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Abstract We analyze rigourously error estimates and compare numerically temporal/
spatial resolution of various numerical methods for solving the Klein–Gordon (KG)
equation in the nonrelativistic limit regime, involving a small parameter 0 < ε � 1
which is inversely proportional to the speed of light. In this regime, the solution is
highly oscillating in time, i.e. there are propagating waves with wavelength of O(ε2)

and O(1) in time and space, respectively. We begin with four frequently used finite
difference time domain (FDTD) methods and obtain their rigorous error estimates in
the nonrelativistic limit regime by paying particularly attention to how error bounds
depend explicitly on mesh size h and time step τ as well as the small parameter ε. Based
on the error bounds, in order to compute ‘correct’ solutions when 0 < ε � 1, the
four FDTD methods share the same ε-scalability: τ = O(ε3). Then we propose new
numerical methods by using either Fourier pseudospectral or finite difference approxi-
mation for spatial derivatives combined with the Gautschi-type exponential integrator
for temporal derivatives to discretize the KG equation. The new methods are uncon-
ditionally stable and their ε-scalability is improved to τ = O(1) and τ = O(ε2) for
linear and nonlinear KG equations, respectively, when 0 < ε � 1. Numerical results
are reported to support our error estimates.
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1 Introduction

Consider the dimensionless relativistic Klein–Gordon (KG) equation in d-dimensions
(d = 1, 2, 3) [31–33]

ε2∂t t u − �u + 1

ε2 u + f (u) = 0, x ∈ R
d , t > 0, (1.1a)

with initial conditions given as

u(x, 0) = φ(x), ∂t u(x, 0) = 1

ε2 γ (x), x ∈ R
d . (1.1b)

Here u = u(x, t) is a real-valued field, ε > 0 is a dimensionless parameter which
is inversely proportional to the speed of light [31–33], φ and γ are given real-
valued functions, f (u) is a dimensionless real-valued function independent of ε

and satisfies f (0) = 0. In practice, the typical nonlinearity is the pure power case,
i.e. f (u) = λu p+1 with p ≥ 0 and λ ∈ R [9,10,17–20,31–34,40,42,44,47]. In fact,
the above KG equation is also known as the relativistic version of the Schrödinger
equation under proper non-dimensionalization [31–33] and it is used to describe the
motion of a spinless particle (see, e.g. [13,41], for its derivation). The KG equa-
tion (1.1) is time symmetric or time reversible. In addition, if u(·, t) ∈ H1(Rd) and
∂t u(·, t) ∈ L2(Rd), it also conserves the energy [31–33], i.e.

E(t) :=
∫

Rd

[
ε2 (∂t u(x, t))2 + |∇u(x, t)|2 + 1

ε2 u2(x, t) + F (u(x, t))

]
dx

≡
∫

Rd

[
1

ε2 γ 2(x) + |∇φ(x)|2 + 1

ε2 φ2(x) + F (φ(x))

]
dx := E(0), t ≥ 0,

(1.2)

where

F(u) = 2

u∫

0

f (s) ds, u ∈ R. (1.3)

For fixed ε > 0(O(1)-speed of light regime), e.g. ε = 1, the KG equation has
gained a surge of attention in both analytical and numerical aspects. Along the ana-
lytical front, the Cauchy problem was investigated, e.g. in [3,9,17,19,27,29,42,44].
In particular, for the defocusing case (i.e. F(u) ≥ 0 for u ∈ R) the global exis-
tence of solutions was established in [9], and for the focusing case (i.e. F(u) ≤ 0 for
u ∈ R) possible finite time blow-up was shown in [3]. For more results in this regime,
we refer the readers to [2,10,34,37,40,43,47] and references therein. In the numer-
ical aspect, various numerical schemes were proposed and studied in the literatures.
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Analysis and comparison of numerical methods 191

For instance, standard finite difference time domain (FDTD) methods such as energy
conservative, semi-implicit and explicit finite difference discretizations were proposed
and analyzed in [1,15,30,39,48]. Other approaches, like finite element or spectral dis-
cretization, were also studied in [11,12,14,50]. Comparisons of different methods in
this regime were carried out in [28,39] and references therein.

However, in the nonrelativistic limit regime, i.e. if 0 < ε � 1 or the speed of
light goes to infinity, the analysis and efficient computation of the KG equation (1.1)
are mathematically rather complicated issues. The analysis difficulty is mainly due to
that the energy E(t) in (1.2) becomes unbounded when ε → 0. Recently, Machihara
et al. [32] studied such limit in the energy space, and Masmoudi and Nakanishi [33]
analyzed such limit in a strong topology of the energy space. For more recent pro-
gresses made on this topic, we refer to [35,36,51]. Their results show that the solution
propagates waves with wavelength O(ε2) and O(1) in time and space, respectively,
when 0 < ε � 1. On the other hand, this highly oscillatory nature in time provides
severe numerical burdens, making the computation in the nonrelativistic limit regime
extremely challenging. To our knowledge, so far there are few results on the numerics
of the KG equation in this regime.

The aim of this paper is to study the efficiency of the frequently used FDTD methods
applied in the nonrelativistic limit regime, to propose new numerical schemes and to
compare their resolution capacities in this regime. We start with the detailed analysis on
the stability and convergence of four standard implicit/semi-implicit/explicit energy
conservative or non-conservative FDTD methods. Here we pay particular attention to
how the error bounds depend explicitly on the small parameter ε in addition to the mesh
size h and time step τ . Based on the estimates, in order to obtain ‘correct’ numerical
approximations when 0 < ε � 1, the meshing strategy requirement (ε-scalability)
for those frequently used FDTD methods is:

τ = O(ε3), h = O(1), (1.4)

which suggests that the standard FDTD methods are computationally expensive for
the KG equation (1.1) as 0 < ε � 1. To relax the ε-scalability, we then propose new
numerical methods whose ε-scalability is optimal for both time and space in view of
the inherent oscillatory nature. The key ideas of the new schemes are: (i) to apply either
Fourier pseudospectral or centered finite difference discretization for spatial deriva-
tives; and (ii) to discretize the highly oscillatory second-order ordinary differential
equations (ODEs) in phase space by using the Gautschi-type exponential integrator
[16,24] which was well demonstrated in the literatures that it has favorable properties
compared to standard time integrators for oscillatory second-order differential equa-
tions [21,22,25,26]. For the linear KG equation, the Gautschi-type time integration
does not introduce any time discretization error. Rigorous error estimates show that
the ε-scalability of the new methods is improved to

τ = O(1), h = O(1), (1.5)

for the linear KG equation, and respectively, to
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τ = O(ε2), h = O(1), (1.6)

for the nonlinear KG equation. Thus, the Gautschi-type method offers compelling
advantages over commonly used FDTD methods in temporal resolution when 0 <

ε � 1.
The paper is organized as follows. In Sect. 2, four second-order FDTD methods are

reviewed and their stability and convergence are analyzed in the nonrelativistic limit
regime. In Sect. 3, new numerical methods are proposed and analyzed rigorously. In
Sect. 4, numerical comparison results are reported. Finally, some concluding remarks
are drawn in Sect. 5. Throughout the paper, we adopt the standard Sobolev spaces and
use the notation p � q to represent that there exists a generic constant C which is
independent of h, τ and ε such that |p| ≤ C q.

2 FDTD methods and their analysis

In this section, we apply the commonly used FDTD methods to the KG equation
(1.1) [15,28,30,39,48] and analyze their stability and convergence in the nonrelativ-
istic limit regime. For simplicity of notations, we shall only present the numerical
methods and their analysis in one space dimension (1D). Generalization to higher
dimensions is straightforward and results remain valid without modifications. Similar
to most works in the literatures for the analysis and computation of the KG equation
(cf. [1,11,14,15,28,30,39,48,50] and references therein), in practical computation, we
truncate the whole space problem onto an interval 	 = (a, b) with periodic boundary
conditions. In 1D, the KG equation (1.1) with periodic boundary conditions collapses
to

ε2∂t t u − ∂xx u + 1

ε2 u + f (u) = 0, x ∈ 	 = (a, b), t > 0, (2.1a)

u(a, t) = u(b, t), ∂x u(a, t) = ∂x u(b, t), t ≥ 0, (2.1b)

u(x, 0) = φ(x), ∂t u(x, 0) = 1

ε2 γ (x), x ∈ 	̄ = [a, b]; (2.1c)

with φ(a) = φ(b), φ′(a) = φ′(b), γ (a) = γ (b) and γ ′(a) = γ ′(b).

2.1 FDTD methods

Choose mesh size h := �x = (b −a)/M with M being an even positive integer, time
step τ := �t > 0 and denote grid points and time steps as

x j := a + jh, j = 0, 1, . . . , M; tn := nτ, n = 0, 1, 2, . . . .
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Analysis and comparison of numerical methods 193

Let un
j be the approximation of u(x j , tn)( j = 0, 1, . . . , M, n = 0, 1, . . .) and intro-

duce the finite difference discretization operators as

δ+
t un

j = un+1
j − un

j

τ
, δ−

t un
j = un

j − un−1
j

τ
, δ2

t un
j = un+1

j − 2un
j + un−1

j

τ 2 ,

δ+
x un

j = un
j+1 − un

j

h
, δ−

x un
j = un

j − un
j−1

h
, δ2

x un
j = un

j+1 − 2un
j + un

j−1

h2 .

It is easy to check that δ2
t = δ+

t δ−
t = δ−

t δ+
t and δ2

x = δ+
x δ−

x = δ−
x δ+

x . Here, we consider
four frequently used FDTD methods [15,28,30,39,48] to discretize the problem (2.1):
for j = 0, 1, . . . , M − 1, n = 1, 2, . . . ,

I. Implicit energy conservative finite difference (Impt-EC-FD) method

ε2δ2
t un

j −
1

2
δ2

x

(
un+1

j +un−1
j

)
+ 1

2ε2

(
un+1

j +un−1
j

)
+ G

(
un+1

j , un−1
j

)
= 0;

(2.2)

II. Semi-implicit energy conservative finite difference (SImpt-EC-FD) method

ε2δ2
t un

j − δ2
x un

j + 1

2ε2

(
un+1

j + un−1
j

)
+ G

(
un+1

j , un−1
j

)
= 0; (2.3)

III. Semi-implicit finite difference (SImpt-FD) method

ε2δ2
t un

j − 1

2
δ2

x

(
un+1

j + un−1
j

)
+ 1

2ε2

(
un+1

j + un−1
j

)
+ f (un

j ) = 0; (2.4)

IV. Explicit finite difference (Expt-FD) method

ε2δ2
t un

j − δ2
x un

j + 1

ε2 un
j + f (un

j ) = 0. (2.5)

Here,

G(v,w) =
1∫

0

f (θv + (1 − θ)w) dθ = F (v) − F (w)

2(v − w)
, ∀ v,w ∈ R, (2.6)

with F(u) defined in (1.3). The initial and boundary conditions in (2.1) are discretized
as

un
0 = un

M , un−1 = un
M−1, n ≥ 0, u0

j = φ(x j ), j = 0, 1, . . . , M, (2.7)

u1
j = φ(x j ) + τ

ε2 γ (x j ) + τ 2

2ε2

[
δ2

xφ(x j ) − 1

ε2 φ(x j ) − f (φ(x j ))

]
. (2.8)
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Clearly, the above four FDTD methods are time symmetric or time reversible,
i.e. they are unchanged if we interchange n + 1 ↔ n − 1 and τ ↔ −τ . Expt-FD is
an explicit method, whereas Impt-EC-FD, SImpt-EC-FD and SImpt-FD are implicit
methods. At each time step, SImpt-FD needs to solve a linear coupled system, SImpt-
EC-FD needs to solve a nonlinear decoupled system, and Impt-EC-FD needs to solve
a fully nonlinear coupled system.

Denote X M = {v = (v0, v1, . . . , vM ) | v0 = vM } ⊂ R
M+1 and we

always use v−1 = vM−1 for the vector v ∈ X M if it is involved. Letting
{vn

j , j = 0, 1, . . . , M; n = 0, 1, . . .} be any grid function satisfying vn
0 =

vn
M (n = 0, 1, . . .) and using vn−1 = vn

M−1 if they are involved, thus we have
vn = (vn

0 , vn
1 , . . . , vn

M ) ∈ X M and define its standard discrete l2 norm, semi-H1

norm, semi-H2 norm and l∞ norm as

‖vn‖2
l2 = h

M−1∑
j=0

∣∣∣vn
j

∣∣∣2 , ‖δ+
x vn‖2

l2 = h
M−1∑
j=0

|δ+
x vn

j |2, (2.9)

∥∥∥δ2
xv

n
∥∥∥2

l2
= h

M−1∑
j=0

∣∣∣δ2
xv

n
j

∣∣∣2 , ‖vn‖l∞ = max
0≤ j≤M−1

∣∣∣vn
j

∣∣∣ , n ≥ 0. (2.10)

For the first two methods Impt-EC-FD and SImpt-EC-FD, one can easily show that
they conserve the energy in the discretized level, i.e.

Lemma 1 The method Impt-EC-FD (2.2) conserves the discrete energy as

En = ε2
∥∥δ+

t un
∥∥2

l2 + 1

2

(∥∥δ+
x un

∥∥2
l2 +

∥∥∥δ+
x un+1

∥∥∥2

l2

)
+ 1

2ε2

(∥∥un
∥∥2

l2 +
∥∥∥un+1

∥∥∥2

l2

)

+h

2

M−1∑
j=0

[
F(un

j ) + F
(

un+1
j

)]
≡ E0, n = 0, 1, 2, . . . . (2.11)

Similarly, the method SImpt-EC-FD (2.3) conserves the discrete energy as

Ẽn = ε2
∥∥δ+

t un
∥∥2

l2 + h
M−1∑
j=0

δ+
x un

j · δ+
x un+1

j + 1

2ε2

(∥∥un
∥∥2

l2 +
∥∥∥un+1

∥∥∥2

l2

)

+h

2

M−1∑
j=0

[
F(un

j ) + F
(

un+1
j

)]
≡ Ẽ0, n = 0, 1, 2, . . . . (2.12)

Proof The proof proceeds in the analogous lines as in [30,48] for the standard KG
equation, i.e. ε = 1 in (2.1), and we omit the details here for brevity. ��
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2.2 Stability analysis

By using the standard von Neumann analysis [45], we have the following stability
results for the FDTD methods:

Theorem 1 Suppose f (u) is linear, i.e. f (u) = αu with α a constant satisfying
α > −ε−2, then we have:

(i) The method Impt-EC-FD (2.2) is unconditionally stable for any τ > 0, h > 0
and ε > 0.

(ii) When 4ε2−h2(1+ε2α) ≤ 0, the method SImpt-EC-FD (2.3) is unconditionally
stable for any τ > 0 and h > 0; and when 4ε2 − h2(1 + ε2α) > 0, it is condi-
tionally stable under the stability condition

τ ≤ 2hε2√
4ε2 − h2(1 + ε2α)

. (2.13)

(iii) When −ε−2 < α ≤ ε−2, the method SImpt-FD (2.4) is unconditionally stable
for any τ > 0 and h > 0; and when α > ε−2, it is conditionally stable under
the stability condition

τ ≤ 2ε2

√
ε2α − 1

. (2.14)

(iv) The method Expt-FD (2.5) is conditionally stable under the stability condition

τ ≤ 2hε2√
4ε2 + h2(1 + αε2)

. (2.15)

Proof Noticing f (u) = αu, plugging

un−1
j =

∑
l

Ûle
2i jlπ/M , un

j =
∑

l

ξl Ûle
2i jlπ/M , un+1

j =
∑

l

ξ2
l Ûle

2i jlπ/M ,

into (2.2)–(2.5), with ξl the amplification factor of the lth mode in phase space, we
obtain the characteristic equation with the following structure

ξ2
l − 2θl ξl + 1 = 0, l = − M

2
, . . . ,

M

2
− 1, (2.16)

where θl ∈ R is determined by the corresponding method and may vary for different

methods. Solving the above equation, we have ξl = θl ±
√

θ2
l − 1. The stability of

numerical schemes amounts to

|ξl | ≤ 1 ⇐⇒ |θl | ≤ 1, l = − M

2
, . . . ,

M

2
− 1. (2.17)
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196 W. Bao, X. Dong

(i) For the method Impt-EC-FD (2.2), noticing α > −ε−2, we have

0 ≤ θl = 2ε4

2ε4 + τ 2(ε2λ2
l + ε2α + 1)

≤ 1, l = − M

2
, . . . ,

M

2
− 1, (2.18)

with

λl = 2

h
sin

(
lπ

M

)
, μl = 2lπ

b − a
, l = − M

2
, . . . ,

M

2
− 1. (2.19)

This implies that the method Impt-EC-FD (2.2) is unconditionally stable for
any τ > 0, h > 0 and ε > 0.

(ii) For the method SImpt-FD (2.4), we have

θl = 2ε4 − τ 2ε2λ2
l

2ε4 + τ 2(ε2α + 1)
, l = − M

2
, . . . ,

M

2
− 1. (2.20)

From (2.19), we see that

0 ≤ λ2
l ≤ 4

h2 , l = − M

2
, . . . ,

M

2
− 1. (2.21)

Thus, when 4ε2−h2(1+ε2α) ≤ 0, or 4ε2−h2(1+ε2α) > 0 with the condition
(2.13), for l = − M

2 , . . . , M
2 − 1, we obtain

(ε2λ2
l − ε2α − 1)τ 2 ≤

(
4ε2

h2 − ε2α − 1

)
τ 2 ≤ 4ε4 �⇒ |θl | ≤ 1.

(iii) For the method SImpt-EC-FD (2.3), we have

θl = 2ε4 − τ 2ε2α

2ε4 + τ 2(ε2λ2
l + 1)

, l = − M

2
, . . . ,

M

2
− 1. (2.22)

Noticing (2.21), when −ε−2 < α ≤ ε−2, or α > ε−2 with the condition (2.14),
we get

τ 2(ε2α−1−ε2λ2
l )≤τ 2(ε2α − 1) ≤ 4ε4 �⇒ |θl |≤1, l =− M

2
, . . . ,

M

2
− 1.

(iv) For the method Expt-FD (2.5), we have

θl = 2ε4 − τ 2(ε2λ2
l + ε2α + 1)

2ε4 , l = − M

2
, . . . ,

M

2
− 1. (2.23)
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Combining (2.21) and (2.15), for l = − M
2 , . . . , M

2 − 1, we have

τ 2(ε2λ2
l + 1 + ε2α) ≤ τ 2

(
4ε2

h2 + 1 + ε2α

)
≤ 4ε4 �⇒ |θl | ≤ 1.

The proof is completed. ��

2.3 Error estimates

Motivated by the analytical results in [32,33] for the KG equation, here we make the
following assumptions on the exact solution u of (2.1)

(A) u ∈ C4([0, T ]; W 1,∞) ∩ C3([0, T ]; W 2,∞) ∩ C2([0, T ]; W 3,∞) ∩ C([0, T ];
W 5,∞

p ),

∥∥∥∥ ∂r+s

∂tr∂xs
u(x, t)

∥∥∥∥
L∞(	T )

� 1

ε2r
, 0 ≤ r ≤ 4 & 0 ≤ r + s ≤ 5

where W m,∞
p = {v ∈ W m,∞ | v(l)(a) = v(l)(b), 0 ≤ l ≤ m − 1} for m ≥ 1,

	T = 	 × [0, T ] and 0 < T < T ∗ with T ∗ the maximum existence time of the
solution; and assumption on the function f (v) in (2.1)

(B1) ‖ f ′(v)‖L∞(R) + ‖ f ′′(v)‖L∞(R) � 1, or

(B2) ‖ f ′(v)‖L∞(R) + ‖ f ′′(v)‖L∞(R) + ‖ f ′′′(v)‖L∞(R) � 1.

Define the grid ‘error’ function en ∈ X M (n ≥ 0) as

en
j = u(x j , tn) − un

j , j = 0, 1, . . . , M, n = 0, 1, 2, . . . , (2.24)

with un
j the approximations obtained from FDTD methods.

For the method Impt-EC-FD (2.2), we can establish the following error estimate
(see detailed proof in Appendix I below):

Theorem 2 Assume τ � h and under assumptions (A) and (B2), there exist con-
stants τ0 > 0 and h0 > 0 sufficiently small and independent of ε such that, for any
0 < ε ≤ 1, when 0 < τ ≤ τ0 and 0 < h ≤ h0, we have the following error estimate
for the method Impt-EC-FD (2.2) with (2.7) and (2.8)

∥∥en
∥∥

l2 + ‖δ+
x en‖l2 � h2 + τ 2

ε6 , 0 ≤ n ≤ T

τ
. (2.25)

For Expt-FD method (2.5), we assume the stability condition

τ ≤ min

⎧⎨
⎩

εh

2
,

ε2

√
2
,

2hε2√
4ε2 + h2(1 + ε2‖ f ′‖L∞(R))

⎫⎬
⎭ , (2.26)
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and can establish the following error estimate (see detailed proof in Appendix II
below):

Theorem 3 Assume τ � h and under assumptions (A) and (B1), there exist constants
τ0 > 0 and h0 > 0 sufficiently small and independent of ε such that, for any 0 < ε ≤ 1,
when 0 < τ ≤ τ0 and 0 < h ≤ h0 and under the stability condition (2.26), we have
the following error estimate for the method Expt-FD (2.5) with (2.7) and (2.8)

‖en‖l2 + ‖δ+
x en‖l2 � h2 + τ 2

ε6 , 0 ≤ n ≤ T

τ
. (2.27)

Similarly, for the methods SImpt-EC-FD (2.3) and SImpt-FD (2.4), we have

Theorem 4 Assume τ � h and under assumptions (A) and (B2), there exist constants
τ0 > 0 and h0 > 0 sufficiently small and independent of ε such that, for any 0 < ε ≤ 1,
when 0 < τ ≤ τ0 and 0 < h ≤ h0 and under the stability condition τ ≤ εh/

√
2, we

have the following error estimate for the method SImpt-EC-FD (2.3) with (2.7) and
(2.8)

‖en‖l2 + ‖δ+
x en‖l2 � h2 + τ 2

ε6 , 0 ≤ n ≤ T

τ
. (2.28)

Proof Follow the analogous proofs to Theorems 2 and 3 and we omit the details here
for brevity. ��
Theorem 5 Assume τ � h and under assumptions (A) and (B1), there exist con-
stants τ0 > 0 and h0 > 0 sufficiently small and independent of ε such that, for any
0 < ε ≤ 1, when 0 < τ ≤ τ0 and 0 < h ≤ h0, we have the following error estimate
for the method SImpt-FD (2.4) with (2.7) and (2.8)

∥∥en
∥∥

l2 + ‖δ+
x en‖l2 � h2 + τ 2

ε6 , 0 ≤ n ≤ T

τ
. (2.29)

Proof Follow the analogous proofs to Theorems 2 and 3 and we omit the details here
for brevity. ��

Based on Theorems 2–5, the four FDTD methods studied here share the same
temporal/spatial resolution capacity in the nonrelativistic limit regime. In fact, given
an accuracy bound δ > 0, the ε-scalability of the four FDTD methods is:

τ = O
(
ε3

√
δ
)

= O(ε3), h = O
(√

δ
)

= O(1), 0 < ε � 1. (2.30)

Remark 1 We can establish the same error estimates in the theorems under much
weaker assumption on the nonlinear function f , i.e. relax the assumption (B1) to
f ∈ C2(R), and respectively, (B2) to f ∈ C3(R). This can be done by replacing the
assumption τ � h in Theorems 2–5 by τ � min{h, ε3√Cd(h)}, and combing the
method of mathematical induction (see [4,5] and the proof of Theorem 9 below) for
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SImpt-FD and Expt-FD, and respectively, a cut-off function technique to deal with the
nonlinear function f [4,49] for Impt-EC-FD and SImpt-EC-FD, with the following
inverse inequality [4,49]

‖un‖l∞ � 1

Cd(h)

[‖δ+
x un‖l2 + ‖un‖l2

]
, Cd(h) =

⎧⎨
⎩

1, d = 1,

1/| ln h|, d = 2,

h1/2, d = 3.

(2.31)

3 New efficient numerical methods and their analysis

In this section, we propose new numerical methods which have better temporal
resolution capacity than that of the FDTD methods in the nonrelativistic limit regime
and carry out stability and convergence analysis for these new methods. Again, for
simplicity of notations, we only present the schemes and their analysis for the 1D prob-
lem with periodic boundary conditions, i.e. (2.1). Generalization to higher dimensions
is straightforward and the error estimates remain valid without modifications.

3.1 Numerical methods

First we present the Gautschi-type exponential integrator Fourier pseudospectral
(Gautschi-FP) method which is based on the application of Fourier pseudospectral
approach to spatial discretization followed by a Gautschi-type exponential integrator
[16,21,22,24,25] to time discretization. Let

YM = span{φl(x) = eiμl (x−a), −M/2 ≤ l ≤ M/2 − 1}.

For any periodic function v(x) on [a, b] and vector v ∈ X M , define PM : L2(a, b) →
YM as the standard projection operator, IM : C(a, b) → YM and IM : X M → YM as
the trigonometric interpolation operators [46], i.e.

(PMv)(x) =
M/2−1∑

l=−M/2

v̂le
iμl (x−a), (IMv)(x) =

M/2−1∑
l=−M/2

ṽle
iμl (x−a), a ≤ x ≤ b,

with
(
l = − M

2 , . . . , M
2 − 1

)

v̂l = 1

b − a

b∫

a

v(x)e−iμl (x−a)dx, ṽl = 1

M

M−1∑
j=0

v j e
−iμl (x j −a),

where v j is interpreted as v(x j ) for the periodic function v(x). In addition, we adopt
the same notation as vector case (2.9) to define the discrete l2-norm for the periodic
function v(x) as ‖v‖2

l2 = h
∑M−1

j=0 |v(x j )|2.
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The Fourier spectral method for (2.1) is as follows:
Find uM (x, t) ∈ YM , i.e.

uM (x, t) =
M/2−1∑

l=−M/2

ûl(t)e
iμl (x−a), a ≤ x ≤ b, t ≥ 0, (3.1)

such that

ε2∂t t uM (x, t) − �uM + 1

ε2 uM + PM f (uM ) = 0, a ≤ x ≤ b, t ≥ 0. (3.2)

Plugging (3.1) into (3.2), noticing the orthogonality of the Fourier functions, we find

ε2 d2

dt2 ûl(t) + 1 + ε2μ2
l

ε2 ûl(t) + f̂ (uM )l(t) = 0, l = − M

2
, . . . ,

M

2
− 1, t ≥ 0.

(3.3)

For each fixed l(l = − M
2 ,− M

2 + 1, . . . , M
2 − 1), when t is near t = tn(n ≥ 0), we

re-write the above ODEs as

d2

dw2 ûl(tn + w) + (βn
l )2ûl(tn + w) + 1

ε2 ĝ n
l (w) = 0, w ∈ R, (3.4)

where

βn
l = 1

ε2

√
1 + ε2(μ2

l + αn), ĝ n
l (w) = f̂ (uM )l(tn + w) − αnûl(tn + w). (3.5)

Here we introduce a linear stabilization term with stabilizing constant αn satisfy-
ing 1 + ε2αn > 0 such that the scheme is unconditionally stable (see below for its
choice). Using the variation-of-constants formula as in the Gautschi-type exponential
integrator for oscillatory second-order differential equations [21,22,25,24], the gen-
eral solution of the above second-order ODEs can be written as

ûl(tn + w) = cn
l cos(wβn

l ) + dn
l

sin(wβn
l )

βn
l

− 1

ε2βn
l

w∫

0

ĝ n
l (s) sin(βn

l (w − s))ds,

(3.6)

where cn
l and dn

l are two constants to be determined.
Now the key problem is how to choose two proper transmission conditions for the

second-order ODEs (3.4) between different time intervals so that we can uniquely
determine the two constants in (3.6). When n = 0, considering the solution (3.6) for
w ∈ [0, τ ], from the initial conditions in (2.1) these two conditions can be chosen
naturally as

ûl(0) = φ̂l ,
d

dt
ûl(0) = 1

ε2 γ̂l . (3.7)
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Plugging (3.7) into (3.6) with n = 0 to determine the two constants c0
l and d0

l and
then letting w = τ , we get

ûl(τ ) = φ̂l cos(τβ0
l ) + γ̂l

sin(τβ0
l )

ε2β0
l

− 1

ε2β0
l

τ∫

0

ĝ 0
l (s) sin

(
β0

l (τ − s)
)

ds. (3.8)

For n > 0, we consider the solution in (3.6) for w ∈ [−τ, τ ] and require the solution
to be continuous at t = tn and t = tn−1 = tn − τ . Plugging w = 0 and w = −τ into
(3.6) to determine the two constants cn

l and dn
l and then letting w = τ , noticing (3.5),

we have

ûl(tn+1) = −ûl(tn−1) + 2 cos(τβn
l )̂ul(tn)

− 1

ε2βn
l

τ∫

0

[
ĝ n

l (−s) + ĝ n
l (s)

]
sin(βn

l (τ − s))ds. (3.9)

In order to design an explicit scheme, we approximate the integrals in (3.8) and (3.9)
by the following quadrature

τ∫

0

ĝ 0
l (s) sin(β0

l (τ − s))ds ≈ ĝ 0
l (0)

τ∫

0

sin
(
β0

l (τ − s)
)

ds = ĝ 0
l (0)

β0
l

[
1−cos(τβ0

l )
]
,

τ∫

0

[
ĝ n

l (−s) + ĝ n
l (s)

]
sin(βn

l (τ − s))ds ≈ 2ĝ n
l (0)

βn
l

[
1 − cos(τβn

l )
]
.

Denote (̂un
M )l and un

M (x) be the approximations of ûl(tn) and uM (x, tn), respec-
tively. Choosing u0

M (x) = (PMφ)(x) and noticing (3.5), then a Gautschi-type expo-
nential integrator Fourier spectral discretization for the KG equation (2.1) is:

un+1
M (x) =

M/2−1∑
l=−M/2

̂
(un+1

M )l eiμl (x−a), a ≤ x ≤ b, n = 0, 1, . . . , (3.10)

where

̂(u1
M )l = p0

l φ̂l + q0
l γ̂l + r0

l (̂ f (φ))l , l = − M

2
, . . . ,

M

2
− 1, (3.11)

̂
(un+1

M )l = − ̂
(un−1

M )l + pn
l (̂un

M )l + rn
l

̂( f (un
M ))l , n ≥ 1; (3.12)
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with

p0
l = cos(τβ0

l ) + α0(1 − cos(τβ0
l ))(

εβ0
l

)2 , q0
l = sin(τβ0

l )

ε2β0
l

, r0
l = cos(τβ0

l ) − 1

(εβ0
l )2

,

(3.13)

pn
l = 2

[
cos(τβn

l ) + αn(1 − cos(τβn
l ))

(εβn
l )2

]
, rn

l = 2(cos(τβn
l ) − 1)

(εβn
l )2 , n ≥ 1.

(3.14)

As demonstrated in the literature [16,21,22,24,25], the above Gautschi-type expo-
nential integrator gives exact solution for the linear second-order ODEs (3.4) and has
favorable properties compared to standard time integrators for oscillatory second-order
ODEs. In the next two subsections, we will demonstrate that the above discretization
gives exact solution in time for the linear KG equation (2.1), i.e. f (u) = αu, under the
choice of αn = α(n ≥ 0) in (3.4); and respectively, performs much better resolution
in time than that of the FDTD methods for the nonlinear KG equation. We remark that
similar techniques for time discretization have been used in discretizing wave-type
equations in Zakharov system [6], Maxwell–Dirac equations [7] and Klein–Gordon–
Schrödinger equations [8].

The above procedure is not suitable in practice due to the difficulty of computing
the integrals in (3.11) and (3.12). We now present an efficient implementation by
choosing u0

M (x) as the interpolation of φ(x) on the grids {x j , j = 0, 1, . . . , M},
i.e. u0

M (x) = (IMφ)(x), and approximating the integrals in (3.11) and (3.12) by a
quadrature rule on the grids. Let un

j be the approximation of u(x j , tn) and denote

u0
j = φ(x j )( j = 0, 1, . . . , M). For n = 0, 1, . . ., a Gautschi-type exponential inte-

grator Fourier pseudospectral (Gautschi-FP) discretization for the KG equation (2.1)
is

un+1
j =

M/2−1∑
l=−M/2

(̃un+1)l e2i jlπ/M , j = 0, 1, . . . , M, (3.15)

where,

(̃u1)l = p0
l φ̃l + q0

l γ̃l + r0
l (̃ f (φ))l , l = − M

2
, . . . ,≤ M

2
− 1,

(̃un+1)l = −(̃un−1)l + pn
l (̃un)l + rn

l
˜( f (un))l , n ≥ 1,

with pn
l , q0

l and rn
l are given in (3.13) and (3.14). Based on the results in Theorem 6

(see below), in practice, we suggest that αn is chosen as: If f (v) = αv is a linear func-
tion with α a constant, we choose αn = max{−1/ε2, α} for n ≥ 0, and respectively;
if f (v) is a nonlinear function, we choose α−1 = 0 and

αn = max

{
αn−1, max

un
j �=0, 0≤ j≤M

f (un
j )/un

j

}
, n ≥ 0. (3.16)
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This Gautschi-FP discretization is explicit, time symmetric and easy to extend to 2D
and 3D. The memory cost is O(M) and computational cost per time step is O(M ln M)

via FFT.

Remark 2 Another way to approximate the integrals in (3.8) and (3.9) is to use the
trapezoidal rule:

τ∫

0

ĝ 0
l (s) sin(β0

l (τ − s))ds ≈ τ

2
ĝ 0

l (0) sin(τβ0
l ),

τ∫

0

[
ĝ n

l (−s) + ĝ n
l (s)

]
sin(βn

l (τ − s))ds ≈ τ ĝ n
l (0) sin(τβn

l ).

The rest of computations can be carried out in a similar manner.

For comparison, here we also introduce the Gautschi-type exponential integrator
finite difference (Gautschi-FD) method which is based on applying centered finite dif-
ference to spatial discretization followed by a Gautschi-type integrator to time discret-
ization. The aim is to show that the temporal resolution capacity of the Gautschi-type
integrator for wave-type equation is independent of the spatial discretization that it
follows [23]. Let u j (t) be the approximation of u(x j , t)( j = 0, 1, . . . , M). Applying
a centered finite difference to the spatial derivative in (2.1a), we get

ε2 d2

dt2 u j (t) − δ2
x u j (t) + 1

ε2 u j (t) + f (u j (t)) = 0, 0 ≤ j ≤ M − 1, (3.17)

with u0(t) = uM (t) and u−1(t) = uM−1(t). LetU (t) = (u0(t), u1(t), . . . , uM−1(t))T

and F(U (t)) = ( f (u0(t)), f (u1(t)), . . . , f (uM−1(t)))T , then the above ODEs can
be rewritten as

ε2U ′′(t) + A U (t) + F(U (t)) = 0, t ≥ 0, (3.18)

where A is an M × M matrix independent of t . Since A is symmetric, it is normal,
i.e. there exists an orthogonal matrix P and a diagonal matrix � such that

A = P−1 � P.

Let V (t) = P U (t) and multiply P to both sides of (3.18), we get

ε2V ′′(t) + �V (t) + P F(U (t)) = 0, t ≥ 0. (3.19)

The above second-order ODEs are similar as (3.4) and we apply the Gautschi-
type exponential integrator to discretize it which immediately gives a discretization
of (3.17). We omit the details of the derivation for brevity and conclude that the scheme
is the same as (3.15), with μl in (3.5) replaced by λl defined in (2.19).
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3.2 Stability and convergence analysis in linear case

In this subsection, we assume that f (u) is a linear function, i.e. f (u) = αu with α

being a constant satisfying α > −ε−2. In this case, the solution of (2.1) is

u(x, t) =
∞∑

l=−∞

[
φ̂l cos(tβl) + γ̂l

sin(tβl)

ε2βl

]
eiμl (x−a), a ≤ x ≤ b, t ≥ 0,

(3.20)

where

βl = 1

ε2

√
1 + ε2(μ2

l + α), l = 0,±1, . . . . (3.21)

Again, by using the standard von Neumann analysis [45], we have the following
stability results for Gautschi-FP and Gautschi-FD:

Theorem 6 If αn in (3.5) is chosen such that αn ≥ α for n ≥ 0, then both Gautschi-FP
and Gautschi-FD are unconditionally stable for any τ > 0, h > 0 and ε > 0.

Proof Similar to the proof of Theorem 1, noticing (3.14) and (3.15), we have the same
characteristic equation (2.16) for Gautschi-FP with

θl = cos(τβn
l ) + (αn − α)(1 − cos(τβn

l ))

(εβn
l )2

= cos2
(

τβn
l

2

)
+
[

2(αn − α)

ε−2 + μ2
l + αn

− 1

]
sin2

(
τβn

l

2

)
, l = − M

2
, . . . ,

M

2
− 1.

Since αn ≥ α > −ε−2(n ≥ 0), we have

0 ≤ 2(αn − α)

ε−2 + μ2
l + αn

≤ 2 �⇒ |θl | ≤ 1, l = − M

2
, . . . ,

M

2
− 1, (3.22)

which immediately leads to the unconditional stability of the Gautschi-FP. For
Gautschi-FD, we only need to replace μl in (3.22) by λl defined in (2.19) and the
stability claim follows immediately. ��

Let uI (x, t) be the solution of the following problem

ε2∂t t u I (x, t) − ∂xx u I + 1

ε2 uI + αuI = 0, a < x < b, t > 0, (3.23a)

uI (a, t) = uI (b, t), ∂x u I (a, t) = ∂x u I (b, t), t ≥ 0, (3.23b)

uI (x, 0) = (IMφ)(x), ∂t u I (x, 0) = 1

ε2 (IMγ )(x), a ≤ x ≤ b. (3.23c)

123



Analysis and comparison of numerical methods 205

It is easy to see that the solution of the above problem is

uI (x, t) =
M/2−1∑

l=−M/2

[
cos(tβl)φ̃l + γ̃l

sin(tβl)

ε2βl

]
eiμl (x−a), a ≤ x ≤ b, t ≥ 0. (3.24)

Denote

en
j = u(x j , tn) − un

j , j = 0, 1, . . . , M, n ≥ 0,

en(x) := u(x, tn) − (IM un)(x), a ≤ x ≤ b, n ≥ 0.

For Gautschi-FP, we have the following error estimates (see detailed proof in
Appendix III below):

Theorem 7 Let un
j be the solution of Gautschi-FP (3.15) with αn = α in (3.5) for

n ≥ 0. Then we have

un
j = uI (x j , tn), j = 0, 1, . . . , M, n ≥ 0. (3.25)

In addition, if φ, γ ∈ Hm
p := {v ∈ Hm(a, b) | v(l)(a) = v(l)(b), 0 ≤ l ≤ m − 1}

with m ≥ 2, when α ≥ 0 for any ε > 0 or when α < 0 for 0 < ε ≤ ε0 := 1√
2|α| , we

have the following error estimates

‖en(x)‖L2 � hm, ‖∇en(x)‖L2 � hm−1, n ≥ 0. (3.26)

Thus if the functions φ and γ are periodic and smooth, for the linear KG equation, the
Gautschi-FP converges exponentially fast in space with no error in time discretization.

Also, we have error estimates for Gautschi-FD in linear case (see detailed proof in
Appendix IV below):

Theorem 8 Let un
j be the solution of Gautschi-FD with αn = α for n ≥ 0. If φ, γ ∈

W 4,∞
p (	), when α ≥ 0 for any ε > 0 or when α < 0 for 0 < ε ≤ ε0 := 1√

2|α| , we

have

‖en‖l2 � h2, 0 ≤ n ≤ T

τ
. (3.27)

Based on Theorems 7 and 8, both Gautschi-FP and Gautschi-FD introduce no error
from time discretization for the linear KG equation, and share the same temporal res-
olution in the nonrelativistic limit regime. In fact, for a given accuracy δ > 0, for the
linear KG equation the ε-scalability of the two methods is:

τ = O(1), h ≤ O
(√

δ
)

= O(1), 0 < ε � 1, (3.28)

i.e. both mesh size h and time step τ can be chosen independently of the small
parameter ε.
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3.3 Convergence analysis in the nonlinear case

In order to obtain an error estimate for Gautschi-FP (3.10) with (3.16), let 0 < T < T ∗
with T ∗ the maximum existence time of the solution, motivated by the results in
[32,33], we assume that there exists an integer m0 ≥ 2 such that

(C) u ∈ C2
(
[0, T ]; H1

)
∩ C1

(
[0, T ]; W 1,4

)
∩ C

(
[0, T ]; L∞ ∩ Hm0

p

)
,

‖∂t u(x, t)‖L∞([0,T ];W 1,4) � 1

ε2 , ‖∂t t u(x, t)‖L∞([0,T ];H1) � 1

ε4 ,

‖u(x, t)‖L∞([0,T ];L∞∩H
m0
p )

� 1.

Under the above assumption (C) and assume f ∈ C3(R), we have

M1 := max
0≤t≤T

‖u(x, t)‖L∞ � 1, M2 := max|v|≤1+M1

3∑
l=1

| f (l)(v)| � 1, (3.29)

M3 := max

{
0, sup

0 �=v, |v|≤1+M1

f (v)/v

}
≤ M2 � 1. (3.30)

Assuming

τ ≤ πε2h

3
√

h2 + ε2(π2 + M3h2)
, (3.31)

we have (see detailed proof in Appendix V below):

Theorem 9 Let un
M (x) be the approximation obtained from the Gautschi-FP method

(3.10) with (3.16). Assume τ � ε2√Cd(h) and f (·) ∈ C3(R), under the assump-
tion (C), there exist h0 > 0 and τ0 > 0 sufficiently small and independent of ε such
that, for any 0 < ε ≤ 1, when 0 < h ≤ h0 and 0 < τ ≤ τ0 and under the condition
(3.31), we have the following error estimate

‖u(x, tn) − un
M (x)‖L2 � τ 2

ε4 + hm0 , ‖un
M (x)‖L∞ ≤ 1 + M1, (3.32a)

‖∇[u(x, tn) − un
M (x)]‖L2 � τ 2

ε4 + hm0−1, 0 ≤ n ≤ T

τ
. (3.32b)

Similar to the proof for the above theorem, for Gautschi-FD with (3.16), assume
that f (·) ∈ C2(R), u ∈ C2([0, T ]; L∞) ∩ C1([0, T ]; L∞) ∩ C([0, T ]; W 4,∞

p ),

‖u(x, t)‖L∞(	T ) + ‖∂xxxx u(x, t)‖L∞(	T ) � 1 and

‖∂t u(x, t)‖L∞(	T ) � 1

ε2 , ‖∂t t u(x, t)‖L∞(	T ) � 1

ε4 ,

then we can prove the following error estimate for Gautschi-FD with (3.16):
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Theorem 10 Let un
j be the approximation obtained from Gautschi-FD with (3.16).

Assume τ � ε2h, under the above assumptions on the exact solution u and the non-
linear function f , there exist h0 > 0 and τ0 > 0 sufficiently small and independent
of ε such that, for any 0 < ε ≤ 1, when 0 < h ≤ h0 and 0 < τ ≤ τ0 and under the
condition (3.31), we have

‖en‖l2 � τ 2

ε4 + h2, ‖un‖L∞ ≤ 1 + M1, 0 ≤ n ≤ T

τ
, (3.33)

where

en = (en
0 , en

1 , . . . , en
M )T , with en

j = u(x j , tn) − un
j , 0 ≤ j ≤ M, n ≥ 0.

Proof Follow the analogous proofs to Theorems 9 and 8 and we omit the details here
for brevity. ��

Based on Theorems 9 and 10, for the nonlinear KG equation in the nonrelativistic
limit regime, the ε-scalability of Gautschi-FP and Gautschi-FD is:

τ = O
(√

δε2
)

= O(ε2), h ≤ O
(√

δ
)

= O(1), 0 < ε � 1. (3.34)

Remark 3 When the stabilization factor in (3.5) is chosen as αn ≡ 0 for all n ≥ 0, the
error estimates in Theorems 9 and 10 are still valid.

4 Numerical results

In this section, we report numerical results to support our error estimates and demon-
strate the superiority of Gautschi-type integrator over finite difference in time resolu-
tion when 0 < ε � 1. In order to do so, in the KG equation (2.1), we choose

f (u) = λu p+1; φ(x) = 2

ex2 + e−x2 , γ (x) = 0, x ∈ R. (4.1)

The computational interval [a, b] is chosen large enough such that the periodic
boundary conditions do not introduce a significant aliasing error relative to the problem
in the whole space. Let u(x, t) be the ‘exact’ solution which is obtained numerically
by using Gautschi-FP with very fine mesh size and small time step, e.g. h = 1/1,024
and τ = 1E−8. In order to quantify the convergence, we define three error functions,
l2-error, l∞-error and discrete H1-error as

el2 = ‖u(·, tn) − un‖l2 , el∞ = max
j

|u(x j , tn) − un
j |,

eH1 =
√

‖u(·, tn) − un‖2
l2 + ‖δ+

x (u(·, tn) − un)‖2
l2 .
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Table 1 Temporal discretization errors of Impt-EC-FD at time t = 0.4 in nonlinear case with h = 1/128
for different ε and τ under ε-scalability τ = O(ε3): (i) l2-error (upper 4 rows); (ii) discrete H1-error
(middle 4 rows); (iii) l∞-error (lower 4 rows)

ε-Scalability τ =1.00E–3 τ =5.00E–4 τ =2.50E–4 τ =1.25E–4 τ =6.25E–5

ε = 0.1, τ 4.6484E–2 1.1063E–2 2.7344E–3 6.8472E–4 1.7533E–4

ε/2, τ/23 4.9171E–2 1.2912E–2 3.2712E–3 8.2486E–4 2.1197E–4

ε/4, τ/43 4.6831E–2 1.1162E–2 2.7597E–3 6.9083E–4 1.7681E–4

ε/8, τ/83 3.6900E–2 9.6406E–3 2.4426E–3 6.1784E–4 1.6129E–4

ε = 0.1, τ 7.5093E–2 1.8650E–2 4.6877E–3 1.2087E–3 2.8179E–4

ε/2, τ/23 9.2221E–2 2.3739E–2 6.0030E–3 1.5347E–3 3.8945E–4

ε/4, τ/43 7.0780E–2 1.7431E–2 4.3724E–3 1.1292E–3 2.9825E–4

ε/8, τ/83 7.7202E–2 1.9840E–2 5.0233E–3 1.2937E–3 3.1687E–4

ε = 0.1, τ 2.9725E–2 7.7927E–3 1.8177E–3 4.5897E–4 1.2252E–4

ε/2, τ/23 4.3783E–2 1.1543E–2 2.9273E–3 7.3938E–4 1.9031E–4

ε/4, τ/43 2.8754E–2 6.9944E–3 1.7321E–3 4.2850E–4 1.1127E–4

ε/8, τ/83 2.9213E–2 7.9193E–3 2.0227E–3 5.1313E–4 1.3350E–4

Case I. A nonlinear case, where we choose λ = 4 and p = 2 in (4.1) and solve
the KG equation (2.1) on the interval [−8, 8]. In order to study the temporal reso-
lution or ε-scalability in time of different methods, we choose a very small mesh
size h = 1/128 such that the discretization error in space is negligible. Tables 1
and 2 tabulate l2-error, H1-error and l∞-error at time t = 0.4 of Impt-EC-FD
and SImpt-FD, respectively, for various time steps τ and parameter values ε under
ε-scalability τ = O(ε3). Tables 3 and 4 show similar results for Gautschi-FP and
Gautschi-FD, under ε-scalability τ = O(ε2). Similarly, in order to compare errors
of spatial discretization, we always choose very fine time step τ such that time dis-
cretization error is negligible. Table 5 lists l2-errors at time t = 0.4 of Impt-EC-FD,
SImpt-EC-FD, Gautschi-FD and Gautschi-FP with different ε and τ satisfying the
required ε-scalability. We also carried out numerical experiments for Impt-EC-FD
and Exmpt-FD, where the results are similar to those of Impt-EC-FD and SImpt-FD,
and thus we omit them for brevity.
Case II. A linear case, where we choose λ = 4 and p = 0 in (4.1) and solve the
KG equation (2.1) on the interval [−16, 16]. Here we only present the results of
Gautschi-FP and Gautschi-FD to verify that there is no time discretization error
of Gautschi-type integrator for the linear KG equation. Table 6 lists the l2-error
of Gautschi-FP and Gautschi-FD at time t = 1 for different τ, h and ε under the
ε-scalability τ = O(1) and h = O(1). Similar convergence patterns of the discrete
H1-error and l∞-error were also observed and they are omitted here for simplicity.
In addition, the results for FDTD methods are quite similar to those in nonlinear
case and thus are omitted here too for brevity.

From Tables 1, 2, 3, 4, 5 and 6 and our extensive numerical results not shown here
for brevity, we can draw the following conclusions:
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Table 2 Temporal discretization errors of SImpt-FD at time t = 0.4 in nonlinear case with h = 1/128 for
different ε and τ under ε-scalability τ = O(ε3): (i) l2-error (upper 4 rows); (ii) discrete H1-error (middle
4 rows); (iii) l∞-error (lower 4 rows)

ε-Scalability τ =1.00E–3 τ =5.00E–4 τ =2.50E–4 τ =1.25E–4 τ =6.25E–5

ε = 0.1, τ 4.4395E–2 1.0598E–2 2.6213E–3 6.5674E–4 1.6847E–4

ε/2, τ/23 4.8329E–2 1.2678E–2 3.2113E–3 8.0980E–4 2.0824E–4

ε/4, τ/43 4.6690E–2 1.1131E–2 2.7521E–3 6.8896E–4 1.7635E–4

ε/8, τ/83 3.6864E–2 9.6301E–3 2.4399E–3 6.1716E–4 1.6113E–4

ε = 0.1, τ 7.2046E–2 1.7868E–2 4.4913E–3 1.1605E–3 2.9095E–4

ε/2, τ/23 9.0650E–2 2.3316E–2 5.8955E–3 1.5080E–3 3.8325E–4

ε/4, τ/43 7.0580E–2 1.7381E–2 4.3599E–3 1.1261E–3 2.9257E–4

ε/8, τ/83 7.7123E–2 1.9818E–2 5.0178E–3 1.2923E–3 3.1356E–4

ε = 0.1, τ 2.8663E–2 7.0385E–3 1.7558E–3 4.4435E–4 1.1932E–4

ε/2, τ/23 4.2804E–2 1.1276E–2 2.8593E–3 7.2231E–4 1.8604E–4

ε/4, τ/43 2.8674E–2 6.9762E–3 1.7277E–3 4.2753E–4 1.1111E–4

ε/8, τ/83 2.9168E–2 7.9066E–3 2.0194E–3 5.1231E–4 1.3329E–4

Table 3 Temporal discretization errors of Gautschi-FP at time t = 0.4 in nonlinear case with h = 1/128
for different ε and τ under ε-scalability τ = O(ε2): (i) l2-error (upper 4 rows); (ii) discrete H1-error
(middle 4 rows); (iii) l∞-error (lower 4 rows)

ε-Scalability τ =5.00E–3 τ =2.50E–3 τ =1.25E–3 τ =6.25E–4 τ =3.125E–4

ε = 0.1, τ 2.4902E–3 6.1124E–4 1.5208E–4 3.7957E–5 9.4697E–6

ε/2, τ/22 3.1009E–3 7.6212E–4 1.8973E–4 4.7384E–5 1.1845E–5

ε/4, τ/42 2.5929E–3 6.3666E–4 1.5846E–4 3.9564E–5 9.8826E–6

ε/8, τ/82 2.5965E–3 6.3757E–4 1.5862E–4 3.9563E–5 9.8072E–6

ε = 0.1, τ 6.0409E–3 1.4857E–3 3.6976E–4 9.2230E–5 2.2948E–5

ε/2, τ/22 8.6467E–3 2.1232E–3 5.2845E–4 1.3197E–4 3.2989E–5

ε/4, τ/42 6.3003E–3 1.5450E–3 3.8453E–4 9.6000E–5 2.3974E–5

ε/8, τ/82 7.9670E–3 1.9557E–3 4.8650E–4 1.2126E–4 3.0079E–5

ε = 0.1, τ 1.9268E–3 4.7365E–4 1.1786E–4 2.9447E–5 7.3746E–6

ε/2, τ/22 2.4770E–3 6.0895E–4 1.5161E–4 3.7863E–5 9.4650E–6

ε/4, τ/42 1.9261E–3 4.7358E–4 1.1797E–4 2.9445E–5 7.3572E–6

ε/8, τ/82 1.9103E–3 4.6947E–4 1.1682E–4 2.9120E–5 7.2235E–6

(i). In the O(1)-speed of light regime, i.e. 0 < ε = O(1) fixed, the FDTD
methods and Gautschi-FD are of second-order accuracy in both time and space
(cf. Tables 1, 2, 4, 5); where Gautschi-FP is second-order and spectral-order
accurate in time and space, respectively (cf. Tables 3, 5). In addition, there is
no time discretization error of Gautschi-FP and Gautschi-FD for the linear KG
equation (cf. Table 6). Therefore, in this regime all the methods we have con-
sidered are compatible in time discretization while Gautschi-FP is of higher
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Table 4 Temporal discretization errors of Gautschi-FD at time t = 0.4 in nonlinear case with h = 1/128
for different ε and τ under ε-scalability τ = O(ε2): (i) l2-error (upper 4 rows); (ii) discrete H1-error
(middle 4 rows); (iii) l∞-error (lower 4 rows)

ε-Scalability τ =5.00E–3 τ =2.50E–3 τ =1.25E–3 τ =6.25E–4 τ =3.125E–4

ε = 0.1, τ 2.4910E–3 6.1204E–4 1.5295E–4 3.9100E–5 9.9575E–6

ε/2, τ/22 3.1013E–3 7.6248E–4 1.9017E–4 4.8121E–5 1.2658E–5

ε/4, τ/42 2.5937E–3 6.3748E–4 1.5836E–4 4.0818E–5 1.0343E–6

ε/8, τ/82 2.6106E–3 6.3814E–4 1.5927E–4 4.0565E–5 9.9140E–6

ε = 0.1, τ 6.0467E–3 1.4916E–3 3.7655E–4 9.9249E–5 2.3124E–5

ε/2, τ/22 8.6502E–3 2.1268E–3 5.3291E–4 1.3656E–4 3.6826E–5

ε/4, τ/42 6.3067E–3 1.5698E–3 3.9225E–4 1.0798E–4 2.4152E–5

ε/8, τ/82 7.8831E–3 1.9601E–3 4.9192E–4 1.2936E–4 3.7448E–5

ε = 0.1, τ 1.9254E–3 4.7230E–4 1.1654E–4 2.8122E–5 7.5647E–6

ε/2, τ/22 2.4755E–3 6.0746E–4 1.5013E–4 3.6437E–5 8.8545E–6

ε/4, τ/42 1.9247E–3 4.7285E–4 1.1662E–4 2.9170E–5 7.6260E–6

ε/8, τ/82 1.9340E–3 4.6890E–4 1.1568E–4 2.7885E–5 7.5793E–6

Table 5 Spatial discretization error el2 of Impt-EC-FD and SImpt-FD (under ε-scalability τ = O(ε3))

and Gautschi-FD and Gautschi-FP (under ε-scalability τ = O(ε2)) at time t = 0.4 in nonlinear case with
ε0 = 0.1 and τ0=2E-5 for different mesh sizes h

h = 1/4 h = 1/8 h = 1/16 h = 1/32

Impt-EC-FD

ε0, τ0 2.0671E–2 5.5497E–3 1.4075E–3 3.5551E–4

ε0/2, τ0/23 2.2900E–2 6.2179E–3 1.5834E–3 4.0110E–4

ε0/4, τ0/43 2.2881E–2 6.2815E–3 1.6021E–3 4.0398E–4

SImpt-FD

ε0, τ0 2.0671E–2 5.5497E–3 1.4075E–3 3.5541E–4

ε0/2, τ0/23 2.2900E–2 6.2178E–3 1.5833E–3 4.0101E–4

ε0/4, τ0/43 2.2881E–2 6.2815E-3 1.6021E–3 4.0398E–4

Gautschi-FD

ε0, τ0 2.0668E–2 5.5462E–3 1.4041E–3 3.5182E–4

ε0/2, τ0/22 2.2894E–2 6.2129E–3 1.5784E–3 3.9568E–4

ε0/4, τ0/42 2.2878E–2 6.2790E–3 1.5996E–3 4.0120E–4

h = 1 h = 1/2 h = 1/4 h = 1/8

Gautschi-FP

ε0, τ0 1.1873E–1 3.9320E–3 3.1799E–5 1.0722E–7

ε0/2, τ0/22 8.3243E–2 3.2486E–3 3.3677E–5 7.6844E–8

ε0/4, τ0/42 1.1899E–1 3.9849E–3 2.8723E–5 8.4444E–8
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Table 6 Temporal and spatial discretization error el2 of Gautschi-FP and Gautschi-FD in linear case at
time t = 1 with τ0 = 0.25 and h0 = 0.5 for different τ, h and ε

ε = 0.02 ε = 0.002 ε = 0.0002 ε = 0.00002

Gautschi-FP

τ0 h0/8 1.1239E–15 9.7781E–16 1.9602E–15 1.6371E–15

τ0/2 h0/8 1.2503E–15 1.6460E–15 1.3867E–15 1.6133E–15

τ0/4 h0/8 2.8930E–15 2.2077E–15 2.5100E–15 2.4671E–15

τ0 h0 3.9029E–3 5.5134E–3 4.1445E–3 5.5276E–3

τ0 h0/2 1.1041E–5 1.2214E–5 8.6830E–6 1.2093E–5

τ0 h0/4 4.1894E–10 5.2825E–10 5.2296E–10 4.8898E–10

Gautschi-FD

τ0 h0/32 2.2447E–4 2.2633E–4 2.2723E–4 2.2641E–4

τ0/2 h0/32 2.2447E–4 2.2633E–4 2.2723E–4 2.2641E–4

τ0/4 h0/32 2.2447E–4 2.2633E–4 2.2723E–4 2.2641E–4

τ0 h0/4 1.3608E–2 1.3703E–2 1.3765E–2 1.3708E–2

τ0 h0/8 3.5636E–3 3.5923E–3 3.6069E–3 3.5934E–3

τ0 h0/16 8.9699E–4 9.0441E–4 9.0802E–4 9.0468E–4

accuracy in space than the rest. Indeed, generally Gautschi-FP performs much
better in time discretization than the rest under the same time step and mesh
size.

(ii). In the nonrelativistic limit regime, i.e. 0 < ε � 1, for FDTD methods the
‘correct’ ε-scalability is τ = O(ε3) and h = O(1) which confirms our analyti-
cal results (2.30); and for Gautschi-FP and Gautschi-FD methods, the ‘correct’
ε-scalability is τ = O(1) and h = O(1) for the linear KG equation which veri-
fies our analytical results (3.28), and respectively, τ = O(ε2) and h = O(1) for
the nonlinear KG equation which again confirms our analytical results (3.34).

In view of both temporal and spatial resolution capacities, we conclude that
Gautschi-FP is the best candidate for discretizing the KG equation, especially in the
nonrelativistic limit regime.

5 Conclusion

Two classes of numerical methods with different time integrations were analyzed
rigorously and compared numerically for solving the KG equation in the nonrelativis-
tic limit regime, i.e. if 0 < ε � 1 or the speed of light goes to infinity. The first class are
the standard second-order FDTD methods. For FDTD schemes, including energy con-
servative/non-conservative and implicit/semi-implicit/explicit ones, error estimates
were rigorously carried out, which showed that their ε-scalability is τ = O(ε3) with
ε-independent h. The second class are based on applying the Gautschi-type exponential
integrator for time discretization, which is combined with either Fourier pseudospectral
(Gautschi-FP) or finite difference (Gautschi-FD) discretization in space. For the lin-
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ear KG equation, the Gautschi-type time integration does not introduce error in time
discretization. In addition, our rigorous error estimates suggest that the ε-scalability
of Gautschi-FP and Gautschi-FD is improved to τ = O(1) and τ = O(ε2) for the
linear and nonlinear KG equations, respectively. Comparison between Gautschi-FP
and Gautschi-FD also indicated that this temporal resolution competence of Gautschi-
type methods is independent of the spatial discretization that it combines with. In
summary, Gautschi-FP performs the best among all the methods discussed here in
both nonrelativistic limit regime and O(1)-speed of light regime.
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Appendix I: Proof of Theorem 2 for Impt-EC-FD (2.2)

In order to prove Theorem 2, we need the following lemmas:

Lemma 2 For any vn ∈ X M (n ≥ 0), the following equalities hold
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Proof The equality (I.1) comes from the standard summation by parts formula (see,
e.g. [30]) and (I.2) comes from
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From (I.2) and a straightforward computation, we get
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which immediately implies (I.3). ��

Lemma 3 Denote the local truncation error for Impt-EC-FD (2.2) as
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Proof Taking Taylor’s expansion in the local truncation error (I.4), noticing (2.6),
(2.1), under τ � h and using the assumptions (A) and (B2), with the help of the
triangle inequality and Cauchy–Schwartz inequality, for j = 0, 1, . . . , M − 1, we
have
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These immediately imply the estimates in (I.5). ��
Lemma 4 There exists h0 > 0 and τ0 > 0 sufficiently small, under the assump-
tion (B2) and when 0 < τ ≤ τ0 and 0 < h ≤ h0, there exists a unique solution
un

j ( j = 0, 1, . . . , M; n ≥ 0) of the problem (2.2) with (2.7) and (2.8).

Proof The argument follows the analogous lines as in [15,48] for the standard KG
equation, i.e. ε = 1 in (2.1), and we omit the details here for brevity. ��
Lemma 5 For j = 0, 1, . . . , M, n ≥ 1, denote
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Proof From (I.11), noticing (2.6) and the assumption (B2), we get
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1∫

0

[
θ

∣∣∣u(x j , tn+1) − un+1
j

∣∣∣+ (1 − θ)

∣∣∣u(x j , tn−1) − un−1
j

∣∣∣
]

dθ

�
∣∣∣en−1

j

∣∣∣+
∣∣∣en+1

j

∣∣∣ , j = 0, 1, . . . , M; n ≥ 1.
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Using Hölder inequality, we get (I.12) immediately. Similarly, for j = 0, 1, . . . , M −1
and n ≥ 1, we can obtain

|δ+
x ηn

j | � |en−1
j | + |δ+

x en−1
j | + |en−1

j+1| + |en+1
j | + |δ+

x en+1
j | + |en+1

j+1|.

This together with the Hölder inequality implies (I.13) immediately. ��

Combining Lemmas 3 and 5, we give the proof of Theorem 2:

Proof of Theorem 2 Subtracting (2.2) and (2.8) from (I.4), noticing (2.7) and (2.24),
we see the error en

j satisfies

ε2δ2
t en

j − 1

2

(
δ2

x en+1
j + δ2

x en−1
j

)
+ 1

2ε2

(
en+1

j + en−1
j

)
= ξn

j − ηn
j , (I.14a)

en
0 = en

M , en−1 = en
M−1, n = 0, 1, . . . , (I.14b)

e0
j = 0, e1

j = τξ0
j , j = 0, 1, . . . , M. (I.14c)

Define the ‘energy’ for the error vector en(n = 0, 1, . . .) as

En = ε2
∥∥δ+

t en
∥∥2

l2 + 1

2

(∥∥δ+
x en

∥∥2
l2 +

∥∥∥δ+
x en+1

∥∥∥2

l2

)
+ 1

2ε2

(∥∥en
∥∥2

l2 +
∥∥∥en+1

∥∥∥2

l2

)
.

(I.15)

Multiplying both sides of (I.14a) by h
(

en+1
j − en−1

j

)
, then summing up for

j = 0, 1, . . . , M − 1, noticing (I.1) and (I.15), we get

En − En−1 = h
M−1∑
j=0

(
ξn

j − ηn
j

) (
en+1

j − en−1
j

)
, n ≥ 1. (I.16)

From (I.16), using Young’s inequality, noticing Lemma 5, we have

En − En−1 ≤ h
M−1∑
j=0

(∣∣∣ξn
j

∣∣∣+
∣∣∣ηn

j

∣∣∣
) ∣∣∣en+1

j − en−1
j

∣∣∣

= τh
M−1∑
j=0

(∣∣∣ξn
j

∣∣∣+
∣∣∣ηn

j

∣∣∣
) ∣∣∣δ+

t en
j + δ+

t en−1
j

∣∣∣

≤ τ

[
1

ε2

(
‖ξn‖2

l2 + ‖ηn‖2
l2

)
+ ε2

(
‖δ+

t en‖2
l2 + ‖δ+

t en−1‖2
l2

)]

� τ
(
En + En−1

)
+ τ

ε2

(
h2 + τ 2

ε6

)2

, n ≥ 1. (I.17)
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Thus, there exists a constant τ0 > 0 sufficiently small and independent of ε and h,
such that when 0 < τ ≤ τ0

En − En−1 � τEn−1 + τ

ε2

(
h2 + τ 2

ε6

)2

, n ≥ 1. (I.18)

Summing the above inequality up for n, we get

En − E0 � τ

n−1∑
m=0

Em + T

ε2

(
h2 + τ 2

ε6

)2

, 1 ≤ n ≤ T

τ
− 1. (I.19)

Using the discrete Gronwall’s inequality [30,38], we obtain

En � E0 + T

ε2

(
h2 + τ 2

ε6

)2

, 1 ≤ n ≤ T

τ
− 1. (I.20)

Combining (I.14), (I.15) for n = 0 and (I.5), we have

E0 = ε2‖ξ0‖2
l2 + τ 2

2
‖δ+

x ξ0‖2
l2 + τ 2

ε2 ‖ξ0‖2
l2

�
(

h2 + τ 2

ε6

)2 (
ε2 + τ 2

2
+ τ 2

ε2

)
�
(

h2 + τ 2

ε6

)2 (
1 + τ 2

ε2

)
. (I.21)

Plugging (I.21) into (I.20), we get

En � 1

ε2

(
h2 + τ 2

ε6

)2

, 0 ≤ n ≤ T

τ
− 1. (I.22)

In addition, define another ‘energy’ for the error vector en(n = 0, 1, . . .) as

Ên = ε2
∥∥δ+

x δ+
t en

∥∥2
l2 + 1

2

(∥∥∥δ2
x en

∥∥∥2

l2
+
∥∥∥δ2

x en+1
∥∥∥2

l2

)

+ 1

2ε2

(∥∥δ+
x en

∥∥2
l2 +

∥∥∥δ+
x en+1

∥∥∥2

l2

)
. (I.23)

Multiplying both sides of (I.14a) by h
(
δ2

x en+1
j − δ2

x en−1
j

)
, similar to the above pro-

cedure, we can obtain

Ên � 1

ε2

(
h2 + τ 2

ε6

)2

, 0 ≤ n ≤ T

τ
− 1. (I.24)

Combining (I.15), (I.22), (I.23), and (I.24), noticing that ‖en‖2
l2 + ‖en+1‖2

l2 ≤ 2ε2En

and ‖δ+
x en‖2

l2 + ‖δ+
x en+1‖2

l2 ≤ 2ε2Ên when 0 < ε ≤ 1, we immediately obtain the
error estimate in (2.25). ��
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Appendix II: Proof of Theorem 3 for Expt-FD (2.5)

Proof Define

ξ̃n
j : = ε2δ2

t (u(x j , tn)) − δ2
x (u(x j , tn)) + 1

ε2 u(x j , tn) + f (u(x j , tn)), (II.1)

η̃n
j : = f (u(x j , tn)) − f (un

j ), j = 0, 1, . . . , M − 1, n ≥ 1. (II.2)

Similar to Lemmas 3 and 5, we can prove

∥∥∥ξ̃n
∥∥∥

l2
+
∥∥∥δ+

x ξ̃n
∥∥∥

l2
� h2 + τ 2

ε6 , 0 ≤ n ≤ T

τ
; ‖δ2

x ξ̃
0‖l2 � h2 + τ 2

ε6 , (II.3)

‖η̃n‖2
l2 � ‖en‖2

l2 , ‖δ+
x η̃n‖2

l2 � ‖en‖2
l2 + ‖δ+

x en‖2
l2 , n ≥ 1. (II.4)

Subtracting (2.5) from (II.1), noticing (2.7), (2.8) and (II.2), we get

ε2δ2
t en

j − δ2
x en

j + 1

ε2 en
j = ξ̃n

j − η̃n
j , (II.5a)

en
0 = en

M , en−1 = en
M−1, n = 0, 1, . . . , (II.5b)

e0
j = 0, e1

j = τξ0
j , j = 0, 1, . . . , M. (II.5c)

Define the ‘energy’ for the error vector en(n = 0, 1, . . .) as

Sn : =
(

ε2 − τ 2

2ε2 − τ 2

h2

)
‖δ+

t en‖2
l2 + 1

2ε2

(
‖en+1‖2

l2 + ‖en‖2
l2

)

+ 1

2h

M−1∑
j=0

[(
en+1

j+1 − en
j

)2 +
(

en
j+1 − en+1

j

)2
]

, n ≥ 0. (II.6)

Similar to the proof in Theorem 2, with the help of (I.2) and (I.3), noticing (II.5), (2.5),
(2.7), (2.8) and (II.6), in view of the estimates (II.3), we obtain

Sn � S0 + 1

ε2

(
h2 + τ 2

ε6

)2

, 0 ≤ n ≤ T

τ
− 1. (II.7)

Plugging (II.5) into (II.6) with n = 0, we get

S0 �
(

h2 + τ 2

ε6

)2 (
1 + τ 2

ε2

)
. (II.8)
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Similarly, define another ‘energy’ as

Ŝn : =
(

ε2 − τ 2

2ε2 − τ 2

h2

)∥∥δ+
x δ+

t en
∥∥2

l2 + 1

2ε2

(∥∥∥δ+
x en+1

∥∥∥2

l2
+ ∥∥δ+

x en
∥∥2

l2

)

+ 1

2h

M−1∑
j=0

[(
δ+

x en+1
j+1 − δ+

x en
j

)2 +
(
δ+

x en
j+1 − δ+

x en+1
j

)2
]

, n ≥ 0,

(II.9)

we can obtain

Sn � 1

ε2

(
h2 + τ 2

ε6

)2

, 0 ≤ n ≤ T

τ
− 1. (II.10)

Thus (2.27) is a combination of (II.6)–(II.10) by noticing ‖en‖2
l2 +‖en+1‖2

l2 ≤ 2ε2Sn,

‖δ+
x en‖2

l2 + ‖δ+
x en+1‖2

l2 ≤ 2ε2Ŝn and 0 < ε ≤ 1. ��

Appendix III: Proof of Theorem 7 for Gautschi-FP in linear case

Proof From (3.23), we have uI (x j , 0) = (IMφ)(x j ) = φ(x j ) = u0
j for j = 0,

1, . . . , M . Thus (3.25) is valid for n = 0. From (3.5) and (3.21), when αn = α for
n ≥ 0, we get

βn
l = βl , n ≥ 0, l = − M

2
, . . . ,

M

2
− 1. (III.1)

Plugging (3.13) into (3.15) with n = 0, noticing (III.1) and (3.24), we get

u1
j =

M/2−1∑
l=−M/2

[
p0

l φ̃l + q0
l γ̃l + r0

l αφ̃l

]
e2i jlπ/M

=
M/2−1∑

l=−M/2

[
φ̃l cos(t1βl) + γ̃l

sin(t1βl)

ε2βl

]
e2i jlπ/M

= uI (x j , t1), j = 0, 1, . . . , M. (III.2)

Thus (3.25) is valid for n = 1. Assume (3.25) is valid for n = 0, 1, . . . , m. When
n = m + 1, from (3.15) with n = m, noticing (3.14) and (III.1), we have

(̃um+1)l = −(̃um−1)l + pm
l (̃um)l + rm

l α(̃um)l = −(̃um−1)l + 2 cos (τβl) (̃um)l

= −
[
φ̃l cos(tm−1βl) + γ̃l

sin(tm−1βl)

ε2βl

]
+ 2 cos(τβl)
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×
[
φ̃l cos(tmβl) + γ̃l

sin(tmβl)

ε2βl

]

= φ̃l cos(tm+1βl) + γ̃l
sin(tm+1βl)

ε2βl
, l = − M

2
, . . . ,

M

2
− 1.

Plugging the above equality into (3.15) with n = m and noticing (3.24) with t = tm+1,
we obtain (3.25) for n = m + 1, thus the claim (3.25) is verified by mathematical
induction. From (3.25), noticing (3.20) and (3.24), we obtain

‖en(x)‖2
L2 � ‖φ − IMφ‖2

L2 + ‖γ − IMγ ‖2
L2 � h2m,

‖∇en(x)‖2
L2 � ‖∇(φ − IMφ)‖2

L2 + ‖∇(γ − IMγ )‖2
L2 � h2(m−1),

which complete the proof of (3.26). ��

Appendix IV: Proof of Theorem 8 for Gautschi-FD in linear case

Proof Let u j (t) be the solution of (3.17) with the initial condition

u j (0) = φ(x j ),
d

dt
u j (0) = 1

ε2 γ (x j ), j = 0, 1, . . . , M.

Similar to the proof of Theorem 7, we have for 0 ≤ j ≤ M, n ≥ 0

un
j = u j (tn) =

M/2−1∑
l=−M/2

[
φ̃l cos(tβh

l ) + γ̃l
sin(tβh

l )

ε2βh
l

]
eiμl (x j −a),

where

βh
l = 1

ε2

√
1 + ε2

(
λ2

l + α
) ≥ 1√

2ε2
, l = 0,±1, . . . . (IV.1)

Let

e j (t) = u(x j , t) − u j (t), j = 0, 1, . . . , M,

ξ j (t) = ε2 d2

dt2 u(x j , t) − δ2
x u(x j , t) +

(
1
ε2 + α

)
u(x j , t) = h2

12∂xxxx u(x̃ j (t), t),

(IV.2)

where x̃ j (t) is located between x j−1 and x j+1. Subtracting (3.17) from (IV.2), we
have

ε2 d2

dt2 e j (t) − δ2
x e j (t) +

(
1

ε2 + α

)
e j (t) = ξ j (t), j = 0, 1, . . . , M, t ≥ 0,

e0(t) = eM (t), e−1(t) = eM−1(t), e j (0) = 0,
d

dt
e j (0) = 0.

(IV.3)
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Taking the discrete Fourier transform of (IV.3), we get

ε2 d2

dt2 ẽl(t) + (εβh
l )2ẽl(t) = ξ̃l(t),

ẽl(0) = 0,
d

dt
ẽl(0) = 0, l = − M

2
, . . . ,

M

2
− 1.

(IV.4)

Solving the above ODEs, we have

ẽl(t) = 1

βh
l ε2

t∫

0

sin(βh
l (t − s))̃ξl(s)ds, l = − M

2
, . . . ,

M

2
− 1. (IV.5)

Plugging (IV.2) into (IV.5), noticing φ, γ ∈ W 4,∞
p (	) and (3.20), using the Hölder’s

inequality and Parseval’s identity, we obtain

M/2−1∑
l=−M/2

|̃el(t)|2 ≤ 2
M/2−1∑

l=−M/2

⎡
⎣

t∫

0

∣∣̃ξl(s)
∣∣ ds

⎤
⎦

2

≤ 2t

t∫

0

M/2−1∑
l=−M/2

∣∣̃ξl(s)
∣∣2 ds

≤ 2t

M

t∫

0

M−1∑
j=0

|ξ j (t)|2ds ≤ 2T

M

T∫

0

M−1∑
j=0

|ξ j (s)|2ds � h4, 0 ≤ t ≤ T .

Noticing en
j = e j (tn)( j = 0, 1, . . . , M, 0 ≤ n ≤ T/τ ) and using the Parseval’s

equality, we obtain the estimate (3.27) immediately. ��

Appendix V: Proof of Theorem 9 for Gautschi-FP in nonlinear case

Proof We will prove (3.32) by the method of mathematical induction [4]. From the
discretization of the initial data, i.e. u0

M = PMφ, we have

‖u(x, t = 0) − u0
M‖L2 = ‖φ − PMφ‖L2 � hm0 ,

‖∇[u(x, t = 0) − u0
M ]‖L2 = ‖∇φ − PM∇φ‖L2 � hm0−1,

‖u0
M‖L∞ ≤ ‖PMφ − φ‖L∞ + ‖φ‖L∞ ≤ Chm0−1 + M1.

Thus there exists a h1 > 0 sufficiently small and independent of ε such that, when
0 < h ≤ h1, the three inequalities in (3.32) are valid for n = 0.

Denote the ‘error’ function

en(x) := PM u(x, tn) − un
M (x) =

M/2−1∑
l=−M/2

ê n
l eiμl (x−a), a ≤ x ≤ b, (V.1)
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then we have

ê n
l = ûl(tn) − (̂un

M )l , l = − M

2
, . . . ,

M

2
− 1, n ≥ 0, (V.2)

with ûl(tn)(l = 0,±1, . . .) the Fourier coefficients of u(x, tn). Using the triangle
inequality and Parseval’s equality, we get

‖u(x, tn) − un
M (x)‖L2 ≤ ‖u(x, tn) − PM u(x, tn)‖L2 + ‖en(x)‖L2

� hm0 +

√√√√√
M/2−1∑

l=−M/2

|̂e n
l |2, 0 ≤ n ≤ T

τ
. (V.3)

Similarly, we have

‖∇[u(x, tn) − un
M (x)]‖L2 � hm0−1 +

√∑
M/2−1
l=−M/2μ

2
l |̂e n

l |2, 0 ≤ n ≤ T

τ
. (V.4)

Thus we only need to estimate the last terms in the above two inequalities.
Similar to the derivation in (3.3)–(3.9), for l = 0,±1, . . ., we have

ûl(τ ) = φ̂l cos(τβ0
l ) + γ̂l

sin(τβ0
l )

ε2β0
l

− 1

ε2β0
l

τ∫

0

Ĝ0
l (s) sin(β0

l (τ − s))ds, (V.5)

ûl(tn+1) = −ûl(tn−1) + 2 cos(τβn
l )̂ul(tn)

− 1

ε2βn
l

τ∫

0

[
Ĝn

l (−s) + Ĝn
l (s)

]
sin(βn

l (τ − s))ds, n ≥ 1, (V.6)

where

Ĝn
l (s) = (̂ f (u))l(tn + s) − αnûl(tn + s), s ∈ R, n ≥ 0. (V.7)

For each l = −M/2, . . . , M/2 − 1, subtracting (3.12) and (3.11) from (V.6) and
(V.5), respectively, we obtain the equation for the ‘error’ function ê n

l as

ê n+1
l = −ê n−1

l + 2 cos(βn
l τ )̂e n

l + ξ̂n
l , 1 ≤ n ≤ T

τ
− 1, (V.8)

ê 0
l = 0, ê 1

l = ξ̂0
l , (V.9)

where

ξ̂n
l = 1

ε2βn
l

τ∫

0

Ŵ n
l (s) sin(βn

l (τ − s))ds, 0 ≤ n ≤ T

τ
− 1, (V.10)
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with for 0 ≤ s ≤ τ

Ŵ n
l (s) =

{
f̂ (φ)l − α0φ̂l − Ĝ0

l (s), n = 0,

2 f̂ (un
M )l − 2αn (̂un

M )l − Ĝn
l (−s) − Ĝn

l (s), 1 ≤ n ≤ T
τ

− 1.
(V.11)

Combining (3.16), (3.29) and (3.32) with n = 0, noticing (3.5), under the condition
(3.31), we get

0 ≤ α0 ≤ M3, ε2β0
l ≥ 1, 0 < τβ0

l ≤ π

3
,

1

2
≤ cos(β0

l τ) < 1,

0 ≤ sin(β0
l (τ − s)) ≤ sin(β0

l τ) < 1, 0 ≤ s ≤ τ.

From (V.10) with n = 0, using the Hölder inequality, we obtain

∣∣∣̂ξ 0
l

∣∣∣2 =
∣∣∣∣∣∣

1

ε2β0
l

τ∫

0

Ŵ 0
l (s) sin(β0

l (τ − s))ds

∣∣∣∣∣∣
2

≤
τ∫

0

sin(β0
l (τ − s))ds ·

τ∫

0

∣∣∣Ŵ 0
l (s)

∣∣∣2 sin(β0
l (τ − s))ds

≤ τ
[
1 − cos(β0

l τ)
] sin(β0

l τ)

β0
l τ

τ∫

0

∣∣∣Ŵ 0
l (s)

∣∣∣2 ds

≤ τ
[
1 − cos(β0

l τ)
] τ∫

0

∣∣∣Ŵ 0
l (s)

∣∣∣2 ds. (V.12)

Summing the above inequality for l = −M/2, . . . , M/2−1, noticing (V.9) and (V.12),
we obtain

‖e1‖2
L2 = (b − a)

M/2−1∑
l=−M/2

∣∣∣̂e1
l

∣∣∣2 = (b − a)

M/2−1∑
l=−M/2

∣∣∣̂τ 0
l

∣∣∣2

≤ τ(b − a)

M/2−1∑
l=−M/2

τ∫

0

∣∣∣Ŵ 0
l (s)

∣∣∣2 ds.
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Plugging (V.11), (V.7) and (3.5) into the above inequality, using the triangle inequality
and Parseval’s equality, we get

‖e1‖2
L2 ≤ τ(b − a)

M/2−1∑
l=−M/2

τ∫

0

∣∣∣(̂ f (φ))l − (̂ f (u))l(s) + α0(̂ul(s) − φ̂l)

∣∣∣2 ds

≤ 2τ(b − a)

τ∫

0

M/2−1∑
l=−M/2

[∣∣∣(̂ f (φ))l − (̂ f (u))l(s)
∣∣∣2 + (α0)2

∣∣̂ul(s) − φ̂l
∣∣2
]

ds

= 2τ

τ∫

0

(
‖PM [ f (u(·, s)) − f (φ)]‖2

L2 + (α0)2‖PM [u(·, s) − φ]‖2
L2

)
ds

≤ 2τ

τ∫

0

(
‖ f (u(·, s)) − f (φ)‖2

L2 + M2
3 ‖u(·, s) − φ‖2

L2

)
ds. (V.13)

Under the assumption on u, using the Hölder inequality, we get

‖u(·, s) − φ‖2
L2 =

b∫

a

|u(x, s) − u(x, 0)|2 dx =
b∫

a

∣∣∣∣∣∣
s∫

0

∂wu(x, w) dw

∣∣∣∣∣∣
2

dx

≤
b∫

a

s

s∫

0

|∂wu(x, w)|2 dw dx = s

s∫

0

‖∂wu(·, w)‖2
L2 dw

≤ s2‖∂t u(·, t)‖2
L∞([0,T ];L2)

� s2

ε4 , 0 ≤ s ≤ τ. (V.14)

Similarly, under the assumption on u and f , we have

‖ f (u(·, s)) − f (φ)‖2
L2 ≤ s2 M2

2 ‖∂t u(·, t)‖2
L∞([0,T ];L2)

� s2

ε4 , 0 ≤ s ≤ τ. (V.15)

Plugging (V.14) and (V.15) into (V.13), noticing (V.3) with n = 1, we obtain

‖e1‖2
L2 � τ

τ∫

0

s2

ε4 ds � τ 4

ε4 � τ 4

ε8 ⇒ ‖u(x, t1) − u1
M (x)‖L2 � hm0 + τ 2

ε4 .

Similarly, we can get

‖∇[u(x, t1) − u1
M (x)]‖L2 � hm0−1 + τ 2

ε4 .

123



224 W. Bao, X. Dong

This, together with the triangle inequality and inverse inequality, implies

‖u1
M‖L∞ − M1 ≤ ‖u1

M‖L∞ − ‖u(x, t1)‖L∞ ≤ ‖u1
M − u(x, t1)‖L∞

≤ ‖PM u(x, t1) − u(x, t1)‖L∞ + ‖u1
M (x) − PM u(x, t1)‖L∞

� ‖u(x, t1) − PM u(x, t1)‖L∞ + ‖u1
M (x) − PM u(x, t1)‖H1

Cd(h)

� hm0−1 + 1

Cd(h)
‖e1‖H1

� hm0−1
(

1 + 1

Cd(h)

)
+ τ 2

ε4Cd(h)
. (V.16)

Thus under the assumption τ � ε2√Cd(h), there exist h2 > 0 and τ2 > 0 sufficiently
small and independent of ε, such that when 0 < h ≤ h2 and 0 < τ ≤ τ2, we have

‖u1
M‖L∞ ≤ 1 + M1.

Therefore, the three inequalities in (3.32) are valid when n = 1.
Now we assume that (3.32) is valid for all 1 ≤ n ≤ m − 1 ≤ T

τ
− 1, then we need

to show that it is still valid when n = m. Denote

En =
M/2−1∑

l=−M/2

Ên
l , Ên

l =
∣∣∣̂e n+1

l

∣∣∣2 + ∣∣̂e n
l

∣∣2 + cos(βn
l τ)

1 − cos(βn
l τ)

∣∣∣̂e n+1
l − ê n

l

∣∣∣2 . (V.17)

For each l = −M/2, . . . , M/2 − 1 and 1 ≤ n ≤ m − 1, noticing (3.5), under the
condition (3.31), we get

0 ≤ αn−1 ≤ αn ≤ M3, 1 ≤ ε2βn−1
l ≤ ε2βn

l , 0 < τβn−1
l ≤ τβn

l ≤ π

3
,

1

2
≤ cos(βn

l τ) ≤ cos(βn−1
l τ) < 1,

cos(βn
l τ)

1 − cos(βn
l τ)

≤ cos(βn−1
l τ)

1 − cos(βn−1
l τ)

,

0 ≤ sin(βn
l (τ − s)) ≤ sin(βn

l τ) < 1, 0 ≤ s ≤ τ.

Then similar to (V.12), we obtain

∣∣̂ξn
l

∣∣2 ≤ τ
[
1 − cos(βn

l τ)
] τ∫

0

∣∣Ŵ n
l (s)

∣∣2 ds.
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Multiplying both sides of (V.8) by ê n+1
l − ê n−1

l (here w denotes the conjugate of w)
and adding with its conjugate, then dividing by 1 − cos(βn

l τ), we have

Ên
l − Ên−1

l ≤ 1

1 − cos(βn
l τ)

∣∣̂ξn
l

∣∣ ·
∣∣∣̂e n+1

l − ê n−1
l

∣∣∣

≤ 1

1 − cos(βn
l τ)

(
2τ

∣∣∣̂e n+1
l − ê n

l

∣∣∣2 + 2τ

∣∣∣̂e n
l − ê n−1

l

∣∣∣2 + 1

τ

∣∣̂ξn
l

∣∣2
)

≤ 4τ cos(βn
l τ)

1 − cos(βn
l τ)

(∣∣∣̂e n+1
l − ê n

l

∣∣∣2 +
∣∣∣̂e n

l − ê n−1
l

∣∣∣2
)

+
τ∫

0

∣∣Ŵ n
l (s)

∣∣2 ds

≤ 4τ
(
Ên

l + Ên−1
l

)
+

τ∫

0

∣∣Ŵ n
l (s)

∣∣2 ds.

Summing the above inequality for l = −M/2, . . . , M/2 − 1, we obtain

En − En−1 ≤ 4τ
(
En + En−1

)
+

τ∫

0

M/2−1∑
l=−M/2

∣∣Ŵ n
l (s)

∣∣2 ds, 0 ≤ n ≤ m − 1.

Summing the above inequality for n = 1, 2, . . . , m − 1, we get, when τ ≤ 1/8

Em−1 ≤ 2E0 + 8τ

m−2∑
n=0

En + 2
m−2∑
n=1

τ∫

0

M/2−1∑
l=−M/2

∣∣Ŵ n
l (s)

∣∣2 ds, 2 ≤ m ≤ T

τ
.

Using the discrete Gronwall’s inequality, we get

Em−1 ≤ C

⎡
⎣E0 +

m−1∑
n=1

τ∫

0

M/2−1∑
l=−M/2

∣∣Ŵ n
l (s)

∣∣2 ds

⎤
⎦ , 2 ≤ m ≤ T

τ
, (V.18)

where the constant C is independent of h (or l), τ (or m), and ε. Combining (V.1),
(V.17) and (V.18), we obtain

‖em‖2
L2 = (b − a)

M/2−1∑
l=−M/2

∣∣̂e m
l

∣∣2 ≤ (b − a)Em−1

≤ C(b − a)

⎡
⎣E0 +

m−1∑
n=1

τ∫

0

M/2−1∑
l=−M/2

∣∣Ŵ n
l (s)

∣∣2 ds

⎤
⎦ . (V.19)
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From (V.17) with n = 0, noticing (V.9) and (V.12)–(V.15), we have

E0 =
M/2−1∑

l=−M/2

1

1 − cos(β0
l τ)

|̂e 1
l |2 =

M/2−1∑
l=−M/2

1

1 − cos(β0
l τ)

|̂ξ 0
l |2

= τ

M/2−1∑
l=−M/2

τ∫

0

∣∣∣Ŵ 0
l (s)

∣∣∣2 ds � τ 4

ε4 � τ 4

ε8 . (V.20)

From (V.11), (V.7) and (3.5), using the triangle inequality, we get

M/2−1∑
l=−M/2

∣∣Ŵ n
l (s)

∣∣2 =
M/2−1∑

l=−M/2

∣∣∣2 f̂ (un
M )l − (̂ f (u))l(tn − s) − (̂ f (u))l(tn + s)

+αn
[
ûl(tn − s) + ûl(tn + s) − 2(̂un

M )l

]∣∣∣2ds

≤ 2

b − a
‖2 f (un

M ) − f (u(·, tn − s)) − f (u(·, tn + s))‖2
L2

+ 2M2
3

b − a
‖u(·, tn − s) + u(·, tn + s) − 2un

M‖2
L2 . (V.21)

Under the assumption on u, using the triangle inequality and Hölder inequality,
noticing (3.32), we get

∥∥u(·, tn − s) + u(·, tn + s) − 2un
M

∥∥2
L2

≤ ‖u(·, tn − s) + u(·, tn + s) − 2u(·, tn)‖2
L2 + 4

∥∥u(·, tn) − un
M

∥∥2
L2

≤
b∫

a

∣∣∣∣∣∣
s∫

0

w∫

−w

∂qqu(x, tn + q) dq dw

∣∣∣∣∣∣
2

dx + 4
∥∥u(·, tn) − un

M

∥∥2
L2

≤
s∫

0

s

b∫

a

∣∣∣∣∣∣
w∫

−w

∂qqu(x, tn + q) dq

∣∣∣∣∣∣
2

dx dw + 4
∥∥u(·, tn) − un

M

∥∥2
L2

≤
s∫

0

2sw

w∫

−w

∥∥∂qqu(·, tn + q)
∥∥2

L2 dq dw + 4
∥∥u(·, tn) − un

M

∥∥2
L2

≤ 4s4

3
‖∂t t u(·, t)‖2

L∞([0,T ];L2)
+ 4

∥∥u(·, tn) − un
M

∥∥2
L2

� τ 4

ε8 +
(

τ 2

ε4 + hm0

)2

, 0 ≤ s ≤ τ, 1 ≤ n ≤ m − 1. (V.22)
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Similarly, under the assumption on u and f , we have

‖ f (u(·, tn − s)) + f (u(·, tn + s)) − 2 f (un
M )‖2

L2

≤ 8s4 M2
2

3

[
‖∂t u(·, t)‖4

L∞([0,T ];L4)
+ ‖∂t t u(·, t)‖2

L∞([0,T ];L2)

]

+4M2
2 · ‖u(·, tn) − un

M‖2
L2

� τ 4

ε8 +
(

τ 2

ε4 + hm0

)2

, 0 ≤ s ≤ τ, 1 ≤ n ≤ m − 1. (V.23)

Plugging (V.23), (V.22), (V.21) and (V.20) into (V.19), we get

‖em‖2
L2 � τ 4

ε8 + τ(m − 1)

[
τ 4

ε8 +
(

τ 2

ε4 + hm0

)2
]

� τ 4

ε8 + T

[
τ 4

ε8 +
(

τ 2

ε4 + hm0

)2
]

�
(

τ 2

ε4 + hm0

)2

.

This, together with (V.3), implies that the first inequality in (3.32a) is valid for n = m.
Similar to the above procedure by defining

Sn =
M/2−1∑

l=−M/2

μ2
l Ên

l , n ≥ 0,

and noticing

M/2−1∑
l=−M/2

μ2
l

∣∣Ŵ n
l (s)

∣∣2 �
∥∥∇ [

2 f (un
M ) − f (u(·, tn − s)) − f (u(·, tn + s))

]∥∥2
L2

+ ∥∥∇ [
u(·, tn − s) + u(·, tn + s) − 2un

M

]∥∥2
L2 ,

we can obtain (3.32b). In addition, similar to the proof in (V.16), we have

‖um
M‖L∞ − M1 � hm0−1

(
1 + 1

Cd(h)

)
+ τ 2

ε4Cd(h)
.

Again under the assumption τ � ε2√Cd(h), there exist h3 > 0 and τ3 > 0 sufficiently
small and independent of 2 ≤ m ≤ T/τ , such that when 0 < h ≤ h3 and 0 < τ ≤ τ3,
we have

‖um
M‖L∞ ≤ 1 + M1.

Thus the second inequality in (3.32a) is valid when n = m too. Therefore, the proof
of (3.32) is completed by the method of mathematical induction under the choice of
h0 = min{h1, h2, h3} and τ0 = min{1/8, τ2, τ3}. ��
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