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Abstract In this article we introduce a calculus of variations for sums of elemen-
tary tensors and apply it to functionals of practical interest. The survey provides all
necessary ingredients for applying minimization methods in a general setting. The
important cases of target functionals which are linear and quadratic with respect to
the tensor product are discussed, and combinations of these functionals are presented
in detail. As an example, we consider the solution of a linear system in structured
tensor format. Moreover, we discuss the solution of an eigenvalue problem with sums
of elementary tensors. This example can be viewed as a prototype of a constrained
minimization problem. For the numerical treatment, we suggest a method which has
the same order of complexity as the popular alternating least square algorithm and
demonstrate the rate of convergence in numerical tests.

Mathematics Subject Classification 15A69 · 90C06 · 65F10

1 Introduction

Approximation of solutions of high dimensional partial differential or integral equa-
tions by low rank tensors has yielded promising results, see e.g. [1,2,11,12,14,15].
A tensor u ∈ R

nd
of order d requires in general a storage complexity of nd . If u can

be approximated by a low rank tensor
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u ≈
r∑

j=1

d⊗

μ=1

u j,μ,

the memory requirement reduces to drn, and the complexity of algebraic operations
grows only linearly with respect to the order d. However, when using iterative meth-
ods for computing a low-rank tensor, one usually has to face the problem that the
involved algebraic operations increase the tensor rank in each iteration step. To over-
come this issue, efficient recompression methods have been developed in [1–3,7,9]
to approximate a given sum of elementary tensors by low rank tensors. Moreover,
the convergence of such approximate iterations is known, see [16] for an analy-
sis. The subject of this article is in contrast to this approach. We will show that
the representation of a tensor in low rank format allows in many cases of practi-
cal interest a direct optimization procedure on the set of tensors of a fixed rank
r . Thus, we will solve the original problem directly in the low tensor rank format
instead of solving a high dimensional problem indirectly by the use of approxima-
tive iterative schemes. This approach has some advantages: We can be sure that the
solution is at least locally optimal with respect to the problem dependent functional,
and we circumvent numerical problems that may arise during the compression step
of approximate iterations even if the original task lacks this kind of approximation
problems. An example where such problems may occur is the second numerical
experiment discussed in this article, an eigenvalue problem for which we know a
priori that there exists a low rank solution. If we would apply the indirect iterative
methods discussed above, we have to approximate all iterands during the iterative
process, while it is unclear that an iterand can be well approximated by low rank
tensors.

In this work, we give some examples for a successful application of the above
direct approach when combined with an accelerated gradient (AG) algorithm, which
we consider a first step towards the application of the direct optimization concept to
the canonical format. It suggests that the approach might be competitive with optimi-
zation algorithms for alternative tensor formats as the Tucker Format [30] or the HT
[17] format (with the TT format [26–28] as special case), for which the development
is also still in progress: For the Tucker format, one obtains an optimization problem
on a suitable Grassmann manifold G, an approach used on approximation problems in
[6,20,29]. Alternatively, the treatment of differential equations may be formulated via
a stable characterization of the tangent space [22], and optimization problems may in
this calculus be treated by following the gradient flow of the functional on G (see [22]
for the general approach). To our knowledge, there are no practical results available
yet; nevertheless, the satisfactory convergence behavior of the related ALS procedure
[21,24] gives rise to the hope that the Tucker format also provides a sensible alternative
when the space dimension is small. As per the more recent TT format, a part of the
authors recently obtained some promising practical results for optimization problems
in [18]; from the theoretical side, this is complemented by the fact that the TT and
HT format share many of the favorable properties of the Tucker format [10,19] while
often allowing for a representation consuming less resources. The considerations in
this article are closely related to the pioneer work of Beylkin and Mohlenkamp [1–3].
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The article is structured as follows: In the next section, we introduce notations and
problems to be treated by our calculus. In the following part, we compute the deriv-
atives of a general functional formulated on the set of rank r -tensors. Moreover, we
will also discuss special parts of concrete target functionals. We specialize the treat-
ment to functionals of particular practical interest in Sect. 4. The next part deals with
the numerical treatment of the optimization process by a suitable accelerated gradient
algorithm. Finally, we present numerical results for the two examples from Sect. 4.

2 Setting, notations and problem formulation

Let d ∈ N. For ν ∈ {1, . . . , d}, let �ν ⊆ R
n, Hν := L2(�ν) and Vν ⊆ Hν reflexive

Banach spaces, where each Vν is dense in and continuously embedded into Hν ; for
example, one might consider Vν = Hs

0 (�ν). In this paper, we will be concerned with
the tensor product space

⊗d
ν=1 Vν, cf. [13,32]. To keep notations simple, we will

restrict our treatment to the case that H1 = · · · = Hn =: H is a real Hilbert space,
and will also suppose V1 = · · · = Vn =: V , although the above general case may be
treated analogously with the necessary modifications. We denote by

V := Vd :=
d⊗

ν=1

V

the d-fold tensor product space over V . In the following, we will fix the parameter d
and drop the suffix d in most cases to keep notations simple.

The norms on H,H = ⊗d
ν=1 H and V will be denoted by ||.||H , ||.||H and ||.||V ,

respectively. For a convenient formulation of the problems we have in mind, we will
use duality pairings of the following form,

〈g, u〉 := g(u), u ∈ V, g ∈ V ′; 〈G, U 〉 := G(U ), U ∈ V, G ∈ V ′.

Note that if we have g ∈ H ′ ⊆ V ′ in the above situation, 〈g, u〉 may be identified with
the inner product 〈g, u〉H on H ; an analogous statement holds for G ∈ H′ ⊆ V ′.

An elementary tensor W ∈ V is a tensor of the form W = ⊗d
ν=1 wν ∈ V, wν ∈ V .

A tensor U ∈ V is called a tensor of rank r if it can be written as a sum of r elementary
tensors,

U =
r∑

i=1

d⊗

ν=1

ui,ν .

The set of all tensors U ∈ V of rank r will be denoted by Kr . Note that Kr is a cone,
i.e. U ∈ Kr implies αU ∈ Kr , for all α ∈ R, but Kr is not a vector space, and not
even convex since for W1, W2 ∈ Kr , there only holds W1 + W2 ∈ K2r , but in general
we have W1 + W2 �∈ Kr .

Notation 2.1 Let X be a vector space, Y ⊂ X and f : Y → R. We will use in the
short notation M( f, Y ) for the set of minimizers of the induced minimization problem,
i.e.
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M( f, Y ) := {y ∈ Y : f (y) = inf f (Y )}. (1)

Problem 2.2 Given a functional F : V → R and an admissible set M ⊂ V , we are
searching for a minimizer of the modified optimization problem where the original
admissible set M is confined to tensors of rank at most r , i.e. we are searching for

U ∈ M(F,M ∩ Kr ). (2)

Let us mention a few basic examples which are important in several practical appli-
cations in high dimensions.

(i) The low rank approximation F(W ) = ‖U − W‖2
H , W ∈ Kr for given U ∈ V .

(ii) The solution of equations AU = B or g(U ) = 0 where A, g : V → V ′. Here
we have F(W ) = ‖AW − B‖V ′ resp. ‖g(W )‖V ′ .

(iii) If A : V → V ′ is bounded, symmetric and coercive with respect to ||.||V and
B ∈ V ′ given, we may instead of the first functional in (ii) focus on F(W ) :=
1
2 〈AW, W 〉 − 〈B, W 〉.
Note that in the case that B = AU for fixed U ∈ V , this task means finding
a low rank approximation of U with respect to the energy norm induced by A
(equivalent to the V -norm) instead of the Hilbert space norm H used in example
(i).

(iv) Computation of the lowest eigenvalue of a symmetric operator A : V → V ′
by minimizing the Rayleigh quotient: F(W ) := 〈AW, W 〉/〈W, W 〉 over M =
V\{0}, This problem is equivalent to the constraint minimization problem

U ∈ M(F, {W ∈ V : ||W ||H = 1}).

In the first three examples we have M ∩ Kr = Kr , while in the last example we
have an additional constraint, namely M = {W ∈ V : 〈W, W 〉 = 1}. Note that in this
case, M ∩ Kr �= ∅ due to the cone property of Kr .

Solving the optimization problem (2) means finding a system of representants

(ui,ν)
r
i=1

d
ν=1 := {ui,ν ∈ V : i ∈ N≤r , ν ∈ N≤d},

where N≤k := {n ∈ N : n ≤ k}, such that the minimizer U is representable by
U = ∑r

i=1
⊗d

ν=1 ui,ν . Let us cast the unknown functions (resp. vectors) ui,ν , i =
1, . . . , r, ν = 1, . . . , d, into a vector (resp. matrix),

u := (ui,ν)
r
i=1

d
ν=1 ∈ V r×d .

If V is finite dimensional, which after discretization is always the case in practice,
the required number of degrees of freedom is dimV d×r = drdimV , i.e. it grows only
linearly with respect to the dimension d. This fact makes the representation of tensors
by sums of elementary tensors an attractive option in particular in high dimensions.
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In order to find u ∈ V r×d for representation of the minimizer U ∈ V , we introduce
the (multilinear) mapping

U : V r×d → V =
d⊗

ν=1

V, u �→ U (u) :=
r∑

i=1

d⊗

ν=1

ui,ν .

Then our original optimization problem (2) takes the form

Find u ∈ M(J, V r×d),

where we set J := F ◦ U : V r×d → R.
Since the representation u ∈ V r×d of U (u) ∈ Kr is neither unique nor stable,

the above optimization problem inherits additional difficulties and redundance, which
should be removed in advance. In particular, the border rank problem [5] can be abol-
ished by bounding the norm of the single elementary tensors. If V is densely embedded
in a Hilbert space H (e.g. H = L2(�) or H = �2(N)), it is often numerically advan-
tageous to impose the following constraint conditions on the H -norm of the vectors
ui,ν :

〈ui,ν , ui,ν〉 = ‖ui,ν‖2
H = 1 for 1 ≤ ν ≤ d − 1, 1 ≤ i ≤ r, (3)

‖ui,d‖2
H ≤ C for 1 ≤ i ≤ r. (4)

Note that this implies that the norm of the corresponding elementary tensors Ui

constituting u is bounded, ||Ui ||H = || ⊗d
ν=1 ui,ν ||H ≤ Ci for all i ∈ N≤r . The set

of all u ∈ V r×d , where the vectors ui,ν satisfy conditions (3) and (4) is denoted by
M ⊂ V r×d .

Alternatively, the redundancy in an elementary tensor may be reduced by bounding
and equilibrating the norms of the elementary tensors Ui , see [7]:

‖ui,ν‖H ≤ C for all 1 ≤ ν ≤ d, 1 ≤ i ≤ r, (5)

‖ui,ν‖H = ‖ui,μ‖H for 1 ≤ ν, μ ≤ d, 1 ≤ i ≤ r. (6)

We will impose these constraint conditions either by introducing penalty terms in
the functional or by treating them explicitly. Therefore, we have arrived at the following
optimization problem, which is from now on the basic problem under consideration.

Problem 2.3

Find u ∈ M(J, M). (7)

Remark 2.4 M is a closed and bounded subset of V r×d and U : V r×d → V is a
continuous mapping.

If V is finite dimensional, if F : V → R is continuous and if M = V or at least
M∩U (M) �= ∅ is closed, then J : M → R is continuous. Under these premises, there
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exists a solution of the above problem (7). If V is infinite dimensional, the situation is
more challenging due to the lack of compactness; note though that for V = H , i.e. in
the Hilbert space case, the existence of a best rank r -approximation [cf. Problem (i)
above] has recently been proven [9,31].

3 Computation of the derivatives

We would like to find a local minimizer by local first and second order methods, i.e.
by means of differential calculus. We start by computing the derivatives for

U (u) = U ((ui,ν)
r
i=1

d
ν=1) =

r∑

i=1

Ui (u) :=
r∑

i=1

d⊗

ν=1

ui,ν . (8)

The Fréchet derivative U ′(u) of U at u ∈ V r×d is a linear mapping from V d×r to
V . Due to the multilinearity of U , it may be expressed by the partial derivatives of U in
direction uk,α ∈ V which we will denote by (U ′(u))(k,α) := dU (u)/duk,α ∈ L(V,V).
These map v ∈ V to

(U ′(u))(k,α)(v) = lim
h→0

1

h

[
α−1⊗

ν=1

uk,ν ⊗ (uk,α + hv) ⊗
d⊗

ν=α+1

uk,ν −
d⊗

ν=1

uk,α

]

=
α−1⊗

ν=1

uk,ν ⊗ v ⊗
d⊗

ν=α+1

uk,ν .

We note that (U ′(u))(k,α)(v) ∈ V may alternatively be obtained by evaluating the
Fréchet derivative U ′(u) at (0, . . . , 0, v, 0, . . . , 0) = v ⊗ ek,α =: vek,α ∈ V r×d ,
where ek,α denotes the unit row vector (δk,α)i,μ ∈ R

1,r×d . If u is fixed, we will denote
the partial derivatives at u by

Uα
k (v) := U ′(u)(vek,α) = (U ′(u))(k,α)(v).

in the following to keep notations simpler.

Corollary 3.1 The directional first order derivative of the functional J := F ◦ U :
V r×d → R from (7) at point u ∈ V d×r in direction vek,α is given by

J ′
u(vek,α) = F ′

U (u)(U
α
k (v)) = 〈F ′

U (u), Uα
k (v)〉 (9)

For second order schemes, and possibly for preconditioning, we also need second
order derivatives.

For vek,α, we�,β ∈ V d×r , we obtain in the case that k = �, α < β, that

U (2)
u (vek,α, we�,β) =

α−1⊗

ν=1

uk,ν ⊗ v ⊗
β−1⊗

ν=α+1

uk,ν ⊗ w ⊗
d⊗

ν=β+1

uk,ν (10)
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The case k = �, α > β follows from (10) by symmetry, while U (2)
u (vek,α, we�,β) =

0 if k �= � or α = β.
In analogy to the first order derivatives, we define for fixed u

Uα,β
k,� (v,w) := U (2)

u (vek,α, we�,β) = (U (2)
u )(k,α),(�,β)(v,w). (11)

Corollary 3.2 For the second derivative of the functional J there holds

J (2)
u (vek,α, we�,β) = F (2)

U (u)(U
α
k (v), Uβ

� (w)) + 〈F ′
U (u), Uα,β

k,� (v,w)〉. (12)

Proof Obviously, we have

J (2)
u (vek,α, we�,β) = F (2)

U (u)(U
′
u(vek,α), U ′

u(we�,β)) + F ′
U (u)(U

2
u (vek,α, we�,β))

= F (2)
U (u)(U

α
k (v), Uβ

� (w)) + F ′
U (u)(U

α,β
k,� (v,w))

= F (2)
U (u)(U

α
k (v), Uβ

� (w)) + 〈F ′
U (u), Uα,β

k,� (v,w)〉.

��
For practical applications, let us take a closer look at the treatment of functionals

which are linear or at most quadratic. First, for U ∈ V, W ∈ V ′, let us consider a linear
functional of the form U �→ 〈W, U 〉, which induces a functional b : u �→ b(u) :=
〈W, U (u)〉 on V r×d .

Corollary 3.3 The directional derivative of b at point u with respect to vek,α is given
by

b′
u(vek,α) = 〈W, Uk,α(v)〉.

If W is an elementary tensor, i.e. W = ⊗d
ν=1 wν , there holds for the above direc-

tional derivatives that

〈W, Uk,α(v)〉 = 〈W, Uk〉α :=
⎛

⎝
∏

ν∈N≤d\{α}
〈wν, uk,ν〉

⎞

⎠ wα ∈ V ′.

If W is a finite rank tensor, i.e. W = ∑R
j=1

⊗d
ν=1 w j,ν =: ∑R

j=1 W j , there holds

(b′
u)(k,α) =

R∑

j=1

〈W j , Uk(u)〉α

with Uk(u) from (8).
In a more explicit form we have
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(b′
u)k,α =

R∑

j=1

⎛

⎝
∏

ν∈N≤d\{α}
〈w j,ν , uk,ν〉

⎞

⎠ w j,α =
R∑

j=1

b j,α,kw j,α, (13)

where we let b j,α,k := ∏
ν∈N≤d\{α}〈w j,ν , uk,ν〉 for brevity.

Lemma 3.4 If V = R
n, the complexity for the computation of the directional deriv-

ative of b : V r×d → R is O(d Rrn).

Proof Let α ∈ N≤d , j ∈ N≤R and k ∈ N≤r . Similar to [8, Remark 21], the values
b j,α,k can be computed in O(d Rrn). In addition we have to compute

(b′
u)k,α =

R∑

j=1

∏

ν∈N≤d\{α}
〈w j,ν , uk,ν〉w j,α =

R∑

j=1

b j,α,kw j,α.

This needs 2n(R − 1
2 ) operations for every α and k. Hence, the overall complexity is

O(d Rrn). ��
Remark 3.5 Let W ∈ C(�d) ⊆ ⊗d

i=1 H = L2(�d) and z ∈ �d . Then we define in
analogy to (13)

〈W, Ui 〉ν(z) := 〈W, Ui,ν(δz)〉,

where 〈 f, δz〉 := δz( f ) := f (z) denotes the Dirac distribution at the point z ∈ �d .
Note that if W is not available as a low rank tensor, the computation of 〈W, Ui 〉ν(z)
for this general case requires high-dimensional integration over �ν ⊆ R

d−1.

Apart from linear functionals, we now compute the derivatives of the functional
u �→ G(U (u)) = 1

2 〈AU (u), U (u)〉 with a symmetric operator A : V → V , which is
quadratic with respect to U (u) ∈ V .

Corollary 3.6 The derivative G ′
u can be written as

(G ′
u)(k,α) =

r∑

j=1

〈AU j (u), Uk(u)〉α. (14)

Remark 3.7 If a linear operator A : V → V ′ can be decomposed into a finite sum of
elementary tensors,

A =
s∑

j=1

A j =
s∑

j=1

d⊗

ν=1

A j,ν , A j,ν : V → V ′,

then 〈AU j (u), Uk(u)〉α ∈ V ′ is computable within polynomial cost, provided that
the individual terms

〈
A j,νui,ν , uk,ν

〉
are computable. In this case the derivative G ′

u is
expressed by
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(G ′
u)(k,α) =

r∑

i=1

s∑

j=1

〈A jUi (u), Uk(u)〉α (15)

=
r∑

i=1

s∑

j=1

⎛

⎝
∏

ν∈N≤d\{α}

〈
A j,νui,ν , uk,ν

〉
⎞

⎠ A j,αui,α. (16)

In short-hand notation we can write for the derivatives of the quadratic functional G
and the linear functional b, respectively,

G ′
u = Auu, b′

u = bu.

It is worth mentioning that the matrix Au and the vector bu have a nice tensor
structure, namely

Au =
d∑

α=1

s∑

j=1

Eα ⊗ G j,α(u) ⊗ A j,α, bu =
d∑

α=1

R∑

j=1

e(d)
α ⊗ b j,α(u) ⊗ w j,α (17)

where Eα ∈ R
d×d , G j,α ∈ R

r×r , e(d)
α ∈ R

d and b j,α ∈ R
r with

(G j,α(u))r
k,i=1 :=

∏

ν∈N≤d\{α}

〈
A j,νui,ν , uk,ν

〉
, (b j,α,(u))r

k=1 :=
∏

ν∈N≤d\{α}
〈w j,ν , uk,ν〉

and (Eα)d
ν,ν′=1 := δα,νδα,ν′ , (e(d)

α )d
ν=1 := δα,ν .

Lemma 3.8 If V = R
n, the complexity for the computation of the directional deriv-

ative of G : V r×d → R is O(dsr2n2). If the components A j,ν of A are sparse in the
sense that matrix-vector products can be evaluated in O(n), the complexity reduces
to O(dsr2n).

Proof The proof is similar to Lemma 3.4. ��

4 Model examples

We will present two basic examples. At first, we consider the minimization of the func-
tional F(U ) := 1

2 〈AU, U 〉 − 〈B, U 〉 prepared in the last section, where A : V → V ′
is a symmetric linear operator, B and a linear functional B ∈ V ′, and both can be
represented in the respective tensor formats

A =
R∑

j=1

d⊗

μ=1

A j,μ, A j,μ : V → V ′, B =
s∑

j=1

d⊗

μ=1

b j,μ, b j,μ ∈ V ′.

This kind of quadratic minimization problem can be easily extended to those quadratic
minimization problems which are constrained by a set of linear side conditions. For-
mulating the corresponding minimization problem on the cone of rank r tensors Kr

as in Sect. 2 yields the functional
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J (u) := 1

2
〈AU (u), U (u)〉 − 〈B, U (u)〉 = 1

2
G(u) − b(u).

Usually we invoke the soft constraint conditions as described in Sect. 1, see (3) and
(4). For sake of simplicity, let us neglect these weak constraints for a first view at
the equations. The first order optimality condition is J ′

u(wek,α) = 0 for all w ∈
V, k ∈ N≤r , α ∈ N≤d . With the results of the previous section, these conditions can
be rewritten as the following nonlinear equations:

J ′
u = Auu − bu = 0 ∈ (V ′)r×d . (18)

Herein, for fixed u ∈ V r×d , we have Au : V r×d → (V r×d)′ and bu ∈ (V r×d)′.
With this notation at hand, we may propose an iteration of the form

Au(n)u(n+1) − bu(n) = 0.

Alternatively, we may use an iteration of steepest descent type for minimization the
functional J (u) = 1

2 G(u) − b(u) by using the gradient from (18). Note that the
components of Au(n) : V r×d → (V r×d)′ map the space V into its dual space V ′.
If V �= H = L2, a gradient type algorithm often requires further preconditioning
using a simply invertible operator B : V → V ′ with 〈Bu, u〉 ∼ ‖u‖2

V . We may for
example use a preconditioned gradient type algorithm that uses (Au(n) )−1 as a pre-
conditioner, i.e. as an approximate inverse of the Hessian. This explains how operator
equations defined on Sobolev spaces, which are not of the simple product form, may
be preconditioned in the present setting.

Next, let us turn to the side conditions (3) and (4) from Sect. 2. Condition (3) may
be enforced by usage of the functional

h1(u) := 1

2

r∑

j=1

d−1∑

μ=1

(〈u j,μ, u j,μ〉 − 1),

for which the derivative is easy to compute:

h1
′
u(ek,αw) = 〈uk,α, w〉.

The second side condition is treated like in the recent works [2,7,9]. In this context,
the function

h2(u) := 1

2

r∑

j=1

d∏

μ=1

‖u j,μ‖2

is important. The derivative of the penalty term is

h2
′
u(ek,αw) =

d∏

μ=1,μ�=α

‖uk,μ‖2〈uk,α, w〉.
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As a second basic example, let us consider a quadratic minimization problem with
quadratic constraints, namely Problem (iv) from Sect. 2, i.e. the computation of the
eigenvector belonging to the lowest eigenvalue of a symmetric operator A : V → V ′.
The corresponding functional is given by

F(U ) := 1

2
〈AU, U 〉 with the constraint 〈U, U 〉 = 1. (19)

The corresponding optimization problem in tensor format thus reads

Find min

{
J (u) := 1

2
〈AU (u), U (u)〉 : 〈U (u), U (u)〉 = 1

}
.

The present calculus yields for the corresponding Lagrange functional

L(u, λ) = 1

2
〈AU (u), U (u)〉 − λh(u),

(20)
h(u) := 1

2
(〈U (u), U (u)〉 − 1),

the first order optimality conditions

(Au − λMu)u = 0 ∈ (V ′)r×d , (21)

that is, a nonlinear generalized eigenvalue problem, where for given u ∈ V r×d , Au
and Mu map V r×d into (V r×d)′. Here, Au is the same as in (17), and

Mu =
d∑

μ=1

Eμ ⊗ Hμ(u) ⊗ IdV (22)

with

(Eμ)d
ν,ν′=1 :=(δμ,νδμ,ν′)d

ν,ν′=1 ∈ R
d×d , (Hμ(u))r

k,i=1 :=
∏

ν∈N≤d\{μ}

〈
ui,ν , uk,ν

〉 ∈ R
r×r .

Problem (21) is similar to the Hartree Fock and Kohn Sham equations or orbital min-
imization in multi-configuration methods used in quantum chemistry. Note that (18)
also has a similar structure.

5 Accelerated gradient method for minimization

So far we have developed all ingredients for applying steepest decent type algorithms.
The most popular choice of minimization methods with sums of elementary tensors
is a relaxation type method: For given ν, all ui,μ with μ �= ν are kept fixed in this
approach, and only the vectors ui,ν , i = 1, . . . , r are optimized. This minimization
step is then repeatedly alternated over all directions ν ∈ N≤d , resulting in the well
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known alternating least square (ALS) algorithm, see e.g. [1,2]. Although it is known
that the convergence behaviour of the ALS method is not optimal, the ALS method
has some important advantages. It is fairly convenient to implement and the com-
plexity of a single iteration step is small. In [7–9] a modified Newton method is used
to solve minimization problems with sums of elementary tensors. Compared to the
ALS algorithm the modified Newton method has a better rate of convergence but a
single iteration step is more expensive. Moreover, we have to use special properties of
the functional to make the modified Newton method efficient and spend more effort
while implementing the algorithm. In order to overcome these problems, we will use
an accelerated gradient (AG) method which converges globally to a stationary point
with a complexity similar to the ALS method. The AG method will be described in
the following.

Algorithm 1 Accelerated Gradient (AG) Method
1: Choose initial u0 ∈ V r×d and parameter ε ∈ R>0. Define k := 0, g0 := J ′(u0) and d0 := −g0.
2: while ‖gk‖ > ε do

3: Compute αk := min
{
α ∈ R≥0 : p(α) :=

〈
J ′(uk + αdk ), dk

〉
= 0

}
.

4: uk+1 := uk + αkdk .

5: gk+1 := J ′(uk+1).

6: βk :=
〈
gk+1−gk ,gk+1

〉

‖gk‖2 , γk := max{0, βk }.
7: dk+1 := −gk+1 + γkdk .
8: k �→ k + 1.
9: end while

The crucial part of the AG algorithm is the computation of the exact line search
parameter αk ∈ R≥0. Given a direction dk , we have to find a solution of the one-
dimensional nonlinear equation

p(αk) =
〈
J ′(uk + αdk), dk

〉
= 0.

Normally we avoid the exact line search and use an Armijo type inexact line search.
In our applications though, equations (13) and (16) show that the function p is a
polynomial of degree at most 2d − 1. Hence we will apply a third order deriva-
tive-free procedure (3-PG) for finding zeros of a function, as described in [23]. The
3-PG method is globally R-order convergent for f ∈ C2[a, b], where a, b ∈ R with
f (a) f (b) < 0. The order of convergence is defined by the real root of the polynomial
t �→ t3 − t2 − t − 1(≈ 1.8393). Moreover, the 3-PG method is equivalent to the
Newton method for polynomials of degree three. An algorithmic description of the
3-PG method is presented below.

A typical decay of |p(α)| with respect to the number of 3-PG iterations is shown in
Fig. 1. It is remarkable that only function evaluations of the function p are necessary
for the favorable rate of convergence.

Remark 5.1 According to Lemmas 3.4 and 3.8, the complexity of the computation of
the gradient J ′ is O(drn(srn + R)) (O(drn(sr + R)) in the sparse case). Since the
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Algorithm 2 3-PG Algorithm

1: Choose initial a, b ∈ R with p(a)p(b) < 0 and parameter ε ∈ R>0, C, D ∈
(

1
2 , 1

)
. Define R := a,

pa := p(a), pb = p(b) and compute

p[b, a] := pb − pa

b − a
, α = b − pb

p[b, a] , pα = p(α).

2: while |pα | > ε do
3: if pα pb < 0 then
4: R := b.
5: end if
6: Compute p[α, b] := pα−pb

α−b , p[α, a] := pα−pa
α−a and

Q(a, b, α) := (α − a)p[α, b] + (b − α)p[α, a]
b − a

.

7: if Q(a, b, α) = 0 then
8: y := R+α

2 .
9: else
10: y := α − pα

Q(a,b,α)
.

11: end if
12: if (y − α)(y − R) > 0 or [|y − R| > C |α − R| and |pα | > D|pb|] then
13: y := R+α

2 .
14: end if
15: a = b, pa = pb , b = α, pb = pα , α = y, pα = p(α).
16: end while

1.0e-012

1.0e-010

1.0e-008

1.0e-006

1.0e-004

1.0e-002

1.0e+000

 0  1  2  3  4

|p
(.

)|

3-PG Iteration

3-PG Method

Fig. 1 Decay of |p(α)|

most expensive part in the AG method is the calculation of the gradient, the complexity
of the AG method is

kmaxO(drn(srn + R)) (23)
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(kmaxO(drn(sr + R)) in the sparse case), where kmax denotes the maximal number
of iterations in Algorithm 1.

6 Choice of initial guess

Let F : V → R be the objective function, Ur : V r×d → V = ⊗d
ν=1 V,

u �→ Ur (u) := ∑r
i=1

⊗d
ν=1 ui,ν and Jr := F ◦ Ur as defined in Sect. 2. For later

discussions, we define for w ∈ V the function Jw : V d → R

(u1, . . . , ud) �→ Jw(u1, . . . , ud) := F(w + ⊗d
μ=1uμ).

In Algorithm 3 the choice of the initial guess for the AG method from Sect. 5 is
described, where in the description the abbreviation AG(J, u0) stands for the solution
of the AG method applied to the function J with the initial guess u0.

Algorithm 3 Systematic Choice of the Initial Guess

1: Choose a random initial u0 ∈ V d and compute u1 := AG(J1, u0) ε ∈ R>0. Define r := 1.
2: while Jr (ur ) > ε do
3: Choose a random u0 ∈ V d and compute u1 := AG(JUr(ur), u0).

4: ur+1
0 :=

(
ur , u1

)
∈ V (r+1)×d .

5: Compute ur+1 := AG(Jr+1, ur+1
0 ).

6: r �→ r + 1.
7: end while

Remark 6.1 With the definition of the initial guess we ensure that

Jr+1(u
r+1
0 ) ≤ Jr (ur ).

7 Numerical experiments

7.1 Unconstrained minimization problem

The first numerical test is the Poisson equation in d dimensions with Dirichlet bound-
ary condition. We consider

−�u = f in � := [0, 1]d

u = 0 on ∂�,

with a separable right-hand side f (x1, . . . , xd) := ∑R
i=1

∏d
μ=1 fi,μ(xμ). A standard

finite difference discretization on uniform grids leads to a linear system AU (u) = b
with

A = T ⊗ Id ⊗ · · · ⊗ Id + · · · + Id ⊗ · · · ⊗ Id ⊗ T, b =
R∑

i=1

d⊗

μ=1

bi,μ,
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where the matrix T is a discretized version of the second derivative, e.g.

T = 1

h2

⎛

⎜⎜⎜⎜⎜⎝

2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

⎞

⎟⎟⎟⎟⎟⎠
.

For simplicity, the vectors bi,μ are initialized with uniformly distributed pseudo-
random numbers, where we set ‖b‖2 = 1. All plots display the convergence of
the relative residual ‖AU (u) − b‖2 with respect to the separation rank of U (u). The
results of AG method applied to the function J (u) = 1

2 〈AU (u), U (u)〉−〈B, U (u)〉 =
1
2 G(u)− b(u) are shown in Figs. 2 and 3 for n = 100 and n = 1000 respectively. The
computation is done for various dimensions d ∈ {25, 50, 100}. We observe that in all
numerical experiments the value of the relative approximation error is less than 10−6

for separation ranks about 15. In order to compare our results, we set rank(b) = R := 1
and also compute a separable approximation of the inverse of A with the use of expo-
nential sums, see [4]. In [4], Braess and Hackbusch analyse the best approximation of
the inverse function 1

· : [1, c] → R by exponential sums with respect to the maximum
norm. Moreover, an upper bound of the approximation error is given there:

Lemma 7.1 Let k ∈ N, sk(τ ) := ∑k
l=1 ωl exp(−αlτ) with αl , ωl ∈ R>0. With the

optimal choice of the parameter αl and ωl we have

sup
τ∈[1,c]

∣∣∣∣
1

τ
− sk(τ )

∣∣∣∣ ≤ 16 exp

( −kπ2

log(8c)

)
.
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Fig. 2 Relative residual error of the optimal low tensor rank approximation for the Poisson equation with
Dirichlet boundary conditions and n := 100
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Fig. 3 Relative residual error of the optimal low tensor rank approximation for the Poisson equation with
Dirichlet boundary conditions and n := 1000

The parameters αl and ωl are precomputed for different k and c. The values are
available at the web page [25]. From this approximation, it follows that for the optimal
choice of αl and ωl ,

‖A−1 − sk(A)‖2 ≤ 16

λmin(A)
exp

( −kπ2

log(8κ(A))

)
,

where sk(A) = ∑k
l=1 ωl ⊗d

μ=1 exp(−αl T ). As mentioned above, we observe that the

value of the relative approximation residual is less than 10−6 for ranks around 15.
We set k := 15 and use coefficients αl , ωl from the web page to compute the relative
residual of the approximation with exponential sums, i.e. we compute

ρ := ‖Aue − d‖2, ue := s15(A)b =
15∑

l=1

ωl(⊗d
μ=1 exp(−αl T )bμ).

For n = 100 and n = 1000 the value of the relative residual ρ is 1.52 × 10−3 and
4.56 × 10−2 respectively.

7.2 Constrained minimization problem

Our second example is the eigenvalue problem (19), which may serve as an example
for a constrained minimization problem. For our numerical illustration, we only use
a penalty method to enforce the side condition 〈U (u), U (u)〉 = 1. Herein, the con-
strained optimization problem (19) is replaced by a series of unconstrained problems
the solutions of which converge to the solution of the original constrained problem.
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These unconstrained problems are formulated by adding a penalty term to the target
function, and then solved by using the AG method as in the previous example, see
Algorithm 1. This choice for the treatment of the side conditions may be taken as the
AG algorithm is a first order method, while a second order approach like a modified
Newton method would lead to ill-conditioned system matrices. In the following we
will describe the penalty algorithm, using L(u, λ) and h(u) as defined in equation
(20).

One interesting application for an eigenvalue problem is the computation of the
maximum norm. A straightforward approach gives a complexity linear in the number
of entries in the tensor, i.e. the complexity is O(nd). This fact makes the computation
of the maximum norm especially in high dimensions nontrivial. In [7], it was shown
that for a given sum of elementary tensors u := ∑r

j=1 ⊗d
μ=1u jμ ∈ ⊗d

μ=1 R
n , the

computation of the maximum norm, i.e.

Algorithm 4 Penalty Method

1: Choose initial u0 ∈ V r×d , λo ∈ R>0 and parameter ε ∈ R>0, k := 0.
2: repeat
3: Compute the solution uk+1 of the unconstrained minimization problem

min
u∈V r×d

L(u, λk )

by using the AG method and uk as an initial guess, see algorithm 1.
4: Choose λk+1 > λk , k �→ k + 1.
5: until |h(uk+1)| < ε

‖u‖∞ := max
i :=(i1,...,id )∈N

d≤n

|ui | = max
i :=(i1,...,id )∈N

d≤n

∣∣∣∣∣∣

r∑

j=1

d∏

μ=1

(u jμ)iμ

∣∣∣∣∣∣
,

is equivalent to the solution of a suitable eigenvalue problem. Let i∗ := (i∗1 , . . . , i∗d )

the multiindex where the maximum norm will appear, i.e. |ui∗ | = ‖u‖∞, and
define

D(u) :=
r∑

j=1

d⊗

μ=1

diag ((u j,μ)i )
n
i=1, Ei∗ :=

d⊗

μ=1

e∗
iμ,

where eiμ is the canonical unit vector from R
n , with 1 in the iμ-th entry and 0 elsewhere.

We have

D(u)Ei∗ =
r∑

j=1

d⊗

μ=1

diag ((u j,μ)i )
n
i=1ei∗μ =

r∑

j=1

d⊗

μ=1

(u j,μ)i∗μei∗μ

=
r∑

j=1

d∏

μ=1

(u j,μ)i∗μ

d⊗

μ=1

ei∗μ = ui∗ Ei∗ .
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Fig. 4 The decay of the gradient ‖J ′(uk )‖2 for d := 50, λ0 = 10 (first call of the AG algorithm in the
penalty method) and n := 250

We have thus arrived at an eigenvalue problem D(u)Ei∗ = ui∗ Ei∗ for the given matrix
D(u), where we are looking for the eigenvalue ui∗ and corresponding eigenvector Ei∗ .
It is remarkable that the tensor rank of the eigenvector is exactly one. Moreover, the
tensor structure is significant, since Ei∗ is a Kronecker product of canonical unit vec-
tors. For the numerical test, we create a tensor ũ with separation rank 5 where all
entries are initialized with uniformly distributed pseudo-random numbers in the inter-
val [−2, 0]. In addition, we create a tensor v := −(4 + ũi∗)Ei∗ where the multi-index
i∗ is also randomly generated. With the definition u := ũ + v we make sure that
|u∗

i | = ‖u‖∞ = 4 and −4 is the smallest eigenvalue of D(u) with the corresponding
eigenvector Ei∗ . Hence the computation of the maximum norm is a good application
for our second model example. In Table 1 the results of our numerical experiments
are presented for d ∈ {25, 50, 100} and n := 250. Since the penalty method uses the
AG algorithm several times we count the total number of iterations in the AG method.
In all calculations, we observe a moderate number of iterations and a good approxi-
mation of the solution of the eigenvalue problem. A typical decay of the gradient of
the functional with respect to the number of AG iteration is presented in Fig. 4.

Table 1 Computation of the maximum norm of u for different d and n = 250

d
|4+

〈
D(u)Ei∗ ,Ei∗

〉
|

4 ‖J ′(Ei∗ )‖ Overall AG iterations Time (s)

25 2.42 × 10−7 2.49 × 10−11 79 0.94

50 1.53 × 10−7 6.22 × 10−11 54 1.46

100 2.88 × 10−7 2.91 × 10−11 61 3.26
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8 Conclusions

In this paper, we have given the calculus of derivatives for a direct optimization algo-
rithm in the canonical tensor format. Numerical tests for the algorithm, combined with
an accelerated gradient algorithm, have demonstrated the potential of the approach,
especially when the canonical rank of the solution is known. Now, a more thorough
analysis of our approach presented here should be performed. In particular, attention
should be payed to the problem of avoiding local minima by appropriate strategies
(as e.g. in [20] for the 3D-Tucker case). Also, a further practical investigation and a
comparison to the results obtained in other tensor formats as the Tucker, HT and TT
format shall be performed hereafter.
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