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Abstract In this paper, we discuss multiscale radial basis function collocation meth-
ods for solving certain elliptic partial differential equations on the unit sphere. The
approximate solution is constructed in a multi-level fashion, each level using com-
pactly supported radial basis functions of smaller scale on an increasingly fine mesh.
Two variants of the collocation method are considered (sometimes called symmet-
ric and unsymmetric, although here both are symmetric). A convergence theory is
given, which builds on recent theoretical advances for multiscale approximation using
compactly supported radial basis functions.
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1 Introduction

Partial differential equations (PDEs) on the unit sphere have many applications in the
geosciences. Since analytic solutions are difficult or impossible to find, good algo-
rithms for finding approximate solutions are essential. Radial basis functions (RBFs)
present a simple and effective way to construct approximate solutions to PDEs on
spheres, via a collocation method [16] or a Galerkin method [13]. They have been
used successfully for solving transport-like equations on the sphere [3,4].
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100 Q. T. Le Gia et al.

The quality of the approximation depends on the distribution of the centers of the
RBFs used to define the approximate solution. However, in practice the solution usu-
ally represents some physical quantities, which are available in many physical scales.
A solution using RBFs with a single scale may fail to capture these features, unless
the RBF has a large support and the number of centers is also large, a combination
which can be computationally prohibitive. To overcome this, we propose a multi-
scale approximation scheme, in which the approximate solution is constructed using
a multi-stage process, in which the residual of the current stage is the target function
for the next stage, and in each stage, RBFs with smaller support and with more closely
spaced centers will be used as basis functions.

While meshless methods using RBFs have been employed to derive numerical solu-
tions for PDEs on the sphere only recently [3,4,13,16], it should be mentioned that
approximation methods using RBFs for PDEs on bounded domains have been around
for the last two decades. Originally proposed by Kansa [11,12] for fluid dynamics,
approximation methods for many types of PDEs defined on bounded domains in R

n

using RBFs have since been used widely. Examples include [1,6,9,10].
For boundary value problems, the technique predominantly used in the literature,

with the exception of [23], where a Galerkin method was used, has been collocation,
mainly because of the simplicity and the fact that there is no requirement for numer-
ical integration, which is still a problematic issue in all meshfree methods. There are
two popular approaches to deriving the approximation scheme, usually called un-
symmetric and symmetric collocation. In the first approach the collocation matrix is
unsymmetric on bounded domains because of the two different operators involved,
the differential operator and the boundary operator. This however can lead to nonsolv-
able systems [10]. Nonetheless, the method is widely used since the solution is just
a linear combination of the RBFs and usually shows good approximation properties.
In our case, where our differential operator is independent of position and we do not
have a boundary, the nonsymmetric approach turns out actually to be an alternative
symmetric approach, which we will refer to as the standard collocation method.

In the classical symmetric approach the operators are incorporated into the approx-
imation space and hence the collocation matrix is symmetric and always positive
definite, but the numerical solution is slightly more complicated to construct. Since
the solution minimizes a certain Hilbert space norm amongst all possible functions
satisfying the collocation condition, we will refer to this approach as norm-minimal
collocation. A comparison of the two variants can be found in [19].

A common drawback of using RBFs in approximation schemes for PDEs is that the
collocation matrix arising from the approximation problem tends to be ill-conditioned.
There are two main approaches to overcome this: either to use a preconditioner, or
to use a multilevel approximation approach. With a multilevel method, the condition
number of the matrix at each level can be relatively small, and has only slow growth.
There are papers [1,2] dealing with multilevel approximation methods for PDEs using
compactly supported RBFs on bounded domains in R

n , however the theory there is
incomplete. In this work, we will prove convergence results in Sobolev spaces for both
kinds of collocation for a class of elliptic PDEs defined on the unit sphere S

n ⊂ R
n+1.

The present paper builds upon theoretical advances in multiscale approximation for
the sphere [15], which were subsequently extended to bounded regions in R

n [25].
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Multiscale RBF collocation for solving PDEs 101

In Sect. 2 we will review necessary background on spherical harmonics, positive
definite kernels, and Sobolev spaces on the unit sphere. In Sect. 3 we will present two
variants of the collocation method for solving PDEs on the unit sphere using RBFs
of a single scale. In Sect. 4 we present the corresponding multiscale methods. A con-
vergence theorem for the multiscale methods will be proved. Finally, Sect. 5 presents
some numerical examples.

2 Preliminaries

In our work, we will use zonal functions to construct approximate solutions for the
PDEs. Zonal functions on S

n are functions that can be represented as φ(x · y) for all
x, y ∈ S

n , where φ(t) is a continuous function on [−1, 1]. We shall be concerned
exclusively with zonal kernels of the type

Φ(x, y) = φ(x · y) =
∞∑

�=0

a�P�(n + 1; x · y), a� > 0,
∞∑

�=0

a� < ∞, (1)

where {P�(n+1; t)}∞�=0 is the sequence of (n+1)-dimensional Legendre polynomials
normalized to P�(n + 1; 1) = 1. Thanks to the seminal work of Schoenberg [22] and
the later work of [26], we know that such a φ is (strictly) positive definite on S

n , that
is, the matrix A := [φ(xi · x j )]M

i, j=1 is positive definite for every set of distinct points
{x1, . . . , xM } on S

n and every positive integer M .
For mathematical analysis it is sometimes convenient to expand the kernelΦ(x, y)

into a series of spherical harmonics. A detailed discussion on spherical harmonics can
be found in [17]. In brief, spherical harmonics are the restriction to S

n of homoge-
neous polynomials Y (x) in R

n+1 which satisfyΔY (x) = 0, whereΔ is the Laplacian
operator in R

n+1. The space of all spherical harmonics of degree � on S
n , denoted by

H�, has an L2 orthonormal basis

{Y�k : k = 1, . . . , N (n, �)},

where

N (n, 0) = 1 and N (n, �) = (2�+ n − 1)Γ (�+ n − 1)

Γ (�+ 1)Γ (n)
for � ≥ 1,

thus

∫

Sn

Y�kY�′k′ d S = δ��′δkk′ ,

where d S is the surface measure of the unit sphere. The space of spherical harmonics
of degree ≤ L will be denoted by PL := ⊕L

�=0 H�; it has dimension N (n + 1, L).
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102 Q. T. Le Gia et al.

Every function g ∈ L2(S
n) can be expanded in terms of spherical harmonics,

g =
∞∑

�=0

N (n,�)∑

k=1

ĝ�kY�k, ĝ�k =
∫

Sn

gY�k d S.

Using the addition theorem for spherical harmonics (see, for example, [17, page 10]),

N (n,�)∑

k=1

Y�k(x)Y�k(y) = N (n, �)

ωn
P�(n + 1; x · y), (2)

we can write

Φ(x, y) =
∞∑

�=0

N (n,�)∑

k=1

φ̂(�)Y�k(x)Y�k(y), where φ̂(�) = ωn

N (n, �)
a�, (3)

where ωn is the surface area of S
n . We shall assume that, for some σ > n/2,

c1(1 + �)−2σ ≤ φ̂(�) ≤ c2(1 + �)−2σ , � ≥ 0. (4)

In the remainder of the paper, we use c1, c2, . . . to denote specific constants while
c, c′,C are generic constants, which may take different values at each occurrence.

Assume that we are given a positive definite kernel on S
n defined from a compactly

supported RBF R : R
n+1 → R

Φ(x, y) = R(x − y) = ρ(|x − y|), x, y ∈ S
n,

where | · | is the Euclidean distance in R
n+1. We may then define a scaled version,

Φδ(x, y) = 1

δn
R

(
x − y
δ

)
, x, y ∈ S

n, (5)

where δ > 0 is a scaling parameter. In the following, we expand Φδ as

Φδ(x, y) =
∞∑

�=0

N (n,�)∑

k=1

φ̂δ(�)Y�k(x)Y�k(y), x, y ∈ S
n . (6)

We assume, strengthening (4), that for some σ > n/2,

c1(1 + δ�)−2σ ≤ φ̂δ(�) ≤ c2(1 + δ�)−2σ , � ≥ 0. (7)

In fact, we have shown previously [15, Theorem 6.2] that condition (7) is satisfied if
R is a compactly supported RBF of Wendland’s type [24].
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Multiscale RBF collocation for solving PDEs 103

The native space associated with Φ is defined to be

NΦ =
⎧
⎨

⎩g ∈ D ′(Sn) : ‖g‖2
Φ =

∞∑

�=0

N (n,�)∑

k=1

|̂g�k |2
φ̂(�)

< ∞
⎫
⎬

⎭ ,

where D ′(Sn) is the space of distributions on S
n . More details on native spaces can be

found in [24]. It can be shown that NΦ is a Hilbert space with respect to the following
inner product

〈 f, g〉Φ =
∞∑

�=0

N (n,�)∑

k=1

f̂�k ĝ�k
φ̂(�)

, f, g ∈ NΦ.

Moreover, we can show that Φ is a reproducing kernel for NΦ , i.e., for all g ∈ NΦ ,

〈g(·),Φ(x, ·)〉Φ = g(x), x ∈ S
n . (8)

The Sobolev space Hσ = Hσ (Sn) with real parameter σ is defined by

Hσ (Sn) :=
⎧
⎨

⎩g ∈ D ′(Sn) : ‖g‖2
Hσ :=

∞∑

�=0

N (n,�)∑

k=1

(1 + �)2σ |̂g�k |2 < ∞
⎫
⎬

⎭ .

Under the condition σ > n/2, the norms ‖ · ‖Φ and ‖ · ‖Hσ are equivalent if (4) holds,
with the norms related by

c1/2
1 ‖g‖Φ ≤ ‖g‖Hσ ≤ c1/2

2 ‖g‖Φ. (9)

Using the scaled version of the kernel Φδ(x, y), for a function g ∈ NΦ we define
the following norm:

‖g‖Φδ :=
⎛

⎝
∞∑

�=0

N (n,�)∑

k=1

|̂g�k |2
φ̂δ(�)

⎞

⎠
1/2

. (10)

This norm, too, is equivalent to the norm ‖g‖Hσ . The following lemma gives infor-
mation about that equivalence.

Lemma 1 For σ > n/2 and δ ≤ 2, for all g ∈ Hσ (Sn), we have

2−σ c1/2
1 ‖g‖Φδ ≤ ‖g‖Hσ ≤ 2σ δ−σ c1/2

2 ‖g‖Φδ .

Proof This is essentially Lemma 3.1 in [15]. �
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104 Q. T. Le Gia et al.

3 Single-scale collocation for solving PDEs

We consider the following PDE

Lu = f on S
n, (11)

where L is an elliptic self-adjoint differential operator with constant symbol L̂(�) and
order t , for some t > 0. That is, we can expand Lu as a Fourier series

Lu =
∞∑

�=0

N (n,�)∑

k=1

L̂(�)̂u�kY�k

in which

c3(1 + �)t ≤ L̂(�) ≤ c4(1 + �)t , � ≥ 0, (12)

where c3, c4 are two positive constants independent of �. For example, we may take
L = −Δ∗ + ω2, where Δ∗ is the Laplace–Beltrami operator and ω > 0, in which
case L̂(�) = �(�+ n − 1)+ ω2 and t = 2.

Since L̂(�) > 0 for � ≥ 0, we can define L1/2 by

L1/2u =
∞∑

�=0

N (n,�)∑

k=1

√
L̂(�)̂u�kY�k .

Note that we have an intrinsic relation between the smoothness of the given func-
tion f and the solution u of (11), as follows: f ∈ Hσ if and only if u ∈ Hσ+t . Hence,
in the future we can make assumptions on the smoothness of the solution u, which
translate immediately to assumptions on f .

In this section, we will discuss collocation methods to solve (11) approximately.
Initially, our collocation methods will be based upon RBFs of a single scale. We
will discuss two single scale approaches, known in the literature as symmetric and
unsymmetric collocation.

Suppose X := {x1, . . . , xN } ⊆ S
n is a given discrete set of scattered points on the

n-dimensional sphere S
n . Then solving Eq. (11) by collocation on the set X means to

find a function uh from a given approximation space which satisfies the collocation
equations

Luh(x j ) = Lu(x j ) = f (x j ), 1 ≤ j ≤ N . (13)

3.1 Standard collocation

When working with RBFs, an obvious approach to finding such an approximate solu-
tion is as follows.
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Multiscale RBF collocation for solving PDEs 105

Suppose that Φ is a kernel that satisfies condition (4) for some σ > (t + n)/2.
This assumption guarantees that we may apply L to one of the arguments of Φ and
still have a continuous function. Hence, we may pick our approximation uh from the
approximation space

VX := span {Φ(·, x j ) : x j ∈ X}. (14)

To find uh ∈VX , we represent uh as a linear combination of the basis functions in VX :

uh =
N∑

j=1

b jΦ(·, x j ),

and the condition (13) leads now to the linear system

Ab = f, (15)

where A is the collocation matrix with entries ai, j = LΦ(xi , x j ) and the right-hand
side is given by f = ( f (x j )).

Here, the function LΦ is defined to be the kernel having the Fourier expansion

LΦ(x, y) =
∞∑

�=0

N (n,�)∑

k=1

φ̂(�)L̂(�)Y�k(x)Y�k(y), (16)

which can be computed by applying L to either of the arguments of Φ. In particular,
the new kernel LΦ is symmetric and positive definite, since its Fourier coefficients
L̂(�)φ̂(�) are positive. This ensures that the system (15) is always uniquely solvable.

Lemma 2 Let σ > (t +n)/2 and assume thatΦ satisfies (4) and VX is given by (14).
There exists a unique function uh ∈ VX satisfying the collocation conditions (13). The
solution uh belongs to Hσ+t/2.

Proof Existence and uniqueness have been established already. The second part fol-
lows from the fact that each ϕ j := Φ(·, x j ) belongs to Hσ+t/2. To see this, we note
from (3) that ϕ̂ j (�) = φ̂(�)Y�k(x j ), which leads via (4) to

‖ϕ j‖2
Hσ+t/2 =

∞∑

�=0

N (n,�)∑

k=1

φ̂(�)2Y�k(x j )
2(1 + �)2σ+t

≤ c2
2

∞∑

�=0

N (n,�)∑

k=1

Y�k(x j )
2(1 + �)t−2σ

= c2
2

∞∑

�=0

N (n, �)

ωn
P�(n + 1; 1)(1 + �)t−2σ

≤ c
∞∑

�=0

(1 + �)t−2σ+n−1,
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106 Q. T. Le Gia et al.

where we have used the addition theorem (2), the fact that the Legendre polynomials
are normalized to P�(n + 1; 1) = 1, and the fact that the dimension N (n, �) behaves
like (1 + �)n−1. This sum is finite if t − 2σ + n − 1 < −1 which is equivalent to our
assumption on σ . �

This result stands in sharp contrast to standard RBF collocation for boundary value
problems. In the situation of solving a PDE on a bounded domain with given boundary
values, this approach does not always lead to an invertible collocation matrix, see [10].
Nonetheless, it is widely used, usually under the name unsymmetric collocation.

To understand the solution process, we introduce a new kernel Ψ defined by

Ψ = L−1Φ.

This kernel has Fourier coefficients ψ̂(�) = φ̂(�)/L̂(�) and hence defines an inner
product 〈·, ·〉Ψ ,

〈 f, g〉Ψ =
∞∑

�=0

N (n,�)∑

k=1

L̂(�) f̂�k ĝ�k
φ̂(�)

, f, g ∈ Hσ+t/2, (17)

and the corresponding norm by ‖g‖2
Ψ = 〈g, g〉Ψ . Under our assumptions (4) and (12)

on the kernel Φ and the operator L , respectively, we easily see that the ‖ · ‖Ψ norm
is equivalent to the Sobolev norm ‖ · ‖Hσ+t/2 , and that Hσ+t/2 with the inner product
(17) is a reproducing kernel Hilbert space with kernel Ψ . As in the case of the original
kernel Φ, we can define a scaled version of Ψ , that is

Ψδ := L−1Φδ.

This kernel defines an inner product 〈·, ·〉Ψδ , which is defined by

〈 f, g〉Ψδ =
∞∑

�=0

N (n,�)∑

k=1

L̂(�) f̂�k ĝ�k
φ̂δ(�)

, f, g ∈ Hσ+t/2, (18)

and the corresponding norm is ‖g‖Ψδ = √〈g, g〉Ψδ . This norm is also equivalent to
the Sobolev norm ‖ · ‖Hσ+t/2 , as given in the following lemma.

Lemma 3 For σ > n/2 and δ ≤ 2, for all g ∈ Hσ+t/2(Sn), we have

c5‖g‖Ψδ ≤ ‖g‖Hσ+t/2 ≤ c6δ
−σ ‖g‖Ψδ .
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Multiscale RBF collocation for solving PDEs 107

Proof Since δ ≤ 2, using (7), (12) and (18) we have

‖g‖2
Ψδ

=
∞∑

�=0

N (n,�)∑

k=1

L̂(�)|̂g�k |2
φ̂δ(�)

≤ c4

c1

∞∑

�=0

N (n,�)∑

k=1

(1 + �)t |̂g�k |2(1 + δ�)2σ

≤ 22σ c4

c1

∞∑

�=0

N (n,�)∑

k=1

|̂g�k |2(1 + �)2σ+t = 22σ c4

c1
‖g‖2

Hσ+t/2 .

We also have (1 + δ�) = δ(1/δ + �) ≥ δ(1/2 + �/2). Hence,

(1 + �)2σ ≤ 22σ δ−2σ (1 + δ�)2σ ,

and again using (7) and (18),

‖g‖2
Hσ+t/2 =

∞∑

�=0

N (n,�)∑

k=1

|̂g�k |2(1 + �)2σ+t

≤ 22σ δ−2σ
∞∑

�=0

N (n,�)∑

k=1

(1 + �)t |̂g�k |2(1 + δ�)2σ ≤ 22σ δ−2σ c2c−1
3 ‖g‖2

Ψδ
.

Setting c5 := (c1/c4)
1/22−σ and c6 := 2σ (c2/c3)

1/2 we obtain the result of the
lemma. �
Lemma 4 Let u ∈ Hσ+t/2 with σ > (t + n)/2. Let uh ∈ VX be the solution of the
collocation equation (13) by the standard approach. Then

〈u − uh, χ〉Ψ = 0 for all χ ∈ VX , (19)

and hence

‖u − uh‖Ψ ≤ ‖u‖Ψ . (20)

Proof From the collocation equation (13) we have Lu(x j ) = Luh(x j ) for all x j ∈ X .
This means that the error function eh = u − uh satisfies Leh(x j ) = 0 for all x j ∈ X ,
and hence, since L is invertible and self-adjoint,

〈eh, Φ(·, x j )〉Ψ = 〈Leh, L−1Φ(·, x j )〉Ψ
= 〈Leh, Ψ (·, x j )〉Ψ
= Leh(x j ) = 0.
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108 Q. T. Le Gia et al.

Since VX is the finite dimensional space spanned by Φ(·, x j ) we obtain (19), which
immediately implies Pythagoras’ theorem,

‖u − uh‖2
Ψ + ‖uh‖2

Ψ = ‖u‖2
Ψ ,

from which inequality (20) follows. �
We will now discuss the error u − uh . As usual, we will use the mesh norm h X ,

which is defined by

h X := sup
x∈Sn

min
x j ∈X

θ(x, x j ),

where θ(x, y) = cos−1(x · y) is the geodesic distance between x and y.

Theorem 1 Assume that the exact solution u belongs to Hσ+t/2 with σ > (t + n)/2.
Let h X be the mesh norm of the scattered set X, let Φ be a positive definite kernel
satisfying (4) and let uh ∈ VX be the approximate solution obtained by the collocation
equation (13). Then,

‖u − uh‖L2 ≤ c‖L1/2(u − uh)‖L2 ≤ chσ−t/2
X ‖u − uh‖Hσ+t/2 ≤ chσ−t/2

X ‖u‖Hσ+t/2 .

Proof Since the function Lu − Luh vanishes on X and belongs to Hσ−t/2, the “sam-
pling inequality”, [14, Theorem 3.3], guarantees the existence of a constant c > 0
such that

‖Lu − Luh‖L2 ≤ chσ−t/2
X ‖Lu − Luh‖Hσ−t/2 ≤ chσ−t/2

X ‖u − uh‖Hσ+t/2 ,

where, in the last step, we have used the condition (12) and the definition of Sobolev
norms. Using (12) again and the equivalence between the ‖ · ‖Ψ norm and the norm
‖ · ‖Hσ+t/2 , we obtain

‖u − uh‖L2 ≤ c‖L1/2(u − uh)‖L2

≤ c‖Lu − Luh‖L2

≤ chσ−t/2
X ‖u − uh‖Hσ+t/2

≤ chσ−t/2
X ‖u − uh‖Ψ

≤ chσ−t/2
X ‖u‖Ψ

≤ chσ−t/2
X ‖u‖Hσ+t/2 ,

where we used Lemma 4 in the last but one step. �

3.2 Norm-minimal collocation

We will now discuss another collocation technique. Assume that we know that the
exact solution u belongs to Hσ and assume that Φ is a reproducing kernel of Hσ in
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Multiscale RBF collocation for solving PDEs 109

the sense that its Fourier coefficients satisfy (4). Then, it seems natural to choose an
approximate solution uh as the solution of

min{‖s‖Φ : s ∈ Hσ with Ls(x j ) = f (x j ), 1 ≤ j ≤ N }, (21)

i.e., uh is minimizing the native space norm amongst all possible functions that collo-
cate the given data. It turns out that this corresponds to what is known as the symmetric
collocation method, see [24]. However, we have now to assume that σ > t + n/2.

It can be shown, in a much more general context, that the solution of (21) must
necessarily come from the finite dimensional space

WX := span {LΦ(·, x j ) : 1 ≤ j ≤ N },

and that the concrete solution uh ∈ WX can be computed by imposing the collocation
conditions (13). To find uh , we can represent uh as a linear combination of the basis
functions in WX :

uh =
N∑

j=1

b j LΦ(·, x j )

and condition (13) will then lead to the linear system

Ab = f, (22)

where A is now the collocation matrix with entries ai j = L LΦ(xi , x j ) and the right-
hand side is again given by f = ( f (x j )).

It is also well-known that this symmetric collocation solution is the best approxi-
mation from WX in the native space norm, see [24].

Lemma 5 Suppose u ∈ Hσ with σ > t + n/2 is the exact solution of (11). Let
uh ∈ WX be the solution of (21). Then,

〈u − uh, χ〉Φ = 0 for all χ ∈ WX , (23)

and hence

‖u − uh‖Φ ≤ ‖u‖Φ. (24)

Proof For j = 1, . . . , N we have, using the reproducing property of Φ and the self-
adjoint property of L ,

〈u − uh, LΦ(·, x j )〉Φ = 〈L(u − uh),Φ(·, x j )〉Φ
= Lu(x j )− Luh(x j ) = 0,

from which the result follows immediately. �
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110 Q. T. Le Gia et al.

Error estimates for the norm-minimal collocation method have, even in the more
complicated situation of bounded domains, been derived in [5,8].

The error between the solution and the approximate solution depends on the mesh
norm h X of the set X , as given in the following convergence theorem.

Theorem 2 Assume that u ∈ Hσ , for σ > t + n/2, is the exact solution of (11) and
uh ∈ WX is the solution of (21). Then, provided h X is sufficiently small,

‖u − uh‖L2 ≤ chσ−t
X ‖u − uh‖Hσ ≤ chσ−t

X ‖u‖Hσ .

Proof Since the function Lu−Luh vanishes on X , we can again employ the “sampling
inequality” from [14, Theorem 3.3], which gives a constant c > 0 such that

‖Lu − Luh‖L2 ≤ chσ−t
X ‖Lu − Luh‖Hσ−t ≤ chσ−t

X ‖u − uh‖Hσ

≤ chσ−t
X ‖u − uh‖Φ,

where in the last two steps we have used condition (12), the definition of Sobolev norms
and the equivalence (9). Using condition (12) again and the equivalence between the
native space norm ‖ · ‖Φ and the Sobolev norm ‖ · ‖Hσ we obtain

‖u − uh‖L2 ≤ c‖Lu − Luh‖L2 ≤ chσ−t
X ‖u − uh‖Φ ≤ chσ−t

X ‖u‖Φ
≤ chσ−t‖u‖Hσ ,

where in the second to last step we have used (24) from Lemma 5. �

3.3 Sharpness of the results

In both Theorems 1 and 2 we used an inequality of the form

‖u − uh‖L2 ≤ ‖Lu − Luh‖L2 .

This clearly is a coarse estimate, which one might think would leave some leeway for
better estimates. Interestingly, the following 1-dimensional example shows that the
estimates in Theorems 1 and 2 are the best we can hope for.

Lemma 6 Consider Lu = f on S
1 where L is defined by L̂(�) = (1 + �)t , t > 0. Let

X = {x j = jπ/m : 1 ≤ j ≤ 2m} and let uh be any collocation solution satisfying
Luh(x j ) = f (x j ). Assume that the collocation solution is constructed from a kernel
Φ which satisfies (4) for some σ > t/2+1/2 for the standard method, or σ > t +1/2
for the norm-minimal method. Then, for the standard collocation method

sup
u∈Hσ+t/2

‖u − uh‖L2

‖u‖Hσ+t/2
≥ Chσ−t/2

X ,
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while for the norm-minimal collocation method

sup
u∈Hσ

‖u − uh‖L2

‖u‖Hσ
≥ Chσ−t

X .

Proof Let f (x) = sin2(mx) = 1
2 (1 − cos 2mx),m ∈ N, and let k = 2m. The

pseudo-differential operator L of order t is defined by its effect on the eigenfunctions,

L(cos(�x)) = (1 + �)t cos(�x), L(sin(�x)) = (1 + �)t sin(�x).

Then the pseudo-differential equation Lu = f admits the exact solution

u(x) = 1

2

(
1 − cos(kx)

(1 + k)t

)
.

For the chosen collocation points we have f (x j ) = 0 and hence the approximate
solution uh is identically zero. It is easily seen that the mesh norm of X is h X = π/k.
We therefore have

‖u − uh‖2
L2

= ‖u‖2
L2

= π

2
+ π

4(1 + k)2t
≥ π

2
.

The Hσ norm of u can also be computed,

‖u‖2
Hσ = π

2
+ π

4
(1 + k)2(σ−t).

For the norm-minimal case we have σ > t , and hence ‖u‖2
Hσ ≤ ck2(σ−t), and

‖u − uh‖L2

‖u‖Hσ
= ‖u‖L2

‖u‖Hσ
≥ ck−(σ−t) = Chσ−t

X .

Similarly, the Hσ+t/2 norm of u can also be computed,

‖u‖2
Hσ+t/2 = π

2
+ π

4
(1 + k)2σ−t .

Thus, for the standard collocation case we have (since σ > t/2) ‖u‖2
Hσ+t/2 ≤ ck2σ−t ,

and hence

‖u − uh‖L2

‖u‖Hσ+t/2
= ‖u‖L2

‖u‖Hσ+t/2
≥ ck−(σ−t/2) = Chσ−t/2

X .

�
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4 Multiscale collocation for solving PDEs

While the (fixed) single scale approach for solving PDEs via collocation yields good
approximation in both the standard and the norm-minimizing approaches, it suffers
from two major drawbacks. On the one hand, the condition number grows rapidly
with decreasing fill distance. On the other hand, even when using compactly sup-
ported RBFs, the matrices quickly become dense, and as a result the computational
cost becomes prohibitive.

Recently (see [15,25]), in the case of interpolation, a multiscale technique has been
proven to have the advantages of good approximation and computational efficiency.
We are now going to analyze how this method can be carried over to solving PDEs.
We know already from numerical examples that, at least in the boundary value PDE
case (see [1]), the approach has to be modified to be successful. The theory below will
guide us to an appropriate modification for PDEs on the sphere.

The general idea of the multiscale approach can be described as follows.
We start with a widely spread set of points X1 and use a basis function with a large

scale δ1 to recover the global behavior of the solution u, by solving the collocation
equation Ls1|X1 = f |X1 . We then set u1 = s1 as the first approximation, so that the
residual at the first step is f1 = f − Ls1. To reduce the residual, at the next step we
use a finer set of points X2 and a smaller scale δ2, and compute a correction s2 from
an appropriate finite dimensional space by solving Ls2|X2 = f1|X2 . We then obtain a
new approximation u2 = u1 + s2, so that the new residual is f2 = f1 − Ls2; and so
on.

Stated as an algorithm, this takes the following form. We first set u0 = 0 and
f0 = f . Then, we do for j = 1, 2, . . .:

– Determine a correction s j as the solution in a prescribed finite-dimensional space
of

Ls j (x) = f j−1(x) for all x ∈ X j .

– Update the solution and the residual according to

u j = u j−1 + s j

f j = f j−1 − Ls j .

As a consequence, for j ≥ 1, we have

Lu j + f j = Lu j−1 + f j−1 = · · · = Lu0 + f0 = f.

Hence, the residual at level j is f j = f − Lu j . Since L is injective, let e j := L−1 f j ,
for j ≥ 1. We note that

e j = L−1 f j = L−1 f − u j = u − u j ,
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thus e j is the error at step j , and also we have

e j = e j−1 − s j . (25)

In the following, we will analyze this multiscale algorithm using either standard col-
location or norm-minimal collocation for the local reconstruction step. The proofs are
similar to each other and follow proofs from [15,25] but require careful consideration
of the details.

4.1 Standard multiscale collocation

We begin with standard collocation for the local reconstruction. Hence, the setting
is as follows. Suppose X1, X2, . . . is a sequence of point sets on S

n with decreasing
mesh norms h1, h2, . . . respectively. For every j = 1, 2, . . . we choose a basis func-
tionΦ j = Φδ j , where δ j is a scaling parameter depending on h j . Specifically, we will
choose

δ j = νh1−t/(2σ)
j

for some fixed constant ν > 1, which means that δ j/h j = νh−t/(2σ)
j is not a constant

but grows mildly with h j decreasing to zero. We also define for each j = 1, 2, . . .
finite dimensional spaces

Vj = span {Φ j (·, x) : x ∈ X j }.

Hence, we pick the local solution s j from Vj such that Ls j (x) = f j−1(x) for all
x ∈ X j . This means that s j ∈ Vj is the standard collocation approximation to Le j−1 =
f j−1 on X j using the kernel Φ j .

To analyze the convergence of the algorithm, we introduce, as in the case of the
single scale method, kernels Ψ j = L−1Φ j .

With this notation, we are able to formulate and prove our first convergence result.

Theorem 3 Assume that u ∈ Hσ+t/2 is the exact solution of (11) with σ > (t +n)/2.
Suppose that X1, X2, . . . is a sequence of point sets on S

n with decreasing mesh norms
h1, h2, . . . respectively. The mesh norms are assumed to satisfy γμ ≤ h j+1/h j ≤ μ

for some fixed constants γ and μ in (0, 1). Let Φ be a kernel satisfying (4) and let
Φ j = Φδ j be a sequence of scaled kernels, where the scales are defined by δ j =
(h j/μ)

1−t/(2σ). Let Ψ j = L−1Φ j . Then there exists a constant C independent of μ, j
and f such that

‖u − u j‖Ψ j+1 ≤ β‖u − u j−1‖Ψ j for j = 1, 2, . . . ,

with β = Cμ2σ−t , and hence there exists c > 0 such that

‖u − uk‖L2 ≤ cβk‖u‖Hσ+t/2 for k = 1, 2, . . . .
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Thus the standard multiscale collocation uk converges linearly to u in the L2 norm if
μ < C−1/(2σ−t).

Proof From (7) and (18) we have, with e j = u − u j ,

‖e j‖2
Ψ j+1

≤ 1

c1

∑

�≤1/δ j+1

N (n,�)∑

k=1

L̂(�)|̂e j,�k |2(1 + δ j+1�)
2σ

+ 1

c1

∑

�>1/δ j+1

N (n,�)∑

k=1

L̂(�)|̂e j,�k |2(1 + δ j+1�)
2σ

=: 1

c1
(S1 + S2).

Since δ j+1� ≤ 1 in the first term, we have

S1 ≤ 22σ‖L1/2e j‖2
L2
.

We note that s j ∈ Vj is the approximate solution with the standard collocation method
of Le j−1 = f j−1. Thus by (25) and Theorem 1 and Lemma 3 we have

‖L1/2e j‖L2 = ‖L1/2(e j−1 − s j )‖L2 ≤ chσ−t/2
j ‖e j−1‖Hσ+t/2

≤ chσ−t/2
j δ−σj ‖e j−1‖Ψ j = cμσ−t/2‖e j−1‖Ψ j ,

and hence

S1 ≤ c′22σμ2σ−t‖e j−1‖2
Ψ j
,

where we have used δ j = (h j/μ)
1−t/(2σ).

For the second sum S2, we note that

δ j+1/δ j = (h j+1/h j )
1−t/(2σ) ≤ μ1−t/(2σ),

and since δ j+1� > 1 we have

(1 + δ j+1�)
2σ < (2δ j+1�)

2σ ≤ (2μ1−t/(2σ)δ j�)
2σ ≤ 22σμ2σ−t (1 + δ j�)

2σ .

Therefore, from (7) and (18)

S2 ≤ c222σμ2σ−t‖e j‖2
Ψ j

= c222σμ2σ−t‖e j−1 − s j‖2
Ψ j

≤ c222σμ2σ−t‖e j−1‖2
Ψ j
,

where in the last step we used Lemma 4 with u replaced by e j−1 and Ψ by Ψ j .
Therefore

‖e j‖2
Ψ j+1

≤ 22σ

c1
(c′ + c2)μ

2σ−t‖e j−1‖2
Ψ j
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So if we write β = Cμσ−t/2 where C := 2σ (c′ + c2)
1/2/c1/2

1 then

‖e j‖Ψ j+1 ≤ β‖e j−1‖Ψ j . (26)

Using (25), Theorem 1 and Lemma 3 and then repeating (26) k times gives

‖u − uk‖L2 = ‖ek‖L2 = ‖ek−1 − sk‖L2 ≤ chσ−t/2
k ‖ek−1 − sk‖Hσ+t/2

= chσ−t/2
k ‖ek‖Hσ+t/2

≤ chσ−t/2
k δ−σk+1‖ek‖Ψk+1

≤ c‖ek‖Ψk+1

≤ cβk‖u‖Ψ1 ≤ cβk‖u‖Hσ+t/2 ,

where we have used the fact that

hσ−t/2
k δ−σk+1 = (μhk/hk+1)

σ−t/2 ≤ γ t/2−σ .

�

4.2 Norm-minimal multiscale collocation

We will now analyze the multiscale method using norm-minimal collocation in the
local reconstruction step. Again, we have a sequence of point sets X1, X2, . . . on S

n

with decreasing mesh norms h1, h2, . . .. For every j = 1, 2, . . . we choose a scaled
basis functionΦ j = Φδ j , where δ j is a scaling parameter depending on h j . This time,
however, we choose

δ j = νh1−t/σ
j

for some fixed constant ν > 1, which means that δ j/h j = νh−t/σ
j is again not a

constant but grows mildly with h j decreasing to zero. Again, in a similar way to the
single scale case, we also define, for j = 1, 2, . . ., finite dimensional spaces

W j = span {LΦ j (·, x) : x ∈ X j }

and pick the local reconstruction s j from W j as the norm-minimal collocation solution
to Le j−1 = f j−1 based on the set X j and the kernel Φ j .

Our convergence result this time takes the following form.

Theorem 4 Assume that u ∈ Hσ is the exact solution of (11) with σ > t + n/2. Let
X1, X2, . . . be a sequence of point sets on S

n with mesh norms h1, h2, . . . satisfying
γμh j ≤ h j+1 ≤ μh j for all j = 1, 2, . . ., for some fixed μ ∈ (0, 1) and γ ∈ (0, 1).

Let δ j = (h j/μ)
1−t/σ , for j = 1, 2, . . ., be a sequence of scale factors. Let

Φ j = Φδ j be a kernel satisfying (7). Then there exists a constant C independent of
μ, j and f such that
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‖u − u j‖Φ j+1 ≤ α‖u − u j−1‖Φ j for j = 1, 2, . . . ,

with α = Cμσ−t , and hence there exists c > 0 such that

‖u − uk‖L2 ≤ cαk‖u‖Hσ for k = 1, 2, . . . .

Thus the norm-minimal multiscale collocation uk converges linearly to u in the L2
norm if μ < C−1/(σ−t).

Proof From (7) and (10) we have, with e j = u − u j ,

‖e j‖2
Φ j+1

≤ 1

c1

∑

�≤1/δ j+1

N (n,�)∑

k=1

|̂e j,�k |2(1 + δ j+1�)
2σ

+ 1

c1

∑

�>1/δ j+1

N (n,�)∑

k=1

|̂e j,�k |2(1 + δ j+1�)
2σ

=: 1

c1
(S1 + S2).

Since δ j+1� ≤ 1 in the first term, we have

S1 ≤ 22σ‖e j‖2
L2
.

We note that s j ∈ W j is the approximate solution of Le j−1 = f j−1 with the norm-min-
imal collocation method. Hence, by using Theorem 2 and Lemma 1 we can conclude
that

‖e j‖L2 = ‖e j−1 − s j‖L2 ≤ chσ−t
j ‖e j−1‖Hσ

≤ 2σ c1/2
2 chσ−t

j δ−σj ‖e j−1‖Φ j = c2σμσ−t‖e j−1‖Φ j ,

where in the last step we have used δ j = (h j/μ)
1−t/σ . This means that

S1 ≤ 22σ c′μ2σ−2t‖e j−1‖2
Φ j
.

For S2, note that δ j+1/δ j = (h j+1/h j )
1−t/σ ≤ μ1−t/σ . Since δ j+1� > 1 we have

(1 + δ j+1�)
2σ < (2δ j+1�)

2σ ≤ (2μ1−t/σ δ j�)
2σ ≤ 22σμ2σ−2t (1 + δ j�)

2σ .

Thus, we have the upper bound

S2 ≤ c222σμ2σ−2t‖e j‖2
Φ j

= c222σμ2σ−2t‖e j−1 − s j‖2
Φ j

≤ c222σμ2σ−2t‖e j−1‖2
Φ j
,

where in the last step we used Lemma 5 with Φ replaced by Φ j .
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Therefore

‖e j‖2
Φ j+1

≤ 22σ

c1
(c′ + c2)μ

2σ−2t‖e j−1‖2
Φ j

Hence, if we choose α = Cμσ−t where C = 2σ (c′ + c2)
1/2/c1/2

1 then

‖e j‖Φ j+1 ≤ α‖e j−1‖Φ j . (27)

Using (25), Theorem 2, Lemma 1 and then (27) repeatedly k times, gives

‖u − uk‖L2 = ‖ek‖L2 = ‖ek−1 − sk‖L2

≤ chσ−t
k ‖ek−1 − sk‖Hσ = chσ−t

k ‖ek‖Hσ

≤ chσ−t
k δ−σk+1‖ek‖Φk+1

≤ cγ τ−σ ‖ek‖Φk+1

≤ cαk‖u‖Φ1 ≤ cαk‖u‖Hσ .

�

4.3 Condition numbers of collocation matrices

In each step of the multiscale algorithm, we have to solve a linear system arising from
the collocation condition on a set X = {x1, . . . , xN }:

Aδb = f, (28)

where the collocation matrix Aδ is the collocation matrix with entries either LΦδ(xi , x j )

(standard collocation) or L LΦδ(xi , x j ) (norm-minimal collocation).
Since the matrix Aδ is symmetric and positive definite in both cases, an iterative

method such as the conjugate gradient method can be used to solve (28) efficiently.
The complexity of the conjugate gradient method depends on the condition number
of the matrix Aδ and on the cost of a matrix-vector multiplication.

The collocation equation (13) can be viewed as an interpolation problem with the
kernel LΦδ(x, y) (or L LΦδ(x, y) in the norm-minimal case). It is well known, see for
example [24, Section 12.2] that the lower bound of the interpolation matrix depends
on the smoothness of the kernel and the separation radius qX of the set X ,

qX := 1

2
min
i �= j

θ(xi , x j ),

where θ(x, y) := cos−1(x, y) is the geodesic distance between two points x and y
on the unit sphere S

n . This geodesic separation radius is comparable to the Euclidean
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separation radius q̃X of the set X when being viewed as a subset of R
n+1,

q̃X := 1

2
min
i �= j

|xi − x j |.

We can use a result for condition numbers of multiscale interpolation [15, Theo-
rem 7.3] to arrive at the following conclusion.

Theorem 5 The condition number κ̄(Aδ) in the standard approach is bounded by

κ̄(Aδ) ≤ C

(
δ

q̃X

)1+2σ−t

, (29)

while the condition number κ̃(Aδ) of the collocation matrix Aδ in the norm-minimal
approach is bounded by

κ̃(Aδ) ≤ C

(
δ

q̃X

)1+2(σ−t)

. (30)

Proof The kernel LΦ(x, y) can be expanded as

LΦ(x, y) =
∞∑

�=0

N (n,�)∑

k=1

L̂(�)φ̂(�)Y�k(x)Y�k(y).

Using the assumptions (4) and (12) on the unscaled kernel Φ and the differential
operator L we obtain L̂(�)φ̂(�) ∼ (1 + �)−2σ+t . (Here, A ∼ B means that there a
two positive constants c and c′ such that cB ≤ A ≤ c′ B). Thus we can apply [15,
Theorem 7.3] with 2τ = 1 + 2σ − t to derive (29).

Similarly, using the Fourier expansion of L LΦ(x, y), since [L̂(�)]2φ̂(�) ∼ (1 +
�)−2σ+2t we can apply [15, Theorem 7.3] with 2τ = 1 + 2σ − 2t to derive (30). �

This indicates that a choice of δ proportional to qX would lead to a level indepen-
dent condition number. However, to derive convergence, we are not allowed to choose
δ proportional to qX . The specific choices of δ in our situation lead to the following
result. Here q j := qX j .

Corollary 1 In the standard approach, the choice δ j = νh1−t/(2σ)
j leads to a level-

dependent condition number of the form

κ̄ j ≤ C

(
h j

q j

)1+2σ−t

h
− t

2σ (1+2σ−t)
j ,

which, in the case of quasi-uniform data sets and t ≥ 1 reduces to

κ̄ j ≤ Ch
− t

2σ (1+2σ−t)
j ≤ Ch−t

j .
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In the norm-minimal approach, the choice δ j = νh1−t/σ
j leads to a level-dependent

condition number of the form

κ̃ j ≤ C

(
h j

q j

)1+2(σ−t)

h
− t
σ
(1+2(σ−t))

j ,

which, in the case of quasi-uniform data sets and t ≥ 1/2 reduces to

κ̃ j ≤ Ch
− t
σ
(1+2(σ−t))

j ≤ Ch−2t
j .

It is important to see that, though the condition number grows with 1/h j , the order of
this growth is bounded by the order of the operator (or twice the order of the operator
in the norm-minimal case). This has to be compared to the larger order of growth
of a single scale collocation method, which follows from Theorem 5 by setting δ to
constant:

κ(Aδ) ≤ Ch−(1+2σ−t)
X .

Thus for the single-scale method and quasi-uniformity the order of growth of the con-
dition number is larger by a factor of 2σ/t > 1 + n/t [since σ > (t + n)/2] for the
standard case, and larger by a factor of σ/t > 1 + n/(2t) for the norm-minimal case
(since σ > t + n/2).

5 Numerical experiments

In this section, we consider the following PDE of order t = 2 on the unit sphere
S

2 ⊂ R
3:

Lu(x) := −Δ∗u(x)+ ω2u(x) = f (x), x ∈ S
2,

where Δ∗ is the Laplace–Beltrami operator on S
2 and ω is a positive constant. The

PDE arises from discretizing the heat equation on the sphere.
Let ω = 1 and let f be defined so that the exact solution is given by the Franke

function [7] defined on the unit sphere S
2. To be more precise, let

x = (x, y, z) = (sin θ cosφ, sin θ sin φ, cos θ) for θ ∈ [0, π ], φ ∈ [0, 2π).

Then we define

u(x) = 0.75 exp

(
− (9x − 2)2 + (9y − 2)2

4

)
+ 0.75 exp

(
− (9x + 1)2

49
− 9y + 1

10

)

+0.5 exp

(
− (9x − 7)2 + (9y − 3)2

4

)
− 0.2 exp

(
−(9x − 4)2 − (9y − 7)2

)
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Fig. 1 Exact solution

Table 1 Mesh norms and
separation radii of sets of point

X1 X2 X3

M 1,500 6,000 24,000

h X 0.0647 0.0325 0.0162

qX 0.0423 0.0212 0.0106

and compute the function f via the formula

f (x(θ, φ)) = − 1

sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
− 1

sin2 θ

∂2u

∂φ2 + ω2u(x(θ, φ)).

A plot of the exact solution u is given in Fig. 1. Even though the algorithm allows the
collocation points to be scattered freely on the sphere, choosing sets of collocation
points distributed roughly uniformly over the whole sphere significantly improves the
quality of the approximate solutions and condition numbers. To this end, the sets of
points used to construct the approximate solutions are generated using the equal area
partitioning algorithm [21,20]. The mesh norms and separation radii of these sets are
listed in Table 1. The RBF used is

ψ(r) = (1 − r)6+(3 + 18r + 35r2), ψδ(r) = δ−2ψ(r/δ),

and

Φδ(x, y) = ψδ(|x − y|) = ψδ(
√

2 − 2x · y).

It can be shown that Φδ is a kernel which satisfies condition (7) with σ = 7/2 ([18]).
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The kernel Φδ is a zonal function, i.e., Φδ(x, y) = φδ(x · y) where φδ(t) is a uni-
variate function. For zonal functions, the Laplace–Beltrami operator can be computed
via

Δ∗φδ(x · y) = L φδ(t), t = x · y,

where

L = d

dt
(1 − t2)

d

dt

In our case,

L φδ(t) = 112

δ10 (
√

2 − 2t − δ)4
(

25t2 − 10t + δ2t − 15 + −8δt2 + 8δt√
2 − 2t

)
.

At each level the normalized L2 error ‖e j‖ is approximated by an �2 error, thus in
principle we define

‖e j‖ :=
⎛

⎜⎝
1

4π

∫

S2

|u(x)− u j (x)|2 dx

⎞

⎟⎠

1/2

=
⎛

⎝ 1

4π

π∫

0

2π∫

0

|u(θ, φ)− u j (θ, φ)|2 sin θ dφ dθ

⎞

⎠
1/2

,

and in practice approximate this by the midpoint rule at 1 degree intervals,

⎛

⎝ 1

4π

2π2

|G |
∑

x(θ,φ)∈G

|u(θ, φ)− u j (θ, φ)|2 sin θ

⎞

⎠
1/2

,

where G is a longitude-latitude grid containing the centers of rectangles of size 1
degree times 1 degree and |G | = 180 · 360 = 64, 800. We also record the condition
numbers κ̄ j of the collocation matrix

Aδ j = [LΦ j (x, y)]x,y∈X j

for the standard approach and the condition numbers κ̃ j of the collocation matrix

Aδ j = [L LΦ j (x, y)]x,y∈X j

for the norm-minimal approach. The errors and condition numbers of the collocation
matrices at each step of the multiscale algorithm for two variants of the collocation
method are listed in Tables 2 and 3, respectively. In the upper part of each table we
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Table 2 The approximation
errors and condition numbers of
multiscale approximation using
the standard approach

Level 1 2 3

M 1,500 6,000 24,000

δ j 2.0 1.0 0.5

‖e j ‖ 2.1173E−04 3.9021E−06 1.1509E−07

κ̄ j 4.4028E+04 4.4172E+04 4.4562E+04

δ j 2.0000 1.2230 0.7438

‖e j ‖ 2.1173E−04 3.8357E−06 1.0944E−07

κ̄ j 4.4028E+04 1.2154E+05 3.2279E+05

Table 3 The approximation
errors and condition numbers of
multiscale approximation using
the norm-minimal approach

Level 1 2 3

M 1,500 6,000 24,000

δ j 2.0 1.0 0.5

‖e j ‖ 5.1048E−02 3.4713E−02 3.3648E−02

κ̃ j 1.7471E+02 2.1987E+02 3.1605E+02

δ j 2.0000 1.4820 1.1033

‖e j ‖ 5.1048E−02 7.2364E−03 2.6972E−04

κ̃ j 1.7471E+02 5.7738E+02 1.8929E+03

use the results for the scale δ j taken proportional to h j , whereas in the lower part we
use the scale in accordance with Theorem 3 or 4. As can be seen from the tables, if
the scaling parameters δ j decrease linearly with respect to the mesh norms h j , we
may not get a good convergence rate, at least in the norm-minimal case, whereas in
both cases we get a good convergence rate if we follow the theoretical predictions.
Figure 2 shows the approximate solutions using the standard approach at each level
corresponding to δ j = 2; 1.2230; 0.7438, in accordance with Theorem 3. If we use
one-shot approximation on the final set of 24,000 points with various scales δ then we
obtain the errors listed in Tables 4 and 5. As can be seen from the tables, the multi-
scale approach provides a more accurate approximation with a collocation matrix of
a smaller condition number.

6 Concluding remarks

In this paper we have developed a multiscale approximation for elliptic PDEs on
spheres, by adapting the method and the proof of the multiscale approximation scheme
in [15].

A natural question is whether the scheme so developed is equivalent to applying the
multiscale approximation scheme to the right hand side of Eq. (11), with an appropriate
redefinition of the kernel.

For the single-scale collocation schemes with δ = 1 there is indeed a close con-
nection, in that the standard and symmetric collocation schemes of Sects. 3.1 and 3.2
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Fig. 2 The left column are approximate solutions u j , j = 1, 2, 3. The right column are the details s j =
u j − u j−1, j = 2, 3 and the errors u3 − u

Table 4 Errors by one-shot approximation of u with various scales using the final set of 24,000 points
(standard approach)

δ 2.0000 1.2230 1.0000 0.7438 0.5000

‖e‖ 1.1372E−07 2.8564E−07 1.0765E−06 8.4260E−06 1.3642E−04

κ 4.6265E+07 3.9109E+06 1.4203E+06 3.2273E+05 4.4562E+04

Table 5 Errors by one-shot approximation of u with various scales using the final set of 24,000 points
(norm-minimal approach)

δ 2.000 1.4820 1.1033 1.000 0.500

‖e‖ 3.9640E−04 8.0738E−03 6.2875E−02 1.1298E−01 5.7892E−01

κ̃ 1.1200E+04 4.6228E+03 1.8927E+03 1.8927E+03 3.1605E+02
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can be re-expressed this way: the standard choice is equivalent to

f ≈ f stand :=
N∑

i=1

bi LΦ(·, xi ), f stand(x j ) = f (x j ), 1 ≤ j ≤ N ,

ustand
h := L−1 f stand =

N∑

i=1

biΦ(·, xi ),

and the symmetric choice to

f ≈ f symm :=
N∑

i=1

bi L2Φ(·, xi ), f symm(x j ) = f (x j ), 1 ≤ j ≤ N ,

usymm
h := L−1 f symm =

N∑

i=1

bi LΦ(·, xi ).

But for the multiscale versions there is no such simple correspondence. The multi-
scale approximation in [15] is based upon scaled versions of a single kernel, scaled as
in (5). Suppose we approximate the right hand side of (11) by the multiscale approx-
imation, using the kernel (at face value appropriate for the standard case)

ζ(x, y) := LΦ(x, y) =
∞∑

�=0

N (n,�)∑

k=1

L̂(�)φ̂(�)Y�k(x)Y�k(y), x, y ∈ S
n,

We can define a scaled version of the new kernel after extending the definition to R
n+1,

but the difficulty is that the scaled kernel ζδ is not related in any simple way to LΦδ ,
even for the case L = −Δ+1. To state the problem differently, an effective multiscale
method based on the scaled kernel ζδ would require an ability to solve analytically the
equation Lg = ζδ(·, xi ), something that does not seem possible in general.

The multiscale method presented in Sect. 4 is therefore significantly different from
the multiscale approximation in [15].
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