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Abstract Given a function f defined on a bounded polygonal domain� ⊂ R
2 and

a number N > 0, we study the properties of the triangulation T N that minimizes the
distance between f and its interpolation on the associated finite element space, over all
triangulations of at most N elements. The error is studied in the W 1,p semi-norm for
1 ≤ p < ∞, and we consider Lagrange finite elements of arbitrary polynomial order
m − 1. We establish sharp asymptotic error estimates as N → +∞ when the opti-
mal anisotropic triangulation is used. A similar problem has been studied in Babenko
et al. (East J Approx. 12(1):71–101, 2006), Cao (J Numer Anal. 45(6):2368–2391,
2007), Chen et al. (Math Comput. 76:179–204, 2007), Cohen (Multiscale, Nonlin-
ear and Adaptive Approximation. Springer, Berlin, 2009), Mirebeau (Constr Approx.
32(2):339–383, 2010), but with the error measured in the L p norm. The extension of
this analysis to the W 1,p norm is required in order to match more closely the needs of
numerical PDE analysis, and it is not straightforward. In particular, the meshes which
satisfy the optimal error estimate are characterized by a metric describing the local
aspect ratio of each triangle and by a geometric constraint on their maximal angle, a
second feature that does not appear for the L p error norm. Our analysis also provides
with practical strategies for designing meshes such that the interpolation error satisfies
the optimal estimate up to a fixed multiplicative constant.
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272 J.-M. Mirebeau

Introduction

In finite element approximation, a usual distinction is between uniform and adaptive
methods. In the latter, the elements defining the mesh may vary strongly in size and
shape for a better adaptation to the local features of the approximated function f . Such
procedures are used to improve the efficiency of numerous numerical methods in scien-
tific computing. This naturally raises the objective of characterizing and constructing
an optimal mesh for a given function f .

In this paper we consider a bounded bidimensional polygonal domain � ⊂ R
2, a

fixed integer m ≥ 2 and an exponent 1 ≤ p < ∞. For a given conforming triangu-
lation T of � we denote by Im−1

T the standard interpolation operator on the space of
Lagrange finite elements of degree m − 1 associated to T . A general objective is to
study, for any f ∈ Cm(�), the optimization problem

inf
#(T )≤N

‖∇( f − Im−1
T f )‖L p(�) (1)

where the minimum is taken over all (possibly anisotropic) triangulations of cardinality
≤ N . All the triangulations considered in this paper are assumed to be conforming:
they have no hanging nodes, which implies that the interpolant Im−1

T f is continuous
and thus belongs to W 1,∞(�). The choice of the W 1,p semi-norm appearing in the
expression (1) is motivated by PDE analysis, e.g. elliptic equations in the case p = 2.
Yet our paper in mainly a contribution to approximation theory, and aims at charac-
terizing the approximation power of finite elements on anisotropic meshes. We obtain
sharp estimates of the asymptotical behavior of the quantity (1) as N → ∞, in terms
of the m-th derivatives of f . We also describe practical strategies for constructing
meshes that behave similar to the optimal one, in the sense that they asymptotically
satisfy as N → ∞ this sharp error estimate up to a fixed multiplicative constant.
Obtaining similar estimates and constructions in a non asymptotic setting remains an
open question.

Estimates of a similar asymptotical nature were obtained in [11,4,17] in the
particular case of linear finite elements and with the error measured in the L p norm,
instead of the W 1,p semi-norm. They have the form

lim sup
N→+∞

(
N min

#(T )≤N
‖ f − I1

T f ‖L p(�)

)
≤ C

∥∥∥∥
√

| det(d2 f )|
∥∥∥∥

L p/(p+1)(�)

, (2)

which reveals that the convergence rate is governed by the quantity
√| det(d2 f )|,

which depends nonlinearly on the Hessian d2 f . This is heavily tied to the fact that we
allow triangles with possibly highly anisotropic shape. The convergence estimate (2)
has been extended to arbitrary approximation order in [18], where the quantity govern-
ing the convergence rate for finite elements of arbitrary degree m − 1 was identified.
This quantity depends nonlinearly on the m-th order derivative dm f . See also the book
chapter [12] for an introduction to the subject of adaptive and anisotropic piecewise
polynomial approximation.
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Optimally adapted meshes for finite elements of arbitrary order and W 1,p norms 273

Main results and layout

The Taylor development of a function f ∈ Cm(�), close to a point z ∈ �, can be
written under the form

f (z + h) = μz(h)+ πz(h)+ o(|h|m), (3)

where h ∈ R
2 is small, and where μz and πz are polynomials which respectively

belong to the spaces

IPm−1 := Span{xk yl ; k + l ≤ m − 1} and IHm := Span{xk yl ; k + l = m}. (4)

For any triangle T , we denote by Im−1
T the local interpolation operator acting from

C0(T ) onto IPm−1. For any continuous fonction ν ∈ C0(T ), the interpolating
polynomial Im−1

T ν ∈ IPm−1 is defined by the conditions

Im−1
T ν(γ ) = ν(γ ),

for all points γ ∈ T with barycentric coordinates in the set {0, 1
m−1 , . . . , 1}. If T is

a sufficiently small triangle containing the point z, we thus have at least heuristically
on T

∇
(

f − Im−1
T f

)

 ∇

(
πz − Im−1

T πz

)
, (5)

since the Lagrange interpolation operator Im−1
T on the triangle T reproduces the

elements of IPm−1.
A key ingredient in this paper is the shape function Lm,p, which is defined by a

shape optimization problem: for any π ∈ IHm , we define

Lm,p(π) := inf|T |=1
‖∇(π − Im−1

T π)‖L p(T ), (6)

where the infimum is taken over all triangles of area |T | = 1. The solution to this
optimization problem thus describes the shape of the triangles of area 1 which are
best adapted to the polynomial π in the sense of minimizing the interpolation error
measured in W 1,p. If T is a triangulation of a domain �, then Im−1

T refers to the

interpolation operator which coincides with Im−1
T on each T ∈ T . In view of (5),

the optimization problem appearing in (6) can be regarded as a “local” version of the
“global” problem (1) of interest.

The function Lm,p is the natural generalisation of the function Km,p introduced in
[18] for the study of optimal anisotropic triangulations in the sense of the L p interpo-
lation error: for all π ∈ IHm

Km,p(π) := inf|T |=1
‖π − Im−1

T π‖L p(�).
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274 J.-M. Mirebeau

Throughout this paper we denote by τ ∈ (0,∞) the exponent defined by

1

τ
:= m − 1

2
+ 1

p
. (7)

Consider two triangles T, T ′ and a polynomial π ∈ IHm . If T is mapped onto T ′ by a
transformation of the form z �→ αz+β, where α ∈ R\{0} and β ∈ R

2 (in other words
the composition of a translation, an homothety, and a central symmetry if α < 0), then
recalling that π is m-homogeneous one easily checks that

|T |− 1
τ ‖∇(π − Im−1

T π)‖L p(T ) = |T ′|− 1
τ ‖∇

(
π − Im−1

T ′ π
)

‖L p(T ′). (8)

Therefore ‖∇
(
π − Im−1

T π
)

‖L p(T ) ≥ |T | 1
τ Lm,p(π) for any triangle T and any π ∈

IHm . Our asymptotic error estimate for the optimal triangulation is given by the fol-
lowing theorem.

Theorem 1 For any bounded polygonal domain � ⊂ R
2, any function f ∈ Cm(�),

and any 1 ≤ p < ∞, there exists a sequence of triangulations (TN )N≥N0 of �, with
#(TN ) ≤ N, such that

lim sup
N→∞

N
m−1

2 ‖∇
(

f − Im−1
TN

f
)

‖L p(�) ≤
∥∥∥∥Lm,p

(
dm f

m!
)∥∥∥∥

Lτ (�)
. (9)

This theorem is the consequence of a sharper result, Theorem 2, which is given below.
In the above estimate we slightly abuse notations by defining for each z ∈ �

Lm,p

(
dm f (z)

m!
)

:= Lm,p(πz), (10)

where the polynomial πz ∈ IHm is defined by (3). In other words we identify the col-
lection dm f (z) of m − th derivatives of f at a given point z ∈ � to the corresponding
term in the Taylor development of f close to z. Explicitly the right hand side of (9)
stands for

∥∥∥∥Lm,p

(
dm f

m!
)∥∥∥∥

Lτ (�)
:=
⎛
⎝∫
�

Lm,p(πz)
τdz

⎞
⎠

1
τ

.

The integer N0 appearing in Theorem 1 is independent of f and refers to the
minimal cardinality of a conforming triangulation of �. An important feature of the
estimate (9) is the “lim sup”. Recall that the upper limit of a sequence (uN )N≥N0 is
defined by

lim sup
N→∞

uN := lim
N→∞ sup

n≥N
un,
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Optimally adapted meshes for finite elements of arbitrary order and W 1,p norms 275

and is in general stricly smaller than the supremum supN≥N0
uN . It is still an open

question to find an appropriate upper estimate of supN≥N0
N

m−1
2

‖∇
(

f − Im−1
TN

f
)

‖L p(�) when optimally adapted anisotropic triangulations are used.

We show in Sect. 1 that a triangulation satisfies the optimal estimate of Theorem 1,
up to a fixed multiplicative constant, if it obeys the following four general principles:

(i) The interpolation error should be evenly distributed on all triangles.
(ii) The triangles should adopt locally a specific aspect ratio, dictated by the local

value of dm f .
(iii) The largest angle of the triangles should be bounded away from π =

3.14159 . . .
(iv) The triangulation T should be sufficiently refined in order to adapt to the local

features of f .

The third point (iii) is the main new ingredient of this paper compared to [18], and is
necessary for obtaining optimal W 1,p error estimates (but not for L p error estimates).
Roughly speaking, two triangles having the same optimized aspect ratio imposed by
(ii) may greatly differ in term of their largest angle, and the most acute triangle should
be preferred when error is measured in W 1,p rather than L p. The influence of large
angles in mesh adaptation has already been studied in [6,15,21,9]. The heuristic guide-
line is that large angles should be avoided in general, since they lead to oscillations
of the gradient of the interpolant. On the contrary, extremely thin triangles and very
small angles can be necessary for optimal mesh adaptation.

The shape function Lm,p plays an important role in our results, and we therefore
devote Sect. 2 to its study which is based on algebraic techniques. We obtain explicit
minimizers, up to a fixed multiplicative constant, of the optimization problems which
correspond to piecewise linear and piecewise quadratic finite element approximation.
We also introduce, for arbitrary m ≥ 2, explicit functions π ∈ IHm �→ Lm(π) which
are defined as the root of a polynomial in the coefficients of π , and are uniformly
equivalent to the shape function Lm,p, leading therefore to asymptotic error estimates
similar to (9) up to multiplicative constants.

In order to illustrate the sharpness of Theorem 1, we introduce a slight restriction on
sequences of triangulations, following an idea in [4]: a sequence (TN )N≥N0 of triangu-

lations is said to be admissible if #(TN ) ≤ N and supN≥N0

(
N

1
2 supT ∈TN

diam(T )
)
<

∞, in other words if

sup
T ∈TN

diam(T ) ≤ CA N− 1
2 (11)

for some constant CA > 0 independent of N . Here and below we denote the diameter
of a set E ⊂ R

2 by diam(E) := sup{|x − y|; x, y ∈ E}. The following theorem shows
that the estimate (9) cannot be improved when we restrict our attention to admissible
sequences of triangulations. It also shows that this class is reasonably large in the sense
that (9) is ensured to hold up to small perturbation.

Theorem 2 Let � ⊂ R
2 be a bounded polygonal domain, let f ∈ Cm(�) and let

1 ≤ p < ∞. For any admissible sequence (TN )N≥N0 of triangulations of �, one has

123



276 J.-M. Mirebeau

lim inf
N→∞ N

m−1
2 ‖∇

(
f − Im−1

TN
f
)

‖L p(�) ≥
∥∥∥∥Lm,p

(
dm f

m!
)∥∥∥∥

Lτ (�)
. (12)

Furthermore, for all ε > 0 there exists an admissible sequence of triangulations
(T ε

N )N≥N0 such that

lim sup
N→∞

N
m−1

2 ‖∇
(

f − Im−1
T ε

N
f
)

‖L p(�) ≤
∥∥∥∥Lm,p

(
dm f

m!
)∥∥∥∥

Lτ (�)
+ ε. (13)

Note that the sequences of triangulations (T ε
N )N≥N0 satisfy the admissibility condition

(11) with a constant CA(ε) which may grow to +∞ as ε → 0. Theorem 1 can be
inferred from the estimate (13) proceeding as follows: for each N ≥ N0 and each
ε > 0 we define a real δ(N , ε) by the equality

N
m−1

2 ‖∇
(

f − Im−1
T ε

N
f
)

‖L p(�) =
∥∥∥∥Lm,p

(
dm f

m!
)∥∥∥∥

Lτ (�)
+ δ(N , ε).

We next observe that for any fixed ε > 0 one has lim supN→∞ δ(N , ε) ≤ ε. We
may therefore construct, using a diagonal extraction procedure, a sequence (εN )N≥N0

such that lim supN→∞ δ(N , εN ) ≤ 0. The sequence of triangulations (T εN
N )N≥N0 then

clearly satisfies (9), which establishes Theorem 1.
The proof of Theorem 2 is given in Sect. 3. The proof of the upper estimate (13)

involves the construction of an optimal mesh based on a patching strategy adapted from
the one encountered in [4]. However, inspection of the proof reveals that this construc-
tion only becomes effective as the number of triangles N becomes very large. The con-
struction described in Sect. 1 should therefore be preferred in practical applications.

Notations

We denote by 〈u, v〉 the inner product of two vectors u, v ∈ R
2, and by |u| := √〈u, u〉

the euclidean norm of u. When g ∈ L p(�,R2) is a vector valued function, we denote
by ‖g‖L p(�) the L p norm of x �→ |g(x)| on �, for instance in (1) and (6).

We denote by M2 the set of all 2 ×2 real matrices, equipped with the spectral norm
‖A‖ := max|u|≤1 |Au|. We denote by GL2 ⊂ M2 the group of invertible matrices,
by SL2 ⊂ GL2 the special group of matrices of determinant 1, and by O2 ⊂ GL2
the group of orthogonal matrices. We denote by S2 ⊂ M2 the linear space of sym-
metric matrices, by S⊕

2 ⊂ S2 the subset of non-negative symmetric matrices, and by
S+

2 ⊂ S⊕
2 the subset of positive definite symmetric matrices.

For any two symmetric matrices S, S′ ∈ S2, we write S ≤ S′ if and only if S′ − S ∈
S⊕

2 . For any S ∈ S⊕
2 (resp. S+

2 ) and any α > 0 (resp. α ∈ R) we denote by Sα the sym-
metric matrix obtained by elevating the eigenvalues to the power α in a diagonalization
of S.

The greek letter π always refers to an homogeneous polynomial π ∈ IHm , while
the bold notation π refers to the mathematical constant π = 3.14159 . . .

123



Optimally adapted meshes for finite elements of arbitrary order and W 1,p norms 277

1 Adaptive mesh generation

This section describes some properties that are needed to ensure that a mesh T satisfies
the optimal error estimate introduced in Theorem 1 up to a fixed multiplicative con-
stant. We first introduce a description of the triangle based on some parameters adapted
to our purposes. We then prescribe the behavior of these parameters in a triangula-
tion tailored to the approximation of a given function f , and we discuss the practical
challenges encountered in the construction of such a mesh.

1.1 Description of a triangle

A triangle T ⊂ R
2 is determined by the collection of its three vertices v1, v2 and v3.

In the context of adaptive mesh generation, we rather adopt the following parameters.
The position of T is determined by its barycenter

zT := (v1 + v2 + v3)/3.

The area, the aspect ratio and the orientation of T are encoded in a symmetric positive
definite matrix HT ∈ S+

2 defined by the equality

H−1
T := 2

3

∑
1≤i≤3

(vi − zT )(vi − zT )
T.

Last we shall introduce below a real S(T ) ≥ 1 which is tied to the largest angle of T .
If a triangle T ′ is mapped onto T by the change of coordinates z �→ Az + z0, where

A ∈ GL2 and z0 ∈ R
2, then one easily checks that

HT ′ = ATHT A. (14)

From this point onwards we denote by Teq the triangle of vertices
(cos(2kπ/3), sin(2kπ/3))0≤k≤2, which satisfies HTeq = Id. Combining this obser-
vation with (14), Proposition 5.1.3 in [20] establishes that for any triangle T

|T |√det HT = |Teq|, (15)

and that there exists a rotation U ∈ O2 (depending on T ) such that the change of
coordinates

z �→ UH
1
2
T (z − zT ) (16)

maps T onto Teq. Furthermore, as illustrated on Fig. 1 (left), we have the inclusions

{
zT + u; uTHT u ≤ 1/4

}
⊂ T ⊂ ET :=

{
zT + u; uTHT u ≤ 1

}
. (17)

The inclusion of two triangles T, T ′ therefore implies an inclusion of ellipses, hence
an inequality on the associated symmetric matrices:
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278 J.-M. Mirebeau

Fig. 1 Two triangles and the associated ellipses associated by (17) (left). The interpolation points on the
triangle T0 are aligned vertically (right)

T ′ ⊂ T ⇒ 4HT ′ ≥ HT . (18)

We denote by ρ(T ) ∈ [1,∞[ the measure of degeneracy of a triangle T , which is
defined as follows:

ρ(T ) :=
√

‖HT ‖‖H−1
T ‖. (19)

Lemma 1.1 For each triangle T , one has

ρ(T ) ≤ diam(T )2

|T |/|Teq| ≤ 4ρ(T ).

Proof It follows from (15) that |T |/|Teq| = ‖HT ‖− 1
2 ‖H− 1

2
T ‖, and from (17) that

‖H− 1
2

T ‖ = diam(ET )/2 ≤ diam(T ) ≤ diam(ET ). Combining this with (19) we obtain
the announced result. ��

As illustrated on Fig. 1, the fact that a triangle T is acute, or not, is not reflected on
the ellipsoid ET or the matrix HT . Since acute triangles play a priviledged role in finite
element approximation we introduce the measure of sliverness S(T ) of a triangle T ,
which is defined as follows

S(T ) := inf{‖ψ‖ ‖ψ−1‖; ψ ∈ GL2 s.t. the image of T by ψ is acute}. (20)

(Where we refer to the image of T by the linear change of coordinates z �→ ψz on
R

2.) The quantity S(T ) can be regarded as the distance from T to the collection of
acute simplices. It immediately follows from (16) and (19) that

1 ≤ S(T ) ≤ ρ(T ). (21)

Then next expression gives an explicit expression of S(T ) in terms of the largest angle
of T , which shows that it is equivalent up to a multiplicative constant to the quantities
previously introduced in [2,15] and referred to as σmin(T ) and 1/ cos(θ ′) respectively.
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Optimally adapted meshes for finite elements of arbitrary order and W 1,p norms 279

Proposition 1.2 For any triangle T with largest interior angle θ , one has S(T ) =
max{1, tan θ

2 }.
Proof The result of this proposition is trivial if the triangle T is acute, we therefore
assume that T is obtuse. We assume without loss of generality that the vertices of T
are 0, αu and βv, where α, β > 0, u, v ∈ R

2, |u| = |v| = 1 and 〈u, v〉 = cos θ .
Note that |u − v| = 2 sin(θ/2) and |u + v| = 2 cos(θ/2). Let ψ ∈ GL2 be such
that the image of T by ψ is acute. We thus have 〈ψ(u), ψ(v)〉 ≥ 0 and therefore
|ψ(u)− ψ(v)| ≤ |ψ(u)+ ψ(v)|. It follows that

‖ψ‖ ‖ψ−1‖ ≥ |u − v|
|u + v| × |ψ(u)+ ψ(v)|

|ψ(u)− ψ(v)| ≥ 2 sin(θ/2)

2 cos(θ/2)
= tan

θ

2
.

Therefore S(T ) ≥ tan θ
2 . On the other hand, let ψ be defined by ψ(u) = (0, 1) and

ψ(v) = (1, 0). Obviously the image of T by ψ has one of its angles equal to π/2,
and is therefore acute. One easily checks that ‖ψ‖‖ψ−1‖ = tan(θ/2) and therefore
S(T ) ≤ tan θ

2 , which concludes the proof of this proposition. ��
Most error estimates available in the literature, such as in [6,15], are designed to

control the gradient interpolation error of a function on a triangle, by second or higher
derivatives of the approximated function. Our purposes require a slight variant of
these estimates, given in the next lemma, in which the gradient interpolation error is
controlled by the gradient itself of the approximated function.

Lemma 1.3 There exists a constant C = C(m) such that the following holds. For any
triangle T and any f ∈ W 1,∞(T ), one has

‖∇
(

f − Im−1
T f

)
‖L∞(T ) ≤ C S(T )‖∇ f ‖L∞(T ).

Proof Let T0 be the triangle of vertices (0, 0), (1, 0) and (0, 1), and let g ∈ W 1,∞(T0).
We define g̃(x, y) := g(x, 0) and h(x, y) := g(x, y) − g(x, 0). Since g̃ does not
depend on y and since the Lagrange interpolation points on T0 are aligned vertically,
as illustrated on Fig. 1, the Lagrange interpolant Im−1

T0
g̃ does not depend on y either.

Futhermore, for all (x, y) ∈ T0, we have |h(x, y)| = | ∫ y
s=0

∂g
∂y (x, s)ds| ≤ ‖ ∂g

∂y ‖L∞(T0).
Hence

∥∥∥∥∥
∂ Im−1

T0
g

∂y

∥∥∥∥∥
L∞(T0)

=
∥∥∥∥∥
∂ Im−1

T0
h

∂y

∥∥∥∥∥
L∞(T0)

≤ C0‖ Im−1
T0

h‖L∞(T0)

≤ C0C1‖h‖L∞(T0) ≤ C0C1

∥∥∥∥∂g

∂y

∥∥∥∥
L∞(T0)

,

where the constants C0 and C1 are the L∞(T0) norms of the operators g ∈ IPm−1 �→
∂g
∂y ∈ IPm−2, and g ∈ C0(T0) �→ Im−1

T0
g ∈ IPm−1 respectively.

Let e be an edge vector of the triangle T . There exists an affine change of coordi-
nates � on R

2, with linear part ψ ∈ GL2, such that �(T ) = T0 and ψe = e0, where
e0 = (0, 1) is the vertical edge vector of T0. Noticing that
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280 J.-M. Mirebeau

〈e,∇ Im−1
T (g ◦�)〉 = 〈e,∇((Im−1

T0
g) ◦�)〉 = 〈e0, (∇ Im−1

T0
g) ◦�〉 = ∂ Im−1

T0
g

∂y
◦�,

we obtain

‖〈e,∇ Im−1
T (g ◦�)〉‖L∞(T ) =

∥∥∥∥∥
∂ Im−1

T0
g

∂y

∥∥∥∥∥
L∞(T0)

≤ C0C1

∥∥∥∥∂g

∂y

∥∥∥∥
L∞(T0)

= C0C1‖〈e,∇(g ◦�)〉‖L∞(T ). (22)

Applying this inequality to g = f ◦�−1 we obtain that

‖〈e,∇ Im−1
T f 〉‖L∞(T ) ≤ C0C1‖〈e,∇ f 〉‖L∞(T ), (23)

for any edge vector e ∈ {a, b, c} of T . Defining the norm |v|T := max{|〈v, a〉|/|a|,
|〈v, b〉|/|b|, |〈v, c〉|/|c|}, we obtain

‖ |∇ Im−1
T f |T ‖L∞(T ) ≤ C0C1‖|∇ f |T ‖L∞(T ). (24)

For any v ∈ R
2 one has cos(θ/2)|v| ≤ |v|T ≤ |v|,where θ denotes the maximal angle

of T . Indeed the upper inequality is trivial and the lower one is follows from the fact
that at least one of the edge vectors makes an angle less than θ/2 with v. Combining
this with (24), we obtain

‖∇ Im−1
T f ‖L∞(T ) ≤ C0C1

cos(θ/2)
‖∇ f ‖L∞(T ).

Since θ ≥ π/3 we have 1
cos(θ/2) ≤ 2 tan(θ/2) ≤ 2S(T ) according to Proposition 1.2,

which concludes the proof with C = 2C0C1 + 1. ��
Remark The definition (20) of the measure of sliverness S(T ), Propositions 1.2 and
Lemma 1.3 have analogs for simplices of arbitrary dimension, see for instance the
definition (3.87), Proposition 3.6.1 and Lemma 3.6.3 in [20].

1.2 Construction of a triangulation adapted to a function

In order to identify the optimal shape of the triangles, our first step is to reformulate
the optimization problem appearing in the definition (6) of the shape function Lm,p.

One easily checks using the invariance property (8) that for any π ∈ IHm

Lm,p(π) = inf
{
|T |− m−1

2 ; T s.t. |T |− 1
p ‖∇

(
π − Im−1

T π
)

‖L p(T ) ≤ 1
}
, (25)

and the minimizers of this optimization problem and the original one are homothetic.
The next lemma shows that the exponent p can be disregarded in the above expres-

sion, when one is only interested in minimizing it up to a fixed multiplicative constant.
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Lemma 1.4 There exists a constant c = c(m) > 0 such that for any triangle T and
any π ∈ IHm

c‖∇
(
π−Im−1

T π
)

‖L∞(T ) ≤ |T |− 1
p ‖∇

(
π−Im−1

T π
)

‖L p(T ) ≤ ‖∇
(
π−Im−1

T π
)

‖L∞(T ).

Proof We denote by T0 an arbitrary but fixed triangle of area 1. For all g ∈ L∞(T0,R
2)

we obtain using Jensen’s inequality

‖g‖L1(T0)
≤ ‖g‖L p(T0) ≤ ‖g‖L∞(T0). (26)

Furthermore, since all norms are equivalent on the finite dimensional space IP2
m−1,

there exists a constant c = c(m) > 0 such that c‖μ‖L∞(T0) ≤ ‖μ‖L1(T0)
for all

μ ∈ IP2
m−1. Therefore

c‖μ‖L∞(T0) ≤ ‖μ‖L1(T0)
≤ ‖μ‖L p(T0) ≤ ‖μ‖L∞(T0),

c‖μ‖L∞(T ) ≤ |T |−1‖μ‖L1(T ) ≤ |T |− 1
p ‖μ‖L p(T ) ≤ ‖μ‖L∞(T ), (27)

where we used in the second line a change of variables from T0 to an arbitrary triangle

T . We conclude the proof of this lemma by injecting μ = ∇
(
π − Im−1

T π
)

in (27),

where π ∈ IHm is arbitrary. ��

For each μ ∈ IH2
m−1 we define

‖μ‖ := sup
z �=0

|μ(z)|
|z|m−1 , (28)

and for each A ∈ M2 we define μ ◦ A ∈ IH2
m−1 by μ ◦ A(z) := μ(Az). Note that

‖μ ◦ U‖ = ‖μ‖ for any U ∈ O2, and that for M ∈ S+
2

‖μ ◦ M− 1
2 ‖ = sup

z �=0

|μ(z)|
|z|m−1

M

where |z|M :=
√

zT Mz, (29)

hence for M,M ′ ∈ S+
2

M ≤ M ′ ⇒ ‖π ◦ M− 1
2 ‖ ≥ ‖π ◦ M ′− 1

2 ‖. (30)

The next lemma shows that, among the triangles having a prescribed aspect ratio,
encoded by a matrix M , the smallest approximation error is achieved by the acute
triangles (up to a fixed multiplicative constant) for which the measure of sliverness S
is minimal and equals one.
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Lemma 1.5 There exists a constant C = C(m) ≥ 1 such that the following holds.
For any triangle T and any π ∈ IHm, one has denoting M := HT

C−1‖(∇π) ◦ M− 1
2 ‖ ≤ ‖∇

(
π − Im−1

T π
)

‖L∞(T ) ≤ C S(T )‖(∇π) ◦ M− 1
2 ‖. (31)

Proof We may assume that the triangle T is centered at the origin of R
2. We obtain

combining Lemma 1.3 and the inclusion T ⊂ ET , see (17),

‖∇(π − Im−1
T π)‖L∞(T ) ≤ C S(T )‖∇π‖L∞(T ) ≤ C S(T )‖∇π‖L∞(ET )

= C S(T )‖(∇π) ◦ M− 1
2 ‖,

which establishes the right part of (31). On the other hand, if C is sufficiently large,
one has for all μ ∈ IH2

m−1

C−1‖μ‖ ≤ inf
ν∈IP2

m−2

‖μ− ν‖L∞(Teq),

since both quantities are norms on IH2
m−1. Since zT = 0, the change of variables

z �→ M− 1
2 U Tz maps Teq onto T , where U ∈ O2 is defined by (16). Applying the

above inequality to μ ◦ (M− 1
2 U T), where μ ∈ IH2

m−1 is arbitrary, we thus obtain

C−1‖μ ◦ M− 1
2 ‖ = C−1‖μ ◦

(
M− 1

2 U T
)

‖ ≤ inf
ν∈IP2

m−2

‖μ ◦
(

M− 1
2 U T

)
− ν‖L∞(Teq)

= inf
ν∈IP2

m−2

‖μ− ν‖L∞(T ).

Choosing μ = ∇π and ν = ∇ Im−1
T π we obtain the left part of (31), which concludes

the proof. ��
We introduce a variant Lm of the shape function, following an idea originally pro-

posed in [8]: for each π ∈ IHm

Lm(π) := inf
{
(det M)

m−1
4 ; M ∈ S+

2 s.t. ‖(∇π) ◦ M‖ ≤ 1
}
. (32)

Lemma 1.6 There exists a constant C = C(m) ≥ 1 such that for all π ∈ IHm

C−1Lm(π) ≤ Lm,p(π) ≤ C Lm(π).

Proof Injecting (15), Lemma 1.4 and Lemma 1.5 into (25) we obtain

inf
{
(|Teq|/|T |)m−1

2 ; T s.t. |T |− 1
p ‖∇

(
π − Im−1

T π
)

‖L p(T ) ≤ C
}

≤ inf
{
(det M)

m−1
4 ; M ∈ S+

2 s.t. ‖(∇π) ◦ M‖ ≤ 1
}

≤ inf
{
(|Teq|/|T |)m−1

2 ; T s.t. |T |− 1
p ‖∇

(
π − Im−1

T π
)

‖L p(T ) ≤ c/C
}
,
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where we used the fact that for any M ∈ S+
2 there exists an acute triangle T such that

HT = M . Hence

|Teq|m−1
2 Lm,p(π/C) ≤ Lm(π) ≤ |Teq|m−1

2 Lm,p(Cπ/c),

which concludes the proof since the shape function satisfies the homogeneity property
Lm,p(λπ) = |λ|Lm,p(π) for any λ ∈ R, as can be seen from the expression (6). ��

Following a suggestion of the referees, we may compare Lemma 1.5 to other aniso-
tropic error estimates that have been proposed in the literature.

Remark 1.7 The specificities of the estimate (31) are the following:

1. It only applies to an exactly polynomial function f = π ∈ IHm , or f = π + μ

where μ ∈ IPm−1 since the interpolation operator reproduces these elements:
μ = Im−1

T μ. This is a strong restriction, yet sufficient for our purposes, when
compared for instance to [1] which applies to arbitrary functions in an adequate
smoothness space.

2. It is sharp (up to the multiplicative constant C) for any polynomial π ∈ IHm and
any acute triangle T . The sharpness is lost in the case of a strongly obtuse triangle
since the measure of sliverness S(T ) only appears on the right of (31). A more
elaborate estimate, which is restricted to the case m = 2 of linear interpolation
but applies to general functions, is proposed in [13] in the attempt (confirmed by
some examples) to provide a sharp estimate for both acute and obtuse triangles.
A detailed study of the interpolation error of a polynomial function, with respect
to the shape of the triangle T , can also be found in [9,10] in the cases m = 2 or
m = 3 respectively.

3. The orientation and the scales of the triangle T are encoded in the matrix M =
HT ∈ S+

2 . This is one of the major strengths of this estimate, because it leads to
the optimization problem (32) posed on the set S+

2 of symmetric positive definite
matrices which can be addressed mathematically. This problem is studied in Sect. 2
using algebraic techniques which yield an explicit equivalent of the shape functions
Lm,p for all m ≥ 2, and an explicit “near minimizer” π ∈ IHm �→ Mm(π) ∈ S+

2 ,
for m ∈ {2, 3}, of the minimization problem (32) defining Lm(π). This prob-
lem is also studied in Chapter 6 of [20] using analytical techniques, which yield
well behaved, although implicit, “near minimizers” π �→ Mm(π) of (32) for
all m ≥ 2.

We now focus our attention on the global approximation of a function f ∈ Cm(�)

in the W 1,p semi-norm. For that purpose we assume that a map z ∈ � �→ M(z) ∈ S+
2

has been obtained which satisfies
∫
�

(det M(z))
m−1

4 τdz ≤Cτ
L

∫
�

Lm(πz)
τdz, and ‖πz ◦ M(z)−

1
2 ‖≤1 for all z ∈�,

(33)

where the polynomial πz ∈ IHm is defined by (3), the exponent τ by (7), and CL is a
constant not too large. In other words we assume that the matrix M(z) is a minimizer,
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Fig. 2 Anisotropic mesh generation with a guaranteed upper bound on the maximal angle of the elements
is generally tractable if one only requires some anisotropy close to the boundary of the domain, and tangen-
tially to it (left). This is not any more the case if some anisotropy is required in the interior of the domain,
at least with current software (right)

in an average sense and up to the sub-optimality constant CL , of the optimization
problem appearing in the definition (32) of Lm(πz). Such a map can be obtained by
setting M(z) := Mm(πz)+ δ Id, where Mm is described in Point 3 of Remark 1.7,
and where δ > 0 is a positive constant introduced to avoid degeneracy problems.

We introduce a Riemannian metric H : � → S+
2

H(z) := h−2(det M(z))
−1

(m−1)p+2 M(z), (34)

where h > 0 is a parameter. Mesh generation software such as FreeFem++, see Fig. 2
(right), see [17] for a more extensive list of two and three dimensional mesh generators,
are designed to produce a mesh T of � such that

C−2
0 H(z) ≤ HT ≤ C2

0 H(z) (35)

for all T ∈ T , z ∈ T , where C0 ≥ 1 is a constant not too large which reflects the
quality of the adaptation of the mesh T to the metric H . In the expression (34) of the
Riemannian metric H , the matrix M(z) is used to prescribe optimal aspects ratios
(requirement ii in the introduction) for the triangles T ∈ T , and the scalar factor to
equidistribute the interpolation errors among the elements of T (requirement i). The-
oretical guarantees for such algorithms were established in [16,7,20] when the metric
sufficiently regular. Unfortunately these results do not guarantee any property of the
measure of sliverness S(T ) of the generated triangles T ∈ T (requirement iii). This
generally forbids to achieve the optimal convergence estimate stated in Theorem 1,
even up to a fixed multiplicative constant. The adaptation of the method presented
here to this (suboptimal) context is described [19].

Limited results exist nevertheless on anisotropic mesh generation with some con-
trol on the measure of sliverness. Such a construction is (usually) possible if one only
requires some anisotropy close to the boundary of the domain, and tangentially to it,
see Fig. 2 (left), which is the adequate behavior for the discretization of a number
of problems (such as the Poisson equation, or singularly perturbed reaction diffu-
sion problems) as discussed in [2]. In the general case where some anisotropy is
required in the interior of the domain, we refer to Theorem 6.1.2 in Chapter 6 of
[20], on “quasi-acute triangulations”, which implies the following. Assume that �
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is the periodic domain (R/ZZ)2; the key is the absence of a boundary. Assume that
the metric H satisfies the strong regularity properties required for this result, which
are expressed under the form of Lipschitz regularity with respect to some distances
on S+

2 and R
2, and are satisfied if the parameter h > 0 in (34) is sufficiently small

according to Lemma 6.5.12 in [20]. Then there exists a triangulation T which satisfies
(35), for an absolute constant C0 independent of H , and in addition the following
property: there exists a C0-refinement T ′ of the triangulation T (in other words each
element of T contains at most C0 elements of T ′, and each element of T ′ is contained
in an element of T ) such that S(T ′) ≤ C0 for all T ′ ∈ T ′ (requirement iii in the
introduction).

Let (T , T ′) be a pair of triangulations satisfying the above conditions. If T (z) ∈ T
denotes the element containing a point z ∈ �, then we obtain using (15) and (35)

#(T ′) ≤ C0#(T )=C0

∫
�

dz

|T (z)| ≤ C3
0

|Teq|
∫
�

√
det H = C3

0

|Teq|h−2
∫
�

(det M)
m−1

4 τ .

(36)

Let z ∈ �, T ′ ∈ T ′ and T ∈ T be such that z ∈ T ′ ⊂ T . Using (18) and (35) we
obtain H′

T ≥ 2−2HT ≥ (2C0)
−2 H(z), hence

‖∇
(
πz − Im−1

T ′ πz

)
‖L p(T ′) ≤ |T ′| 1

p ‖∇
(
πz − Im−1

T ′ πz

)
‖L∞(T ′)

≤ C |Teq|
1
p (det HT ′)−

1
2p S(T ′)‖(∇πz) ◦ H− 1

2
T ′ ‖

≤ C1(det H(z))−
1

2p ‖(∇πz) ◦ H(z)−
1
2 ‖

= C1h
2
τ ‖(∇πz) ◦ M(z)−

1
2 ‖

≤ C1h
2
τ ,

where C1 := C |Teq|
1
p 2

1
τ C

1
τ
+1

0 . We used successively Jensen’s inequality in the first
line, (15) and Lemma 1.5 in the second line, S(T ′) ≤ C0, the definition (7) of τ and
(30) in the third line, (34) in the fourth line and (33) in the last line. In order to control
the function f , instead of the polynomial πz which corresponds to its Taylor expan-
sion, we may use Point i of Lemma 3.1, proven in Sect. 3 below, which immediately
implies in this context that

|‖∇
(

f − Im−1
T ′ f

)
‖L p(T ′) − ‖∇

(
πz − Im−1

T ′ πz

)
‖L p(T ′)| ≤ ε(h)h

2
τ ,

where ε(h) → 0 as h → 0, and the function ε : R
∗+ → R+ only depends on f,m

and M. If h is sufficiently small (requirement iv in the introduction), then ε(h) ≤ 1

and therefore ‖∇
(

f − Im−1
T ′ f

)
‖L p(T ′) ≤ (C1 + 1)h

2
τ for each T ′ ∈ T ′. It follows

that
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#(T ′)
m−1

2 ‖∇
(

f − Im−1
T ′ f

)
‖L p(�) ≤ #(T ′)

1
τ max

T ′∈T ′ ‖∇
(

f − Im−1
T ′ f

)
‖L p(T ′)

≤ (C1+1)
(

C3
0/|Teq|

) 1
τ

⎛
⎝∫
�

(det M)
m−1

4 τdz

⎞
⎠

1
τ

,

≤ C2‖Lm(d
m f/m!)‖Lτ (�),

where C2 = (C1+1)(C3
0/|Teq|) 1

τ CL . We used the definition (7) of the exponent τ in the
first line, (36) in the second line and (33) in the last. As announced the triangulation T ′
satisfies the optimal error estimate of Theorem 1, up to the multiplicative constant C2.

2 Study of the shape function

This section is devoted to the close study of the shape function Lm,p, using algebraic
techniques. Our approach is based on the variant Lm introduced in (32), defined for
all π ∈ IHm by

Lm(π) := inf{(det M)
m−1

4 ; M ∈ S+
2 s.t. ‖(∇π) ◦ M− 1

2 ‖ ≤ 1}, (37)

and which is uniformly equivalent to Lm,p according to Lemma 1.6.

2.1 Explicit minimizers

We describe the solution to the optimization problem appearing in (37) when m ∈
{2, 3}. The case m = 2, which corresponds to piecewise linear finite elements is
already known, and discussed in detail in [16,3] and [14] for functions of more than two
variables. In contrast the results in the case m = 3 are entirely new, although this case,
which corresponds to piecewise quadratic elements, has already been discussed in [10].

In order to present our results, we introduce some notation. For any homogeneous
quadratic polynomialπ ∈ IH2, π = ax2+2bxy+cy2, we define the symmetric matrix

[π ] =
(

a b
b c

)
. (38)

For all π ∈ IH2, π = ax2 + 2bxy + cy2, we define

M2(π) := 4[π ]2 = 4

(
a b
b c

)2

= 4

(
a2 + b2 ab + bc
ab + bc b2 + c2

)
. (39)

For all π ∈ IH3, π = ax3 + 3bx2 y + 3cxy2 + dy3, we define

M3(π) :=
√

[∂xπ ]2 + [∂yπ ]2 = 3

√(
a b
b c

)2

+
(

b c
c d

)2

= 3

√(
a2 + 2b2 + c2 ab + 2bc + cd
ab + 2bc + cd b2 + 2c2 + d2

)
. (40)
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We say that a polynomial π ∈ IHm is univariate if there exists λ, α, β ∈ R such that
π = λ(αx + βy)m .

Proposition 2.1 (i) If π ∈ IH2 is not univariate, then the matrix M2(π) is the
unique minimizer of the optimization problem appearing in (32).

(ii) The map π ∈ IH3 → M3(π) is a near-minimizer of the problem (32) in the
following sense. If π ∈ IH3 is not univariate, then M3(π) is non-degener-

ate and ‖(∇π) ◦ M3(π)
− 1

2 ‖ ≤ √
2 (hence ‖(∇π) ◦

(√
2M3(π)

)− 1
2 ‖ ≤ 1).

Furthermore there exists a constant C, independent of π , such that

√
det M3(π) ≤ C L3(π). (41)

Proof According to (29), ‖(∇π) ◦ M− 1
2 ‖ ≤ K is equivalent to |∇π(z)| ≤ K |z|m−1

M
for all z ∈ R

2, where π ∈ IHm,M ∈ S+
2 and K > 0 are arbitrary.

We first consider an homogeneous polynomial π ∈ IH2, which is not univariate.
For all z ∈ R

2 one has ∇π(z) = 2[π ]z, and therefore |∇π(z)|2 = zTM2(π)z.
On the other hand consider M ∈ S+

2 such that |∇π(z)|2 = zTM2(π)z ≤ zT Mz.
We thus have M2(π) ≤ M in the sense of symmetric matrices, which implies that
det M2(π) ≤ det M with equality if and only if M2(π) = M , since M2(π) is
positive definite. This concludes the proof of the first point.

We now consider π ∈ IH3, which is again not univariate. In the sense of symmetric
matrices, we have

M3(π) =
√

[∂xπ ]2 + [∂yπ ]2 ≥
√

[∂xπ ]2 = |[∂xπ ]|,

where we used the fact that the square root
√· : S⊕

2 → S⊕
2 is increasing. It follows

that

|∇π(z)|2 = |∂xπ(z)|2 + |∂yπ(z)|2 ≤ 2
(

zTM3(π)z
)2
,

hence M3(π) satisfies the constraint ‖(∇π) ◦ M3(π)
− 1

2 ‖ ≤ √
2. Note that

det M3(π) = 9
√
(a2 + 2b2 + c2)(b2 + 2c2 + d2)− (ab + 2bc + cd)2. (42)

We postpone the proof of (41) to Sect. 2.2, right after (48), as we develop a general
method for obtaining simple equivalents of the functions Lm . ��
Remark 2.2 It was proposed in [3,14] to generate an anisotropic mesh T of a domain
� via the transport of a uniform mesh T ′ of an auxiliary domain �′ by a diffeo-
morphism F : � → �′. Without entering the details of this approach, we may
describe one of its successes. Assume that one wishes to approximate a strongly con-
vex function f ∈ C2(�), using linear finite elements. Define F(z) := 2∇ f (z) and
�′ := F(�) ⊂ R

2. Consider a uniform mesh T ′ of�′, of mesh size h > 0, and denote
by T the collection of triangles obtained as follows: for each triangle T ′ ∈ T ′, of verti-
cesv1, v2, v3, the setT contains the triangle T of vertices F−1(v1), F−1(v2), F−1(v3).
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If the parameter h > 0 is sufficiently small, then T is a triangulation since F : � → �′
is a diffeomorphism. Furthermore we obtain using (14) that T is adapted in the sense
of (35) to the metric H : � → S+

2 defined by

H(z) := h−2d F(z)Td F(z) = h−24(d2 f (z))2 = h−2M2(πz), (43)

hence the optimal metric, see (34), for the approximation f in the W 1,∞ semi-norm!
(The control of the measure of sliverness of the elements of T remains, however, an
open problem with this method.)

Let us finally mention that, although they are derived from the coefficients of π ,
the maps π �→ Mm(π) for m ∈ {2, 3} are invariant under rotation, and therefore not
tied to the chosen system of coordinate (x, y), as expressed by the following result.

Proposition 2.3 For any m ∈ {2, 3}, any π ∈ IHm and any unitary matrix U ∈ O2,
one has

Mm(π ◦ U ) = U TMm(π)U.

Proof Let π ∈ IH2 and let U ∈ O2. Then, as announced,

M2(π ◦ U ) = 4[π ◦ U ]2 = 4(U T[π ]U )2 = U TM2(π)U.

Let π ∈ IH3 and denote by (ui j )1≤i, j≤2 the entries of the unitary matrix U . Then

[∂x (π ◦ U )] = u11U T[∂xπ ]U + u12U T[∂yπ ]U
[∂y(π ◦ U )] = u21U T[∂xπ ]U + u22U T[∂yπ ]U

Hence, since U is unitary,

[∂x (π ◦ U )]2 + [∂y(π ◦ U )]2

= (u2
11 + u2

21)U
T[∂xπ ]2U + (u11u12 + u21u22)U

T([∂xπ ][∂yπ ] + [∂yπ ][∂xπ ])U
+(u2

12 + u2
22)U

T[∂yπ ]2U

= U T[∂xπ ]2U + U T[∂yπ ]2U

Therefore

M3(π ◦ U ) =
√

U T[∂xπ ]2U + U T[∂yπ ]2U = U T
√

[∂xπ ]2 + [∂yπ ]2 U

= U TM3(π)U

which concludes the proof. ��
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2.2 Polynomial equivalents

We introduce equivalents of the shape function π �→ Lm(π) on IHm , which can be
written in analytic form in terms of the coefficients of π ∈ IHm . As a starter we infer
from Point i of Proposition 2.1 that for any π ∈ IH2

L2(π) = (det M2(π))
1
4 = 2

√| det[π ]|.

For each r ≥ 2 we denote by IHr the space of homogeneous bivariate polynomials
of degree r , as in (4) for r = m, equipped with the norm

‖μ‖ := sup
z �=0

|μ(z)|
|z|r .

For μ ∈ IHr and A ∈ M2, we define the homogeneous polynomial μ ◦ A ∈ IHr by
μ ◦ A(z) := μ(Az), z ∈ R

2. Observe that for M ∈ S+
2 one has

‖μ ◦ M− 1
2 ‖ = sup

z �=0

|μ(z)|
|z|rM

.

We now introduce a variant Kr := IHr → R+ of the shape function Lm , which was
first defined in [8], and later studied in [18], in the context of optimal mesh adaptation
for finite element approximation in the L p norm. (More precisely, due to different
conventions, the function Kr is tied to the function K E

r defined in [18] by the equality
Kr = π− r

2 K E
r .) For each μ ∈ IHr we define

Kr (μ) := inf
{
(det M)

r
4 ; M ∈ S+

2 s.t. ‖μ ◦ M− 1
2 ‖ ≤ 1

}
.

Observe that |∇π |2 := (∂xπ)
2 + (∂yπ)

2 ∈ IH2m−2 for each π ∈ IHm , and that clearly

Lm(π) =
√

K2m−2(|∇π |2). (44)

Given a pair of non negative functions Q and R on IHm , we write Q ∼ R if and
only if there exists a constant C ≥ 1 such that C−1 Q ≤ R ≤ C Q holds uniformly
on IHm . We sometimes slightly abuse notations and write Q(π) ∼ R(π). We say that
a function Q is a polynomial on IHm if there exists a polynomial P of m + 1 real
variables such that for all a0, . . . , am ∈ R,

Q

(
m∑

i=0

ai xi ym−i

)
= P(a0, . . . , am).

We define deg Q := deg P , and we say that Q is homogeneous if P is homogeneous.
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The following equivalences were established in [18] : for π ∈ IH2

K2(π) ∼ √| det[π ]|, (45)

and for π ∈ IH3

K3(π) ∼ 4
√| disc(π)|, (46)

where disc(π) denotes the discriminant of the cubic polynomial π , which is defined
by

disc(ax3 + 3bx2 y + 3cxy2 + dy3) = 4(ab − c2)(bc − d2)− (ad − bc)2.

More generally for each r ≥ 2 an explicit homogenous polynomial Q on IHr is
introduced in [18], which satisfies

Kr ∼ d
√|Q|, with d := deg Q.

Combining this result with (44) we obtain an explicit equivalent of the functions Lm .

Proposition 2.4 Let m ≥ 2 and let Q be an homogeneous polynomial on IH2m−2 such
that K2m−2 ∼ d

√|Q|, where d = deg Q. Let Q∗ be the polynomial on IHm defined by

Q∗(π) := Q(|∇π |2),

then Lm ∼ 2d
√

Q∗ on IHm.

This construction uses an equivalent d
√|Q| of K2m−2 to produce an equivalent of

Lm . Unfortunately, as m increases, the practical construction of Q becomes more
involved and the degree d quickly raises. In the following theorem, we build an equiv-
alent to Lm from an equivalent of Km−1 instead of K2m−2, which is therefore simpler.

Theorem 2.5 Let m ≥ 3 and let Q be an homogeneous polynomial on IHm−1 such
that Km−1 ∼ d

√|Q|, where d = deg Q. Let (Qk)0≤k≤r be the homogeneous polyno-
mials of degree d on IHm−1 × IHm−1 such that for all u, v ∈ R and all π1, π2 ∈ IHm

one has

Q(uπ1 + vπ2) =
∑

0≤k≤d

(
d

k

)
ukvd−k Qk(π1, π2), (47)

where
(d

k

) := d!
k!(d−k)! . Let Q∗ be the polynomial defined for all π ∈ IHm by

Q∗(π) :=
∑

0≤k≤d

(
d

k

)
Qk
(
∂xπ, ∂yπ

)2
,

then Lm ∼ 2d
√

Q∗ on IHm.
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Proof See Appendix B. ��
Using this construction and (45) we obtain an equivalent of L3 as follows. Let

π1 = ax2 + 2bxy + cy2 and π2 = a′x2 + 2b′xy + c′y2 be two elements of IH2. We
obtain

det([uπ1 + vπ2]) = (ua + va′)(uc + vc′)− (ub + vb′)2

= u2(ac − b2)+ uv(ac′ + a′c − 2bb′)+ v2(a′c′ − b′2).

Applying the construction of Theorem 2.5 to π = ax3 + 3bx2 y + 3cxy2 + dy3 ∈ IH3
we obtain

L3(π) ∼ 3 4
√
(ac − b2)2 + (ad − bc)2/2 + (bd − c2)2. (48)

Remarking that

2[(ac − b2)2 + (ad − bc)2/2 + (bd − c2)2]
= (a2 + 2b2 + c2)(b2 + 2c2 + d2)− (ab + 2bc + cd)2,

and using Eq. (42) we obtain that L3(π) ∼ √
det M3(π). This point concludes the

proof of Proposition 2.1 and thus establishes that the map M3 defined in (40) can be
used for optimal mesh adaptation for quadratic finite elements.

Using (46) we similarly obtain an equivalent of L4. Denoting π = ax4 + 4bx3 y +
6cx2 y2 + 4dxy3 + ey4:

L4(π)
8 ∼ (3b2c2 − 4ac3 − 4b3d + 6abcd − a2d2)2

+ (2bc3 − 6ac2d + 4abd2 − 4b3e + 6abce − 2a2de)2/4

+ (3c4−6bc2d+8b2d2−6acd2−6b2ce+6ac2e + 2abde − a2e2)2/6

+ (2c3d − 4ad3 − 6bc2e + 4b2de + 6acde − 2abe2)2/4

+ (3c2d2 − 4bd3 − 4c3e + 6bcde − b2e2)2.

The following proposition identifies the polynomials π ∈ IHm for which Lm(π)=0,
and therefore the values of dm f for which anisotropic mesh adaptation may lead to
super-convergence.

Proposition 2.6 Let m ≥ 2 and let tm := ⌊m+3
2

⌋
. Then for all π ∈ IHm,

Lm(π)=0 if and only if π=(αx+βy)tm π̃ for some α, β∈R and π̃ ∈ IHm−tm . (49)

Proof It was established in [18] that K2m−2(π∗) = 0 if and only if π∗ ∈ IH2m−2 has
a linear factor of multiplicity m. We therefore obtain, using (44), that Lm(π) = 0 if
and only |∇π |2 is a multiple of lm , where l is of the form l = αx + βy.

Let us first assume that |∇π |2 = (∂xπ)
2 + (∂yπ)

2 has such a form. Clearly (∂xπ)
2

and (∂yπ)
2 are both multiples of lm . Therefore ∂xπ and ∂yπ are multiples of ls where

s is an integer such that 2s ≥ m, hence s ≥ tm − 1. We therefore have

123



292 J.-M. Mirebeau

∂xπ = lsπ1 and ∂yπ = lsπ2 where π1, π2 ∈ IHm−1−s .

Recalling that l = αx + βy we obtain

0 = ∂2
yxπ − ∂2

xyπ = ls(∂yπ1 − ∂xπ2)+ sls−1(βπ1 − απ2),

hence βπ1 − απ2 is a multiple of l. Since π is homogenous of degree m it obeys the
Euler identity mπ(z) = 〈z,∇π(z)〉 for all z = (x, y) ∈ R

2. Assuming without loss
of generality that α �= 0, we therefore obtain

mπ(x, y) = ls(xπ1 + yπ2) = ls
(
(αx + βy)

π1

α
+ y

α
(απ2 − βπ1)

)

which shows that π is a multiple of ls+1, hence of ltm .
Conversely if π is a multiple of ltm then ∂xπ and ∂yπ are both multiples of ltm−1.

Since 2(tm − 1) ≥ m the polynomial |∇π |2 is a multiple of lm which concludes the
proof. ��

3 Proof of the main result

This section is devoted to the proof of Theorem 2. We thus consider a fixed bounded
polygonal domain� ⊂ R

2, an integer m ≥ 2, an exponent 1 ≤ p < ∞ and a function
f ∈ Cm(�).

The Taylor development of f close to a point z ∈ � is given by two polynomials
μz ∈ IPm−1 and πz ∈ IHm : f (z + h) = μz(h) + πz(h) + o(|h|m), where h ∈ R

2 is
small. The Taylor development of the function ∇ f : � → R

2 close to a point z ∈ �
is obtained by derivation of the previous one:

∇ f (z + h) = ∇μz(h)+ ∇πz(h)+ o
(
|h|m−1

)
,

and the corresponding Taylor formula reads as follows: for any z, h such that [z, z +
h] ⊂ �

∇ f (z + h) = ∇μz(h)+ (m − 1)

1∫
t=0

∇πz+th(h)(1 − t)m−2dt. (50)

We denote by ω the modulus of continuity of the function z ∈ � �→ ∇πz ∈ IH2
m−1:

for each r > 0

ω(r) := sup
{‖∇πz − ∇πz′ ‖; z, z′ ∈ � s.t. |z − z′| ≤ r

}
, (51)

where we recall that ‖μ‖ = sup{|μ(z)|/|z|m−1; z �= 0} for all μ ∈ IH2
m−1, see (28).

Our first lemma is an estimation on a single triangle of the gradient interpolation
error of f .
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Lemma 3.1 There exists a constant C� = C�( f,m) such that the following holds.

(i) For any triangle T ⊂ �, and any z ∈ T one has

∣∣∣‖∇( f − Im−1
T f )‖L p(T ) − ‖∇(πz − Im−1

T πz)‖L p(T )

∣∣∣
≤ C�ω(diam(T ))|T | 1

τ ρ(T )
m+1

2 (52)

(ii) For any triangle T ⊂ � one has

‖∇( f − Im−1
T f )‖L p(T ) ≤ C�|T | 1

p diam(T )m−1S(T ). (53)

Proof The point z is fixed throughout this proof. We define a function g ∈ Cm(�) by
the equality

g(z + h) := f (z + h)− μz(h)− πz(h),

for all h such that z + h ∈ �. We have

∣∣∣‖∇ ( f − Im−1
T f

)
‖L p(T ) − ‖∇

(
πz − Im−1

T πz

)
‖L p(T )

∣∣∣
≤ ‖∇(( f − πz)− Im−1

T ( f − πz))‖L p(T )

= ‖∇(g − Im−1
T g)‖L p(T )

≤ |T | 1
p ‖∇

(
g − Im−1

T g
)

‖L∞(T )

≤ Cρ(T )|T | 1
p ‖∇g‖L∞(T ),

where we used the reverse triangle inequality in the first line, the translation invariance
(8) and the equality μz = Im−1

T μz in the second line, Jensen’s inequality in the third
line, and Lemma 1.3 in the last line combined with the inequality 1 ≤ S(T ) ≤ ρ(T ),
see (21). We have

∇g(z + h) = ∇ f (z + h)− ∇μz(h)− ∇πz(h)

= (m − 1)

1∫
t=0

(∇πz+th(h)− ∇πz(h))(1 − t)m−2dt,

therefore ‖∇g(z + h)‖ ≤ |h|m−1ω(h). Furthermore if z ∈ T and z + h ∈ T , then
|h|2 ≤ diam(T )2 ≤ (4/|Teq|)|T |ρ(T ) according to Lemma 1.1. This concludes the

proof of Point i, provided that C� ≥ C(4/|Teq|)m−1
2 .

We now turn to the proof of Point ii, and for that purpose we consider a fixed point
z ∈ T . Changing our previous notation we denote by g ∈ Cm(�) the function defined
by g(z + h) := f (z + h)− μz(h) for all h such that z + h ∈ �. We obtain
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‖∇( f − Im−1
T f )‖L p(T ) = ‖∇(g − Im−1

T g)‖L p(T ) ≤ |T | 1
p ‖∇(g − Im−1

T g)‖L∞(T )

≤ C |T | 1
p ‖∇g‖L∞(T )S(T ),

where we used successively that the interpolation operator reproduces the elements of
IPm−1, Jensen’s inequality, and Lemma 1.3. On the other hand we obtain using (50).

∇g(z + h) = ∇ f (z + h)− ∇μz(h) = (m − 1)

1∫
t=0

∇πz+th(h)(1 − t)m−2dt,

hence |∇g(z + h)| ≤ |h|m−1 sup{‖∇πz‖; z ∈ �}. If z ∈ T and z + h ∈ T ,
then |h| ≤ diam(T ), which concludes the proof of (53) provided that C� ≥
C sup{‖∇πz‖; z ∈ �}. ��

3.1 The lower error estimate (12)

Under the hypotheses of Lemma 3.1, and recalling from (8) that ‖∇
(
π − Im−1

T π
)

‖L p(T ) ≥ |T | 1
τ Lm,p(π), we obtain

‖∇
(

f − Im−1
T f

)
‖L p(T ) ≥ |T | 1

τ

(
Lm,p(πz)− C�ω(diam T )ρ(T )

m+1
2

)
. (54)

We consider an admissible sequence of triangulations (TN )N≥N0 . For all N ≥ N0,
all T ∈ TN and all z ∈ T , we define φN (z) := |T | and

ψN (z) :=
(

Lm,p(πz)− C�ω(diam(T ))ρ(T )
m+1

2

)
+ ,

where λ+ := max{λ, 0}. Holder’s inequality
∫

f1 f2 ≤ ‖ f1‖p1‖ f2‖p2 , applied to the

functions f1 = φ
(m−1)τ

2
N ψτN and f2 = φ

− (m−1)τ
2

N , and the exponents p1 = p
τ

and p2 =
2

(m−1)τ , yields

∫
�

ψτN ≤
⎛
⎝∫
�

φ
(m−1)p

2
N ψ

p
N

⎞
⎠

τ
p
⎛
⎝∫
�

φ−1
N

⎞
⎠

(m−1)τ
2

. (55)

Furthermore for any T ∈ TN and any z ∈ T , we obtain using (54)

φN (z)
(m−1)p

2 ψN (z)
p = |T | p

τ
−1ψN (z)

p ≤ 1

|T | ‖∇
(

f − Im−1
T f

)
‖p

L p(T ),
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hence
∫
�

φ
(m−1)p

2
N ψ

p
N ≤

∑
T ∈TN

1

|T |
∫
T

‖∇
(

f − Im−1
T f

)
‖p

L p(T ) = ‖∇
(

f − Im−1
TN

f
)

‖p
L p(�).

Elevating (55) to the power 1
τ

, injecting the above estimate and observing that∫
�
φ−1

N = #TN ≤ N , we thus obtain

‖ψN ‖Lτ (�) ≤ ‖∇
(

f − Im−1
TN

f
)

‖L p(�)N
m−1

2 . (56)

Since the sequence (TN )N≥N0 is admissible, there exists a constant CA > 0 such

that for all N and all T ∈ TN we have diam(T ) ≤ CA N− 1
2 . We introduce a subset of

T ′
N ⊂ TN which gathers the most degenerate triangles

T ′
N =

{
T ∈ TN ; ρ(T ) ≥ ω

(
CA N− 1

2

) −1
m+1
}
,

where ω is defined by (51). We denote by�′
N the portion of� covered by T ′

N . For all
z ∈ � \�′

N one has

ψN (z) ≥ Lm,p(πz)− C�

√
ω(CA N− 1

2 ).

Hence, with the convention Lm,p(dm f (z)/m!) := Lm,p(πz),

‖ψN ‖τLτ (�) ≥
∥∥∥∥
(

Lm,p

(
dm f

m!
)

− C�

√
ω(CA N− 1

2 )

)
+

∥∥∥∥
τ

Lτ (�\�′
N )

≥
∥∥∥∥
(

Lm,p

(
dm f

m!
)

− C�

√
ω(CA N− 1

2 )

)
+

∥∥∥∥
τ

Lτ (�)

− Cτ |�′
N |,

where C := max{Lm,p(πz); z ∈ �} < ∞. We next observe that |�′
N | → 0 as

N → +∞: indeed for all T ∈ T ′
N we obtain using Lemma 1.1

|T | ≤ |Teq| diam(T )2ρ(T )−1 ≤ |Teq|C2
A N−1ω

(
CA N− 1

2

) 1
m+1

.

Since #(T ′
N ) ≤ N , we obtain |�′

N | ≤ |Teq|C2
Aω
(

CA N− 1
2

) 1
m+1

, which tends to 0 as

N → ∞. Therefore

lim inf
N→∞ ‖ψN ‖Lτ (�) ≥ lim

N→∞

∥∥∥∥
(

Lm,p

(
dm f

m!
)

−
√
ω(CA N− 1

2 )

)
+

∥∥∥∥
Lτ (�)

=
∥∥∥∥Lm,p

(
dm f

m!
)∥∥∥∥

Lτ (�)
.
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Combining this result with (56) we conclude the proof of the announced estimate (12).

3.2 A triangulation containing small periodic patches

This subsection describes the construction of some triangulations by the aggregation
of small periodic patches, which is a preliminary step for the proof of the estimate
(13) of Theorem 2 in the next subsection. The design of these triangulations is related
to the anterior works [4,5], yet it is adapted in order to keep under control the mea-
sure of sliverness of the elements. The triangulations considered in this subsection are
denoted by the letter P , instead of T , in order to avoid conflicts of notations with the
next subsection.

Our first lemma describes a family of meshes of a triangle R, which consist for the
largest part of a periodic tiling based on a triangle T scaled down by a factor 1/n,
except for a few elements close to ∂R.

Lemma 3.2 Let R and T be two triangles. There exists a family (PT,R,n)n≥1, of
conforming triangulations of R, and a constant CR,T , such that the following holds.

1. (Tights bounds on the cardinality of PT,R,n and the diameter of its elements)

lim
n→∞

#(PT,R,n)

n2 = |R|
|T | and max

T ′∈PT,R,n

diam(T ′)≤ 3

n
(diam(T )+ diam(R)).

(57)

2. (Conformity) The vertices of PT,R,n on the boundary of R are exactly those of
the form k

n a + (
1 − k

n

)
b, where 0 ≤ k ≤ n and a, b are vertices of R.

3. (Control of the boundary elements) Denote by RT,n ⊂ R the union of all the
elements of PT,R,n which are not of the following form: the image of T by a map
of the form z �→ z0 + σ z/n, for some z0 ∈ R

2, σ ∈ {−1, 1}. Then for all n ≥ 1

|RT,n| ≤ CR,T

n
and max

T ′∈PR,T,n

S(T ′) ≤ CR,T . (58)

Proof See Appendix. ��
We next introduce the concept of local shape specification, on the domain �.

Definition 3.3 A local shape specification is a (possibly discontinuous) map y ∈
� �→ Ty which associates a triangle Ty to each point y in the closure of�, and which
satisfies the following properties.

• The volume map y ∈ � �→ |Ty | ∈ R
∗+ is continuous and positive.

• The measure of degeneracy y ∈ � �→ ρ(Ty) ∈ R+ is uniformly bounded.

The next proposition describes a sequence of triangulations adapted in a certain
sense to a given local shape specification. This can be compared to the construction,
evoked in Sect. 1.2, of a triangulation adapted to a given Riemmannian metric in
the sense of (35). Given a point y ∈ R

2 and compact set T we define dH(y, T ) :=
max{|y − z|; z ∈ T }, which is the Haussdorf distance separating the sets {y} and T .
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Proposition 3.4 Let y �→ Ty be a local shape specification. There exists a sequence
(Pn)n≥2 of triangulations of �, a sequence (δn)n≥2 of positive reals converging to 0,
and a constant Ca, satisfying the following properties.

1. (Tight bounds on the cardinality of Pn and the diameter of its elements)

lim
n→∞

#(Pn)

n2 =
∫
�

dy

|Ty | and max
T ∈Pn

diam(T ) ≤ Ca

n
. (59)

2. (Control of the boundary elements) Denote by �n ⊂ � the union of all the ele-
ments T ∈ Pn which are not of the following form: the image of Ty, for some
y ∈ � such that dH(y, T ) ≤ δn, by a map of the form z �→ z0 + σ z/n, for some
z0 ∈ R

2, σ ∈ {−1, 1}. Then for all n ≥ 2

|�n| ≤ Ca ln n

n
and max

T ∈Pn

S(T ) ≤ Ca ln n.

Proof We consider a triangulation R1 of the polygonal domain � of minimal cardi-
nality N0. For each k ≥ 1 we denote by Rk the triangulation of� of cardinality k2 N0
obtained by uniformly subdividing the elements of R1 into k2 sub triangles.

For each n ≥ 1 we denote by Rk
n the triangulation of � obtained as the union of

the triangulations PR,T,n described in Lemma 3.2, where R ∈ Rk and T = TzR is
the triangle specified by the local shape specification at the barycenter of R. Point 2
of Lemma 3.2 guarantees that this triangulation is conforming: there is no hanging
node at the interfaces of the triangles R ∈ Rk . Our next observation is that for each
k, n ≥ 1, using Lemma 1.1

n max
T ∈Rk

n

diam(T ) ≤ 3 max
R∈Rk

(diam(R)+ diam(TzR )) ≤ 3 diam(�)

+ sup
y∈�

√
(4/|Teq|)|Ty |ρ(Ty),

which is finite and independent of k and n. For each k, n ≥ 1 we define a real δ(n, k)
by the equality

#(Rk
n)

n2 =
∫
�

dy

|Ty | + δ(n, k).

Using (57) we obtain

lim
n→∞ δ(n, k) = δ(k) :=

∑
R∈Rk

|R|
|TzR | −

∫
�

dy

|Ty | .

Note that δ(k) → 0 as k → ∞ since the map y �→ Ty is continuous.
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We denote by �k
n the union of the sets RT,n described in Lemma 3.2, for R ∈ Rk

and T = TzR , and by Ck the sum of the corresponding constants CR,T . We obtain
using (58) that for all n ≥ 1

|�k
n| ≤ Ck

n
and max

T ∈Rk
n

S(T ) ≤ Ck .

We finally choose a sequence (k(n))n≥2, such that k(n) → ∞ as n → ∞, and
which increases “slowly” in the following sense: we require that for n sufficiently
large one has δ(n, k(n)) ≤ δ(k(n))+ 1

n and Ck(n) ≤ ln n. Defining Pn := Rk(n)
n and

δn := diam(�)/k(n) we obtain the announced result. ��

3.3 The upper error estimate (13)

Throughout this section we consider a fixed real M ≥ 1, and we introduce the
collection of triangles

TM := {T ; |T | = 1, ρ(T ) ≤ M, zT = 0}

which is compact for the Haussdorf distance. We introduce a variant L M of the shape
function Lm,p defined as follows: for each π ∈ IHm

L M (π) := min
T ∈TM

‖∇
(
π − Im−1

T π
)

‖L p(T ). (60)

For any fixedπ ∈ IHm the map T �→ ‖∇(π−Im−1
T π)‖L p(T ) is continuous with respect

to the Haussdorff distance on the set of all triangles. Hence there exists a minimizing
triangle, that we denote by T (π) ∈ TM , for the optimization problem appearing in (60).

Since all norms are equivalent on the finite dimensional space IHm , there exists a
constant CM such that for all π ∈ IHm

sup
T ∈TM

‖∇
(
π − Im−1

T π
)

‖L p(T ) ≤ CM‖∇π‖.

The function L M is defined as the infimum of a family of CM -Lipschitz functions on
IHm , hence is also CM -Lipschitz: |L M (π)−L M (π

′)| ≤ CM‖∇π−∇π ′‖. Furthermore
for each π, π ′ ∈ IHm , one has since T (π) ∈ TM

‖∇(π ′ − Im−1
T (π) π

′)‖L p(T (π)) ≤ ‖∇
(
π − Im−1

T (π) π
)

‖L p(T (π)) + CM‖π − π ′‖
= L M (π)+ CM‖π − π ′‖. (61)

We consider the following local shape specification, see Definition 3.3,

y �→ Ty :=
(

L M (πy)+ M−1
)− τ

2
T (πy).
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In other words Ty is the isotropic scaling of the triangle T (πy) by the factor (L M (πy)+
M−1)− τ

2 . We thus have |Ty | = (L M (πy)+ M−1)−τ , which depends continuously on
y ∈ �, and ρ(Ty) = ρ(T (πy)) ≤ M .

Proposition 3.4 describes a sequence (Pn)n≥2 of triangulations of � attached to
this local shape specification, as well as a sequence (δn)n≥2 of positive numbers, a
sequence (�n)n≥2 of subdomains of�, and a constant Ca . We recall that for all n ≥ 2
and all T ∈ Pn

diam(T ) ≤ Ca/n, S(T ) ≤ Ca ln n, |�n| ≤ Ca(ln n)/n.

Using Point ii of Lemma 3.1 we obtain for each n ≥ 1 and each triangle T ∈ Pn

‖∇( f − Im−1
T f )‖L p(T ) ≤ C�C

m
a |T | 1

p (ln n)/nm−1.

Summing up the p-th power of the contributions of all the triangles T ∈ Pn such that
T ⊂ �n , we obtain

‖∇
(

f − Im−1
T f

)
‖L p(�n) ≤ C�C

m
a |�n|

1
p

ln n

nm−1 ≤ C�Cm+1
a (ln n)1+ 1

p n− 1
p

nm−1 =: εn

nm−1 ,

and we observe that εn → 0 as n → ∞.
We now turn to the contribution of � \ �n to the error, and for that purpose we

consider a triangle T which is the image of the triangle Ty , for some y ∈ � such that
dH(y, T ) ≤ δn , by a map of the form z �→ z0 +σ z/n, for some z0 ∈ R

2, σ ∈ {−1, 1}.
We have for any z ∈ T , using Point i of Lemma 3.1

‖∇
(

f − Im−1
T f

)
‖L p(T ) ≤ ‖∇

(
πz − Im−1

T πz

)
‖L p(T ) + C�ω(Ca/n)|T | 1

τ M
m+1

2

= |T | 1
τ

(
‖∇(πz −Im−1

T (πy)
πz)‖L p(T (πy))+C�ω(Ca/n)M

m+1
2

)

≤ L M (πy)+ CMω(δn)+ C�M
m+1

2 ω(Ca/n)

n
2
τ (L M (πy)+ M−1)

,

where we used the invariance property (8) in the second line, and (61) in the last line.

It follows that there exists an integer n0 such that ‖∇
(

f − Im−1
T f

)
‖L p(T ) ≤ n− 2

τ

for all n ≥ n0 and all T ∈ Pn . Hence

‖∇( f − Im−1
Pn

f )‖L p(�) ≤ ‖∇
(

f − Im−1
Pn

f
)

‖L p(�\�n) + ‖∇
(

f − Im−1
Pn

f
)

‖L p(�n)

≤ #(Pn)
1
p n− 2

τ + εnn−(m−1),

and therefore using (59)
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lim sup
n→∞

#(Pn)
m−1

2 ‖∇
(

f − Im−1
Pn

f
)

‖L p(�) ≤ lim
n→∞

#(Pn)
1
τ

n
2
τ

+ #(Pn)
m−1

2 εn

nm−1

=
⎛
⎝∫
�

dy

|Ty |

⎞
⎠

1
τ

+ 0

=
⎛
⎝∫
�

(L M (πy)+ M−1)τdy

⎞
⎠

1
τ

. (62)

Observe that L M (πy) converges decreasingly for each y ∈ � to Lm,p(dm f (y)/
m!) := Lm,p(πy) as M → ∞. Given any fixed ε > 0, and using standard results on
the convergence of integrals, we may therefore choose M = M(ε) sufficiently large
such that

⎛
⎝∫
�

(L M (πy)+ M−1)τdy

⎞
⎠

1
τ

≤
∥∥∥∥Lm,p

(
dm f

m!
)∥∥∥∥

Lτ (�)
+ ε. (63)

We denote by N0 the minimal cardinality of a triangulation of the polygonal domain
�, and we assume without loss of generality that #(P2) = N0. For each N ≥ N0, we
denote by n(N ) the largest integer such that #(Pn(N )) ≤ N , and we set T ε

N := Pn(N ).
Observing that #(T ε

N )/N → 1 as N → ∞, and combining (62) with (63), we obtain
the announced result (13):

lim sup
N→∞

N
m−1

2 ‖∇
(

f − Im−1
T ε

N
f
)

‖L p(�)

= lim sup
n→∞

#(Pn(N ))
m−1

2 ‖∇
(

f − Im−1
Pn(N )

f
)

‖L p(�) ≤
∥∥∥∥Lm,p

(
dm f

m!
)∥∥∥∥

Lτ (�)
+ ε.

The admissibility of the sequence (T ε
N )N≥N0 of triangulations immediately follows

from (59).

Conclusion

In this paper, we have introduced asymptotic estimates for the finite element interpo-
lation error measured in the W 1,p semi-norm, when the mesh is optimally adapted
to a function of two variables and the degree of interpolation m − 1 is arbitrary. The
approach used is an adaptation of the ideas developped in [18] for the L p interpolation
error, and leads to asymptotically sharp error estimates, exposed in Theorems 1 and 2.
These estimates involve a shape function Lm,p which generalises the determinant
which appears in estimates for piecewise linear interpolation. The shape function has
equivalents of polynomial form for all values of m, as established in Sect. 2.2. Up to
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a fixed multiplicative constant, our estimates can therefore be written under analytic
form in terms of the derivatives of the function to be approximated.

Future efforts will be devoted to the extension of these results to functions defined
on a domain of dimension d > 2, which is partially done in Chapter 3 of [20]. Another
challenge left open is the development of an anisotropic mesh generator with guaran-
tees on the maximal angle of the elements, as evoked in Sect. 1.2, which could allow to
apply the results of this paper in the context of adaptive mesh refinement for numerical
simulations.

Acknowledgments I am extremely grateful to my Ph.D advisor Albert Cohen for his support in the
elaboration of this paper.

Appendix

A Proof of Lemma 3.2

We construct the triangulation PT,R,n of R as the union of three components: PT,R,n =
Bn ∪ Ln ∪ In . The elements of Bn cover the boundary of R, while the elements of In

cover most of its interior and are included in R \ RT,n . The elements of Ln play the
role of a layer between In and Bn . Throughout this proof we denote by C = C(R, T ) a
generic constant independent of n, which may change from one occurrence to the next.

We introduce the homothetic contraction Rn of the triangle R by the factor 1−n−1,
with the same barycenter (i.e. the image of R by the map z �→ zR +(1−n−1)(z−zR)).
One easily checks that for all z ∈ ∂R

2

3

|R|
diam(R)

≤ n d(z, Rn) ≤ 2

3
diam(R), (64)

where d(z, E) := inf{|z − e|; e ∈ E} for any z ∈ R
2 and any E ⊂ R

2.
Let z0 be a vertex of the triangle T , and let u, v be two of its edge vectors. For each

n ≥ 1 we denote by I0
n the periodic tiling of R

2 built of the images of T by the maps
z �→ αu + βv+ (z0 + σ(z − z0))/n, where α, β ∈ ZZ and σ ∈ {−1, 1}. This tiling is
built of translations of the triangle T , and of its symmetric with respect to the vertex
z0, scaled by the factor 1/n. We define the collection of triangles

In := {T ′ ∈ I0
n ; T ′ ⊂ Rn},

which is illustrated in dark gray on Fig. 3. Any T ′ ∈ In satisfies diam(T ′) =
diam(T )/n and S(T ′) = S(T ). Furthermore these elements are of the form men-
tioned in Point 3 of the lemma, hence are included in R \ RT,n . The elements of In

cover the set {y ∈ R; n d(y, ∂R) ≥ diam(T ) + diam(R)}, which area is larger than
|R|−C/n. We thus obtain the left part of (58). Observing that |T ′| = |T |/n2 for each
T ′ ∈ T ′, we obtain that #(In)/n2 → |R|/|T | as n → ∞.

We define a collection L0
n of convex polygons as follows:

L0
n := {Rn ∩ T ′ ; T ′ ∈ I0

n and int(T ′) ∩ ∂Rn �= ∅},
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Fig. 3 The triangles R and Rn (left). The collections In (gray) of triangles and L0
n (white) of convex poly-

gons (center left). The collection Ln of triangles is obtained by triangulating the elements of L0
n (center

right). The collection Bn of triangles covers R \ Rn (right)

where int(E) denotes the interior of a set E ⊂ R
2. The set L0

n is illustrated in white on
Fig. 3 (center left). The elements T ′ ∈ I0

n such that int(T ′)∩ ∂Rn �= ∅ are included in
the set {y ∈ R

2; n d(y, ∂R) ≤ diam(R)+ diam(T )} which area is smaller than C/n,
and their individual area is |T |/n2. Therefore #(L0

n) ≤ Cn. The normals to faces of
the elements of L0

n belong to a family of at most 6 elements: the normals to the faces of
T , and to the faces of R. Therefore at most 6×5 different angles can appear in L0

n , and
we denote the largest of these by α < π . We denote by Ln the collection of triangles,
illustrated Fig. 3 (center right), obtained by triangulating each element of L0

n , which
is a convex polygon with at most six faces. The angles of the triangles partitioning a
convex polygon are smaller than the angles of this polygon, hence the angles of the
elements of Ln are also bounded by α. Furthermore #(Ln) ≤ 4#(L0

n) ≤ Cn, and
diam(T ′) ≤ diam(T )/n for each T ′ ∈ Ln .

We denote by En the collection of n equidistributed points on each edge of R,
described in Point 2 of Lemma 3.2, and we denote by E ′

n the collection of vertices
of the triangles in Ln that fall on ∂R′

n . For each point p ∈ En , we draw an edge
between p and the point of p′ ∈ E ′

n which is the closest to p. Note that |p − p′| ≤
d(p, Rn)+ diam(T )/n ≤ (diam(R)+ diam(T ))/n. This produces a partition B0

n of
R \ Rn into triangles and convex quadrilaterals, of diameter at most

diam(R)/n + 2(diam(R)+ diam(T ))/n ≤ 3(diam(R)+ diam(T ))/n,

since the distance between two consecutive points in En is at most diam(R). We denote
by Bn the collection of triangles, illustrated Fig. 3 (right), obtained by triangulating
each polygon K ∈ B0

n , of vertices K ∩(En ∪ E ′
n). We have #(Bn) = #(En)+#(E ′

n) ≤
3n + 3#(L0

n) ≤ Cn. In order to conclude the proof of this lemma, we only need to
show that the angles of the elements of Bn are uniformly bounded away from π .

We consider a triangle T ′ ∈ Bn , we denote by L the length of the edge of T ′
included in ∂R ∪ ∂Rn , and by H the height of the triangle T ′ such that L H = 2|T ′|.
It follows from (64) that H ≥ 2|T |/(3n diam(T )). Let L ′ be another edge of T ′, and
let θ be the angle of T ′ between the edges L and L ′. Then
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2|T ′| = L L ′ sin θ = L H,

hence sin θ ≥ H
diam(T ′) ≥ c

C , where c = 2|T |/(3n diam(T )) and C = 3(diam(R) +
diam(T )), which implies that arcsin( c

C ) ≤ θ ≤ π − arcsin( c
C ). It follows that all the

angles of T ′ are smaller than π − arcsin( c
C ) which concludes the proof.

B Proof of Theorem 2.5

We consider an arbitrary but fixed r ≥ 2 and we define sr := � r
2�+1. It is established

in Proposition 2.1 of [18] (equivalently Proposition 2.2.1 of [20]) that for any π ∈ IHr

the three following properties are equivalent

⎡
⎣ Kr (π) = 0,

There exists α, β ∈ R and π̃ ∈ IHr−sr such that π = (αx + βy)sr π̃ ,

There exists a sequence (φn)n≥0, φn ∈ SL2, such that π ◦ φn → 0.
(65)

In addition the following invariance property is established in Theorem 2.6.3 of [20]:
let Q be a polynomial on IHr such that Kr ∼ d

√|Q| where d = deg Q. Then dr/2 is
an integer and for all π ∈ IHr and all φ ∈ M2

Q(π ◦ φ) = (det φ)
dr
2 Q(π). (66)

It follows that the polynomials (Qk)0≤k≤d , defined in (47), satisfy for all π1, π2 ∈ IHr

and all φ ∈ M2

Qk(π1 ◦ φ, π2 ◦ φ) = (det φ)
dr
2 Qk(π1, π2). (67)

We define two functions on IHr × IHr

K∗(π1, π2) := 2d

√ ∑
0≤k≤r

Qk(π1, π2)2 and K (π1, π2) := 2d̃
√

Q̃(π2
1 + π2

2 ), (68)

where Q̃ is an homogeneous polynomial on IH2r such that K2r ∼ d̃
√

Q̃, and d̃ :=
deg Q̃. We show below that K ∼ K∗ on IHr × IHr . Choosing r = m − 1 and combin-
ing this result with (44) concludes the proof of Theorem 2.5.

Using (67) and remarking the invariance property Q̃(π ◦ φ) = (det φ)d̃r Q(π), for
the same reasons as (66), we obtain for all π1, π2 ∈ IHr and all φ ∈ M2

K (π1 ◦ φ, π2 ◦ φ) = | det φ| r
2 K (π1, π2),

K∗(π1 ◦ φ, π2 ◦ φ) = | det φ| r
2 K∗(π1, π2). (69)

Considerπ1, π2 ∈ IHr . The equality K (π1, π2) = 0 is equivalent toπ2
1 +π2

2 ∈ IH2r

having a linear factor of multiplicity s2r = r + 1 (according to (65)), which is also
equivalent to π1 and π2 having a common linear factor of multiplicity sr .
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On the other hand the equality K∗(π1, π2) = 0 is equivalent to Qk(π1, π2) = 0 for
all 0 ≤ k ≤ d. This is equivalent to Kr (uπ1 + vπ2) = 0 for all u, v ∈ R (using (47)),
which means that the polynomial uπ1 + vπ2 ∈ IHr has a linear factor of multiplicity
sr for all u, v ∈ R (using (65)). This is equivalent to π1 and π2 having a common
linear factor of multiplicity sr .

The following properties are therefore equivalent

⎡
⎢⎢⎣

K (π1, π2) = 0,
K∗(π1, π2) = 0,
There exists α, β ∈ R and π̃1, π̃2 ∈ IHr−sr such that π1 = (αx + βy)sr π̃1,

and π2 = (αx + βy)sr π̃2.

(70)

Using (65) and the definition (68) of K , we find that these properties are also equivalent
to

⎡
⎣K2r (π

2
1 + π2

2 ) = 0,
There exists a sequence (φn)n≥0, φn ∈ SL2, such that (π1 ◦ φn)

2 + (π2 ◦ φn)
2 → 0,

There exists a sequence (φn)n≥0, φn ∈ SL2, such that π1 ◦ φn → 0 and π2 ◦ φn → 0.

(71)

We now define the norm ‖(π1, π2)‖ := sup|u|≤1 |(π1(u), π2(u))| on IHr × IHr , and
the set

F :={(π1, π2) ∈ IHr × IHr ; ‖(π1, π2)‖=1 and ‖(π1 ◦ φ, π2 ◦ φ)‖ ≥ 1 for all φ ∈ SL2}.

The set F is compact subset of IHr × IHr , and K as well as K∗ do not vanish on F
according to (70) and (71). Since these functions are continuous, there exists a constant
C0 ≥ 1 such that

C−1
0 K ≤ K∗ ≤ C0 K on F . (72)

Let (π1, π2) ∈ IHr × IHr . If there exists a sequence (φn)n≥0, φn ∈ SL2, such that
π1 ◦ φn → 0 and π2 ◦ φn → 0, then K (π1, π2) = K (0, 0) = 0 and K∗(π1, π2) =
K∗(0, 0) = 0 using (69) and the continuity of K and K∗. Otherwise, consider a
sequence (φn)n≥0, φn ∈ SL2, such that

lim
n→∞ ‖(π1 ◦ φn, π2 ◦ φn)‖ = inf

φ∈SL2
‖(π1 ◦ φ, π2 ◦ φ)‖.

By compactness there exists a pair (π̃1, π̃2) ∈ IHm × IHm and a subsequence (φnk )k≥0
such that

(π1 ◦ φnk , π2 ◦ φnk ) → (π̃1, π̃2).
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One easily checks that (π̃2,π̃2)‖(π̃2,π̃2)‖ ∈ F . Using (69) we obtain

K (π1, π2)

K∗(π1, π2)
= lim

n→∞
K (π1 ◦ φn, π2 ◦ φn)

K∗(π1 ◦ φn, π2 ◦ φn)
= K (π̃1, π̃2)

K∗(π̃1, π̃2)
.

Using (72) and the homogeneity of K and K∗, we obtain that C−1
0 K ≤ K∗ ≤ C0 K

on IHr × IHr which concludes the proof.
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