]i |.
Lemma A.4 Let v := ∑r

i=1
⊗d

μ=1 viμ ∈ T and vl as defined in Eq. (75). We have

‖v − vl‖ ≤ σl,μ
max1≤ j≤r ‖v jμ‖

‖ul,μ‖∞
. (76)

Proof We have

v − vl =
r∑

i=1

v
μ
i (viμ)−

r∑

i=1, i �= j

v
μ
i

(

viμ − [ul,μ]i

‖ul,μ‖∞
v jμ

)

= v
μ
j (v jμ)+

r∑

i=1, i �= j

[ul,μ]i

‖ul,μ‖∞
v
μ
i

(
v jμ

)

= 1

‖ul,μ‖∞

(
r∑

i=1

[ul,μ]iviμ

)

︸ ︷︷ ︸
f μl :=

⊗
v jμ.

Furthermore, we have ‖ f μl ‖2 = 〈
ul,μ,Gμul,μ

〉 = σ 2
l,μ. ��
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We discuss the computation of the factors 〈·, ·〉μ1μ2 and 〈·, ·〉μ1 introduced in
Notation 5.4. A naive computation would have a complexity growing cubically with
respect to the order d. But it is possible to compute the terms 〈·, ·〉μ1μ2 and 〈·, ·〉μ1

with a better complexity.
Let ξ := ∑r

j=1
⊗d

μ=1 ξ jμ and α := ∑d
i=1

⊗d
μ=1 αμi . First we compute and store

all simple inner products, i.e. for 1 ≤ μ ≤ d, 1 ≤ j1, j2 ≤ r and 1 ≤ i ≤ R we
compute

〈
ξ j1μ, ξ j2μ

〉
and

〈
ξ j1μ, αiμ

〉
. The computational cost of this computation is

O
(

r · (r + R) · ∑d
μ=1 tμ

)
. Obviously, we have

〈
ξ j1, ξ j2

〉
μ1μ2

=
∏

μ∈N≤d\{μ1,μ2}

〈
ξ j1μ, ξ j2μ

〉

=
μ1−1∏

μ=1

〈
ξ j1μ, ξ j2μ

〉
μ2−1∏

μ=μ1+1

〈
ξ j1μ, ξ j2μ

〉 d∏

μ=(μ2+1)

〈
ξ j1μ, ξ j2μ

〉

for the terms from Notation 5.4 and

〈
ξ j1, αi

〉
μ1μ2

=
∏

μ∈N≤d\{μ1,μ2}

〈
ξ j1μ, αiμ

〉

=
μ1−1∏

μ=1

〈
ξ j1μ, αiμ

〉
μ2−1∏

μ=μ1+1

〈
ξ j1μ, αiμ

〉 d∏

μ=μ2+1

〈
ξ j1μ, αiμ

〉
,

where μ1 ≤ μ2. Note, because of symmetry it is sufficient to consider only this case.
In order to calculate

〈
ξ j1, ξ j2

〉
μ1μ2

and
〈
ξ j1, αi

〉
μ1μ2

, it is sufficient to compute the terms

Xμ2
μ1, j1, j2

:=
μ2∏

μ=μ1

〈
ξ j1μ, ξ j2μ

〉
, Aμ2

μ1, j1,i
:=

μ2∏

μ=μ1

〈
ξ j1μ, αiμ

〉

since we have

〈
ξ j1, ξ j2

〉
μ1μ2

= X (μ1−1)
1, j1, j2

· X (μ2−1)
(μ1+1), j1, j2

· Xd
(μ2+1), j1, j2

,

〈
ξ j1, αi

〉
μ1μ2

= A(μ1−1)
1, j1,i

· A(μ2−1)
(μ1+1), j1,i

· Ad
(μ2+1), j1,i

.

The following Algorithm 5 computes the terms Xμ2
μ1, j1, j2

and Aμ2
μ1, j1,i

.

Corollary A.5 The complexity of the computation of the terms
〈
ξ j1, ξ j2

〉
μ1μ2

and
〈
ξ j1, αi

〉
μ1μ2

from Notation 5.4 is

O

⎛

⎝r · (r + R) ·
⎛

⎝d2 +
d∑

μ=1

tμ

⎞

⎠

⎞

⎠ . (77)
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Algorithm 5 Computation of Xμ2
μ1, j1, j2

and Aμ2
μ1, j1,i

.

1: for μ1 = 1 to d do
2: for μ2 = μ1 to d do
3: for j1 = 1 to r do
4: for j2 = 1 to r do
5: if μ1 = μ2 then
6: X

μ2
μ1, j1, j2

:= 〈
ξ j1μ1 , ξ j2μ1

〉

7: else
8: X

μ2
μ1, j1, j2

:= X
(μ2−1)
μ1, j1, j2

· 〈ξ j1μ2 , ξ j2μ2

〉

9: end if
10: end for
11: for i = 1 to R do
12: if μ1 = μ2 then
13: A

μ2
μ1, j1,i

:= 〈
ξ j1μ1 , αiμ1

〉

14: else
15: A

μ2
μ1, j1,i

:= A
(μ2−1)
μ1, j1,i

· 〈ξ j1μ2 , αiμ2

〉

16: end if
17: end for
18: end for
19: end for
20: end for
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