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Abstract This paper is devoted to the convergence and optimality analysis of the
adaptive Morley element method for the fourth order elliptic problem. A new technique
is developed to establish a quasi-orthogonality which is crucial for the convergence
analysis of the adaptive nonconforming method. By introducing a new parameter-
dependent error estimator and further establishing a discrete reliability property, sharp
convergence and optimality estimates are then fully proved for the fourth order elliptic
problem.
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732 J. Hu et al.

1 Introduction

This paper is devoted to the study of adaptive nonconforming finite element methods
for high order elliptic boundary value problems. The adaptive conforming finite
element method for the second order elliptic problems has been a subject of extensive
studies for many years since the pioneering work of Babuska and Rheinboldt [2], and
its theory has become rather mature [1,6,14,15,19,26,27,29–31]. For the noncon-
forming method, the a posteriori error theory of the second order elliptic problems has
been studied only very recently [9–12,17,18]; for the fourth order elliptic problem,
only the a posteriori error estimate of the Morley element method can be found in the
literature [3,21,32] and there have been no works on either convergence or optimality
for any finite element methods for fourth order problems.

The main difficulty for the analysis of nonconforming finite element methods arises
from the nonconformity of the discrete space and consequently the lack of the Galer-
kin-orthogonality which is a key ingredient for the convergence analysis of the adap-
tive conforming method of the second order elliptic problem [14,19,26,27,29]. For
the nonconforming linear element of the Poisson equation, a quasi-orthogonality is
established instead in [13] by using some special equivalency between the noncon-
forming linear element and the lowest order Raviart–Thomas element [24]. For the
Morley element of the fourth order elliptic problem, however, it is unclear whether
such type of equivalency still holds. We also note that the convergence (not to mention
optimality) analysis of the adaptive conforming method is still missing for the fourth
order elliptic problem in the literature.

This paper is devoted to the convergence and optimality analysis of the adaptive
version of the Morley element [25,28,33]. Our analysis is based on an observation
that a quasi-orthogonality can be obtained from a crucial local conservative property
(that plays a critical role in a general study in [33]), of the Morley element method.
Another ingredient is a new parameter dependent estimator which is introduced to ana-
lyze optimality of the adaptive nonconforming method. With the help of the discrete
reliability which is established by introducing two interpolation operators between
two nonconforming spaces, we show convergence and optimality of the adaptive
algorithm.

The rest of the paper is organized as follows. In Sect. 2, we present the
Kirchhoff plate problem and the Morley finite element method, and recall a pos-
teriori error analysis due to [21]. In Sect. 3, we prove the quasi-orthogonality and
then show reduction of some total error in Sect. 4 by introducing a new parame-
ter-dependent estimator. To obtain optimality of the adaptive algorithm, we establish
the discrete reliability in Sect. 5. Consequently, we show optimality of the adaptive
Morley element method in Sect. 6. We give a brief comment on the extension of the
theory to the Morley element method in three dimensions in Sect. 7. Also, we dis-
cuss the generalization to the nonconforming linear elements in both two and three
dimensions therein. This extension gives an alternative analysis of the convergence
result from [13]. The paper ends with Sect. 8 where we give the conclusion and some
comments.
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Convergence and optimality of adaptive nonconforming methods 733

2 The Morley element for the Kirchhoff plate problem and an a posteriori error
estimate

Let � ⊂ R
2 be a bounded domain, E the Young modulus, and ν the Poisson ratio. For

all 2 × 2 symmetric matrices, the linear operator C is defined by

Cτ := E

12(1 − ν2)

(
(1 − ν)τ + ν tr(τ )I

)
.

The bilinear form a(u, v) is defined by

a(u, v) = (C∇2u,∇2v)L2(�), for any u, v ∈ W := H2
0 (�), (2.1)

where ∇2u is the Hessian matrix of u. The corresponding energy norm is given by

‖u‖2
C := a(u, u) for any u ∈ W, (2.2)

which is equivalent to the usual norm | · |H2(�) for any u ∈ W .
We consider the Kirchhoff plate bending problem as follows: Given f ∈ L2(�),

find u ∈ W such that

a(u, v) = ( f, v)L2(�) for all v ∈ W. (2.3)

We now present the Morley element. Suppose that � is covered exactly by a shape-
regular triangulation Th consisting of triangles in 2D, see [16]. Eh is the set of all
edges in Th, Eh(�) is the set of interior edges, and E(K ) is the set of edges of any
given element K in Th ; hK = |K |1/2, the size of the element K ∈ Th . ωK is the union
of elements K ′ ∈ Th that share an edge with K , and ωe is the union of elements that
share a common edge e. Given any edge e ∈ Eh(�) with the length he we assign one
fixed unit normal νe := (ν1, ν2) and tangential vector τe := (−ν2, ν1). For e on the
boundary we choose νe = ν the unit outward normal to �. Once νe and τe have been
fixed on e, in relation to νe one defines the elements K− ∈ Th and K+ ∈ Th , with
e = K+ ∩ K−. Given e ∈ Eh(�) and some R

d -valued function v defined in �, with
d = 1, 2, we denote by [v] := (v|K+)|e − (v|K−)|e the jump of v across e.

The discrete space of the Morley finite element method is defined as follows [25,
28,33]

Wh :=
⎧
⎨

⎩
v ∈ M2,h,

∫

e

[∇hv · νe]ds = 0 on e ∈ Eh(�),

and
∫

e

∇v · νeds = 0 on e ∈ Eh ∩ ∂�

⎫
⎬

⎭
, (2.4)

where M2,h is the space of piecewise polynomials of degree ≤ 2 over Th which are
continuous at all the internal nodes and vanish at all the nodes on the boundary ∂�,
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734 J. Hu et al.

and ∇h the discrete gradient operator which is defined elementwise. We define

ah(uh, vh) := (C∇2
h uh,∇2

hvh)L2(�) for any uh , vh ∈ W + Wh,

‖uh‖2
Ch

:= ah(uh, uh) for any uh ∈ W + Wh, (2.5)

where the discrete Hessian operator ∇2
h is defined elementwise with respect to the

triangulation Th .
We now consider the finite element discretization of (2.3) as follows: Find uh ∈ Wh

such that

ah(uh, vh) = ( f, vh)L2(�) for all vh ∈ Wh . (2.6)

To recall the a posteriori error estimate for the Morley element, we first define an
estimator on each element K ∈ Th as

ηK = h2
K ‖ f ‖L2(K ) +

(
∑

e⊂∂K

hK ‖[∇2
h uhτe]‖2

L2(e)

)1/2

. (2.7)

For any Sh ⊂ Th , we define the estimator over Sh by

η2(uh, Sh) :=
∑

K∈Sh

η2
K . (2.8)

In particular, for Sh = Th , we have

η2(uh, Th) :=
∑

K∈Th

η2
K . (2.9)

We further define the oscillation osc( f, Th) by

osc2( f, Th) :=
∑

K∈Th

h4
K ‖ f − fK ‖2

L2(K )
, (2.10)

where fK is the constant projection of f over K . For the estimator (2.9), we have the
following reliability and efficiency whose proof can be found in [21].

Lemma 2.1 Let u be the solution of Problem (2.3), and uh be the solution of Problem
(2.6). Then,

‖u − uh‖Ch � η(uh, Th) � ‖u − uh‖Ch + osc( f, Th). (2.11)

Here and throughout the paper, we shall follow [34] to use the notation � and �.
When we write

A1 � B1, and A2 � B2,
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Convergence and optimality of adaptive nonconforming methods 735

then there exist possible constants C1, c2 and C2 such that

A1 ≤ C1 B1, and c2 B2 ≤ A2 ≤ C2 B2.

Given v ∈ H2(Th) := {v ∈ L2(�), v|K ∈ H2(K ), for any K ∈ Th}, we define
the following residual

ResH (v) = ( f, v)L2(�) − ah(u H , v), for any v ∈ H2(Th) , (2.12)

with u H being the solution of the discrete problem (2.6) on TH , which is a nested and
coarser mesh to Th ; namely, Th is some refinement of TH . It follows from the discrete
problem (2.6) that

ResH (v) = ResH (v − vH ), for any vH ∈ WH . (2.13)

Lemma 2.2 For any v ∈ W , it holds that

| ResH (v)| �

⎛

⎝
∑

K∈TH

h4
K ‖ f ‖2

L2(K )

⎞

⎠

1/2

‖v‖C for any v ∈ W. (2.14)

The proof of the above lemma can be found in [3,21,32]. 	


3 Quasi-orthogonality

In this section, we address one difficulty, namely the quasi-orthogonality, in the
convergence analysis of the adaptive Morley element method. Our analysis is based
on two interpolation operators: the canonical interpolation operator �h of the non-
conforming space Wh , and the restriction operator IH from the discrete space Wh on
the mesh Th to the discrete space WH on the nested and coarser mesh TH of Th .

Here and in what follows, Nh denotes the set of nodes of the partition Th . We first
define the canonical interpolation operator �h : W → Wh by,

(�hv)(P) = v(P),

∫

e

∇h(�hv − v) · νe ds = 0 for any v ∈ W, P ∈ Nh, e ∈ Eh .

(3.1)

Lemma 3.1 Let the interpolation operator �h be defined as in (3.1). Then,

∫

e

∇h(v − �hv) ds = 0 for any e ∈ Eh and v ∈ W, (3.2)

ah(v − �hv, vh) = 0 for any v ∈ W, vh piecewise quadratic, (3.3)

‖v − �hv‖L2(K ) � h2
K |v|H2(K ) for any K ∈ Th and v ∈ W. (3.4)
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736 J. Hu et al.

The above properties are immediate from the definition of �h . Now we define the
restriction interpolation operator IH : Wh → WH by, for any vh ∈ Wh ,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(IH vh)(P) = vh(P), P ∈ NH ,

∫

e

∂(IH vh)

∂νe
ds =

	∑

l=1

∫

el

∂vh

∂νe
ds , e ∈ EH with e = e1 ∪ e2 · · · ∪ e	 and ei ∈ Eh .

(3.5)

Before analyzing the properties of this interpolation, we state the following simple
result.

Lemma 3.2 Let K1, K2 ∈ Th be two elements sharing a common edge e. If vh ∈
Wh(K1 ∪ K2) and ∇2

hvh = 0, then vh ∈ P1(K1 ∪ K2). Namely vh is a polynomial of
degree ≤ 1 over K1 ∪ K2.

Proof By the definition of Wh, vh is continuous on K1∪K2. Further ∂vh
∂νe

|K1 and ∂vh
∂νe

|K2

are two constant functions that must be equal since by the definition of Wh
∫

e[ ∂vh
∂νe

]ds =
0. Thus v must belong to P1(K1 ∪ K2). 	


The properties of the interpolation operator IH are summarized in the following
lemma.

Lemma 3.3 Let the interpolation operator IH be defined as in (3.5). Then,

∫

e

∇h(vh − IH vh) ds = 0 for any e ∈ EH and vh ∈ Wh , (3.6)

ah(vH , vh − IH vh) = 0 for any vH ∈ WH , vh ∈ Wh , (3.7)

IH vh |K = vh |K for any K ∈ Th ∩ TH and vh ∈ Wh , (3.8)

‖IH vh − vh‖L2(K ) � h2
K ‖∇2

hvh‖L2(K ) for any K ∈ TH \Th and vh ∈ Wh .

(3.9)

Proof The properties of (3.6), and (3.8) directly follow from the definition of the
interpolation. We only need to prove (3.7) and the estimate (3.9).

We first define σH = C∇2
H vH to assert that

∫

e

∇h(I − IH )vh · σH νe ds = 0 for any e ∈ EH . (3.10)

In fact, for e ∈ EH \Eh , this assertion follows from the fact that σH is a piecewise
constant matrix with respect to TH and the definition of IH in (3.5). For e ∈ Eh ∩ EH ,
the assertion follows from (I − IH )vh |e = 0.

For the edge e ∈ Eh which lies in the interior of some K ∈ TH , we can use the
continuity of

∫
e ∇hvh ds over e and the fact σH is constant over K to show that
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Convergence and optimality of adaptive nonconforming methods 737

∫

e

[∇h(I − IH )vh] · σH νe ds = 0. (3.11)

Whence, we integrate by parts and use (3.10) and (3.11) to conclude (3.7).
Now we turn to (3.9). In fact, both sides of (3.9) are semi-norms of the restriction

Wh(K ) of Wh on K . If the right hand side vanishes for some vh ∈ Wh(K ), then vh

is a piecewise polynomial of degree≤ 1 on K with respect to Th . It follows from
Lemma 3.2 that vh is a polynomial of degree≤ 1 on K . Therefore the left hand side
also vanishes for the same vh . The desired result then follows from a scaling argument.

	

Lemma 3.4 (Quasi-orthogonality) Let Th be a refinement of TH , and uh and u H be
the solutions of (2.6) on Th and TH , respectively. Then,

|ah(uh − u H , u − uh)| �
∑

K∈TH \Th

h2
K ‖ f ‖L2(K )‖∇2

h (u − uh)‖L2(K ). (3.12)

Proof Let the interpolation operator �h be defined as in (3.1). Since �h is well-defined
for any vh ∈ Wh( in fact, �hvh = vh) and ah(uh − u H , (I − �h)(u − uh)) = 0 (by
(3.3)), we have

ah(uh − u H , u − uh) = ah(uh − u H ,�h(u − uh)). (3.13)

Let vh = �h(u − uh) and the interpolation IH vh be defined as in (3.5). The combi-
nation of (2.6) and (2.12) leads to

ah(uh − u H , vh) = ( f, vh)L2(�) − ah(u H , vh)

= ( f, (I − IH )vh)L2(�) − ah(u H , (I − IH )vh).
(3.14)

By (3.8) and (3.9), we have

|( f, (I − IH )vh)L2(�)| �
∑

K∈TH \Th

h2
K ‖ f ‖L2(K )‖∇2

hvh‖L2(K ). (3.15)

From (3.7) we have ah(u H , (I − IH )vh) = 0. Then, the desired result then follows
from the triangle inequality and the approximation property of �h . 	

Remark 3.5 For the nonconforming P1 element of the Poisson equation, the quasi-
orthogonality was established in [13]. The analysis therein is based on some special
equivalency between the nonconforming P1 and Raviart–Thomas elements. For the
Stokes-like problem, the quasi-orthogonality of the nonconforming P1 element has
been first proved in [23] based on some special relation of the nonconforming P1 and
Raviart–Thomas elements. For the Morley element, it is unclear whether there exists
similar equivalency or relation so far.
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738 J. Hu et al.

Remark 3.6 This paper is a refined version of a technical report in 2009 [22], where
it was the first time in the literature to make use of the conservative property of the
nonconforming finite element space to analyze the quasi-orthogonality.

4 Reduction of a properly defined total error

In the rest of the paper, we shall establish convergence and optimality of our Adaptive
Nonconforming Finite Element Method(ANFEM). Our analysis is based on two main
ingredients: the strict reduction of some total error between two levels and the discrete
reliability of the estimator. To this end, we shall first introduce a modified estimator η̃

with a undetermined positive constant; we shall then borrow the concept of the total
error of [13,14] which contains the energy norm of the error and the scaled estimator
η̃; we shall finally show reduction of this total error. We shall establish the discrete
reliability of the estimator in the next section.

Let us first define our adaptive algorithm. Given an initial shape regular triangula-
tion T0, a right-hand side function f ∈ L2(�), a tolerance ε > 0, and a parameter
θ ∈ (0, 1). Hereafter, we shall replace the subscript h by an iteration counter called k.

Algorithm 4.1 [TN , uN ]=ANFEM(T0, f, ε, θ)

η = ε , k = 0

WHILE η ≥ ε, DO

(1) Solve (2.6) on Tk , to get the solution uk .
(2) Compute the error estimator η = η(uk, Tk).
(3) Mark the minimal element set Mk such that

η2(uk,Mk) ≥ θ η2(uk, Tk). (4.1)

(4) Refine each triangle K ∈ Mk by the newest vertex bisection and possible
further refining to conformity to get Tk+1.

k = k + 1.

END WHILE

TN = Tk .
END ANFEM

In order to prove a strict reduction of some total error, we define the following
modified estimator

η̃2(u H , TH ) :=
∑

K∈TH

(
β1h4

K ‖ f ‖2
L2(K )

+ η2
K

)
with ηK defined in (2.7) (4.2)

for some positive constant β1 to be determined later.

Remark 4.1 Note that, as we can see below, the modified error estimator η̃(u H , TH )

is only for the analysis, the final results concerning both convergence and optimality
will be proved for Algorithm 4.1.
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Convergence and optimality of adaptive nonconforming methods 739

Lemma 4.2 Let Th be some refinement of TH with the bulk criterion (4.1), then there
exist ρ > 0 and a positive constant β ∈ (1 − ρθ, 1) such that

η2(u H , Th) ≤ βη2(u H , TH ) + (1 − ρθ − β)η2(u H , TH ). (4.3)

Proof The result can be proved by following the idea in [14]. We give the details only
for the readers’ convenience. In fact, we have

η2(u H , Th) = η2(u H , TH ∩ Th) + η2(u H , TH \Th). (4.4)

For any K ∈ TH \Th , we only need to consider the case where K is subdivided into
K1 , K2 ∈ Th with |K1| = |K2| = 1

2 |K |. By the definitions of hK and ηK (u H ), we
have

2∑

i=1

η2
Ki

(u H ) :=
2∑

i=1

(
h2

Ki
‖ f ‖L2(Ki )

+
( ∑

Eh�e⊂∂Ki

hKi ‖[∇2
H u H τe]‖2

L2(e)

)1/2)2

≤ 1

21/2 η2
K (u H ) := 1

21/2

(
h2

K ‖ f ‖L2(K ) +
( ∑

EH �e⊂∂K

hK ‖[∇2
H u H τe]‖2

L2(e)

)1/2)2
,

(4.5)

since [∇2
H u H τe] = 0 over e = K1 ∩ K2 ∈ Eh . Consequently

∑

K∈TH \Th

2∑

i=1

η2
Ki

(u H ) ≤ 1

21/2 η2(u H , TH \Th) , (4.6)

and

η2(u H , Th) ≤ η2(u H , TH ) − ρη2(u H , TH \Th) , (4.7)

with ρ = 1 − 1
21/2 . Taking the positive parameter β with 1 − ρθ < β < 1, the desired

result follows by combining the above inequality and the bulk criterion (4.1). 	

Lemma 4.3 Let Th be some refinement of TH , then there exists ρ > 0 such that

∑

K∈Th

h4
K ‖ f ‖2

L2(K )
≤

∑

K∈TH

h4
K ‖ f ‖2

L2(K )
− ρ

∑

K∈TH \Th

h4
K ‖ f ‖2

L2(K )
. (4.8)

Proof The proof immediately follows from the definition of the meshsize hK . 	

Lemma 4.4 (Continuity of the estimator) Let uh and u H be the solutions to the dis-
crete problem (2.6) on the meshes Th and TH , respectively. Given any positive constant
ε, there exists a positive constant β2(ε) dependent on ε such that

η2(uh, Th) ≤ (1 + ε)η2(u H , Th) + 1

β2(ε)
‖uh − u H ‖2

Ch
. (4.9)
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740 J. Hu et al.

Proof Given any K ∈ Th , it follows from the definitions of ηK (uh) and ηK (u H ) in
(4.5) that

∣∣ηK (uh) − ηK (u H )
∣∣ =

∣∣∣
∣

( ∑

Eh�e⊂∂K

hK ‖[∇2
h uhτe]‖2

L2(e)

)1/2

−
( ∑

Eh�e⊂∂K

hK ‖[∇2
H u H τe]‖2

L2(e)

)1/2∣∣
∣∣

≤
( ∑

Eh�e⊂∂K

hK ‖[∇2
h (uh − u H )τe]‖2

L2(e)

)1/2

. (4.10)

With e = K1 ∩ K2 ∈ Eh , we use the trace theorem and the fact that ∇2
h (uh − u H ) is a

piecewise constant matrix to get

‖[∇2
h (uh − u H )τe]‖L2(e) ≤ ‖∇2

h (uh − u H )τe|K1‖L2(e) + ‖∇2
h (uh − u H )τe|K2‖L2(e)

� h−1/2
K ‖∇2

h (uh − u H )‖L2(ωe)
,

(4.11)

which gives

∣∣ηK (uh) − ηK (u H )
∣∣ � ‖∇2

h (uh − u H )‖L2(ωK ). (4.12)

Applying the Young inequality with any positive constant ε and summarizing over all
elements in Th completes the proof of the lemma. 	


Theorem 4.5 Let u be the solution to the problem (2.3), and u H and uh be the solu-
tions to the discrete problem (2.6) on the meshes TH and Th, respectively. Then, there
exists positive constants γ1, β1, and 0 < α < 1 with

‖u − uh‖2
Ch

+ γ1η̃
2(uh, Th) ≤ α(‖u − u H ‖2

CH
+ γ1η̃

2(u H , TH )). (4.13)

Proof Let δ, γ1, and γ2, be three positive constants to be chosen later. Applying the
Young inequality to Lemma 3.4 and adding the resulting estimate to the inequality
(4.9) leads to

(1 − δ)‖u − uh‖2
Ch

+ γ1η
2(uh, Th) + γ2

∑

K∈Th

h4
K ‖ f ‖2

L2(K )

≤ ‖u − u H ‖2
CH

+ γ1(1 + ε)η2(u H , Th) + (
γ1

β2(ε)
− 1)‖uh − u H ‖2

Ch

+γ2

∑

K∈TH

h4
K ‖ f ‖2

L2(K )
+ (C1(δ) − ργ2)

∑

K∈TH \Th

h4
K ‖ f ‖2

L2(K )
, (4.14)
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Convergence and optimality of adaptive nonconforming methods 741

with the positive constant ρ from (4.8). We note that the bound for η2(u H , Th) is given
in Lemma 4.2. Hence

(1 − δ)‖u − uh‖2
Ch

+ γ1η
2(uh, Th) + γ2

∑

K∈Th

h4
K ‖ f ‖2

L2(K )

≤ ‖u − u H ‖2
CH

+ γ1((1 − ρθ − β)(1 + ε) + εβ)η2(u H , TH ) + γ1βη2(u H , TH )

+(
γ1

β2(ε)
− 1)‖uh − u H ‖2

Ch
+ (C1(δ) − ργ2)

∑

K∈TH \Th

h4
K ‖ f ‖2

L2(K )

+γ2

∑

K∈TH

h4
K ‖ f ‖2

L2(K )
, (4.15)

with ρ and β from Lemma 4.2. In what follows we shall choose the parameters
α, β, γ1, γ2, and δ to achieve the reduction of the total error. We first set

γ2 = C1(δ)

ρ
, γ1 = β2(ε), and β = (1 − ρθ)(1 + ε) (4.16)

which leads to

(1 − δ)‖u − uh‖2
Ch

+ γ1η
2(uh, Th) + γ2

∑

K∈Th

h4
K ‖ f ‖2

L2(K )

≤ ‖u − u H ‖2
CH

+ γ1βη2(u H , TH ) + γ2

∑

K∈TH

h4
K ‖ f ‖2

L2(K )
. (4.17)

We choose ε to be small enough such that 0 < β < 1. Let the positive constant α with
β < α < 1 be determined later, this gives

(1 − δ)‖u − uh‖2
Ch

+ γ1η
2(uh, Th) + γ2

∑

K∈Th

h4
K ‖ f ‖2

L2(K )

≤ α

⎛

⎝(1 − δ)‖u − u H ‖2
CH

+ γ1η
2(u H , TH ) + γ2

∑

K∈TH

h4
K ‖ f ‖2

L2(K )

⎞

⎠

+(1 − α(1 − δ))‖u − u H ‖2
CH

+ γ1(β − α)η2(u H , TH )

+γ2(1 − α)
∑

K∈TH

h4
K ‖ f ‖2

L2(K )
. (4.18)

Recalling the reliability ofη(u H , TH )with the reliability coefficient CRel in Lemma 2.1

‖u − u H ‖2
CH

≤ CRelη
2(u H , TH ), (4.19)

and the fact that
∑

K∈TH

h4
K ‖ f ‖2

L2(K )
≤ η2(u H , TH ). (4.20)
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Whence we derive as

(1−α(1−δ))‖u−u H ‖2
CH

+ γ1(β − α)η2(u H , TH ) + γ2(1−α)
∑

K∈TH

h4
K ‖ f ‖2

L2(K )

≤ (
(1 − α(1 − δ))CRel + γ1(β − α) + γ2(1 − α)

)
η2(u H , TH ), (4.21)

provided that 0 < δ < 1. Then, the choice of α = γ1β+γ2+CRel
γ1+γ2+CRel (1−δ)

> β gives

(1 − δ)‖u − uh‖2
Ch

+ γ1η
2(uh, Th) + γ2

∑

K∈Th

h4
K ‖ f ‖2

L2(K )

≤ α

⎛

⎝(1 − δ)‖u − u H ‖2
CH

+ γ1η
2(u H , TH ) + γ2

∑

K∈TH

h4
K ‖ f ‖2

L2(K )

⎞

⎠ . (4.22)

We choose such that 0 < δ < min(
γ1(1−β)

CRel
, 1) to assure that α < 1. Finally, we take

β1 = γ2/γ1 and redefine γ1 = γ1/(1 − δ) to end the proof. 	


5 Discrete reliability

This section is devoted to the discrete reliability of the estimator η(u H , TH ). The
analysis needs the prolongation operator I ′

h : WH → Wh defined as follows. Given
P ∈ Nh and e ∈ Eh , the nodal patch ωP,H of P and the edge patch ωe,H of e with
respect to the mesh TH are defined by, respectively,

ωP,H := {K ∈ TH , P ∈ ∂K or P is in the interior of K },
ωe,H := {K ∈ TH , e ⊂ ∂K or e is in the interior of K }. (5.1)

Define ξP = card(ωP,H ) and ξe = card(ωe,H ). We define the prolongation interpo-
lation I ′

hvH ∈ Wh by, for any vH ∈ WH ,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(I ′
hvH )(P) = 1

ξP

∑

K∈ωP,H

vH |K (P) for any P ∈ Nh ,

∫

e

∂(I ′
hvH )

∂νe
ds = 1

ξe

∑

K∈ωe,H

∫

e

∂(vH |K )

∂νe
ds for any e ∈ Eh .

(5.2)

Lemma 5.1 Let K1, K2 ∈ TH be two elements sharing a common edge e with two
endpoints P1 and P2. Suppose that vH ∈ WH and ∇H vH is continuous over e. Then,
vH is continuous over e.
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Proof We can assume that the common edge e shared by K1 and K2 lies along the
x-axis. Then, v can be expressed as

vH |K1 = a0 + a1x + a2 y + a3xy + a4x2 + a5 y2, and

vH |K2 = b0 + b1x + b2 y + b3xy + b4x2 + b5 y2.

Since ∂vH
∂x is continuous over e, we have a1 = b1 and a4 = b4. The continuity of

∂vH
∂y over e gives a2 = b2 and a3 = b3. Finally, vH |K1(P	) = vH |K2(P	), 	 = 1 , 2,

concludes a0 = b0. Therefore, vH is continuous over e. 	

Lemma 5.2 Let the interpolation operator I ′

h be defined as in (5.2). Then,

‖∇2
h (I ′

hvH − vH )‖2
L2(�)

�
∑

K∈TH \Th

∑

e⊂∂K

hK ‖[∇2
H vH τe]‖2

L2(e) for any vH ∈ WH .

(5.3)

Proof It follows from the definition of I ′
h (5.2) that I ′

hvH |K = vH |K for any K ∈
TH ∩Th . Therefore, we only need to estimate ‖∇2

h (I ′
hvH −vH )‖L2(K ) for K ∈ TH \Th .

To prove the desired result, it is sufficient to show that

‖∇2
h (I ′

hvH −vH )‖L2(K ) �
∑

e⊂∂K

hK ‖[∇2
H vH τe]‖2

L2(e) for any vH ∈WH and K ∈TH \Th .

(5.4)

For any e ∈ EH , ‖[∇2
H vH τe]‖L2(e) = 0 indicates that there are no jumps over e for all

tangential components of ∇2
H vH , which in turn implies that ∇H vH is continuous over

e since ∇H vH is average continuous over e. Since vH is continuous at all the internal
nodes, Lemma 5.1 proves that vH is continuous over e. Whence, I ′

hvH |K = vH |K

provided that ‖[∇2
H vH τe]‖L2(e) = 0 for any e ∈ ∂K ⊂ EH . Finally, the local quasi-

uniformity of the mesh together with a scaling argument leads to the estimate (5.4).
	


Remark 5.3 An easy observation finds that the positive constant in (5.4) depends on
the following ratio

μ = max
K∈TH \Th

max
Th�T ⊂K

hK

hT
. (5.5)

In the analysis of optimality of the adaptive finite element method, this dependence
is not allowed since we only know that Th is some refinement of TH by the newest
vertex bisection and the boundness of μ is not guaranteed.

To overcome the above difficulty, we introduce a modified prolongation operator Jh

which preserves the local projection property JhvH |K = vH |K for K ∈ Th ∩ TH . We
need the prolongation operator � : WH → W C

H , where W C
H ⊂ W is some conforming
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finite element space over the mesh TH . Here we take W C
H as the Hsieh–Clough–Tocher

finite element space over the mesh TH [7,16].
Let F be any (global) degree of freedom of W C

H , i.e., F is either the evaluation of
a shape function or its first order derivatives at an interior node of TH , or the eval-
uation of the normal derivative of a shape function at a node on an interior edge.
For vH ∈ WH , we define [8]

F(�vH ) = 1

|ωF |
∑

K∈ωF

F(vH |K ) (5.6)

where ωF is the set of triangles in TH that share the degree of freedom F , and |ωF |
is the number of elements of ωF . Then a similar argument of [8] proves

‖∇2
H (vH − �vH )‖2

L2(�)
�

∑

e∈EH

he‖[∇2
H vH τe]‖2

L2(e). (5.7)

Denote

�R := interior
(⋃

{K : K ∈ TH \Th, ∂K ∩ ∂(TH ∩ Th) = ∅}
)

.

The main idea herein is to take the mixture of the prolongation operators I ′
h and �.

More precisely, we use � in the region �R where the elements of TH are refined and
take I ′

h on Th ∩TH , and we define some mixture in the layer between them. This leads
to the prolongation operator Jh : WH → Wh by

JhvH =
⎧
⎨

⎩

�h�vH on �R,

I ′
hvH on TH ∩ Th,

vh,tr on �\(�R ∪ TH ∩ Th),

where vh,tr is defined by

vh,tr (P) =
{

(�vH )(P) if P ∈ ∂�R,

(I ′
hvH )(P) otherwise ,

for P ∈ Nh,

∫

e

∇hvh,tr · νeds =
{∫

e ∇h�vH · νeds if e ⊂ ∂�R∫
e ∇h I ′

hvH · νeds otherwise
for e ∈ Eh .

(5.8)

Lemma 5.4 It holds true that

‖∇2
h (JhvH − vH )‖2

L2(�)
�

∑

K∈TH \Th

∑

e⊂∂K

hK ‖[∇2
H vH τe]‖2

L2(e) for any vH ∈ WH .

(5.9)

Proof We only need to use the scaling argument like that in Lemma 5.2 in the layer
�\(�R ∪ TH ∩ Th). The desired result follows from the estimate (5.7) and the local
projection property JhvH |K = vH |K for K ∈ Th ∩ TH . 	
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Lemma 5.5 (Discrete reliability) It holds that

‖uh − u H ‖2
Ch

� η2(u H , TH \Th). (5.10)

Proof For any vh ∈ Wh , we deduce from the discrete problem (2.6) that

‖uh − u H ‖2
Ch

= ah(uh − u H , uh − vh) + ah(uh − u H , vh − u H ) = J1 + J2,

(5.11)

where

J1 = ResH (uh − vh), and J2 = ah(uh − u H , vh − u H ).

Thanks to (2.13), (3.8) and (3.9), the residual J1 can be bounded by a similar argument
for the term on the right hand-side of (3.14), which implies

|J1| = | ResH (uh − vh)| = | ResH ((I − IH )(uh − vh))|
�

∑

K∈TH \Th

h2
K ‖ f ‖L2(K )‖∇2

h (uh − vh)‖L2(K ).
(5.12)

Since vh ∈ Wh is arbitrary, we apply the Young and Cauchy–Schwarz inequalities in
(5.11) to obtain that

‖uh − u H ‖2
Ch

�
∑

K∈TH \Th

h4
K ‖ f ‖2

L2(K )
+ inf

vh∈Wh
‖vh − u H ‖2

Ch
. (5.13)

Taking vh = Jhu H and applying (5.9) we complete the proof of the Lemma. 	

We end this section by applying the previous discrete reliability to show a result

indicating that the bulk criterion is in some sense a necessary condition for reduction
of the energy norm between two levels.

Lemma 5.6 If Th is a refinement of TH such that the following reduction holds

‖u − uh‖2
Ch

+ osc2( f, Th) ≤ α′(‖u − u H ‖2
CH

+ osc2( f, TH )) , (5.14)

for some 0 < α′ < 1, then there exists 0 < θ∗ < 1 such that

θ∗η2(u H , TH ) ≤ η2(u H , TH \Th). (5.15)

Proof We start with the following decomposition

(1 − α′)(‖u − u H ‖2
CH

+ osc2( f, TH ))

≤ ‖u − u H ‖2
CH

+ osc2( f, TH ) − ‖u − uh‖2
Ch

− osc2( f, Th)

= ‖u H − uh‖2
Ch

+ 2ah(u − uh, uh − u H ) + osc2( f, TH ) − osc2( f, Th). (5.16)
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By the discrete reliability of Lemma 5.5 with the coefficient CDrel , we have

‖uh − u H ‖2
Ch

≤ CDrelη
2(u H , TH \Th). (5.17)

The quasi-orthogonality in Lemma 3.4 with the coefficient CQO yields

|2ah(u − uh, uh − u H )| ≤ 2CQO‖u − uh‖Ch

⎛

⎝
∑

K∈TH \Th

h4
K ‖ f ‖2

L2(K )

⎞

⎠

1/2

. (5.18)

It follows from (5.14) that

‖u − uh‖Ch ≤ √
α′(‖u − u H ‖2

CH
+ osc2( f, TH )

)1/2
. (5.19)

Therefore, we apply the Cauchy–Schwarz inequality to obtain

|2ah(u − uh, uh − u H )| ≤ 1

2
(1 − α′)

(
‖u − u H ‖2

CH
+ osc2( f, TH )

)

+2(CQO)2 α′

1 − α′
∑

K∈TH \Th

h4
K ‖ f ‖2

L2(K )
. (5.20)

Since it is obvious that

| osc2( f, TH ) − osc2( f, Th)| ≤ η2(u H , TH \Th), (5.21)

we combine (5.16)–(5.21) to prove the desired result by the parameter

θ∗ = (1 − α′)2CE f f

2(2α′(CQO)2 + (1 − α′)(CDrel + 1))

with the efficiency constant CE f f of the estimator η(u H , TH ) from Lemma 2.1. 	


6 Optimality

To analyze the optimality, we follow an idea commonly used in the adaptive finite
element literature to introduce a nonlinear approximation class [4,5]. First, we have
the following quasi-optimality.

‖u − u H ‖2
CH

� inf
vH ∈WH

‖u − vH ‖2
CH

+ κ2(u, TH ) , (6.1)

where the consistency error term is given by

κ(u, TH ) = sup
vH ∈WH

( f, vH )L2(�) − aH (u, vH )

‖vH ‖CH

. (6.2)
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It follows from [20, Section 4.1] that

κ(u, TH ) � inf
vH ∈WH

‖u − vH ‖CH + osc( f, TH ).

Therefore, we define

E(N ; u, f ) := inf
T ∈TN

inf
v∈WT

(‖u − v‖2
CT

+ osc2( f, T )
)
. (6.3)

Finally, we choose the nonlinear approximation class as follows:

As := {
(u, f ), |u, f |s := sup

N>N0

(N − N0)
sE(N ; u, f ) < +∞}

. (6.4)

Compared to the adaptive conforming method for the second order elliptic problem
[14,29], we have not the following monotone convergence:

inf
vh∈Wh

‖u − vh‖2
Ch

+ κ2(u, Th)2 ≤ inf
vH ∈WH

‖u − vH ‖2
CH

+ κ2(u, TH ) , (6.5)

where Th is some refinement of TH . However, it follows from the quasi-orthogonality
in Lemma 3.4, the efficiency of the estimator in Lemma 2.1, and the Young inequality
that

‖u − uh‖2
Ch

+ osc2( f, Th) ≤ C2(‖u − u H ‖2
CH

+ osc2( f, TH )). (6.6)

Theorem 6.1 Let Mk be a set of marked elements with minimal cardinality from Algo-
rithm 4.1, u the solution of Problem (2.3), and (Tk, Wk, uk) the sequence of meshes,
finite element spaces, and discrete solutions produced by the adaptive finite-element

methods with 0 < θ <
CE f f

2(2(CQO )2+CDrel+1)
. Then, the following estimate holds:

#Mk � (α′)−
1
s |u, f |

1
s
s (C2)

1
s
(‖u − uk‖2

Ck
+ osc2( f, Tk)

)− 1
s for any (u, f ) ∈ As,

(6.7)

where the parameter 0 < α′ < 1 is from Lemma 5.6.

Proof We set ε = α′(C2)
−1

(‖u − uk‖2
Ck

+ osc2( f, Tk)
)

with 0 < α′ < 1. Since
(u, f ) ∈ As , there exists a Tε of the refinement of T0 and uε ∈ WTε

with

#Tε − #T0 ≤ |u, f |1/s
s ε−1/s and ‖u − uε‖2

CTε
+ osc2( f, Tε) ≤ ε. (6.8)

The overlay T∗ of Tε and Tk is the smallest refinement of both Tε and Tk . Let u∗ be
the finite element solution of (2.6) on the mesh T∗. Since T∗ is a refinement of Tε , we
use, (6.8), and (6.6) to obtain that

‖u − u∗‖2
CT∗ + osc2( f, T∗) ≤ C2(‖u − uε‖2

CTε
+ osc2( f, Tε))

≤ C2ε = α′(‖u − uk‖2
Ck

+ osc2( f, Tk)).
(6.9)
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We deduce from Lemma 5.6 that

θ∗η2(uk, Tk) ≤ η2(uk, Tk\T∗), for some θ∗ ∈ (0, 1). (6.10)

We note that the step (3) in Algorithm 4.1 with θ ≤ θ∗ chooses a subset of Mk ⊂ Tk

with minimal cardinality with the same property. Therefore

#Mk ≤ #T∗ − #Tk ≤ #Tε − #T0. (6.11)

This together with the definition of ε leads to

#Mk � (α′)−
1
s |u, f |

1
s
s (C2)

1
s (‖u − uk‖2

Ck
+ osc2( f, Tk))

− 1
s , (6.12)

which completes the proof. 	


Theorem 6.2 Let the marking step in Algorithm 4.1 select a set Mk of marked
elements with minimal cardinality, u the solution to Problem (2.6), and (Tk, Wk, uk)

the sequence of meshes, finite element spaces, and discrete solutions produced by the

adaptive finite-element methods with 0 < θ <
CE f f

2(2(CQO )2+CDrel+1)
. Then, it holds that

‖u − uN ‖2
CN

+ osc2( f, TN ) � |u, f |s(#TN − #T0)
−s, for (u, f ) ∈ As . (6.13)

Proof Let μ = (α′)− 1
s |u, f |

1
s
s (C2)

1
s . We use the result that #Tk − #T0 �

k−1∑

j=0
M j

from [29,30] to obtain that

#TN − #T0 �
N−1∑

j=0

M j � μ

N−1∑

j=0

(‖u − u j‖2
C j

+ osc2( f, T j ))
− 1

s . (6.14)

It follows from the efficiency of the estimator that

‖u − u j‖2
C j

+ osc2( f, T j ) � η̃2(u j , T j ), (6.15)

which gives

‖u − u j‖2
C j

+ γ1η̃
2(u j , T j ) � ‖u − u j‖2

C j
+ osc2( f, T j ). (6.16)

For any 0 ≤ j ≤ N − 1, we use the convergence result from Theorem 4.5 to derive
that

‖u − uN ‖2
CN

+ γ1η̃
2(uN , TN ) ≤ α(N− j)(‖u − u j‖2

C j
+ γ1η̃

2(u j , T j )). (6.17)

123



Convergence and optimality of adaptive nonconforming methods 749

A combination of (6.14)–(6.17) yields

#TN − #T0 � μ(‖u − uN ‖2
CN

+ osc2( f, TN ))−1/s
N∑

j=1

α j/s . (6.18)

Setting Cθ = α1/s(1 − α1/s)−1, it is easy to prove that

N∑

j=1

α j/s ≤ Cθ . (6.19)

Inserting this bound into (6.18) leads to

‖u − uN ‖2
CN

+ osc2( f, TN ) � |u, f |s(#TN − #T0)
−s, (6.20)

which completes the proof. 	


7 The extensions of the theory

This section extends the theory to the Morley element in three dimensions and the
nonconforming linear elements in both two and three dimensions.

7.1 The Morley element in three dimensions

Let Th be a decomposition of the domain � ⊂ R
3 into simplicies. Given any face F ,

we let νF denote its unit normal vector. The Morley element in three dimensions is
defined and analyzed in [33], where the space reads

Wh := {v ∈ L2(�), v|K ∈ P2(K ), K ∈ Th,

∫

e

[v] ds = 0 for any internal edge e,

∫

e

v ds = 0 for any boundary edge e,
∫

F

[∇v · νF ]d F = 0 for any

internal face F , and
∫

F

∇v · νF d F = 0 for any boundary face F}.

(7.1)

Define the estimator on each element K ∈ Th as

ηK = h2
K ‖ f ‖L2(K ) +

(
∑

F⊂∂K

hF‖[∇2
h uh × νF ]‖2

L2(F)

)1/2

, (7.2)
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where × denotes the usual tensor product. The estimator is defined by

η2(uh, Th) :=
∑

K∈Th

η2
K . (7.3)

The following reliability and efficiency of the estimator were proved in [21].

Lemma 7.1 Let u be the solution to the fourth order elliptic problem with u|∂� =
∂u
∂ν

|∂� = 0 in three dimensions, uh be the finite element solution corresponding to the
discrete space Wh defined in (7.1). Then,

‖u − uh‖Ch � ηh (7.4)

up to the oscillation osc( f, Th), where ‖ · ‖Ch and osc( f, Th) are the three dimen-
sional counterparts of the discrete energy norm in (2.5) and the oscillation in (2.10),
respectively.

Lemma 7.2 Let K1, K2 ∈ Th be two elements sharing a common face F with three
edges e	 and midpoints m	, 	 = 1 , 2 , 3 , and v be a piecewise polynomial of degree
≤ 1 over K1 ∪ K2 such that

v|K1(m	) = v|K2(m	), 	 = 1 , 2, 3, and
∫

F

[ ∂v

∂νF
]d F = 0. (7.5)

Then, v is a polynomial of degree ≤ 1 over K1 ∪ K2.

With these preparations, one can generalize the theories of the quasi-orthogonality
of Lemma 3.4, error reduction of Theorem 4.5, the discrete reliability of Lemma 5.5,
and the optimality of Theorem 6.2 to the Morley element method in three dimensions.

7.2 The nonconforming linear elements for second order elliptic problems

In this subsection, we let Th be a decomposition of the domain � ⊂ R
2 or � ⊂ R

3

into simplicies in both two and three dimensions. The nonconforming linear element
spaces in both two and three dimensions is defined by, respectively,

Wh :=
⎧
⎨

⎩
v ∈ L2(�), v|K ∈ P1(K ), K ∈ Th,

∫

e

[v] ds = 0 for any internal edge e,

∫

e

v ds = 0 for any boundary edge e

⎫
⎬

⎭
,

Wh :=
⎧
⎨

⎩
v ∈ L2(�), v|K ∈ P1(K ), K ∈ Th,

∫

F

[v] d F = 0 for any internal face F,

∫

F

v d F = 0 for any boundary face F

⎫
⎬

⎭
. (7.6)
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The continuous problems read: Given f ∈ L2(�), find u ∈ H1
0 (�) such that

(∇u,∇v)L2(�) = ( f, v)L2(�) for any v ∈ H1
0 (�). (7.7)

The discrete problems read: Given f ∈ L2(�), find uh ∈ Wh such that

(∇huh,∇hvh)L2(�) = ( f, vh)L2(�) for any vh ∈ Wh . (7.8)

The convergence of the adaptive nonconforming linear element methods was first
analyzed in [13]. The theory in Sects. 3–7 can be extended to this case. This extension
gives another analysis of the convergence result from [13].

8 Conclusion and comments

In this paper, we carry out the convergence and optimality analysis of the Morley
element for the fourth order elliptic equation. Moreover, we generalize the theory to
the nonconforming linear elements. However, the analysis herein heavily depends on
the conservative properties of these two classes of nonconforming elements and the
fact that the discrete stress is a piecewise constant tensor. At the present time, it is
unclear how to generalize these techniques to other nonconforming schemes of the
fourth order elliptic problems.
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