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Abstract Recent results reveal that the family of barycentric rational interpolants
introduced by Floater and Hormann is very well-suited for the approximation of func-
tions as well as their derivatives, integrals and primitives. Especially in the case of
equidistant interpolation nodes, these infinitely smooth interpolants offer a much better
choice than their polynomial analogue. A natural and important question concerns the
condition of this rational approximation method. In this paper we extend a recent study
of the Lebesgue function and constant associated with Berrut’s rational interpolant at
equidistant nodes to the family of Floater–Hormann interpolants, which includes the
former as a special case.
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462 L. Bos et al.

1 Introduction

The approximation problem we consider is the following: suppose we want to approx-
imate a function f : [a, b] → R by some g, taken from a finite-dimensional linear
subspace of the Banach space C0[a, b] of continuous functions over [a, b] with the
maximum norm, such that g interpolates f at the n + 1 distinct interpolation nodes
a = x0 < x1 < · · · < xn = b,

g(xk) = f (xk), k = 0, . . . , n.

With a given set of basis functions b j satisfying the Lagrange property,

b j (xk) = δ jk =
{

1, if j = k,

0, if j �= k,

we may define the class of interpolants that we focus on, namely that of linear inter-
polants

g(x) =
n∑

j=0

b j (x) f (x j ).

We stress that by linearity we mean the dependence on the data f (x0), . . . , f (xn).
Examples include (among many others) polynomial interpolation in Lagrangian form
and linear barycentric rational interpolation. Besides the convergence theory of g, it is
natural to study the condition of this numerical approximation method. Let every data
point f (x j ) be given with an absolute error or perturbation of at most ε, for example
due to rounding, noise, or measurement imprecision. Then the maximum distance in
[a, b] between the interpolant g̃ of the perturbed data and the interpolant g of the exact
data is bounded as

max
a≤x≤b

|g̃(x) − g(x)| ≤ ε max
a≤x≤b

�n(x),

where the function

�n(x) =
n∑

j=0

|b j (x)|

is called the Lebesgue function for the nodes x0, x1, . . . , xn , and its maximum over
the interval [a, b],

�n = max
a≤x≤b

�n(x),

is the Lebesgue constant [14]. Thus, the quantity �n is the worst possible error ampli-
fication and, since g is linear in the data, coincides with the condition number of the
interpolation process [13]. Throughout this paper we make use of this interpretation
of the Lebesgue constant. Its original definition as the norm of the approximation
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Barycentric rational interpolation at equidistant nodes 463

operator [14] is not needed here, since we are not looking for the best approximation
of f in some linear space.

Numerous authors have derived results about the Lebesgue function and constant
associated with Lagrange interpolation at various kinds of nodes; see [5,6,18] and
the references therein. It is well known [5] that the Lebesgue constant associated
with Lagrange interpolation at nodes distributed in any way always increases at least
logarithmically with the number of nodes. Such a rate is achieved, for instance, for
Chebyshev nodes [15,18].

In contrast to this favourable behaviour, the Lebesgue constant for Lagrange inter-
polation at equidistant nodes grows exponentially,

�n ∼ 2n+1

en ln(n)

as n → ∞. More detailed results and other approaches to describing the error ampli-
fication may be found in [7,10,17,19] and the references therein. The bad condition,
together with Runge’s phenomenon [8,16], makes Lagrange interpolation at equidis-
tant nodes often useless for n ≥ 50. In fact, interpolation at these nodes is a challeng-
ing problem, as it was shown in [13] that it is not possible to develop an interpolation
method which is simultaneously well-conditioned and converging at an exponential
rate as the number of nodes increases. One way to overcome this restriction and to get
better results is using rational instead of polynomial interpolation at equidistant nodes.

Berrut and Mittelmann [3] determine rational interpolants with small Lebesgue
constants for given nodes by numerically optimizing the denominator of the inter-
polant. Here we shall concentrate on the family of barycentric rational interpolants
introduced by Floater and Hormann [9] with basis functions

b j (x) = (−1) jβ j

x − x j

/ n∑
i=0

(−1)iβi

x − xi
, j = 0, . . . , n. (1)

Explicit formulas for the positive weights β0, . . . , βn are given in the same paper.
The original construction reveals that the so-obtained rational interpolant is a blend
of local polynomial interpolants of degree at most d corresponding to d + 1 consec-
utive values of the given function. It is further shown that the approximation order is
O(hd+1), where h = max0≤i≤n−1(xi+1 − xi ), as long as the interpolated function is
d + 2 times continuously differentiable. This family of barycentric rational interpo-
lants is well-suited for the approximation of sufficiently smooth functions [9] as well
as for applications such as the approximation of derivatives, integrals and primitives
[2,11,12].

For n ≥ 2d equidistant nodes, which is the setting that we assume from now on,
the weights in (1) turn out to be

β j =
n∑

k=d

(
d

k − j

)
=

⎧⎪⎨
⎪⎩

∑ j
k=0

(d
k

)
, if j ≤ d,

2d , if d ≤ j ≤ n − d,

βn− j , if j ≥ n − d.

(2)
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464 L. Bos et al.

If d = 0, then all weights are equal to one, and the favourable properties of the
corresponding rational interpolant were discovered numerically by Berrut [1]. Bos, De
Marchi, and Hormann [4] later analysed the associated Lebesgue constant and show
that it is bounded as

cn ln(n + 1) ≤ �n ≤ 2 + ln(n), (3)

where cn = 2n/(4 + nπ) with limn→∞ cn = 2/π .
The general case d ≥ 1 needs a different approach since the study of the Lebesgue

function

�n(x) =
n∑

j=0

|b j (x)| =
n∑

j=0

β j

|x − x j |
/ ∣∣∣∣∣∣

n∑
j=0

(−1) jβ j

x − x j

∣∣∣∣∣∣ (4)

through the direct use of the basis functions (1) results in rather complicated expres-
sions, whereas the original form of the rational interpolants as blends of polynomials
allows for much shorter proofs.

The aim of this paper is to show that the Lebesgue constant associated with the
family of Floater–Hormann interpolants with d ≥ 1 grows logarithmically in the
number of interpolation nodes if these are equidistant. This is achieved by establish-
ing logarithmic upper and lower bounds in Sects. 2 and 3, respectively.

2 Upper bound

In case of equidistant nodes, the properties of barycentric rational interpolation depend
only on the constant distance h between the nodes. For simplicity and without loss
of generality, we assume that the interpolation interval is [0, 1], so that the nodes are
equally spaced with distance h = 1/n,

xk = kh = k

n
, k = 0, . . . , n.

We begin by deriving an upper bound for the Lebesgue constant associated with
the family of Floater–Hormann interpolants with d ≥ 1.

Theorem 1 The Lebesgue constant associated with rational interpolation at equidistant
nodes with the basis functions b j (x) in (1) satisfies

�n ≤ 2d−1(2 + ln n).

Proof If x = xk for k = 0, . . . , n, then �n(x) = 1. Otherwise, xk < x < xk+1 for
some k with 0 ≤ k ≤ n − 1 and we consider

�n(x) =
(x − xk)(xk+1 − x)

∑n
j=0

β j
|x−x j |

(x − xk)(xk+1 − x)

∣∣∣∣∑n
j=0

(−1) j β j
x−x j

∣∣∣∣
=: Nk(x)

Dk(x)
.
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Barycentric rational interpolation at equidistant nodes 465

Since all the weights β j are less than or equal to 2d , the numerator is bounded as

Nk(x) ≤ 2d
(

1

n
+ 1

2n
ln n

)
,

following the proof of Theorem 2 in [4] for the case d = 0.
We now show that the denominator Dk(x) is bounded from below by 1/n, which

leads to the claimed result. To see this, we recall from [9, Sect.4] that

n∑
j=0

(−1) jβ j

x − x j
= (−1)dd!hd

n−d∑
j=0

λ j (x), (5)

where

λ j (x) = (−1) j

(x − x j ) · · · (x − x j+d)
.

Assuming k ≤ n − d, the proof of Theorem 2 in [9] shows that∣∣∣∣∣∣
n−d∑
j=0

λ j (x)

∣∣∣∣∣∣ ≥ |λk(x)| = 1

(x − xk)(xk+1 − x) · · · (xk+d − x)
. (6)

Therefore,

Dk(x) = d!hd(x − xk)(xk+1 − x)

∣∣∣∣∣∣
n−d∑
j=0

λ j (x)

∣∣∣∣∣∣
≥ d!hd∏k+d

j=k+2(x j − x)
≥ d!hd∏k+d

j=k+2(x j − xk)
= h = 1

n
,

where the last inequality follows from the fact that x j − x ≤ x j − xk for j ≥ k + 1.
If k > n − d, a similar reasoning leads to this lower bound for Dk(x) by considering
λk−d+1(x) instead of λk(x) in (6). �	
Note that the upper bound in Theorem 1 for d = 1 is identical to the upper bound for
d = 0 in (3), which is consistent with our numerical observations that both cases have
a similar Lebesgue constant; compare Fig. 3 (top right) and Fig. 2 in [4].

3 Lower bound

Let us now turn to the study of the lower bound of the Lebesgue constant associated
with the family of Floater–Hormann interpolants. We first give a general result for any
d ≥ 1 and then derive an improved bound for the case d = 1, which turns out to be
again very similar to the one for d = 0 in (3).
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Fig. 1 Lebesgue function of the Floater–Hormann interpolants for d = 1 (top), d = 2 (middle), and d = 3
(bottom) at n + 1 equidistant nodes for n = 10, 20, 40

Fig. 2 Lebesgue function of the Floater–Hormann interpolants for d = 1 at n + 1 equidistant nodes for
n = 9, 19, 39

Theorem 2 The Lebesgue constant associated with rational interpolation at equidis-
tant nodes with the basis functions b j (x) in (1) satisfies

�n ≥ 1

2d+2

(
2d + 1

d

)
ln

(n

d
− 1

)
.

Proof From numerical experiments (see Fig. 1), it appears that for d ≥ 2 the Lebesgue
function

�n(x) =
∑n

j=0
β j

|x−x j |∣∣∣∣∑n
j=0

(−1) j β j
x−x j

∣∣∣∣
=: N (x)

D(x)
(7)

obtains its maximum approximately halfway between x0 and x1 (and halfway between
xn−1 and xn because of the symmetry with respect to the mid-point of the interval).
For this reason, we consider x∗ = (x1 − x0)/2 = 1/(2n) and derive a lower bound
for �n(x∗).

We begin by investigating the numerator at x∗,

N (x∗) =
n∑

j=0

β j

|x∗ − x j | =
n∑

j=0

β j∣∣ 1
2n − j

n

∣∣ = 2n
n∑

j=0

β j

|2 j − 1| .

123



Barycentric rational interpolation at equidistant nodes 467

Fig. 3 Comparison of the Lebesgue constants of the Floater–Hormann interpolants at n + 1 equidistant
nodes for 2d ≤ n ≤ 200 and d = 1, 2, 3 (top left) and to the upper and lower bounds in Theorems 1 and 2.
For d = 1, the improved lower bound in Proposition 1 is shown by the dashed curve (top right)

Omitting the first and last d terms and noticing that β j = 2d for the remaining terms,
we obtain

N (x∗) ≥ 2n2d
n−d∑
j=d

1

2 j − 1
≥ 2n2d

n−d∫
d−1

1

2x + 1
dx = 2n2d 1

2
ln

(
2n − 2d + 1

2d − 1

)

≥ n2d ln
(n

d
− 1

)
.

To handle the denominator, we first recall (5) to get

D(x∗) =
∣∣∣∣∣∣

n∑
j=0

(−1) jβ j

x∗ − x j

∣∣∣∣∣∣ = d!hd

∣∣∣∣∣∣
n−d∑
j=0

λ j (x∗)

∣∣∣∣∣∣ .

As x∗ belongs to the first sub-interval [x0, x1], we notice that λ0(x∗) and λ1(x∗) have
the same sign and that the following λ j (x∗) oscillate in sign and decrease in absolute
value. The absolute value of the sum over these functions is thus bounded from above
by the sum of the absolute values of the first two terms,

D(x∗) ≤ d!hd(|λ0(x∗)| + |λ1(x∗)|),
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and expanding this expression at x∗ finally gives

D(x∗) ≤ d!hd

(
1∏d

j=0

∣∣ 1
2n − j

n

∣∣ + 1∏d+1
j=1

∣∣ 1
2n − j

n

∣∣
)

= n2d+1d!
(

2d + 1∏d+1
j=1(2 j − 1)

+ 1∏d+1
j=1(2 j − 1)

)
= n

22d+2(2d+1
d

) .

�	

Proposition 1 If d = 1, then the Lebesgue constant associated with rational interpo-
lation at equidistant nodes with the basis functions b j (x) in (1) satisfies

�n ≥ an ln(n) + bn,

where limn→∞ an = 2/π and limn→∞ bn = 0.

Proof If d = 1, then the weights β j in (2) simplify to

β j =

⎧⎪⎨
⎪⎩

1, if j = 0,

2, if 1 ≤ j ≤ n − 1,

1, if j = n.

(8)

Assume first that n = 2k + 1 is odd. The proof is very similar to that of Theorem 2,
except that we use x∗ = 1/2. According to our numerical experiments, this is where
the maximum of the Lebesgue function appears to occur (see Fig. 2).

We first derive a lower bound for the denominator D(x∗). Due to the symmetry of
D(x) with respect to x∗, the first and the last k + 1 terms in the sum are equal and so

D(x∗) =
∣∣∣∣∣∣

n∑
j=0

(−1) jβ j

x∗ − x j

∣∣∣∣∣∣ = 2n

∣∣∣∣∣∣
n∑

j=0

(−1) jβ j

n − 2 j

∣∣∣∣∣∣
= 4n

∣∣∣∣∣∣
k∑

j=0

(−1) jβ j

2k + 1 − 2 j

∣∣∣∣∣∣ = 4n

∣∣∣∣∣∣
k∑

j=0

(−1) jβk− j

2 j + 1

∣∣∣∣∣∣ .

Now using the triangle inequality, Eq. (8), and the fact that the Leibniz series converges
to π/4 with

∣∣∣∣∣∣
k−1∑
j=0

(−1) j

2 j + 1
− π

4

∣∣∣∣∣∣ ≤ 1

2k + 1
,
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Barycentric rational interpolation at equidistant nodes 469

we have

D(x∗) ≤ 4n

⎛
⎝

∣∣∣∣∣∣
k−1∑
j=0

(−1) jβk− j

2 j + 1

∣∣∣∣∣∣ +
∣∣∣∣∣ (−1)kβ0

2k + 1

∣∣∣∣∣
⎞
⎠ = 8n

∣∣∣∣∣∣
k−1∑
j=0

(−1) j

2 j + 1

∣∣∣∣∣∣ + 4n

2k + 1

≤ 8n

(
π

4
+ 1

2k + 1

)
+ 4 = 2nπ + 12. (9)

It remains to find a lower bound for the numerator N (x∗). With the same arguments
as above, it follows that

N (x∗) = 2n
n∑

j=0

β j

|n − 2 j | = 4n
k∑

j=0

β j

2k + 1 − 2 j

= 8n
k−1∑
j=0

1

2 j + 1
+ 4n

2k + 1
≥ 4n ln(n) + 4,

and together with (9) we obtain

�n ≥ 2

π + 6/n
ln(n) + 2

nπ + 6
.

Finally, if n = 2k is even, then the point x = 1/2 is a node and the Lebesgue
function equals one there. Referring to Fig. 1, we consider x∗ = 1/2+1/(2n) instead
in this case. Applying the same reasoning as for odd n leads to

D(x∗) = 2n

∣∣∣∣∣∣4
k−1∑
j=0

(−1)k+ j

2 j + 1
+ 1

2k − 1
+ 1

2k + 1

∣∣∣∣∣∣ ≤ 2nπ + 2n

n − 1
+ 10n

n + 1

and

N (x∗)=2n

⎛
⎝4

k−1∑
j=0

1

2 j + 1
− 1

2k − 1
+ 1

2k + 1

⎞
⎠ ≥ 4n ln(n + 1)− 2n

n − 1
+ 2n

n + 1
,

hence

�n ≥ 2

π + 6n−4
n2−1

ln(n + 1) − 2

π(n2 − 1) + 6n − 4
,

which concludes the proof. �	
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Fig. 4 Lebesgue constants of the Floater–Hormann interpolants at a fixed number of n + 1 equidistant
nodes for 1 ≤ d ≤ 25

4 Numerical experiments

We performed numerous experiments to verify numerically that the behaviour of the
Lebesgue constant associated with the family of barycentric rational interpolants is as
predicted by the theoretical results in the previous sections. Figure 3 confirms that the
growth of �n is logarithmic in the number of interpolation nodes. These results further
suggest that, for fixed d, the coefficient

(2d+1
d

)/
2d+2 of the logarithmic term in our

lower bound in Theorem 2 is a better estimate of the true value than the factor 2d−1

in our upper bound in Theorem 1. However, both factors indicate that for fixed n the
growth of the Lebesgue constant with respect to d is exponential, which is confirmed
by the examples in Fig. 4. Finally, Fig. 1 demonstrates that this exponential growth
seems to always happen near the boundary of the interpolation interval, whereas the
behaviour of the Lebesgue function away from the boundary is almost independent
of d. This suggests considering distributions of nodes which are uniform in the centre
and clustered towards the boundary; we plan to study such settings in a forthcoming
paper.
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