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Abstract Spherical t-designs are point sets XM = {x1, . . . , xM } ⊂ S
2 which

provide quadrature rules with equal weights for the sphere which are exact for poly-
nomials up to degree t . In this paper we consider the problem of finding numerical
spherical t-designs on the sphere S

2 for high polynomial degree t ∈ N. That is, we
compute numerically local minimizers of a certain quadrature error At (XM ). The quad-
rature error At was also used for a variational characterization of spherical t-designs
by Sloan and Womersley (J Approx Theory 159:308–318, 2009). For the minimiza-
tion problem we regard several nonlinear optimization methods on manifolds, like
Newton and conjugate gradient methods. We show that by means of the nonequi-
spaced fast spherical Fourier transforms we perform gradient and Hessian evaluations
in O(t2 log t + M log2(1/ε)) arithmetic operations, where ε > 0 is a prescribed accu-
racy. Using these methods we present numerical spherical t-designs for t ≤ 1, 000,
even in the case M ≈ 1

2 t2.

Mathematics Subject Classification (2000) 65T40 · 65K10 · 53B21 · 43A90 ·
49M15 · 33C55

1 Introduction

Distributing points on the unit sphere S
2 in the Euclidean space R

3 in some optimal
sense is a challenging problem, cf. [24]. In this paper, we consider the concept of
spherical t-designs, which was introduced by Delsarte et al. [6]. There a spherical
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700 M. Gräf, D. Potts

t-design on S
2 is defined as a finite set XM = {x1, . . . , xM } ⊂ S

2 satisfying

∫

S2

p(x)dμS2(x) = 4π

M

M∑
i=1

p(xi ), for all p ∈ �t (S
2), (1)

where μS2 is the surface measure on S
2 and �t (S

2) is the space of all spherical
polynomials with degree at most t . Such point sets provide equal weights quadrature
formulae on the sphere S

2, which have many applications. In the Hilbert space �t (S
2)

with standard inner product the worst case quadrature error for the point set XM is
defined by

Et (XM ) := sup
p∈�t (S2)
‖p‖2≤1

∣∣∣∣∣∣∣
∫

S2

p(x)dμS2(x) − 4π

M

M∑
i=1

p(xi )

∣∣∣∣∣∣∣
.

For the general setting of quadrature errors in reproducing kernel Hilbert spaces we
refer to [23]. Of course, a spherical t-design XM is a global minimum of the worst case
quadrature error with Et (XM ) = 0, cf. (1). In [25] the authors presents a variational
characterization of spherical t-designs which involves a squared quadrature error

At (x1, x2, . . . , xM ) := 1

M2

t∑
n=1

n∑
k=−n

∣∣∣∣∣
M∑

i=1

Y k
n (xi )

∣∣∣∣∣
2

=
(

1

4π
Et (XM )

)2

,

where Y k
n are the spherical harmonics of degree n and order k. In this paper we are

interested in finding numerical spherical t-designs, i.e., we compute point sets XM ,
such that At (x1, x2, . . . , xM ) ≤ ε2, where ε is a given accuracy, say ε = 1e − 10. We
present optimization algorithms on Riemannian manifolds for attacking this highly
nonlinear and nonconvex minimization problem. The proposed methods make use of
fast spherical Fourier transforms, which where already successfully applied in [12,17]
for solving high dimensional linear equation systems on the sphere.

It is commonly conjectured that spherical t-designs with M ≈ 1
2 t2 points exists, but

there is no proof. Recently, a weaker conjecture was proved in [2], where the authors
show the existence of spherical t-designs with M > ct2 points for some unknown
constant c > 0. Moreover, in [3] it was verified that for t = 1, . . . , 100 spherical t-
designs with (t + 1)2 points exist, using the characterization of fundamental spherical
t-designs and interval arithmetic. For further recent developments in the research of
spherical t-designs and related topics we refer to the very nice survey article [1]. We
emphasize that the construction of spherical t-designs is a serious challenge even for
small polynomial degrees t . The function At has many local minima and it is hard to
decide if a local minimum is a global one. Moreover, even if one computes a point set
in a neighborhood of a global one it is hard to decide if its function value is zero or
not, due to numerical errors. From this point of view we are satisfied with numerical
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On the computation of spherical designs 701

spherical t-designs which have integration error Et in the range of machine precision,
since such quadrature points are suitable for numerical quadrature on the sphere.

The outline of this paper is as follows. In Sect. 2 we present the necessary tools. That
is we give a brief introduction to Riemannian geometry on the sphere S

2 and the M
times product manifold S

2×· · ·×S
2 in order to describe optimization methods on these

manifolds. Afterwards, we define the nonequispaced spherical Fourier transforms and
comment on the fast realization. In Sect. 3 we combine the optimization method with
the nonequispaced spherical Fourier transform and show that each iteration step is
realized very efficiently with the help of fast spherical Fourier transforms. Finally, we
compare the proposed optimization methods and present numerical results in Sect. 4,
where we compute numerically spherical t-designs for t = 60, 100, 200, 500, 1,000.

2 Prerequisites

The purpose of this section is to define the necessary notations for calculations on
Riemannian manifolds in order to describe the optimization algorithms presented in
Sect. 2.3. We are especially interested in the geometry of the sphere S

2 and its M times
products S

2
M := S

2 ×· · ·×S
2. So the general Riemannian manifold M with Riemann-

ian metric gM holds as substitute for these manifolds. By the famous embedding
theorem of Nash every Riemannian manifold (M, gM) can be seen as a sub-manifold
of some d-dimensional Euclidean space R

d . Hence, we use the more extrinsic, but also
more intuitive approach to Riemannian geometry. In the following we introduce the
general concepts using the example of the sphere. In Sect. 2.2 we briefly summarize
the notations for the product manifold S

2
M . Finally we present in Sect. 2.4 the basics

of the nonequispaced fast spherical Fourier transform.

2.1 Riemannian geometry on the sphere S
2

As a sub-manifold the sphere is embedded in the three-dimensional Euclidean space
R

3 by

S
2 :=

{
x := (x, y, z)� ∈ R

3 : x2 + y2 + z2 = 1
}

.

From this embedding we obtain a natural understanding of the tangent space TxS
2 at a

point x ∈ S
2. It is simply given by the orthogonal complement of the linear subspace

span{x}, i.e.,

TxS
2 := {v ∈ R

3 : 〈v, x〉 = 0},
where 〈x, y〉 := x�y is the standard inner product and the induced norm is given by
‖x‖2 := √〈x, x〉, x ∈ R

3.
Then the sphere possesses a natural Riemannian metric from the given embedding,

which is induced by the Riemannian metric of the ambient space R
3, cf. Fig. 1. Thus,

the Riemannian metric gS2 : TxS
2 × TxS

2 → R is given on the sphere for all x ∈ S
2

by
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702 M. Gräf, D. Potts

Fig. 1 The sphere S
2 embedded in R

3 and a tangent space TxS
2

gS2(v, w) := 〈v, w〉, v, w ∈ TxS
2.

In this metric the geodesic distance between two points x, y ∈ S
2 calculates from

dS2(x, y) := arccos (〈x, y〉) .

In the following all functions or vector fields are arbitrarily often differentiable. Since,
we consider the sphere S

2 as an embedding in the space R
3 it is most natural to con-

sider functions f on the sphere as restrictions of functions f̃ on R
3. The same counts

for vector fields X : S
2 → T(·)S2, where X̃ : R

3 → R
3 is an extension of X to the

ambient space R
3. From this point of view we easily define the common differential

operators on the sphere as restriction of differential operators on R
3. Therefor we

introduce for all x ∈ S
2 the orthogonal projection operator PTxS2 : R

3 → TxS
2 by

PTxS2(v) := v − 〈v, x〉x, v ∈ R
3.

The spherical gradient ∇S2 f of the function f reads as

∇S2 f (x) := PTxS2

(
∇ f̃ (x)

)
, x ∈ S

2,

where ∇ = ( ∂
∂x , ∂

∂y , ∂
∂z )

� is the usual nabla operator in R
3. Another important notion

is given by the Levi-Civita connection ∇YX which defines a directional derivative of
a vector field X along another vector field Y on manifolds. Using the usual derivative
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On the computation of spherical designs 703

DỸX̃ of the vector field X̃ with respect to the vector field Ỹ it is expressed by, cf. [4,
Sect. 10.1.],

(∇YX) (x) := PTxS2

((
DỸX̃

)
(x)

)
, x ∈ S

2.

The Levi-Civita connection is used for defining a concept of parallel transport on
manifolds. To this end let s : [0, T ] → S

2, T > 0, be a smooth curve on the sphere.
We say that the tangent vector v0 := X(s(0)) ∈ Ts(0)S

2 is parallel transported along
s by X if

(∇ṡ(t)X
)
(s(t)) = 0 ∈ Ts(t)S

2, t ∈ [0, T ].

Here ṡ denotes the time derivative of s, which can be seen as a velocity field on the
sphere S

2. An outstanding role play curves g, which transport their velocity vectors
parallel onto itself, i.e.,

∇ġ ġ = 0.

Curves with this property are called geodesics and are the ‘straight lines’ on the
sphere. Given a starting point g(0) := x ∈ S

2 and a direction ġ(0) := v ∈ Tg(0)S
2,

then the corresponding geodesic g(t) is explicitely parameterized by the exponential
map expx : TxS

2 → S
2, cf. [28, p. 19], due to

g(t) := expx(tv) := cos(‖v‖2t)x + sin(‖v‖2t) v/‖v‖2︸ ︷︷ ︸
=:ṽ

, t ≥ 0.

For an illustration see Fig. 2. Hence, the geodesic g can also be interpreted as the
path of a rotation of the point x about the rotation axis x × v with rotation angle t .
Furthermore the parallel transport of a vector w ∈ TxS

2 along the geodesic g, see
Fig. 2, is realized by

Pg(t)(w) := 〈w, ṽ〉ġ(t)/‖v‖2 + 〈w, x × ṽ〉g(t) × ġ(t)/‖v‖2,

= 〈w, ṽ〉 (cos(‖v‖2t) ṽ − sin(‖v‖2t) x) + w − 〈w, ṽ〉ṽ, t ≥ 0.

For implementing a second order optimization method on the sphere one also needs
a notion for the Hessian HS2 of a function f on manifolds, cf. [28]. It is given by the
bilinear form

HS2 f (x)(Y, X) = gS2(∇Y∇S2 f (x), X(x))

on the tangent spaces TxS
2, x ∈ S

2. For a coordinate representation let E1, E2 be
vector fields, which form an orthonormal frame in a small neighborhood U ⊂ S

2

of x, i.e., for every y ∈ U the vectors E1(y), E2(y) form an orthonormal basis of the
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704 M. Gräf, D. Potts

Fig. 2 A geodesic g and the parallel transported vector Pg(1)(w) of w ∈ TxS
2

tangent space TyS
2. Then the components of the Hessian with respect to the vector

fields E1, E2 are given for all x ∈ S
2 by

(HS2 f )i, j (x) := (H f̃ )i, j (x) −
(
∇∇Ei E j f̃

)
(x), i, j = 1, 2, (2)

where H f̃ (x) is the usual Hessian restricted to the subspaces spanned by Ei (x), i =
1, 2, and ∇v f̃ is the directional derivative towards v in R

3 of the extension f̃ respec-
tively. For the sake of completeness we define the Laplace-Beltrami operator on the
sphere

�S2 f := tr(HS2 f ) (3)

via the trace of the Hessian.
For a local parameterization of S

2 we use as usual spherical coordinates (θ, ϕ) ∈
[0, π ] × [0, 2π) with x := x(θ, ϕ) := (sin θ cos ϕ, sin θ sin ϕ, cos θ)�. Then the
vectors

xθ := ∂

∂θ
x(θ, ϕ), xϕ := ∂

∂ϕ
x(θ, ϕ)

form an orthogonal basis of the tangent space TxS
2 for x ∈ S

2 \ {±(0, 0, 1)�}. In the
literature on Riemannian geometry the quantities which define differential operators
on manifolds are expressed in terms of this canonical basis. However, we prefer to use
an orthonormal basis of the tangent space TxS

2. For that reason we introduce the unit
vectors
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On the computation of spherical designs 705

eθ := xθ , eϕ := 1

sin θ
xϕ.

We remark, due to the singularities at the poles ez := (0, 0, 1)� and −ez there is
no basis in spherical coordinates of the corresponding tangent spaces. By the frame
{eθ , eϕ} the spherical nabla operator reads as

∇S2 :=
(

∂

∂θ
,

1

sin θ

∂

∂ϕ

)�
:= eθ

∂

∂θ
+ eϕ

1

sin θ

∂

∂ϕ
, (4)

and the Hessian is parameterized by

HS2 =
(

∂2

∂θ2
1

sin θ
∂2

∂θ∂ϕ
− cot θ

sin θ
∂
∂ϕ

1
sin θ

∂2

∂ϕ∂θ
− cot θ

sin θ
∂
∂ϕ

1
sin2 θ

∂2

∂ϕ2 + cot θ ∂
∂θ

)
. (5)

Furthermore the Laplace–Beltrami operator given by (3) implies

�S2 = 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂ϕ2 .

2.2 Riemannian geometry on S
2 × · · · × S

2

For computing spherical t-designs we aim to optimize over the product manifold

S
2
M := S

2 × · · · × S
2︸ ︷︷ ︸

M times

of M spheres S
2. We briefly summarize the necessary notations for the geometric

objects on this manifold. The tangent space at the point x := (x1, . . . , xM ) ∈ S
2
M is

simply defined by

TxS
2
M := Tx1S

2 × · · · × TxM S
2

with its canonical Riemannian metric

g
S2

M
(v, w) :=

M∑
i=1

gS2(vi , wi ), v := (v1, . . . , vM ), w := (w1, . . . , wM ) ∈ TxS
2
M .

Since the tangent subspaces Txi S
2, Tx j S

2 are orthogonal for i �= j the distance is
given by the Pythagorean sum

d
S2

M
(x, y) :=

(
M∑

i=1

d2
S2(xi , yi )

) 1
2

, x, y ∈ S
2
M .
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706 M. Gräf, D. Potts

In the same manner we obtain for every x ∈ S
2
M the exponential map exp : S

2
M → S

2
M

by

expx(v) := (
expx1

(v1), . . . , expxM
(vM )

) ∈ S
2
M , v ∈ TxS

2
M .

We denote by ∇ i
S2 f (x) ∈ Txi S

2, i = 1, . . . , M the spherical gradient of f with
respect to xi , then the gradient of f is expressed by

∇
S2

M
f (x) :=

(
∇1

S2 f (x), . . . ,∇M
S2 f (x)

)
∈ TxS

2
M . (6)

Similarly, we denote by Hi
S2 f the spherical Hessian with respect to the coordinate xi

and obtain by (4), (5) and (2) the formula

H
S2

M
f (x) :=

⎛
⎜⎜⎜⎜⎝

H1
S2 f (x) ∇1

S2∇2
S2

�
f (x) . . . ∇1

S2∇M
S2

�
f (x)

∇2
S2∇1

S2
�

f (x) H2
S2 f (x) . . . ∇2

S2∇M
S2

�
f (x)

...
...

. . .
...

∇M
S2 ∇1

S2
�

f (x) ∇M
S2 ∇2

S2
�

f (x) . . . HM
S2 f (x)

⎞
⎟⎟⎟⎟⎠ . (7)

In Sect. 3 we do all the computations in the basis of the tangent spaces Txi S
2 given by

{eθ (xi ), eϕ(xi )}, i = 1, . . . , M . Hence, xi = ±ez is not a feasible point. Furthermore
we express the tangent vectors vi ∈ Txi S

2, i = 1, . . . , M by the representation

vi := vθi eθ (xi ) + vϕi eϕ(xi )

and write for simplicity

vi := (vθi , vϕi )
� ∈ R

2. (8)

2.3 Optimization methods on Riemannian manifolds

In this section we describe the Newton method and the method of conjugate gradients
for nonlinear problems on Riemannian manifolds. For a nice survey article with appli-
cations of optimization on manifolds see [7]. We shortly recapitulate these standard
methods in the Euclidean space.

Let f : R
d → R be the objective function and x∗ ∈ R

d a minimum point, i.e.,
∇ f (x∗) = 0 with positive definite Hessian H f in a neighborhood of x∗. Then New-
ton’s method is defined for an initial guess x0 close to x∗ by the following iteration

xk+1 := xk − H f (xk)
−1∇ f (xk), k = 0, 1, . . . ,

and its well-know that for smooth functions it converges quadratically in a
neighborhood of x∗, i.e.,

‖x∗ − xk+1‖2 ≤ c‖x∗ − xk‖2
2.
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On the computation of spherical designs 707

Some drawback in large dimensions is the difficulty to invert or even calculate the
Hessian. Hence efficient first order optimization methods are preferred for high dimen-
sional objective functions. Here, we consider conjugate gradient (CG) algorithms for
nonlinear optimization. For a nice survey in the Euclidean case see [13]. The general
scheme of a nonlinear CG method uses the recurrence

xk+1 := xk + αkdk, k = 0, 1, . . . ,

where αk is a positive step size and dk are the search directions given by the rule

dk+1 := −gk+1 + βkdk, d0 := −g0, gk := ∇ f (xk).

Various CG methods are known, which differ only in the choices for βk , e.g., the one
for exact conjugacy proposed by Daniel in [5]

βk := 〈gk+1, H f (xk+1)dk〉
〈dk, H f (xk+1)dk〉 .

The step size αk is determined by the search of the nearest local minimum to xk along
the line xk + tdk, t > 0, hence it has to satisfy

∇ f (xk + αkdk)dk = 0.

The above algorithms generalize in a natural way to Riemannian manifolds
(M, gM). For that reason we remark that all the geometric objects defined in the
last section for the cases of the sphere S

2 and its products S
2
M are defined in a rigorous

manner for general Riemannian manifolds (M, gM), cf. [7,26]. Hence, we just replace
the subscripts S

2 and S
2
M by M for the general description of the algorithms.

In Riemannian geometry the addition of a tangent vector to the base point x is
replaced by the exponential map expx : TxM → M. Moreover the translation of tan-
gent vectors is replaced by the notion of parallel transport Pg(t)(v) along geodesics g.
By doing so the Newton method reads as, cf. [28, Sect. 7.5],

xk+1 := expxk

(
−HM f (xk)

−1∇M f (xk)
)

, k = 0, 1, . . . ,

where f : M → R is the objective function and x0 ∈ M is close to a minimum x∗ ∈ M.
As in the Euclidean case it was shown in [26] that this scheme is also quadratically
convergent

dM(x∗, xk+1) ≤ c d2
M(x∗, xk).

The CG method on Riemannian manifolds is given by

xk+1 := expxk
(αkdk) , k = 0, 1, . . . ,

123



708 M. Gräf, D. Potts

Fig. 3 An iteration step of the nonlinear CG method on the sphere S
2

with

dk+1 := −gk+1 + βkPg(αk )(dk), d0 := −g0, gk := ∇M f (xk),

where g is the geodesic from g(0) = xk to g(αk) = xk+1 in direction dk . Furthermore
the scalar βk is obtained by

βk := 〈gk+1, HM f (xk+1)Pg(αk )(dk)〉
〈Pg(αk )(dk), HM f (xk+1)Pg(αk )(dk)〉

and the step size αk is determined by

∇M f (g(αk))Pg(αk )(dk) = 0. (9)

For an illustration of one iteration step of the CG method on the sphere S
2 see Fig. 3.

2.4 Fast spherical fourier transforms

It is well known that the eigenfunctions of the spherical Laplace–Beltrami operator
�S2 are the spherical harmonics Y k

n of degree n and order k, cf. [22],

Y k
n (x) = Y k

n (θ, ϕ) :=
√

2n + 1

4π
P |k|

n (cos θ)eikϕ, x = x(θ, ϕ) ∈ S
2,
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On the computation of spherical designs 709

where the associated Legendre functions Pk
n : [−1, 1] → R and the Legendre

polynomials Pn : [−1, 1] → R are given by

Pk
n (x) :=

(
(n − k)!
(n + k)!

)1/2 (
1 − x2

)k/2 dk

dxk
Pk

n (x), n ∈ N0, k = 0, . . . , n,

Pn(x) := 1

2nn!
dn

dxn

(
x2 − 1

)n
, n ∈ N0.

In spherical coordinates the surface element reads as dμS2(x) = sin θdθdϕ and the
spherical harmonics obey the orthogonality relation

∫

S2

Y k
n (x)Y l

m(x)dμS2(x) =
2π∫

0

π∫

0

Y k
n (θ, φ)Y l

m(θ, φ) sin θdθdϕ = δk,lδn,m .

Moreover, the spherical harmonics form an orthonormal basis of the space of all square
integrable functions L2(S

2) := { f : S
2 → C : ∫

S2 | f (x)|2dμS2(x) < ∞}. Hence,
every f ∈ L2(S

2) has a unique expansion in spherical harmonics

f =
∞∑

n=0

n∑
k=−n

f̂ k
n Y k

n .

We say that f is a spherical polynomial of degree at most N if f̂ k
n = 0, n > N , and

we denote by �N (S2) the space of all spherical polynomials of degree at most N . We
remark that the dimension of �N (S2) is dN := (N + 1)2.

The evaluation of a spherical polynomial

f =
N∑

n=0

n∑
k=−n

f̂ k
n Y k

n ∈ �N (S2)

on a sampling set XM = {x1, . . . , xM } ⊂ S
2 can be expressed by a matrix-vector

multiplication

f = YN f̂,

where YN is the nonequispaced spherical Fourier matrix

YN := (
Y n

k (xi )
)

i=1,...,M; n=0,...,N ,|k|≤n ∈ C
M×dN ,

f is the vector of the sampling values

f = ( f (x1), . . . , f (xM ))� ∈ C
M

and f̂ is the vector of spherical Fourier coefficients
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710 M. Gräf, D. Potts

f̂ := ( f̂ k
n )n=0,...,N ,|k|≤n ∈ C

dN .

Recently, fast approximate algorithms for the matrix times vector multiplication with

the nonequispaced spherical Fourier matrix YN and its adjoint YN
�

have been pro-
posed in [19,20]. The arithmetic complexity for the so called fast spherical Fourier
transform and its adjoint is O(N 2 log2 N + M log2(1/ε)), where ε > 0 is a prescribed
accuracy of the approximate algorithms. An implementation of these algorithms can
be found in the Internet [16]. In the next section we use these fast algorithms for the
evaluation of gradients and Hessians of spherical polynomials, as well.

3 Fast realization of the optimization methods

In the following we show, that we can realize each iteration step of the nonlinear
CG method on the sphere S

2 and the product manifold S
2
M with the nonequispaced

spherical Fourier transform. More precisely we propose in Theorem 1 an efficient
scheme for the computation of the spherical gradient and the Hessian of a spherical
polynomial. Using this method we are able to compute in an efficient way numerical
spherical t-designs for high polynomial degrees t ∈ N.

3.1 Fast methods for evaluating the spherical gradient and the Hessian on S
2

In the following we state that the components fθ , fϕ of the spherical gradient

∇S2 f := fθ eθ + fϕeϕ (10)

and the components fθ,θ , fϕ,ϕ, fϕ,θ = fθ,ϕ of the Hessian

HS2 f :=
(

fθ,θ fθ,ϕ

fϕ,θ fϕ,ϕ

)
, (11)

of a spherical polynomial f are spherical polynomials up to factors of sin θ and
cos θ . This allows us to utilize the nonequispaced fast spherical Fourier transforms
for evaluating the gradient and the Hessian of a spherical polynomial on many points
simultaneously.

Lemma 1 Let f ∈ �N (S2) be a spherical polynomial with spherical Fourier coeffi-
cient vector f̂ := ( f̂ k

n ) ∈ C
dN . Then the components of the spherical gradient ∇S2 f ,

cf. (10), are expressed for x := x(θ, ϕ) ∈ S
2 \ {±ez} by

fθ (x) := 1

sin θ

N+1∑
n=0

n∑
k=−n

( f̂θ )
k
n Y k

n (θ, ϕ), fϕ(x)) := 1

sin θ

N∑
n=0

n∑
k=−n

( f̂ϕ)k
n Y k

n (θ, ϕ),

with spherical Fourier coefficients
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On the computation of spherical designs 711

(
f̂θ
)k

n
:= (n − 1)

√
n2 − k2

(2n − 1)(2n + 1)
f̂ k
n−1 − (n + 2)

√
(n + 1)2 − k2

(2n + 3)(2n + 1)
f̂ k
n+1,

(12)

where f̂ k
N+2 = f̂ k

N+1 = f̂ k−1 = 0, and spherical Fourier coefficients

(
f̂ϕ
)k

n
:= ik f̂ k

n . (13)

Proof The above assertion results from the representation (4) of the spherical gradient
∇S2 in spherical coordinates and the following relations for the partial derivatives of
the spherical harmonics Y k

n , cf. [29, pp. 146],

∂

∂ϕ
Y k

n = ikY k
n ,

sin θ
∂

∂θ
Y k

n =n

√
(n + 1)2 − k2

(2n + 1)(2n + 3)
Y k

n+1−(n + 1)

√
n2 − k2

(2n + 1)(2n − 1)
Y k

n−1, (14)

where for |k| > n − 1 we have Y k
n−1 ≡ 0. ��

Using Lemma 1 we define the ‘bidiagonal’-like matrix DN
θ ∈ C

dN+1×dN as the
matrix satisfying, cf. (12),

(
DN

θ f̂
)k

n
=
(

f̂θ
)k

n
, n = 0, . . . , N + 1, k = −n, . . . , n, (15)

and the diagonal matrix DN
ϕ ∈ C

dN ×dN with, cf. (13),

(
DN

ϕ f̂
)k

n
=
(

f̂ϕ
)k

n
, n = 0, . . . , N , k = −n, . . . , n. (16)

Furthermore, we introduce for the sampling points xi := x(θi , ϕi ), i = 1, . . . , M , the
diagonal matrices S := diag(sin(θ1), . . . , sin(θM )), C :=diag(cos(θ1), . . . , cos(θM ))

∈ C
M×M and arrive at the following theorem.

Theorem 1 For a given sampling set XM := {x(θ1, ϕ1), . . . , x(θM , ϕM )} ⊂ S
2 \

{±ez} with xi := x(θi , ϕi ) and a spherical polynomial f ∈ �N (S2) with correspond-
ing spherical Fourier coefficient vector f̂ ∈ C

dN we obtain the spherical gradient, cf.
(10),

∇S2 f (xi ) = fθi eθ (xi ) + fϕi eϕ(xi )

by the evaluation

fθ := (
fθi

)
i=1,...,M = S−1YN+1DN

θ f̂,

fϕ := (
fϕi

)
i=1,...,M = S−1YN DN

ϕ f̂,
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712 M. Gräf, D. Potts

and similarly we obtain for the components of the Hessian, cf. (11),

HS2 f (xi ) =
(

fθi ,θi fθi ,ϕi

fϕi ,θi fϕi ,ϕi

)
,

the representations

fθ,θ = (
fθi ,θi

)
i=1,...,M = S−2(YN+2DN+1

θ DN
θ − CYN+1DN

θ )f̂,

fϕ,ϕ = (
fϕi ,ϕi

)
i=1,...,M = S−2(YN DN

ϕ DN
ϕ + CYN+1DN

θ )f̂,

fϕ,θ = (
fϕi ,θi

)
i=1,...,M = S−2(YN+1DN+1

ϕ DN
θ − CYN DN

ϕ )f̂

with fϕi ,θi = fθi ,ϕi , i = 1, . . . , M. Furthermore all evaluations of the sampling vec-
tors fθ , fϕ, fθ,θ , fϕ,ϕ, fϕ,θ ∈ C

M are performed by means of the nonequispaced fast
spherical Fourier transform in O(N 2 log2 N + M log2(1/ε)) arithmetic operations.

Proof The formulae for the components fθ , fϕ follow immediately from Lemma 1
and the definitions (15), (16) of the matrices DN

θ , DN
ϕ , S and C. Furthermore, the

representation of the Hessian cf. (5),

sin2 θHS2 =
(

sin θ
∂

∂θ
,

∂

∂ϕ

)� (
sin θ

∂

∂θ
,

∂

∂ϕ

)
+ cos θ

(
− sin θ ∂

∂θ
− ∂

∂ϕ

− ∂
∂ϕ

sin θ ∂
∂θ

)
.

yields together with (14) the remaining formulae. The complexity assertion follows
from the observation that the matrix-vector multiplication of the matrices DN

θ , DN
ϕ , S

and C need O(N 2 + M) and of the matrix YN needs O(N 2 log2 N + M log2(1/ε))

arithmetic operations, respectively. ��
Remark 1 We note that the problem of finding the global maximum of a real-valued
spherical polynomial f ∈ �N (S2) on the sphere S

2 appears in a variety of applica-
tions. Usually one starts with one initial guess x0 ∈ S

2 of an optimum x∗ ∈ S
2 and

uses an optimization algorithm like Newton’s method. Unfortunately, x0 should be
near to x∗. With the proposed methods in Theorem 1 we are able to optimize simulta-
neously over many initial guesses with almost the same arithmetic complexity. Using
a sufficiently dense and uniform distributed sampling set XM := {x1, . . . , xM } of such
starting points increases notably the chance of finding a global maximum. Numerical
results will presented elsewhere.

3.2 Fast optimization for spherical t-designs

The concept of spherical t-designs was introduced by Delsarte et al. [6]. There a
spherical t-design on S

2 is defined as a finite set XM = {x1, . . . , xM } ⊂ S
2 satisfying

∫

S2

f (x)dμS2(x) = 4π

M

M∑
i=1

f (xi ), for all f ∈ �t (S
2).
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On the computation of spherical designs 713

In the following we exploit the equivalent characterization used by Sloan and
Womersley in [25],

At (x) := At (x1, . . . , xM ) := 1

M2

t∑
n=1

n∑
k=−n

∣∣∣∣∣
M∑

i=1

Y k
n (xi )

∣∣∣∣∣
2

= 0. (17)

This function At can be seen as the squared integration error for the set XM to be
a spherical t-design. Since At ≥ 0, the problem of finding a t-design XM reduces
to finding a minimum of At . We aim to apply the Newton and CG methods on Rie-
mannian manifolds proposed in Sect. 2.3 to the function At : S

2
M → R. For that

reason we present fast algorithms for the evaluation of At , the gradient ∇
S2

M
At and

the matrix-vector multiplication with the Hessian H
S2

M
At .

The following Theorem 2 provides us with a first taste for the use of fast nonequi-
spaced spherical Fourier transforms.

Theorem 2 For a given point x := (x1, . . . , xM ) ∈ S
2
M the evaluation of At (x), t ∈ N,

takes O(t2 log2 t + M log2(1/ε)) arithmetic operations, where ε is a prescribed accu-
racy.

Proof By definition (17) we have to compute

At (x) = 1

M2 (r�r − |r0
0 |2)

with the residual vector

r :=
(

rk
n

)
n=0,...,t; |k|≤n

, rk
n :=

(
M∑

i=1

Y k
n (xi )

)
.

We compute the conjugate vector r in O(t2 log2 t + M log2(1/ε)) arithmetic opera-
tions by a fast multiplication with the adjoint nonequispaced spherical Fourier matrix
due to

r = Yt �e,

where we use the vector e := (1, . . . , 1)� ∈ C
M , cf. Sect. 2.4. Since the vector r has

(t + 1)2 components we compute its squared norm in O(t2) arithmetic operations.
��

The next main Theorem 3, is derived from the following Lemmas 2 and 3.

Lemma 2 For f : S
2 → C the spherical gradient and the Hessian of | f |2 read as

∇S2 | f (x)|2 = 2Re
[

f (x)∇S2 f (x)
]
, (18)

HS2 | f (x)|2 = 2Re
[

f (x)HS2 f (x) + ∇S2 f (x)∇�
S2 f (x)

]
. (19)
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714 M. Gräf, D. Potts

Proof Let x := x(θ, ϕ) be given in spherical coordinates, then we have by the product
rule the relations

∂

∂θ
| f (x)|2 = ∂

∂θ

(
f (x) f (x)

)
= f (x)

∂

∂θ
f (x) + f (x)

∂

∂θ
f (x)

= 2Re

[
f (x)

∂

∂θ
f (x)

]
, (20)

∂2

∂θ∂ϕ
| f (x)|2 = ∂

∂θ

(
f (x)

∂

∂ϕ
f (x) + f (x)

∂

∂ϕ
f (x)

)

= 2Re

[
f (x)

∂2

∂θ∂ϕ
f (x) + ∂

∂θ
f (x) · ∂

∂ϕ
f (x)

]
, (21)

and obtain similarly

∂

∂ϕ
| f (x)|2 = 2Re

[
f (x)

∂

∂ϕ
f (x)

]
, (22)

∂2

∂θ2 | f (x)|2 = 2Re

[
f (x)

∂2

∂θ2 f (x) + ∂

∂θ
f (x) · ∂

∂θ
f (x)

]
, (23)

∂2

∂ϕ2 | f (x)|2 = 2Re

[
f (x)

∂2

∂ϕ2 f (x) + ∂

∂ϕ
f (x) · ∂

∂ϕ
f (x)

]
. (24)

We get with the representation (4) of the spherical gradient and the relation (20) and
(21) the assertion (18). Using (5) and (22)–(24) we infer

HS2 | f (x)|2 =2Re

[
f (x)HS2 f (x)+

(
∂
∂θ

f (x) · ∂
∂θ

f (x) ∂
∂θ

f (x) · 1
sin θ

∂
∂ϕ

f (x)
1

sin θ
∂
∂ϕ

f (x) · ∂
∂θ

f (x) 1
sin θ

∂
∂ϕ

f (x) · 1
sin θ

∂
∂ϕ

f (x)

)]

and arrive finally at (19). ��
Lemma 3 For the point x := (x1, . . . , xM ) ∈ S

2
M the gradient ∇

S2
M

is expressed by

∇
S2

M
At (x) = 2

M2 Re

[(
∇�

S2 p(x1), . . . ,∇�
S2 p(xM )

)�]
, (25)

and the Hessian H
S2

M
of At : S

2
M → R is represented by

H
S2

M
At (x) = 2

M2 Re

⎡
⎢⎣
⎛
⎜⎝

HS2 p(x1) 0
. . .

0 HS2 p(xM )

⎞
⎟⎠

+
t∑

n=1

n∑
k=−n

⎛
⎜⎝

∇S2 Y k
n (x1)
...

∇S2 Y k
n (xM )

⎞
⎟⎠
(
∇�

S2 Y k
n (x1), . . . ,∇�

S2 Y k
n (xM )

)
⎤
⎥⎦ , (26)
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On the computation of spherical designs 715

where the spherical polynomial

p(y) :=
t∑

n=1

n∑
k=−n

p̂k
nY k

n (y) ∈ �t (S
2)

is defined by its spherical Fourier coefficients

p̂k
n :=

M∑
i=1

Y k
n (xi ), n = 1, . . . , t, k = −n, . . . , n. (27)

Proof Form equation (6) we know that the gradient of At is

∇
S2

M
At (x) =

(
∇1

S2 At (x), . . . ,∇M
S2 At (x)

)
. (28)

With (17) and the linearity of ∇l
S2 we infer

∇l
S2 At (x) = 1

M2

t∑
n=1

n∑
k=−n

∇l
S2

∣∣∣∣∣
M∑

i=1

Y k
n (xi )

∣∣∣∣∣
2

.

Hence, using (18) from Lemma 2 we obtain for n = 1, . . . , t, k = −n, . . . , n, the
relation

∇l
S2

∣∣∣∣∣
M∑

i=1

Y k
n (xi )

∣∣∣∣∣
2

= 2Re

[(
M∑

i=1

Y k
n (xi )

)
∇S2 Y k

n (xl)

]
(29)

and the first assertion (25) follows by definition of p and (28). For building up
the Hessian H

S2
M

At we need the expressions for Hl
S2 At and ∇l

S2∇m
S2

� At , l, m =
1, . . . , M, l �= m, cf. (7). From (29) we arrive at

∇l
S2∇m

S2
�
∣∣∣∣∣

M∑
i=1

Y k
n (xi )

∣∣∣∣∣
2

= 2Re

[
∇l

S2

(
M∑

i=1

Y k
n (xi )

)
∇S2

�Y k
n (xm)

]

= 2Re
[
∇S2 Y k

n (xl)∇S2
�Y k

n (xm)
]
,

which yields by definition (17) of At the equation

∇l
S2∇m

S2
� At (x) = 2

M2 Re

[
t∑

n=1

n∑
k=−n

∇S2 Y k
n (xl)∇S2

�Y k
n (xm)

]
.
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716 M. Gräf, D. Potts

From (19) of Lemma 2 we obtain

Hl
S2

∣∣∣∣∣
M∑

i=1

Y k
n (xi )

∣∣∣∣∣
2

= 2Re

[(
M∑

i=1
Y k

n (xi )

)
HS2 Y k

n (xl) + ∇S2 Y k
n (xl)∇S2

�Y k
n (xl)

]

and after summing up we conclude by definition of p again

Hl
S2 At (x) = 2

M2 Re

[
HS2 p(xl) +

t∑
n=1

n∑
k=−n

∇S2 Y k
n (xl)∇S2

�Y k
n (xl)

]
.

Thus, the Hessian of At (x) reads as stated in (26). ��
Theorem 3 For a given point x := (x(θ1, ϕ1), . . . , xM (θM , ϕM )) ∈ S

2
M and a polyno-

mial degree t ∈ N the calculation of the gradient ∇
S2

M
At (x) and multiplication of the

Hessian H
S2

M
At (x) with a tangent vector v := (v�

1 , . . . , v�
M )� ∈ R

2M , cf. (8), takes

O(t2 log2 t + M log2(1/ε)) arithmetic operations, where ε is a prescribed accuracy.

Proof In order to compute the components of the spherical gradient ∇
S2

M
At (x1, . . . ,

xM ) we evaluate the spherical Fourier coefficients p̂k
n , cf. (27), n = 1, . . . , t, k =

−n, . . . , n, by a realization of the adjoint matrix-vector multiplication with the matrix
Yt in O(t2 log2 t + M log2(1/ε)) arithmetic operations. Due to the representation, cf.
Lemma 3,

∇
S2

M
At (x) = 2

M2 Re

[(
∇�

S2 p(x1), . . . ,∇�
S2 p(xM )

)�]

we evaluate by Theorem 1 the components of the spherical gradient ∇S2 p on the
points xi , i = 1, . . . , M , where we set p0

0 := 0. This is also performed in O(t2 log2 t+
M log2(1/ε)) arithmetic operations.

For the matrix-vector multiplication of the Hessian H
S2

M
At (x) with the vector v ∈

R
2M we proceed as follows. At first we evaluate the Hessian HS2 p at the points

xi , i = 1, . . . , M , as in the case of the gradient by means of Theorem 1. After that
we simply multiply the obtained 2 × 2 matrices HS2 p(xi ) with the corresponding
components vi , i = 1, . . . , M of the vector v. This yields the multiplication of the
vector v with the first summand of the Hessian H

S2
M

At (x), cf. (26). For the second
summand we define the spherical Fourier coefficients

v̂k
n : =

M∑
i=1

∇�
S2 Y k

n (xi )vi =
(
∇�

S2 Y k
n (x1), . . . ,∇�

S2 Y k
n (xM )

)
v,

n = 1, . . . , t, k = −n, . . . , n.

The evaluation is performed by the adjoint transform for evaluating M points of the
spherical gradient of a spherical polynomial of degree t , cf. Theorem 1. After this
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On the computation of spherical designs 717

intermediate step we define the spherical polynomial

V :=
t∑

n=1

k∑
n=−k

v̂k
nY k

n

and compute the spherical gradients ∇S2 V at the points xi , i = 1, . . . , M . Thus, the
i th component of the vector

t∑
n=1

n∑
k=−n

⎛
⎜⎝

∇S2 Y k
n (x1)
...

∇S2 Y k
n (xM )

⎞
⎟⎠
(
∇�

S2 Y k
n (x1), . . . ,∇�

S2 Y k
n (xM )

)
v,

is computed by a nonequispaced spherical Fourier transform, cf. Theorem 1,

∇S2 V (xi ) =
t∑

n=1

n∑
k=−n

v̂k
n∇S2 Y k

n (xi ).

All in all the multiplication H
S2

M
At (x)v is done in O(t2 log2 t + M log2(1/ε)) arith-

metic operations. ��
Remark 2 In the numerical Sect. 4 we also consider the approximate Hessian

H̃
S2

M
At (x) := 2

M2 Re

⎡
⎢⎣

t∑
n=1

n∑
k=−n

⎛
⎜⎝

∇S2 Y k
n (x1)
...

∇S2 Y k
n (xM )

⎞
⎟⎠
(
∇�

S2 Y k
n (x1), . . . ,∇�

S2 Y k
n (xM )

)
⎤
⎥⎦ ,

(30)

where we dropped the diagonal part in equation (26). This approximation is motivated
as follows. We consider the function At (x) as residual of the vector-valued function
At : S

2
M → C

(t+1)2−1 with components (At )
k
n := ∑M

i=1 Y k
n (xi ), n = 1, . . . , t, k =

−n, . . . , n, and denote by

J(x) :=
(
∇�

S2 Y k
n (x1) . . . ∇�

S2 Y k
n (xM )

)
n=1,...,t; k=−n,...,n

its Jacobian. Then we have the following expressions

H̃
S2

M
At (x) = 2

M2 Re
[
J(x)

�
J(x)

]
,

∇
S2

M
At (x) = 2

M2 Re
[
J(x)

�
At

]
.

Hence, the Newton step with the approximate Hessian H̃
S2

M
At solves a normal equation

as known from the Gauss-Newton algorithm.
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718 M. Gräf, D. Potts

Fig. 4 Comparison of the error S(R, l) for CG methods with the Hessian H
S2

M
At and its approximation

H̃
S2

M
At respectively

Note that the evaluation of this approximation is more stable than for the Hessian
H

S2
M

At , see Fig. 4. We further remark that from this simplification one also gains
an improvement in speed, since less nonequispaced spherical Fourier transforms are
necessary, cf. Theorem 3.

It is well known that Newton’s method is very sensitive to initial distributions,
which might cause some stability problems. Hence, we also consider a stabilized ver-
sion, like a variant of the Levenberg-Marquardt algorithm, see Algorithm 2. There we
replace the Hessian H

S2
M

At (xl) by the matrix H
S2

M
At (xl) + ‖gl‖2I. In addition we

determine in each iteration step l the step length αl . To this end, we solve (9) by a one
dimensional Newton method and obtain Algorithm 1. In order to avoid the inversion

Algorithm 1 LinesearchAt : Line search for At on S
2
M

Input: starting point x := (x1, . . . , xM ) ∈ S
2
M , descent direction d ∈ TxS

2
M , accuracy ε > 0, limit of

iterations Lmax ∈ N

initialize l := 0, g0 := ∇
S2

M
At (x) ∈ TxS

2
M , α0 := − 〈g0,d〉

〈d,H
S

2
M

At (x)d〉
while l < Lmax do

xl+1 := expx(αl d) ∈ S
2
M

if At (xl+1) > At (x) then
αl+1 := αl/2 (back-tracking)

else
dl+1 := Pexpx(αl d)(d) ∈ Txl+1 S

2
M

gl+1 := ∇
S2

M
At (xl+1) ∈ Txl+1 S

2
M

if ε >
|〈gl+1,dl+1〉|

‖dl+1‖2‖gl+1‖2
then

break
end if
αl+1 := αl − 〈gl+1,dl+1〉

〈H
S

2
M

At (xl+1)dl+1,dl+1〉
end if
l := l + 1

end while

Output: step length αl−1
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On the computation of spherical designs 719

of the Hessian H
S2

M
At (xl) and H

S2
M

At (xl)+‖gl‖2I, respectively, we consider also the
nonlinear CG method for computing spherical t-designs. This method is described in
Algorithm 3, where we use the line search Algorithm 1, as well. From Theorem 3 we
conclude that every iteration step of the CG method, cf. Algorithm 3, requires only
O(t2 log2 t + M log2(1/ε)) arithmetic operations.

4 Numerical results

In this section, we present some numerical examples which show the suitability of the
proposed optimization algorithms for computing numerically spherical t-designs. At
first we compare the Algorithms 2 and 3 in Example 1. Besides the performance
of the algorithms we stress the issue of stability. The numerical results indicate
that evaluating the Hessian H

S2
M

At as suggested in Lemma 3 and Lemma 1 is rel-
atively unstable. The second Example 2 is based on the fast evaluation of the matrix
times vector multiplication with the more stable evaluation of the matrix H̃

S2
M

At .
There we show the performance of the nonlinear CG method for high polynomial
degrees t .

In the following examples, we consider two different initial distributions for the
proposed methods. The first one is a realization of a random uniform distribution on
the sphere S

2, whereas the second one is a relatively uniform distribution given by
the Fibonacci spiral on the sphere with M points given by x(θn, ϕn), n := 1, . . . , M,

with

Algorithm 2 Newton-like methods on S
2
M for computing spherical t-designs

Input: initial distribution x := (x1, . . . , xM ) ∈ S
2
M , accuracy ε > 0, limit of iterations Lmax ∈ N

initialize l := 0, x0 := x, g0 := ∇
S2

M
At (x0) ∈ Tx0 S

2
M

while ε < ‖gl‖2 and l < Lmax do

dl :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−
[

H
S2

M
At (xl )

]−1
gl ∈ Txl S

2
M (Newton)

−
[

H
S2

M
At (xl ) + ‖gl‖2I

]−1
gl ∈ Txl S

2
M (Levenberg-Marquardt)

−
[

H̃
S2

M
At (xl )

]−1
gl ∈ Txl S

2
M (Gauss-Newton)

if 〈dl , gl 〉 ≥ 0 then
dl := −gl (enforce descent direction)

end if
compute step length αl := LinesearchAt (xl , dl ), cf. Algorithm 1

xl+1 := expxl
(αl dl ) ∈ S

2
M

gl+1 := ∇
S2

M
At (xl ) ∈ Txl S

2
M

l := l + 1
end while

Output: numerical spherical t-design xl ∈ S
2
M
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720 M. Gräf, D. Potts

Algorithm 3 Method of conjugate gradients on S
2
M for computing spherical t-designs

Input: initial distribution x := (x1, . . . , xM ) ∈ S
2
M , accuracy ε > 0, limit of iterations Lmax ∈ N, restart

interval r ∈ N

initialize l := 0, x0 := x, g0 := ∇
S2

M
At (x0) ∈ Tx0 S

2
M , d0 := −g0

while ε < ‖gl‖2 and l < Lmax do
compute step length αl := LinesearchAt (xl , dl ), cf. Algorithm 1

xl+1 := expxl
(αl dl ) ∈ S

2
M

if l + 1 ≡ 0 mod r then
dl+1 := −gl+1

else
d̃l := Pexpxl

(αl dl )(dl ) ∈ Txl+1 S
2
M

gl+1 := ∇
S2

M
At (xl ) ∈ Txl S

2
M

βl := max

⎧⎨
⎩0,

〈gl+1,H
S

2
M

At (xl+1)d̃l 〉
〈H

S
2
M

At (xl+1)d̃l ,d̃l 〉

⎫⎬
⎭

dl+1 := −gl+1 + βl d̃l
end if
l := l + 1

end while

Output: numerical spherical t-design xl ∈ S
2
M

θn := arccos

(
2n − (M + 1)

M

)
, ϕn := π(2n − (M + 1))φ−1,

where φ = 1+√
5

2 is the golden ratio, cf. [27]. We rotate these spiral points
by a random rotation in order to avoid points on the poles. Other good can-
didates for relatively uniform distributed points are for example proposed in
[8,10,24], which behave similarly as initial distribution for computing spherical t-
designs.

The Algorithms 1, 2 and 3 are implemented in Matlab R2010a. We used the FFTW
3.2.2 [9] and the NFFT 3.1.3 [16] libraries written in C. The mex-interface of the
nfft-library [18] to Matlab was used for performing the nonequispaced fast spher-
ical Fourier transforms. The methods where tested on an Intel Core i7 CPU 920
processor with 12 GB memory and a standard 64 Bit Linux. Throughout our experi-
ments we applied the NFFT routines with precomputed Kaiser–Bessel functions, an
oversampling factor of two, and a cutoff parameter m = 9. For the NFSFT rou-
tines we used the threshold κ = 1,000 for the stabilization. In the Algorithms 1–3
we set the accuracy to ε = 1e − 13. We denote the Algorithm 2 using the matrix
H

S2
M

At (xl) and H
S2

M
At (xl)+‖gl‖2I by ‘Newton’ and ‘Levenberg-Marquardt’, respec-

tively. The ‘Gauss–Newton’ algorithm with the approximate Hessian H̃S2
M

behaves
similar, thus we omit the numerical results for this method. The occurring matrices
are computed by the fast spherical Fourier transforms, see Lemma 3, in O(Mt2 log2 t+
M2 log2(1/ε)) arithmetic operations and the corresponding linear systems are solved
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Table 1 Numerical results for computing spherical 10-designs from random and spiral initial distributions
x with M points

M Method
√

A10(xl) ‖∇
S2

M
A10(xl)‖2 Iteration l Time

60 Newton 2.8e−4 3.6e−14 458 4 min

(Random) Levenberg-Marquardt 9.4e−4 2.0e−14 56 31 s

CG with H
S2

M
At 4.9e−4 2.1e−10 2, 000 107 s

CG with H̃
S2

M
At 4.5e−4 1.0e−13 1, 808 5 s

60 Newton 1.6e−3 1.2e−5 2, 000 18 min

(Spiral) Levenberg-Marquardt 4.4e−4 1.8e−15 19 10 s

CG with H
S2

M
At 5.5e−5 1.9e−12 2, 000 100 s

CG with H̃
S2

M
At 5.5e−5 1.0e−13 1, 710 5 s

62 Newton 3.9e−3 1.7e−5 2, 000 18 min

(Random) Levenberg-Marquardt 2.1e−15 1.3e−15 69 40 s

CG with H
S2

M
At 1.1e−8 9.3e−10 2, 000 86 s

CG with H̃
S2

M
At 6.4e−8 3.4e−9 2, 000 6 s

62 Newton 1.7e−3 1.3e−5 2, 000 18 min

(Spiral) Levenberg-Marquardt 2.2e−15 1.3e−15 54 30 s

CG with H
S2

M
At 1.5e−12 8.2e−14 1, 033 82 s

CG with H̃
S2

M
At 1.1e−12 9.4e−14 1, 170 3 s

The maximum number of iterations Lmax is set to 2,000

by Matlab’s standard solver. Further we denote by ’CG with H
S2

M
At ’ the Algorithm 3

using the matrix H
S2

M
At and by ’CG with H̃

S2
M

At ’ the Algorithm 3 using the matrix

H̃
S2

M
At in Algorithm 3 and in Algorithm 1. The maximum number of iterations Lmax

for the line search, Algorithm 1, is 20 with an exception for the conjugate gradient
method with the approximated Hessian H̃

S2
M

At of (30) where only one iteration is
performed.

Example 1 Here we consider the computation of spherical 10-designs. For this prob-
lem size all proposed algorithms are applicable, and we obtain the results of Table 1.
We observe a relative high number of iterations for the Newton-like methods, since
quadratically convergence is only achieved in very small neighborhood of a station-
ary point. For this examples the Newton method degenerates to a steepest descent
algorithm. Furthermore, the computed spherical t-designs of all methods leads to
integration errors

√
At of comparable magnitude. We remark that Hardin and Sloane

found a spherical 10-design with M = 60 points, see [14,15]. After several attempts
with random initial guesses we where also able to compute various spherical t-designs
x∗ ∈ S

2
60 with integration error

√
A10(x∗) < 1.0e − 14.

Furthermore, we want to address the issue of stability for the proposed methods.
Therefor we use the fact that the function At , its gradient ∇

S2
M

At and its Hessian
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722 M. Gräf, D. Potts

H
S2

M
At are rotational invariant. For instance we know

At (Rx1, . . . , RxM ) = At (x1, . . . , xM ),

where R ∈ R
3×3 is an arbitrary rotation matrix, i.e., det R = 1, R�R = I. For

simplicity we use the abbreviation

Rx := (Rx1, . . . , RxM ).

Using the rotational invariance property we compare the stability of the CG method
with the Hessian matrix H

S2
M

At and its approximation H̃
S2

M
At , cf. (30), as follows.

Let the initial distribution x := (x1, . . . , xM ) and a rotation matrix R ∈ R
3×3 be

given. If we denote with the subscript l ∈ N the lth iterated in Algorithm 3 we obtain
a simple measure for the stability by the error

S(R, l) := d
S2

M
(Rxl , (Rx)l),

since in exact arithmetic this distance is zero. For a random rotation matrix R and
the random initial distribution x with M = 60 points of Table 1 we obtain the results
shown in Fig. 4. One recognizes that the conjugate gradient method with the approx-
imated Hessian H̃

S2
M

is more stable than the same algorithm with the Hessian H
S2

M
,

whereas the results in Table 1 are comparable. Similar results are obtained for the
Newton-like methods, if we replace the Hessian H

S2
M

by the approximated Hessian

H̃
S2

M
.

Example 2 From Example 1 we conclude that the most efficient and stable algorithm
seams to be the CG method with the approximated Hessian H̃

S2
M

At . Hence, it is used
for the following examples. There, we consider the performance of this algorithm with
respect to M , the number of points we spend for achieving a spherical t-design. For
comparison we introduce the oversampling factor

σ(XM , t) := 2M − 3

(t + 1)2 − 1
≈ 2M

t2

of a spherical t-design XM ⊂ S
2. This factor is determined by the ratio of the degrees

of freedom for choosing the M points on the sphere S
2 up to rotational symme-

try, and the number of spherical harmonics Y k
n we want to integrate exactly by the

average over the sampling values. Hence it can be seen as a measure for how far
the given spherical t-design is a way from a putatively minimal spherical t-design,
with M ≈ t2

2 points, i.e., σ(XM , t) ≈ 1. This quantity is similar to the efficiency
of arbitrary quadrature rules on the sphere introduced by McLaren, cf. [21]. The
numerical results indicate that it is much easier to find numerical spherical t-designs
with a little bit more oversampling, say σ(XM ) ≥ 1.05. We present the results in
Table 2 and observe that a random distribution seams to be a better initial distri-
bution than the relatively uniform distributed points from the Fibonacci spiral for
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Table 2 Computing of spherical t-designs by Algorithm 3

t M σ(XM , t)
√

At (xl) ‖∇
S2

M
At (xl)‖2 Iteration l Time

49 1,300 (Random) 1.04 5.2e−12 9.2e−14 2,211 3 min

49 1,300 (Spiral) 1.04 1.7e−11 9.3e−14 7,469 10 min

50 1,300 (Random) 1.00 1.9e−5 8.8e−14 50,212 1 h

50 1,300 (Spiral) 1.00 6.8e−6 9.1e−14 96,444 2 h

100 5,200 (Random) 1.02 9.9e−12 9.8e−14 4,211 27 min

100 5,200 (Spiral) 1.02 1.6e−10 9.7e−14 57,235 7.5 h

200 21,000 (Random) 1.04 4.1e−12 9.9e−14 2,597 1 h

200 21,000 (Spiral) 1.04 1.0e−9 9.4e−14 1,73,675 3 day

500 130,000 (Random) 1.04 1.0e−11 9.9e−14 5,394 21 h

1,000 520,000 (Random) 1.04 3.1e−11 1.8e−13 10,600 10 days

1,000 1,002,000 (Random) 2.00 9.7e−12 9.8e−14 4,286 5 days

1,000 1,002,000 (Spiral) 2.00 3.2e−11 9.0e−14 7,500 7.5 days

Fig. 5 Illustration of the computed spherical 100-designs with 5,200 random points and sprial points
respectively

higher polynomial degrees t . In Fig. 5 the computed 100-designs for a random and
the spiral distribution are illustrated. The computed spherical t-designs are available
from [11].
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