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Abstract Tensor-based methods are receiving a growing interest in scientific
computing for the numerical solution of problems defined in high dimensional ten-
sor product spaces. A family of methods called proper generalized decompositions
(PGD) methods have been recently introduced for the a priori construction of tensor
approximations of the solution of such problems. In this paper, we give a mathematical
analysis of a family of progressive and updated PGDs for a particular class of prob-
lems associated with the minimization of a convex functional over a reflexive tensor
Banach space.
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1 Introduction

Tensor-based methods are receiving a growing interest in scientific computing for the
numerical solution of problems defined in high dimensional tensor product spaces,
such as partial differential equations arising from stochastic calculus (e.g. Fokker–
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Planck equations) or quantum mechanics (e.g. Schrödinger equation), stochastic
parametric partial differential equations in uncertainty quantification with functional
approaches, and many mechanical or physical models involving extra parameters (for
parametric analyses) among others. For such problems, classical approximation meth-
ods based on the a priori selection of approximation bases suffer from the so called
“curse of dimensionality” associated with the exponential (or factorial) increase in the
dimension of approximation spaces. Tensor-based methods consist in approximating
the solution u ∈ V of a problem, where V is a tensor space generated by d vector
spaces Vj (assume, e.g. Vj = R

n j )1, using separated representations of the form

u ≈ um =
m∑

i=1

w
(1)
i ⊗ · · · ⊗ w

(d)
i , w

( j)
i ∈ Vj (1)

where ⊗ represents the Kronecker product. The functions w
( j)
i are not a priori selected

but are chosen in an optimal way regarding some properties of u.
A first family of numerical methods based on classical constructions of tensor

approximations [18,24,35] have been recently investigated for the solution of high-
dimensional partial differential equations [3,19,21,22,28]. They are based on the
systematic use of tensor approximations inside classical iterative solvers. Another
family of methods, called Proper Generalized Decomposition (PGD) methods [9,16,
27,33,34], have been introduced for the direct construction of representations of type
(1). PGD methods introduce alternative definitions of tensor approximations, not based
on natural best approximation problems, for the approximation to be computable with-
out a priori information on the solution u. The particular structure of approximation
sets allows the interpretation of PGDs as generalizations of proper orthogonal decom-
position (or singular value decomposition, or Karhunen–Loève decomposition) for the
a priori construction of a separated representation um of the solution. They can also
be interpreted as a priori model reduction techniques in the sense that they provide
a way for the a priori construction of optimal reduced bases for the representation
of the solution. Several definitions of PGDs have been proposed. Basic PGDs are
based on a progressive construction of the sequence um , where at each step, an addi-
tional elementary tensor ⊗d

k=1w
(k)
m is added to the previously computed decomposition

um−1 [2,26,30]. Progressive definitions of PGDs can thus be considered as Greedy
algorithms [37] for constructing separated representations [1,6]. A possible improve-
ment of these progressive decompositions consists in introducing some updating steps
in order to capture an approximation of the optimal decomposition, which would be
obtained by defining the whole set of functions simultaneously (and not progressively).
For many applications, these updating strategies allow recovering good convergence
properties of separated representations [31,33,34].

In [6], convergence results are given for the progressive PGD in the case of the high-
dimensional Laplacian problem. In [16], convergence is proved in the more general
setting of linear elliptic variational problems in tensor Hilbert spaces. The progressive

1 More precisely, V is the closure with respect to a norm ‖ · ‖ of the algebraic tensor space V =
a

⊗d
j=1 Vj = span{⊗d

j=1 v( j) : v( j) ∈ Vj and 1 ≤ j ≤ d}.
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PGD for nonlinear convex problems 505

PGD is interpreted as a generalized singular value decomposition with respect to the
metric induced by the operator, which is not necessarily a crossnorm on the tensor
product space.

In this paper, we propose a theoretical analysis of progressive and updated PGDs for
a class of problems associated with the minimization of an elliptic and differentiable
functional J ,

J (u) = min
v∈V

J (v),

where V is a reflexive tensor Banach space. In this context, progressive PGDs consist
in defining a sequence of approximations um ∈ V defined by

um = um−1 + zm, zm ∈ S1

where S1 is a tensor subset with suitable properties (e.g. rank-one tensors subset,
Tucker tensors subset,. . .), and where zm is an optimal correction in S1 of um−1,
defined by

J (um−1 + zm) = min
z∈S1

J (um−1 + z)

Updated progressive PGDs consist in correcting successive approximations by using
the information generated in the previous steps. At step m, after having computed an
optimal correction zm ∈ S1 of um−1, a linear (or affine) subspace Um ⊂ V such that
um−1 + zm ∈ Um is generated from the previously computed information, and the
next approximation um is defined by

J (um) = min
v∈Um

J (v) ≤ J (um−1 + zm)

The outline of the paper is as follows. In Sect. 2, we briefly recall some classical
properties of tensor Banach spaces. In particular, we introduce some assumptions on
the weak topology of the tensor Banach space in order for the (updated) progressive
PGDs to be well defined (properties of subsets S1). In Sect. 3, we introduce a class of
convex minimization problems on Banach spaces in an abstract setting. In Sect. 4, we
introduce and analyze the progressive PGD (with or without updates) and we provide
some general convergence results. While working on this paper, the authors became
aware of the work [7], which provides a convergence proof for the purely progressive
PGD when working on tensor Hilbert spaces. The present paper can be seen as an
extension of the results of [7] to the more general framework of tensor Banach spaces
and to a larger family of PGDs, including updating strategies and a general selection of
tensor subsets S1. In Sect. 5, we present some classical examples of applications of the
present results: best approximation in L p tensor spaces (generalizing the multidimen-
sional singular value decomposition to L p spaces), solution of p-Laplacian problem,
and solution of elliptic variational problems (involving inequalities or equalities).
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2 Tensor Banach spaces

We first consider the definition of the algebraic tensor space a
⊗d

j=1 Vj generated
from Banach spaces Vj (1 ≤ j ≤ d) equipped with norms ‖ · ‖ j . As underlying field
we choose R, but the results hold also for C. The suffix ‘a’ in a

⊗d
j=1 Vj refers to the

‘algebraic’ nature. By definition, all elements of

V := a

d⊗

j=1

Vj

are finite linear combinations of elementary tensors v = ⊗d
j=1 v( j)(v( j) ∈ Vj ).

A typical representation format is the Tucker or tensor subspace format

u =
∑

i∈I

ai

d⊗

j=1

b( j)
i j

, (2)

where I = I1 × · · · × Id is a multi-index set with I j = {1, . . . , r j }, r j ≤
dim(Vj ), b( j)

i j
∈ Vj (i j ∈ I j ) are linearly independent (usually orthonormal)

vectors, and ai ∈ R. Here, i j are the components of i = (i1, . . . , id). The data size is
determined by the numbers r j collected in the tuple r := (r1, . . . , rd). The set of all
tensors representable by (2) with fixed r is

Tr(V) :=
{

v ∈ V : there are subspaces U j ⊂ Vj such that
dim(U j ) = r j and v ∈ U := a

⊗d
j=1 U j

}
. (3)

To simplify the notations, the set of rank-one tensors (elementary tensors) will be
denoted by

R1(V) := T(1,...,1)(V) =
{
⊗d

k=1w
(k) : w(k) ∈ Vk

}
.

By definition, we then have V = span R1(V). We also introduce the set of rank-m
tensors defined by

Rm(V) :=
{

m∑

i=1

zi : zi ∈ R1(V)

}
.

We say that V‖·‖ is a Banach tensor space if there exists an algebraic tensor space
V and a norm ‖ · ‖ on V such that V‖·‖ is the completion of V with respect to the norm
‖ · ‖, i.e.

V‖·‖ := ‖·‖
d⊗

j=1

Vj = a

⊗d

j=1
Vj

‖·‖
.

If V‖·‖ is a Hilbert space, we say that V‖·‖ is a Hilbert tensor space.
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2.1 Topological properties of tensor Banach spaces

Observe that span R1(V) is dense in V‖·‖. Since R1(V) ⊂ Tr(V) for all r ≥
(1, 1, . . . , 1), then span Tr(V) is also dense in V‖·‖.

Any norm ‖ · ‖ on a
⊗d

j=1 Vj satisfying

∥∥∥∥
⊗d

j=1
v( j)

∥∥∥∥ =
∏d

j=1
‖v( j)‖ j for all v( j) ∈ Vj (1 ≤ j ≤ d) (4)

is called a crossnorm.

Remark 1 Equation (4) implies the inequality ‖ ⊗d
j=1 v( j)‖ �

∏d
j=1 ‖v( j)‖ j which

is equivalent to the continuity of the tensor product mapping

⊗
: d×

j=1
(Vj , ‖ · ‖ j ) −→

⎛

⎝ a

d⊗

j=1

Vj , ‖·‖
⎞

⎠, (5)

given by ⊗((v(1), . . . , v(d))) = ⊗d
j=1v

( j), where (X, ‖ · ‖) denotes a vector space X
equipped with norm ‖ · ‖.

As usual, the dual norm to ‖ · ‖ is denoted by ‖ · ‖∗. If ‖ · ‖ is a crossnorm and also
‖ · ‖∗ is a crossnorm on a

⊗d
j=1 V ∗

j , i.e.

∥∥∥∥
⊗d

j=1
ϕ( j)

∥∥∥∥
∗

=
∏d

j=1
‖ϕ( j)‖∗

j for all ϕ( j) ∈ V ∗
j (1 ≤ j ≤ d), (6)

‖ · ‖ is called a reasonable crossnorm.
Now, we introduce the following norm.

Definition 1 Let Vj be Banach spaces with norms ‖ · ‖ j for 1 ≤ j ≤ d. Then for
v ∈ V = a

⊗d
j=1 Vj , we define the norm ‖ · ‖∨ by

‖v‖∨ := sup

{
|(ϕ(1) ⊗ ϕ(2) ⊗ . . . ⊗ ϕ(d))(v)|

∏d
j=1 ‖ϕ( j)‖∗

j

: 0 �= ϕ( j) ∈ V ∗
j , 1 ≤ j ≤ d

}
. (7)

We recall that a sequence vm ∈ V is weakly convergent if limm→∞〈ϕ, vm〉 exists
for all ϕ ∈ V ∗. We say that (vm)m∈N converges weakly to v ∈ V if limm→∞〈ϕ, vm〉 =
〈ϕ, v〉 for all ϕ ∈ V ∗. In this case, we write vm ⇀ v.

Definition 2 A subset M ⊂ V is called weakly closed if vm ∈ M and vm ⇀ v implies
v ∈ M .

Note that ‘weakly closed’ is stronger than ‘closed’, i.e. M weakly closed ⇒ M
closed. The following proposition has been proved in [15].

Proposition 1 Let V‖·‖ be a Banach tensor space with a norm satisfying ‖ ·‖ � ‖ ·‖∨
on V. Then the set Tr(V) is weakly closed.
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2.2 Examples

2.2.1 The Bochner spaces

Our first example, the Bochner spaces, are a generalization of the concept of L p-spaces
to functions whose values lie in a Banach space which is not necessarily the space R

or C.

Let X be a Banach space endowed with a norm ‖ · ‖X . Let I ⊂ R
s and μ a

finite measure on I (e.g. a probability measure). Let us consider the Bochner space
L p

μ(I ; X), with 1 ≤ p < ∞, defined by

L p
μ(I ; X) =

⎧
⎨

⎩v : I → X :
∫

I

‖v(x)‖p
X dμ(x) < ∞

⎫
⎬

⎭ ,

and endowed with the norm

‖v‖Δp =
⎛

⎝
∫

I

‖v(x)‖p
X dμ(x)

⎞

⎠
1/p

We now introduce the tensor product space V‖·‖Δp
= X ⊗‖·‖Δp

L p
μ(I ). For 1≤ p<∞,

the space L p
μ(I ; X) can be identified with V‖·‖Δp

(see Section 7, Chapter 1 in [11]).
Moreover, the following proposition can be proved (see Proposition 7.1 in [11]):

Proposition 2 For 1 ≤ p < ∞, the norm ‖ · ‖Δp satisfies ‖ · ‖Δp � ‖ · ‖∨ on
X ⊗a L p

μ(I ).

By Propositions 2 and 1, we then conclude:

Corollary 1 For 1 ≤ p < ∞, the set Tr(X ⊗a L p
μ(I )) is weakly closed in L p

μ(I ; X).
In particular, for K ⊂ R

k, we have that Tr(L p
ν (K ) ⊗a L p

μ(I )) and R1(L p
ν (K ) ⊗a

L p
μ(I )) are weakly closed sets in L p

ν⊗μ(K × I ).

2.2.2 The Sobolev spaces

Let Ω = Ω1 × · · · × Ωd ⊂ R
d , with Ωk ⊂ R. Let α ∈ N

d denote a multi-index and
|α| = ∑d

k=1 αk . Dα(u) = ∂
α1
x1 . . . ∂

αd
xd (u) denotes a partial derivative of u(x1, . . . , xd)

of order |α|. For a fixed 1 ≤ p < ∞, we introduce the Sobolev space

Hm,p(Ω) = {u ∈ L p(Ω) : Dα(u) ∈ L p(Ω), 0 ≤ |α| ≤ m}
equipped with the norm

‖v‖m,p =
∑

0≤|α|≤m

‖Dα(v)‖L p(Ω)

We let Vk = Hm,p(Ωk), endowed with norms ‖ · ‖m,p;k defined by

‖w‖m,p;k =
m∑

j=0

‖∂ j
xk (w)‖L p(Ωk ).
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Then we have the following equality

Hm,p(Ω) = ‖·‖m,p

d⊗

j=1

Hm,p(Ω j ) .

A first result is the following.

Proposition 3 For 1 < p < ∞, m ≥ 0 and Ω = Ω1 × · · · × Ωd , the set

R1

⎛

⎝ a

d⊗

j=1

Hm,p(Ω j )

⎞

⎠ =
{
⊗d

k=1w
(k) : w(k) ∈ Hm,p(Ωk)

}
,

is weakly closed in (Hm,p(Ω), ‖ · ‖m,p).

To prove the above proposition we need the following two lemmas.

Lemma 1 Assume 1 < p < ∞ and Ω = Ω1 × · · · × Ωd . Then the set
R1( a

⊗d
j=1 L p(Ω j ) ) is weakly closed in L p(Ω).

Proof Let {vn}n∈N, with vn = ⊗d
j=1v

( j)
n , be a sequence in R1( a

⊗d
j=1 L p(Ω j ) ) that

weakly converges to an element v ∈ L p(Ω). Then the sequence {vn}n∈N is bounded
in L p(Ω), and also the sequences {v( j)

n }n∈N ⊂ L p(Ω j ) for each j ∈ {1, 2, . . . , d}.
Then, for each j ∈ {1, 2, . . . , d}, we can extract a subsequence, namely {v( j)

nk }k∈N,

that weakly converges to some v( j) ∈ L p(Ω j ). Weak convergence in L p(Ω j ) implies

the convergence in distributional sense, that is, the subsequence {v( j)
nk }k∈N converges

to v( j) in D′(Ω j ). From Proposition 6.2.3 of [4], we have that {⊗d
j=1v

( j)
nk }k∈N con-

verges to ⊗d
j=1v

( j) in D′(Ω). By uniqueness of the limit, we obtain the desired
result. ��
Lemma 2 Assume 1 < p < ∞, m ≥ 1 and Ω = Ω1 ×· · ·×Ωd . For any measurable
functions wk : Ωk → R such that ⊗d

k=1wk �= 0, we have ⊗d
k=1wk ∈ Hm,p(Ω) if and

only if wk ∈ Hm,p(Ωk) for all k ∈ {1 . . . d}.
Proof Suppose that wk ∈ Hm,p(Ωk) for all k ∈ {1 . . . d}. Since

‖ ⊗d
k=1 wk‖m,p =

∑

0≤|α|≤m

d∏

k=1

‖∂αk
xk

(wk)‖L p(Ωk ) ≤
∑

α∈{0,...,m}d

d∏

k=1

‖∂αk
xk

(wk)‖L p(Ωk )

=
d∏

k=1

⎛

⎝
m∑

j=0

‖∂ j
xk (wk)‖L p(Ωk)

⎞

⎠ =
d∏

k=1

‖wk‖m,p;k,

we have ⊗d
k=1wk ∈ Hm,p(Ω).
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Conversely, if ⊗d
k=1wk ∈ Hm,p(Ω), then

‖ ⊗d
k=1 wk‖m,p =

∑

0≤|α|≤m

‖Dα(⊗d
k=1wk)‖L p(Ω) < ∞

which implies that ‖Dα(⊗d
k=1wk)‖L p(Ω) < ∞ for all α such that 0 ≤ |α| ≤ m.

Taking α = (0, . . . , 0), we obtain

‖ ⊗d
k=1 wk‖L p(Ω) =

d∏

k=1

‖wk‖L p(Ωk ) < ∞

and therefore ‖wk‖L p(Ωk ) < ∞ for all k. Now, for k ∈ {1 . . . d}, taking α =
(. . . , 0, j, 0, . . .) such that αk = j , with 1 ≤ j ≤ m, and αl = 0 for l �= k, we
obtain

‖Dα(⊗d
l=1wl)‖L p(Ω) = ‖∂ j

xk wk‖L p(Ωk )

∏

l �=k

‖wl‖L p(Ωl )

and then ‖∂ j
xk wk‖p,Ωk < ∞ for all j ∈ {1, . . . , m}. Therefore wk ∈ Hm,p(Ωk) for

all k ∈ {1 . . . d}. ��

Proof of Proposition 3 For m = 0 the proposition follows from Lemma 1. Now,
assume m ≥ 1, and let us consider a sequence

{zn}n∈N ⊂ R1

⎛

⎝ a

d⊗

j=1

Hm,p(Ω j )

⎞

⎠

that weakly converges to an element z ∈ Hm,p(Ω). Since

R1

⎛

⎝ a

d⊗

j=1

Hm,p(Ω j )

⎞

⎠ ⊂ R1

⎛

⎝ a

d⊗

j=1

L p(Ω j )

⎞

⎠ ,

we have z ∈ R1( a
⊗d

j=1 L p(Ω j ) ) because, from Lemma 1, the latter set is weakly

closed in L p(Ω). Therefore, there exist wk ∈ L p(Ωk) such that z = ⊗d
k=1wk . Since

z ∈ Hm,p(Ω), from Lemma 2, wk ∈ Hm,p(Ωk) for 1 ≤ k ≤ d, and therefore
z = ⊗d

k=1wk ∈ R1( a
⊗d

j=1 Hm,p(Ω j ) ). ��

From Proposition 5.18 and Example 5.19 in [15] it follows the following statement.

Proposition 4 The set Tr( a
⊗d

j=1 Hm,2(Ω j ) ) is weakly closed in Hm,2(Ω).
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3 Optimization of functionals over Banach spaces

Let V be a reflexive Banach space, endowed with a norm ‖ · ‖. We denote by V ∗
the dual space of V and we denote by 〈·, ·〉 : V ∗ × V → R the duality pairing. We
consider the optimization problem

J (u) = min
v∈V

J (v) (π )

where J : V → R is a given functional.

3.1 Some useful results on minimization of functionals over Banach spaces

In the sequel, we will introduce approximations of (π ) by considering an optimization
on subsets M ⊂ V , i.e.

J (u) = min
v∈M

J (v) (8)

We here recall classical theorems for the existence of a minimizer (see, e.g. [14]).

Definition 3 We say that a map J : V −→ R is weakly sequentially lower semicon-
tinuous (respectively, weakly sequentially continuous) in M ⊂ V if for all v ∈ M and
for all vm ∈ M such that vm ⇀ v, it holds J (v) ≤ lim infm→∞ J (vm) (respectively,
J (v) = limm→∞ J (vm)).

If J ′ : V −→ V ∗ exists as Gateaux derivative, we say that J ′ is strongly continuous
when for any sequence vn ⇀ v in V it holds that J ′(vn) → J ′(v) in V ∗.

Recall that the convergence in norm implies the weak convergence. Thus, J weakly
sequentially (lower semi)continuous in M ⇒ J (lower semi)continuous in M. It can
be shown (see Proposition 41.8 and Corollary 41.9 in [39]) the following result.

Proposition 5 Let V be a reflexive Banach space and let J : V → R be a functional,
then the following statements hold.

(a) If J is a convex and lower semicontinuous functional, then J is weakly sequen-
tially lower semicontinuous.

(b) If J ′ : V −→ V ∗ exists on V as Gateaux derivative and is strongly continuous
(or compact), then J is weakly sequentially continuous.

Finally, we have the following two useful theorems.

Theorem 1 Assume V is a reflexive Banach space, and assume M ⊂ V is bounded
and weakly closed. If J : M → R∪{∞} is weakly sequentially lower semicontinuous,
then problem (8) has a solution.

Proof Let α = infv∈M J (v) and {vn} ⊂ M be a minimizing sequence. Since A is
bounded, {vn}n∈N is a bounded sequence in a reflexive Banach space and therefore,
there exists a subsequence {vnk }k∈N that converges weakly to an element u ∈ V . Since
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512 A. Falcó, A. Nouy

M is weakly closed, u ∈ M and since J is weakly sequentially lower semicontinu-
ous, J (u) ≤ lim infk→∞ J (vnk ) = α. Therefore, J (u) = α and u is solution of the
minimization problem. ��

We now remove the assumption that M is bounded by adding a coercivity condition
on J .

Theorem 2 Assume V is a reflexive Banach space, and M ⊂ V is weakly closed. If
J : M → R ∪ {∞} is weakly sequentially lower semicontinuous and coercive on M,
i.e. lim‖v‖→∞ J (v) = +∞, then problem (8) has a solution.

Proof Pick an element v0 ∈ M such that J (v0) �= ∞ and define M0 = {v ∈ M :
J (v) ≤ J (v0)}. Since J is coercive, M0 is bounded. Since M is weakly closed and J is
weakly sequentially lower semicontinuous, M0 is weakly closed. The initial problem
is then equivalent to J (u) = minv∈M0 J (v), which admits a solution from Theorem 1.

��

3.2 Convex optimization in Banach spaces

From now on, we will assume that the functional J satisfies the following assumptions.

(A1) J is Fréchet differentiable, with Fréchet differential J ′ : V → V ∗.
(A2) J is elliptic, i.e. there exist α > 0 and s > 1 such that for all v,w ∈ V ;

〈J ′(v) − J ′(w), v − w〉 ≥ α‖v − w‖s (9)

In the following, s will be called the ellipticity exponent of J .

Lemma 3 Under assumptions (A1)–(A2), we have

(a) For all v,w ∈ V,

J (v) − J (w) ≥ 〈J ′(w), v − w〉 + α

s
‖v − w‖s . (10)

(b) J is strictly convex.
(c) J is bounded from below and coercive.

Proof (a) For all v,w ∈ V ,

J (v) − J (w) =
1∫

0

d

dt
J (w + t (v − w)) dt =

1∫

0

〈J ′(w + t (v − w)), v − w〉 dt

= 〈J ′(w), v − w〉 +
1∫

0

〈J ′(w + t (v − w)) − J ′(w), v − w〉 dt
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PGD for nonlinear convex problems 513

≥ 〈J ′(w), v − w〉 +
1∫

0

α

t
‖t (v − w)‖s dt

= 〈J ′(w), v − w〉 + α

s
‖v − w‖s

(b) From (a), we have for v �= w,

J (v) − J (w) > 〈J ′(w), v − w〉

(c) Still from (a), we have for all v ∈ V ,

J (v) ≥ J (0) + 〈J ′(0), v〉 + α

s
‖v‖s ≥ J (0) − ‖J ′(0)‖‖v‖ + α

s
‖v‖s

which gives the coercivity and the fact that J is bounded from below.
��

The above properties yield the following classical result (see for example
Theorem 7.4.4 in [10]).

Theorem 3 Under assumptions (A1)–(A2), the problem (π ) admits a unique solution
u ∈ V which is equivalently characterized by

〈J ′(u), v〉 = 0 ∀v ∈ V (11)

Proof We here only give a sketch of proof of this very classical result. J is continuous
and a fortiori lower semicontinuous. Since J is convex and lower semicontinuous, it
is also weakly sequentially lower semicontinuous [Proposition 5(a)]. The existence
of a solution then follows from Theorem 2. The uniqueness is given by the strict
convexity of J , and the equivalence between (π ) and (11) classically follows from the
differentiability of J . ��
Lemma 4 Assume that J satisfies (A1)–(A2). If {vm} ⊂ V is a sequence such that
J (vm) −→

m→∞ J (u), where u is the solution of (π ), then vm → u, i.e.

‖u − vm‖ −→
m→∞ 0

Proof By the ellipticity property (10) of J , we have

J (vm) − J (u) ≥ 〈J ′(u), vm − u〉 + α

s
‖u − vm‖s = α

s
‖u − vm‖s . (12)

Therefore,

α

s
‖u − vm‖s ≤ J (vm) − J (u) −→

m→∞ 0,

which ends the proof. ��
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4 Progressive proper generalized decompositions in tensor Banach spaces

4.1 Definition of progressive proper generalized decompositions

We now consider the minimization problem (π ) of functional J on a reflexive tensor
Banach space V = V‖·‖. Assume that we have a functional J : V‖·‖ −→ R satisfying
(A1)–(A2) and a weakly closed subset S1 in V‖·‖ such that

(B1) S1 ⊂ V, with 0 ∈ S1,

(B2) for each v ∈ S1 we have λv ∈ S1 for all λ ∈ R, and
(B3) span S1 is dense in V‖·‖.

Using the notation introduced in Sect. 2.2 we give the following examples.

Example 1 Consider V‖·‖ = L p
μ(I ; X) and S1 = Tr(X ⊗a L p

μ(I )).

Example 2 Consider V‖·‖ = Hm,2(Ω) and S1 = Tr( a
⊗d

j=1 Hm,2(Ω j ) ).

Example 3 Consider V‖·‖ = Hm,p(Ω) and S1 = R1( a
⊗d

j=1 Hm,p(Ω j ) ).

The set S1 can be used to characterize the solution of problem (π ) as shown by the
following result.

Lemma 5 Assume that J satisfies (A1)-(A2) and let u∗ ∈ V‖·‖ satisfy

J (u∗) = min
z∈S1

J (u∗ + z). (13)

Then u∗ solves (π ).

Proof For all γ ∈ R+ and z ∈ S1,

J (u∗ + γ z) ≥ J (u∗)

and therefore

〈J ′(u∗), z〉 = lim
γ↘0

1

γ
(J (u∗ + γ z) − J (u∗)) ≥ 0

holds for all z ∈ S1. From (B2), we have

〈J ′(u∗), z〉 = 0 ∀z ∈ S1,

From (B3), we then obtain

〈J ′(u∗), v〉 = 0 ∀v ∈ V‖·‖,

and the lemma follows from Theorem 3. ��
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In the following, we denote by Sm the set

Sm =
{

m∑

i=1

zi : zi ∈ S1

}

The next two lemmas will be useful to define a progressive PGD.

Lemma 6 For each v ∈ V‖·‖, the set

v + S1 = {v + w : w ∈ S1}

is weakly closed in V‖·‖.

Proof Assume that v + wn ⇀ w for some {wn}n≥1 ⊂ S1, then wn ⇀ w − v and
since S1 is weakly closed, w − v ∈ S1. In consequence w ∈ v + S1 and the lemma
follows. ��
Lemma 7 (Existence of a S1-minimizer) Assume that J : V‖·‖ −→ R satisfies (A1)–
(A2). Then for any v ∈ V‖·‖, the following problem admits a solution:

J (w∗) = min
w∈v+S1

J (w)

Proof Fréchet differentiability of J implies that J is continuous and since J is
convex, we have that J is weakly sequentially lower semicontinuous by Proposi-
tion 5. Moreover, J is coercive on V‖·‖ by Lemma 3(c). By Lemma 6, v + S1 is
a weakly closed subset in V‖·‖. Then, the existence of a minimizer follows from
Theorem 2. ��
Definition 4 (Progressive PGDs) Assume that J : V‖·‖ −→ R satisfies (A1)–(A2),
and let u ∈ V‖·‖ satisfy

J (u) = min
v∈V‖·‖

J (v). (14)

We define a progressive PGD {um}m≥1 over S1 of u, as follows. We let u0 = 0 and
for m ≥ 1, we construct um ∈ V‖·‖ from um−1 ∈ V‖·‖ as we show below. We first
find an element ẑm ∈ S1 ⊂ V such that

J (um−1 + ẑm) = min
z∈S1

J (um−1 + z). (*)

Next before to update m to m + 1, we can choose one of the following strategies
denoted by c, l and r, respectively:

(c) Let zm = ẑm . Define um = um−1 + zm, update m to m + 1 and goto (*).
(l) Let zm = ẑm . Construct a closed subspace U(um−1 + zm) in V‖·‖ such that

um−1 + zm ∈ U(um−1 + zm). Then, define um by
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J (um) = min
v∈U(um−1+zm )

J (v),

update m to m + 1 and goto (*).
(r) Construct a closed subspace U(ẑm) in V‖·‖ such that ẑm ∈ U(ẑm), and define zm

by

J (zm) = min
z∈U(ẑm)

J (um−1 + z).

Then, define um = um−1 + zm , such that

J (um) = J (um−1 + zm) = min
v∈um−1+U(ẑm)

J (v),

update m to m + 1 and goto (*).

Strategies of type (l) and (r) are called updates. Observe that to each progressive
PGD {um}m≥1 of u we can assign a sequence of symbols (perhaps finite), that we will
denote by

α(u) = α1α2 . . . αk . . .

where αk ∈ {c, l, r} for all k = 1, 2, . . . . That means that uk was obtained without
update if αk = c, or with an update strategy of type l or r if αk = l or αk = r
respectively. In particular, the progressive PGD defined in [7] coincides with a PGD
where αk = c for all k ≥ 1. Such a decomposition is called a purely progressive PGD,
while a decomposition such that αk = l or αk = r for some k is called an updated
progressive PGD.

Remark 2 The update αm = l can be defined with several updates at each iteration.
Letting u(0)

m = um−1 + ẑm , we introduce a sequence {u(p)
m }dm

p=1 ⊂ V‖·‖ defined by

J
(

u(p+1)
m

)
= min

v∈U(u(p)
m )

J (v)

with U(u(p)
m ) being a closed linear subspace of V‖·‖ which contains u(p)

m . We finally

let um = u(dm )
m .

In [15] it was introduced the following definition. For a given v in the algebraic
tensor space V, the minimal subspaces U j,min(v) ⊂ Vj are given by the intersection
of all subspaces U j ⊂ Vj satisfying v ∈ a

⊗d
j=1 U j . It can be shown [15] that

a
⊗d

j=1 U j,min(v) is a finite dimensional subspace of V.

Example 4 (Illustrations of updates) For a given vm ∈ V‖·‖ (e.g. vm = um−1 + zm if
αm = l or vm =Ozm if αm = r ) there are several possible choices for defining a linear
subspace U(vm). Among others, we have
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– U(vm) = a
⊗d

j=1 U j,min(vm) . In the case of αm = l, all subspaces U(um−1 +zm)

are finite dimensional and we have that um ∈ V for all m ≥ 1.

– Assume that vm = ∑m
i=1 αi zi for some {z1, . . . , zm} ⊂ V‖·‖, αi ∈ R, 1 ≤ i ≤ m.

Then we can define

U(vm) = span {z1, . . . , zm}.

In the context of Greedy algorithms for computing best approximations, an update
of type αm = r by using an orthonormal basis of U(vm) corresponds to an orthog-
onal Greedy algorithm.

– Assume vm ∈ V. Fix k ∈ {1, 2, . . . , d}. By using a
⊗d

j=1 Vj ∼= Vk ⊗a

(a
⊗

j �=k Vj ), we can write vm = ∑m
i=1 w

(k)
i ⊗ (

⊗
j �=k w

( j)
i ) for some elemen-

tary tensors w
(k)
i ⊗ (

⊗
j �=k w

( j)
i ) for i = 1, . . . , m. Then we can define the linear

subspace

U(vm) =
⎧
⎨

⎩

m∑

i=1

v
(k)
i ⊗

⎛

⎝
⊗

j �=k

w
( j)
i

⎞

⎠ : v
(k)
i ∈ Vk, 1 ≤ i ≤ m

⎫
⎬

⎭ .

The minimization on U(vm) corresponds to an update of functions along dimension
k (functions in the Banach space Vk). Following the Remark 2, several updates could
be defined by choosing a sequence of updated dimensions.

4.2 On the convergence of the progressive PGDs

Now, we study the convergence of progressive PGDs. Recall that ẑm ∈ S1 is a solution
of

J (um−1 + ẑm) = min
z∈S1

J (um−1 + z),

For αm = c, we have zm = ẑm and um = um−1 + zm, so that

J (um) = J (um−1 + zm) = J (um−1 + ẑm)

For αm = l, we have zm = ẑm and um is obtained by an update (or several updates)
of um−1 + zm , so that

J (um) ≤ J (um−1 + zm) = J (um−1 + ẑm)

Otherwise, for αm = r, we have um = um−1 + zm with zm obtained by an update of
ẑm , such that

J (um) = J (um−1 + zm) ≤ J (um−1 + ẑm)

We begin with the following Lemma.
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Lemma 8 Assume that J satisfies (A1)–(A2), and let u ∈ V‖·‖ satisfy (14). Then
{J (um)}m≥1, where {um}m≥1 is a progressive PGD over S1 of u, is a non increasing
sequence:

J (um) ≤ J (um−1) for all m ≥ 1.

Moreover, if J (um) = J (um−1), um−1 is the solution of (π ).

Proof By definition, we have

J (um) ≤ J (um−1 + zm) ≤ J (um−1 + ẑm) ≤ J (um−1 + z) ∀z ∈ S1

In particular, since 0 ∈ S1 by assumption (B1), we have J (um) ≤ J (um−1). If
J (um) = J (um−1), we have

J (um−1) = min
z∈S1

J (um−1 + z)

and by Lemma 5, we have that um−1 solves (π ). ��
Remark 3 If J (um) = J (um−1) holds for some m > 1, that is um−1 is the solution
of (π ), then the updated PGD is described by a finite sequence of symbols α(u) =
α1α2 · · ·αm−1, where αk ∈ {c, l, r} for 1 ≤ k ≤ m − 1. Otherwise, {J (um)}m∈N is a
strictly decreasing sequence of real numbers and α(u) ∈ {c, l, r}N.

Definition 5 Let α ∈ {c, l, r}. Then α∞ ∈ {c, l, r}N denotes the infinite sequence of
symbols α α . . . α . . . .

From now on, we will distinguish two convergence studies, one with a weak conti-
nuity assumption on functional J , the other one without weak continuity assumption
on J but with an additional Lipschitz continuity assumption on the differential J ′.

4.2.1 A first approach for weakly sequentially continuous functionals

Here, we introduce the following assumption.

(A3) The map J : V‖·‖ −→ R is weakly sequentially continuous.

Theorem 4 Assume that J satisfies (A1)–(A3), and let u ∈ V‖·‖ satisfy (14). Then
every progressive PGD {um}m≥1 over S1 of u, converges in V‖·‖ to u, that is,

lim
m→∞ ‖u − um‖ = 0

Proof From Lemma 8, {J (um)} is a non increasing sequence. If there exists m such
that J (um) = J (um−1), from Lemma 8, we have um = u, which ends the proof.
Let us now suppose that J (um) < J (um−1) for all m. J (um) is a strictly decreasing
sequence which is bounded below by J (u). Then, there exists

J ∗ = lim
m→∞ J (um) ≥ J (u).
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If J ∗ = J (u), Lemma 4 allows to conclude that um → u. Therefore, it remains to
prove that J ∗ = J (u). Since J is coercive, the sequence {um}m∈N is bounded in V‖·‖.
Then, there exists a subsequence {umk }k∈N that weakly converges to some u∗ ∈ V .
Since J is weakly sequentially continuous, we have

J ∗ = lim
k→∞ J (umk ) = J (u∗).

By definition of the PGD, we have for all z ∈ S1,

J (um(k+1)
) ≤ J (umk+1) ≤ J (umk + z)

Taking the limit with k, and using the weak sequential continuity of J , we obtain

J (u∗) ≤ J (u∗ + z) ∀z ∈ S1,

and by Lemma 5, we obtain u∗ = u and a fortiori J (u∗) = J (u), that concludes the
proof. ��

4.2.2 A second approach for a class of functionals with Lipschitz continuous
derivative on bounded sets

Now, assume that assumption (A3) is replaced by

(A3) J ′ : V‖·‖ −→ V∗‖·‖ is Lipschitz continuous on bounded sets, i.e. for A a bounded
set in V‖·‖, there exists a constant CA > 0 such that

‖J ′(v) − J ′(w)‖ ≤ CA‖v − w‖ (15)

for all v, w ∈ A.

The next five lemmas will give some useful properties of the sequence {zm}m≥1.

Lemma 9 Assume that J satisfies (A1)–(A2), and let u ∈ V‖·‖ satisfy (14). If {um}m≥1
is a progressive PGD over S1 of u, then

〈J ′(um−1 + zm), zm〉 = 0,

hold for all m ≥ 1.

Proof Let zm = λmwm , with λm ∈ R
+ and ‖wm‖ = 1. In the cases αm = c (purely

progressive PGD) and αm = l, we have J (zm) = J (ẑm) = minz∈S1 J (um−1 + z).
From assumption (B2), we obtain

J (um−1 + λmwm) ≤ J (um−1 + λwm)

for all λ ∈ R. This inequality is also true for αm = r since J (zm) =
minz∈U(ẑm) J (um−1 + z) and U(ẑm) is a linear space. Taking λ = λm ± γ , with
γ ∈ R

+, we obtain for all cases
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0 ≤ 1

γ
(J (um−1 + λmwm ± γ wm) − J (um−1 + λmwm)).

Taking the limit γ ↘ 0, we obtain 0 ≤ ±〈J ′(um−1 + λmwm), wm〉 and therefore

〈J ′(um−1 + λmwm), wm〉 = 0,

which ends the proof. ��
Lemma 10 Assume that J satisfies (A1)–(A2), and let u ∈ V‖·‖ satisfy (14). Then the
corrections {zm}m≥1 of a progressive PGD {um}m≥1 over S1 of u, satisfy

∞∑

m=1

‖zm‖s < ∞, (16)

for the ellipticity constant s > 1 and thus,

lim
m→∞ ‖zm‖ = 0. (17)

Proof By the ellipticity property (10), there exist s > 1 and α > 0 such that

J (um−1) − J (um−1 + zm) ≥ −〈J ′(um−1 + zm), zm〉 + α

s
‖zm‖s .

Using Lemma 9 and J (um) ≤ J (um−1 + zm), we then obtain

J (um−1) − J (um) ≥ α

s
‖zm‖s (18)

Now, summing on m, and using limm→∞ J (um) = J ∗ < ∞, we obtain

α

s

∞∑

m=1

‖zm‖s ≤ ∑∞
m=1(J (um−1) − J (um)) = J (0) − J ∗ < +∞.

which implies limm→∞ ‖zm‖s = 0. The continuity of the map x �→ x1/s at x = 0
proves (17). ��
Lemma 11 Assume that J satisfies (A1)–(A3), and let u ∈ V‖·‖ satisfy (14). Then for
every progressive PGD {um}m≥1 over S1 of u, there exists C > 0 such that for m ≥ 1,

|〈J ′(um−1), z〉| � C‖zm‖‖z‖,
holds for all z ∈ S1.

Proof Since J (um) converges and since J is coercive, {um}m≥1 is a bounded sequence.
Since ‖zm‖ → 0 as m → ∞ (Lemma 10), {zm}m≥1 is also a bounded sequence. Let
a > 0 such that supm ‖um‖ + supm ‖zm‖ ≤ a and let CB be the Lipschitz continuity
constant of J ′ on the bounded set B = {v ∈ V‖·‖ : ‖v‖ ≤ a}. Then

−〈J ′(um−1), z〉 = 〈J ′(um−1 + z) − J ′(um−1), z〉 − 〈J ′(um−1 + z), z〉
≤ CB‖z‖2 − 〈J ′(um−1 + z), z〉
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for all z ∈ A = {z ∈ S1 : ‖z‖ ≤ supm ‖zm‖}. By convexity of J and since J (um−1 +
zm) ≤ J (um−1 + z) for all z ∈ S1, we have

〈J ′(um−1 + z), zm − z〉 ≤ J (um−1 + zm) − J (um−1 + z) ≤ 0

Therefore, for all z ∈ A, we have

−〈J ′(um−1), z〉 ≤ CB‖z‖2 − 〈J ′(um−1 + z), zm〉
≤ CB‖z‖2 − 〈J ′(um−1 + z) − J ′(um−1 + zm), zm〉 (Lemma 9)

≤ CB‖z‖2 + CB‖z − zm‖‖zm‖ (Choice of B)

≤ CB

(
‖z‖2 + ‖z‖‖zm‖ + ‖zm‖2

)

Let z = w‖zm‖ ∈ A, with ‖w‖ = 1. Then

|〈J ′(um−1), w〉| ≤ 3CB‖zm‖ ∀w ∈ {w ∈ S1 : ‖w‖ = 1}

Taking w = z/‖z‖, with z ∈ S1, and C = 3CB > 0 we obtain

|〈J ′(um−1), z〉| ≤ C‖zm‖‖z‖ ∀z ∈ S1

��
Since V‖·‖ is reflexive, we can identify V∗∗‖·‖ with V‖·‖ and the duality pairing

〈·, ·〉V∗∗‖·‖,V∗‖·‖ with 〈·, ·〉V∗‖·‖,V‖·‖ (i.e. weak and weak-∗ topologies coincide on V∗‖·‖).

Lemma 12 Assume that J satisfies (A1)–(A3), and let u ∈ V‖·‖ satisfy (14). Then for
every progressive PGD {um}m≥1 over S1 of u, the sequence {J ′(um)}m∈N weakly-∗
converges to 0 in V∗‖·‖, that is, limm→∞〈J ′(um), z〉 = 0 for all z in a dense subset of
V‖·‖.

Proof The sequence {um}m∈N being bounded, and since J ′ is Lipschitz continuous
on bounded sets, we have that there exists a constant C > 0 such that

‖J ′(um)‖ = ‖J ′(um) − J ′(u)‖ ≤ C‖u − um‖

That proves that {J ′(um)} ⊂ V∗‖·‖ is a bounded sequence. Since V∗‖·‖ is also reflex-
ive, from any subsequence of {J ′(um)}m∈N, we can extract a further subsequence
{J ′(umk )}k∈N that weakly-∗ converges to an element ϕ ∈ V∗‖·‖. By using Lemma 11,
we have for all z ∈ S1,

|〈J ′(umk ), z〉| ≤ C‖zmk+1‖‖z‖.

Taking the limit with k, and using Lemma 10, we obtain

〈ϕ, z〉 = 0 ∀z ∈ S1,
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By using assumption (B3), we conclude that ϕ = 0. Since from any subsequence of
the initial sequence {J ′(um)}m∈N we can extract a further subsequence that weakly-∗
converges to the same limit 0, then the whole sequence converges to 0. ��
Lemma 13 Assume that J satisfies (A1)–(A3), and let u ∈ V‖·‖ satisfy (14). Let us
consider a progressive PGD {um}m≥1 over S1 of u, such that for the ellipticity constant
s of J and α(u) = α1 . . . αm . . . , one of the two following conditions hold:

(a) s > 1 and there exists a subsequence {αmk }k∈N such that αmk = l for all k ≥ 1.

(b) 1 < s ≤ 2 and there exists k ≥ 1 such that α(u) = α1 . . . αk−1α
∞ where

α ∈ {c, r}.
Then, there exists a subsequence {umk }k∈N such that

〈J ′(umk ), umk 〉 → 0.

Proof First, assume that condition (a) holds. Recall that if αm = l for some m ≥ 1, the
um is obtained by the minimization of J on the closed subspace U(um−1+zm) ⊂ V‖·‖.
The global minimum is attained and unique, and it is characterized by 〈J ′(um), v〉 = 0
for all v ∈ U(um−1 + zm). Thus, under condition (a), there exists a subsequence such
that 〈J ′(umk ), umk 〉 = 0 for all k ≥ 1. Now, we consider that statement (b) holds.
Without loss of generality we may assume that α(u) = α∞ where α ∈ {c, r}. In both
cases, um = ∑m

k=1 zk . Thus, we have

|〈J ′(um), um〉| ≤
m∑

k=1

|〈J ′(um), zk〉|

≤ C
m∑

k=1

‖zm+1‖‖zk‖ (by Lemma 11).

Let s∗ > 1 be such that 1/s∗ + 1/s = 1. By Holder’s inequality, we have

|〈J ′(um), um〉| ≤ C‖zm+1‖m1/s∗
(

m∑

k=1

‖zk‖s

)1/s

= C
(

m‖zm+1‖s∗)1/s∗
(

m∑

k=1

‖zk‖s

)1/s

. (19)

From Lemma 10, we have
∑∞

k=1 ‖zk‖s < ∞.Then there exists a subsequence such that
mk‖zmk+1‖s → 0. For 1 < s ≤ 2, we have s ≤ s∗. Since limk→∞ ‖zk‖ = 0, we have
‖zk‖s∗ ≤ ‖zk‖s for k large enough, and therefore we also have mk‖zmk+1‖s∗ → 0,
which from (19) ends the proof of the lemma. ��
Theorem 5 Assume that J satisfies (A1)–(A3), and let u ∈ V‖·‖ satisfy (14). Let us
consider a progressive PGD {um}m≥1 over S1 of u, such that for the ellipticity constant
s of J and α(u) satisfy one of the following conditions:
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(a) s > 1 and there exists a subsequence {αmk }k∈N such that αmk = l for all k ≥ 1.

(b) 1 < s ≤ 2 and there exists k ≥ 1 such that α(u) = α1 . . . αk−1α
∞ where

α ∈ {c, r}.
(c) s > 1 and α(u) is finite.

Then {um}m≥1, converges in V‖·‖ to u, that is,

lim
m→∞ ‖u − um‖ = 0.

Proof From the same argument used in the proof of Theorem 4, if (c) holds we have
um = u for some m. Thus, the theorem follows in this case. Otherwise, {J (um)} is
strictly decreasing and there exists

J ∗ = lim
m→∞ J (um) ≥ J (u).

If J ∗ = J (u), Lemma 4 allows to conclude that {um} strongly converges to u. There-
fore, it remains to prove that J ∗ = J (u). By the convexity of J , we have

J (um) − J (u) ≤ 〈J ′(um), um − u〉 = 〈J ′(um), um〉 − 〈J ′(um), u〉
By Lemmas 12 and 13, we have that there exists a subsequence {umk }k∈N such that
〈J ′(umk ), umk 〉 → 0 and 〈J ′(umk ), u〉 → 0, and therefore

J ∗ − J (u) = lim
k→∞ J (umk ) − J (u) ≤ 0

Since we already had J ∗ ≥ J (u), this yields J ∗ = J (u), which ends the proof. ��

5 Examples

5.1 On the singular value decomposition in L p spaces for p ≥ 2

A Banach space V is said to be smooth if for any linearly independent elements
x, y ∈ V , the function φ(t) = ‖x − t y‖ is differentiable. A Banach space is said to
be uniformly smooth if its modulus of smoothness

ρ(τ) = sup
x,y∈V

‖x‖=‖y‖=1

{‖x + τ y‖ + ‖x − τ y‖
2

− 1

}
, τ > 0,

satisfies the condition

lim
τ→0

ρ(τ)

τ
= 0.

In uniformly smooth spaces, and only in such spaces, the norm is uniformly Fréchet
differentiable. It can be shown that the L p-spaces for 1 < p < ∞ are uniformly
smooth (see Corollary 6.12 in [29]).

123



524 A. Falcó, A. Nouy

Following Sect. 2.2.1, we introduce the tensor product of Lebesgue spaces

L p
μ(I1 × I2) = L p

μ1
(I1) ⊗Δp L p

μ2
(I2) = L p

μ1
(I1, L p

μ2
(I2)),

with p ≥ 2, and μ = μ1 ⊗ μ2 a finite product measure. Recall that

‖v‖Δp =
⎛

⎜⎝
∫

I1×I2

|v(x)|p dμ(x)

⎞

⎟⎠

1/p

Let u be a given function in L p
μ(I1×I2). We introduce the functional J : L p

μ(I1×I2) →
R defined by

J (v) = 1

p
‖v − u‖p

Δp
.

Let G : L p
μ(I1 × I2) → R be the functional given by the p-norm G(v) = ‖v‖Δp . It is

well known (see for example page 170 in [20]) that G is Fréchet differentiable, with

G ′(v) = v |v|p−2 ‖v‖1−p
Δp

∈ Lq
μ(I1 × I2),

with q such that 1/q + 1/p = 1. We denote by Ck the set of k-times Fréchet differ-
entiable functionals from L p

μ(I1 × I2) to R. Then, if p is an even integer, G ∈ C∞.

Otherwise, when p is not an even integer, the following statements hold (see [5] and
13.13 in [25]):

(a) If p is an integer, G is (p − 1)-times differentiable with Lipschitzian highest
Fréchet derivative.

(b) Otherwise, G is [p]-times Fréchet differentiable with highest derivative being
Hölderian of order p − [p].

(c) G has no higher Hölder Fréchet differentiability properties.

As a consequence we obtain that G ∈ C2 for all p ≥ 2, and the functional J is also
Fréchet differentiable with Fréchet derivative given by J ′(v) = G(v−u)p−1G ′(v−u),

that is,

〈J ′(v), w〉 =
∫

I1×I2

(v − u) |v − u|p−2 w dμ.

Thus, J satisfies assumption (A1). It is well-known that if a functional F : V −→ W,

where V and W are Banach spaces, is Fréchet differentiable at v ∈ V , then it is also
locally Lipschitz continuous at v ∈ V . Thus, if p ≥ 2, we have that J ′ ∈ C1, and as a
consequence J ′ satisfies (A3).

Finally, in order to prove the convergence of the (updated) progressive PGD for
each u ∈ L p

μ(I1 × I2) over S1 = T(r1,r2)(L p
μ1(I1) ⊗a L p

μ2(I2)), where (r1, r2) ∈ N
2,
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we have to verify that (A2) on J is satisfied. Since there exists a constant αp > 0 such
that for all s, t ∈ R,

(|s|p−2s − |t |p−2t)(s − t) ≥ αp|s − t |p

(see for example (7.1) in [8]), then, for all v, w ∈ L p
μ(I1 × I2),

〈J ′(v) − J ′(w), v − w〉 ≥ αp‖v − w‖p,

which proves the ellipticity property of J, and assumption (A2) holds.
From Theorem 5, we conclude that the (updated) progressive PGD converges

– for all p ≥ 2 if conditions (a) or (c) of Theorem 5 hold.
– for p = 2 if condition (b) of Theorem 5 holds.

Let us detail the application of the progressive PGD over

S1 = T(r1,r2)(L p
μ1

(I1) ⊗a L p
μ2

(I2)).

We claim that in dimension d = 2, we can only consider the case r1 = r2 = r . The
claim follows from the fact that (see [15]) for each v ∈ L p

μ1(I1)⊗a L p
μ2(I2), there exist

two minimal subspaces U j,min(v), j = 1, 2, with dim U1,min(v) = dim U2,min(v) and
such that v ∈ U1,min(v) ⊗a U2,min(v). In consequence, for a fixed r ∈ N and for

u ∈ L p
μ(I1 × I2) \ L p

μ1
(I1) ⊗a L p

μ2
(I2)

we let u1 such that

J (u1) = min
z∈T(r,r)(L p

μ1 (I1)⊗a L p
μ2 (I2))

J (z).

Then there exist two bases {u( j)
1 , . . . , u( j)

r } ⊂ L p
μ j (I j ) of U j,min(v), for j = 1, 2,

such that

u1 =
r∑

k=1

r∑

l=1

σk,l u(1)
k ⊗ u(2)

l ,

and u − u1 /∈ L p
μ1(I1) ⊗a L p

μ2(I2). Proceeding inductively we can write

um =
mr∑

k=1

mr∑

l=1

σk,l u(1)
k ⊗ u(2)

l .

At step m, an example of update of type αm = r would consist in updating the coef-
ficients {σk,l : k, l ∈ {(m − 1)r + 1, . . . , mr}}. An example of update of type αm = l
would consist in updating the whole set of coefficients {σk,l : k, l ∈ {1, . . . , mr}}.

In the case p = 2 and when we take orthonormal bases, it corresponds to the
classical SVD decomposition in the Hilbert space L2

μ(I1 × I2). In this case we have
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um =
mr∑

j=1

σ j u(1)
j ⊗ u(2)

j .

where σ j = |〈u, u( j)
1 ⊗ u( j)

2 〉|, for 1 ≤ j ≤ mr.
In this sense, the progressive PGD can be interpreted as a SVD decomposition of

a function u in a L p-space where p ≥ 2. Let us recall that for p > 2, an update
strategy of type (l) is required for applying Theorem 5 (at least for a subsequence of
iterates).

The above results can be naturally extended to tensor product of Lebesgue spaces,

a ⊗d
k=1 L p

μk (Ik)
‖·‖Δp

with d > 2 and S1 = R1( a
⊗d

k=1 L p
μk (Ik) ), leading to a

generalization of multidimensional singular value decomposition introduced in [16]
for the case of Hilbert tensor spaces.

5.2 Nonlinear Laplacian

We here present an example taken from [8]. We refer to Sect. 2.2.2 for the introduction
to the properties of Sobolev spaces. Let Ω = Ω1 × · · · × Ωd . Given some p > 2,
we let V‖·‖ = H1,p

0 (Ω), which is the closure of C∞
c (Ω) (functions in C∞(Ω) with

compact support in Ω) in H1,p(Ω) with respect to the norm in H1,p(Ω). We equip
H1,p

0 (Ω) with the norm

‖v‖ =
(

d∑

k=1

‖∂xk (v)‖p
L p(Ω)

)1/p

which is equivalent to the norm ‖ · ‖1,p on H1,p(Ω) introduced in Sect. 2.2.2. We
then introduce the functional J : V‖·‖ → R defined by

J (v) = 1

p
‖v‖p − 〈f, v〉,

with f ∈ V∗‖·‖. Its Fréchet differential is

J ′(v) = A(v) − f

where

A(v) = −
d∑

k=1

∂

∂xk

(∣∣∣∣
∂v
∂xk

∣∣∣∣
p−2

∂v
∂xk

)

A is called the p-Laplacian. Assumptions (A1)–(A3) on the functional are satisfied
(see [8]). Assumption (B3) on the set R1( a

⊗d
j=1 Hm,p

0 (Ω j ) ) is also satisfied. Indeed,

it can be easily proved from Proposition 3 that the set R1( a
⊗d

j=1 H1,p
0 (Ω j ) ) is
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weakly closed in (H1,p
0 (Ω), ‖ · ‖1,p). Since the norm ‖ · ‖ is equivalent to ‖ · ‖1,p on

H1,p
0 (Ω), it is also weakly closed in (H1,p

0 (Ω), ‖ · ‖).
Then, from Theorem 5, the progressive PGD converges if there exists a subsequence

of updates of type (l).

5.3 Linear elliptic variational problems on Hilbert spaces

Let V‖·‖ = V1 ⊗a · · · ⊗a Vd
‖·‖

be a tensor product of Hilbert spaces. We consider the
following problem

J (u) = min
v∈K

J (v), J (v) = 1

2
a(v, v) − �(v)

where K ⊂ V‖·‖, a : V‖·‖ × V‖·‖ → R is a coercive continuous symmetric bilinear
form,

a(v, v) ≥ α‖v‖2 ∀v ∈ V‖·‖,
a(v, w) ≤ β‖v‖‖w‖ ∀v, w ∈ V‖·‖,

� : V‖·‖ → R is a continuous linear form,

�(v) ≤ γ ‖v‖ ∀v ∈ V‖·‖.

Case where K is a closed and convex subset of V‖·‖. The solution u is equivalently
characterized by the variational inequality

a(u, v − u) ≥ �(v − u) ∀v ∈ K

In order to apply the results of the present paper, we have to recast the problem as an
optimization problem in V‖·‖. We introduce a convex and Fréchet differentiable func-
tional j : V‖·‖ → R with Fréchet differential j ′ : V‖·‖ → V∗‖·‖, such that j (v) = 0 if
v ∈ K and j (v) > 0 if v /∈ K . We further assume that j ′ is Lipschitz on bounded sets.
We let jε(v) = ε−1 j (v), with ε > 0, and introduce the following penalized problem

Jε(uε) = min
v∈V‖·‖

Jε(v), Jε(v) = J (v) + jε(v)

As ε → 0, jε tends to the indicator function of set K and uε → u (see, e.g. [17]).
Assumptions (A1)–(A2) are verified since Jε is Fréchet differentiable with Fréchet
differential J ′

ε : V‖·‖ → V∗‖·‖ defined by

〈J ′
ε(v), z〉 = a(v, z) − �(z) + 〈 j ′ε(v), z〉,

and Jε is elliptic since

〈J ′
ε(v) − J ′

ε(w), v − w〉 = a(v − w, v − w) + 〈 j ′ε(v) − j ′ε(w), v − w〉 ≥ α‖v − w‖2
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Assumption (A3) comes from the continuity of a and � and from the properties
of j ′.

Case where K = V‖·‖. If K = V‖·‖, we recover the classical case of linear elliptic
variational problems on Hilbert spaces analyzed in [16]. In this case, the bilinear form
a defines a norm ‖v‖a = √

a(v, v) on V‖·‖, equivalent to the norm ‖·‖. The functional
J is here equal to

J (v) = 1

2
‖u − v‖2

a − 1

2
‖u‖2

a

The progressive PGD can be interpreted as a generalized Eckart–Young decomposi-
tion (generalized singular value decomposition) with respect to this non usual metric,
and defined progressively by

‖u − um‖2
a = min

z∈S1

‖u − um−1 − z‖2
a

We have

J (um−1) − J (um) = 1

2
‖zm‖2

a := 1

2
σ 2

m

and

‖u − um‖2
a = ‖u‖2

a −
m∑

k=1

σ 2
k −→

m→∞ 0

where σm can be interpreted as the dominant singular value of (u − um−1) ∈ V‖·‖.
The PGD method has been successfully applied to this class of problems in differ-
ent contexts: separation of spatial coordinates for the solution of Poisson equation in
high dimension [2,6], separation of physical variables and random parameters for the
solution of parameterized stochastic partial differential equations [30].

6 Conclusion

In this paper, we have considered the solution of a class of convex optimization
problems in tensor Banach spaces with a family of methods called progressive PGD
that consist in constructing a sequence of approximations by successively correcting
approximations with optimal elements in a given subset of tensors. We have proved
the convergence of a large class of PGD algorithms (including update strategies)
under quite general assumptions on the convex functional and on the subset of tensors
considered in the successive approximations. The resulting succession of approxima-
tions has been interpreted as a generalization of a multidimensional singular value
decomposition (SVD). Some possible applications have been considered.

Further theoretical investigations are still necessary for a better understanding of the
different variants of PGD methods and the introduction of more efficient algorithms
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for their construction (e.g. alternated direction algorithms). The analysis of algorithms
for the solution of successive approximation problems on tensor subsets is still an open
problem. In the case of dimension d = 2, further analyses would be required in order
to better characterize the PGD as a direct extension of SVD when considering more
general norms.
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