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Abstract In the present work we determine all Chebyshevian spline spaces good
for geometric design. By Chebyshevian spline space we mean a space of splines with
sections in different Extended Chebyshev spaces and with connection matrices at the
knots. We say that such a spline space is good for design when it possesses blossoms.
To justify the terminology, let us recall that, in this general framework, existence of
blossoms (defined on a restricted set of tuples) makes it possible to develop all the
classical geometric design algorithms for splines. Furthermore, existence of blossoms
is equivalent to existence of a B-spline bases both in the spline space itself and in all
other spline spaces derived from it by insertion of knots. We show that Chebyshevian
spline spaces good for design can be described by linear piecewise differential oper-
ators associated with systems of piecewise weight functions, with respect to which
the connection matrices are identity matrices. Many interesting consequences can be
drawn from the latter characterisation: as an example, all Chebsyhevian spline spaces
good for design can be built by means of integral recurrence relations.

Mathematics Subject Classification (2000) 65D07 · 65D17

1 Introduction

Extended Chebyshev spaces can be considered as generalised versions of polynomial
spaces, in so far as they share with them the same bounds of zeros for their non-zero
elements [11,13,33]. Unlike polynomial spaces, it is well known that the class of all
Extended Chebyshev spaces provides us with a great variety of shape parameters which
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can usefully be exploited for geometric design purposes, see for instance [29]. Some
of them have also been usefully exploited for spline interpolation (e.g. tension splines
[12]). To obtain a maximum benefit of this great variety, it is interesting to consider
splines with sections in different Extended Chebyshev spaces. On the other hand,
the requirement that left and right derivatives coincide at a given knot up to some
order (fixed by the multiplicity of the knot) has no special meaning for parametric
spline curves. It is thus preferable to replace it by the presence of a connection matrix,
assumed to be lower triangular and to have a positive diagonal. Such matrices offer
shape parameters too, but they also increase the chance of obtaining “good” spline
spaces. Indeed, on a given knot-vector, connecting an arbitrary family of Extended
Chebyshev spaces (the section-spaces) via an arbitrary family of connection matrices
does not necessarily lead to a “good” spline space, that is, a space usable for geometric
design.

The splines we consider here are thus geometrically continuous (due to the con-
nection matrices) piecewise Chebyshevian splines (the sections belong to different
Extended Chebyshev spaces). In the remainder of the introduction we will use the
word spline in this specific sense. What, therefore, are the exact properties required
of a spline space for it to be considered “good for design”? We first want it to be
able to control the shape of the curves, in the sense that it must possess a basis with
respect to which the shape properties of the control polygons will be transmitted to
the curves. Furthermore, we want this control to be local, in the sense that modifying
one of the control points should only affect a part of the curve, as small as possible.
Mathematically speaking these requirements mean the existence of a normalised to-
tally positive basis whose elements have minimal supports, in other words, existence
of a totally positive B-spline basis. On the other hand, we need to be able to develop in
this spline space all the classical geometric design algorithms: evaluation, knot inser-
tion, subdivision, … A necessary and sufficient condition for all these requirements
is the existence of blossoms in the spline space [18,24]. Let us recall that, if we are
dealing with (n + 1)-dimensional section-spaces, spline blossoms are functions of n
variables defined on a restricted set of n-tuples said to be admissible (with respect to
the knot-vector).

This very general framework has been considered by several authors (see, for in-
stance [4,18,20,26–28]), among whom the very first was Barry [1]. In his approach,
the section-spaces were defined by means of given weight functions and associated
differential operators, as is classical for Extended Chebyshev spaces. Moreover, the
connection matrices he considered did not concern the ordinary derivatives but the
differential operators in question. Via de Boor-Fix type dual functionals, he proved
that the total positivity of all such connection matrices (i.e., all their minors are non-
negative), was sufficient to ensure existence of a B-spline basis and of a de Boor-type
evaluation algorithm. Later on, under the same total positivity assumption, a further
proof of the existence of a B-spline basis was given by Mühlbach via generalised
Chebyshevian divided differences [4,27,28]. In the meantime we had shown that, in
any such spline space, existence of blossoms was equivalent to existence of a B-spline
basis in the space itself and in all spline spaces deduced from it by knot insertion
[18]. In the proof of the latter equivalence the main part consists in showing that, as
soon as blossoms exist, they are pseudoaffine in each variable. The latter property and
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the obvious symmetry and diagonal properties of blossoms are the three fundamental
properties on which all the classical geometric design algorithms are based.

Concerning piecewise Chebyshevian splines we would like to mention the interest-
ing work by Prautzsch [31], although the framework is not exactly the same there since
the splines are no longer geometrically continuous. Indeed, the connection matrices
are not assumed to be lower triangular, but only regular. Under the latter more general
assumption, Prautzsch proved that almost all such matrices produced bases of mini-
mally supported splines. However, they are not necessarily B-splines bases in so far
as they may fail to be non-negative. If so, they fail to ensure shape preservation. On
the other hand it is also important to briefly recall a few essential results prior to [1].
Indeed, existence of B-spline bases had been obtained by Dyn and Micchelli [7] in
the framework of geometrically continuous polynomial splines with totally positive
regular lower triangular connection matrices (see the work by Goodman [8] for the
case of one-banded matrices, and also [6]). Later on, the latter existence enabled Seidel
[34] to build blossoms for the splines in question and to use them for knot insertion
and evaluation algorithms. He was the first to exploit the beautiful idea of blossoms
defined by means of intersections of osculating flats. This has since become the most
natural way to introduce blossoms outside the strict polynomial context presented by
Ramshaw [32], in particular after the powerful work by Pottmann [29].

Let us now comment on some of the results mentioned above. Barry’s result was
a crucial step in the study of Chebyshevian splines. Nevertheless, in [15] we proved
the limits of his total positivity sufficient condition which may be very restrictive. For
n = 3 and for simple knots, we established practical necessary and sufficient con-
ditions for existence of blossoms. For given weight functions associated with given
section-spaces, they enabled us to “measure how far beyond total positivity” we could
go, and we showed how useful this was to increase the possibilities of shape effects.
As for existence of blossoms, it is indeed an elegant necessary and sufficient condition
for a spline space to be good for design. Unfortunately, in practice, it is not easy to
check whether or not blossoms do exist in a given spline space, especially in high
dimensions. In the present article we thus investigate two main questions:

1. can we give a simple practical description of all Chebyshevian spline spaces good
for design which would be valid for any dimension?

2. the knot-vector being given, and the sequence of section-spaces being given too,
can we indicate all connection matrices (linking left/right ordinary derivatives at
the knots) which yield spline spaces good for design?

We will give an affirmative answer to each of these two questions. To achieve our
results, the paper is organised as follows. In Sect. 2, we give a precise description of the
spline spaces we shall deal with and of the main tools: blossoms,
B-spline bases, knot insertion. We also remind the reader of the strong connections
existing between these tools, for our proofs strongly rely on them. Out of necessity,
Sect. 2 is thus rather long, the present results being the culmination of a long series
of previous ones. As already mentioned, classically, differential operators associated
with positive weight functions produce Extended Chebyshev spaces. By analogy, in
Sect. 3, we show that piecewise differential operators associated with positive piece-
wise weight functions produce Extended Chebyshev piecewise spaces and we explain
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why all spline spaces based on them are automatically good for design. Assuming the
knot-vector to be bi-infinite, the converse property is shown in Sect. 4: a spline space
good for design is always based on an Extended Chebyshev piecewise space defined by
means of positive piecewise weight functions (Theorem 4.2(i) ⇔ (ii)). We even find
all Extended Chebyshev piecewise spaces suitable for that property (Proposition 4.7
and Theorem 4.8).

Expressed differently, Theorems 4.2 and 4.8 establish that, with each spline space
good for design involving (n + 1)-dimensional section-spaces, one can associate infi-
nitely many nth order piecewise differential operators which are to this spline space
that which the nth order ordinary differentiation is to ordinary polynomial spline spaces
with sections of degree at most n. The key step, which is the core of this paper, consists
in proving the following result: a spline space good for design with (n+1)-dimensional
section-spaces, can always be transformed into another spline space good for design,
but with n-dimensional section-spaces, under an appropriate piecewise generalised
differentiation (Theorem 4.1). As a matter of fact, Theorem 4.2 (i) ⇔ (iii), contains
the answer to Question 1. In order to build all spline spaces good for design, on each
interval take any positive weight functions to define the corresponding section-space.
There is no need for any additional ingredients. At each knot, simply require the left
and right corresponding differential operators to coincide up to some order in accor-
dance with the multiplicity of the knot. In other words, by comparison with [1], there
is no need to introduce connection matrices. Stated differently, we can limit ourselves
to the simplest possible totally positive connection matrices: identity matrices. We
would like to draw the reader’s attention on the following point: when varying the
weight functions, we do produce the global class of good spline spaces obtained by
Barry, even though our requirement on the connections is much stronger than his total
positivity condition (see details in Remark 4.3).

Sections 5 and 6 deal with some implications of the latter results. Instead of B-spline
bases we consider the problem of existence of B-spline-like bases (i.e. no normalisa-
tion is required). We also consider the case of splines on a closed bounded interval.
As a special instance, we recover the results of [25] where we determined all weight
functions which can be used to define a given Extended Chebyshev space on a closed
bounded interval. This leads us to the answer to Question 2: all possible connection
matrices linking left/right derivatives at a knot are defined in terms of arbitrary positive
shape parameters of a new type, which themselves define all possible weight functions
which can be associated with two consecutive section-spaces. We would like to bring
a second important point to the reader’s attention: for fixed section-spaces defined by
given weight functions, though we use identity matrices instead of any possible totally
positive matrices, the resulting class of all possible connection matrices involved in
Question 2 is much larger than the one we could directly deduce from [1]. This is due
to the fact that we now have at our disposal all other weight functions leading to the
same section-spaces.

Finally, in Sect. 7 we briefly address the following unexpected outcome of our
results: all spline spaces good for design can also be built by means of integral recur-
rence relations which are the exact piecewise version of the integral approach devel-
oped by Bister and Prautzsch applied to Chebsyhevian splines based on a single
Extended Chebyshev space [2].
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To conclude this introduction we would like to mention that our results also have
important implications in approximation theory where the presence of B-spline bases
is as crucial as in geometric design.

2 The framework

We start by presenting the spline spaces we shall be dealing with. Three main tools
will be essential in the present article, strongly related to each other: blossoms,
B-spline type bases, and knot insertion. It is why we cannot avoid recalling their
precise definitions and major connections between them.

2.1 Spline spaces based on PEC-spaces

Throughout the article we consider a fixed bi-infinite sequence of knots T := (tk)k∈Z,
with tk < tk+1 for all k ∈ Z, and the associated interval I :=]Infk tk, Supk tk[,. We shall
say that F is a piecewise function on (I, T) if F is defined separately on each interval
[t+k , t−k+1], implying in particular that, for any k ∈ Z, both F(tk−) and F(tk+) are
defined, with possibly F(tk−) �= F(tk+). In such a case, unless explicitly mentioned,
F is not a function on I . We shall deliberately use the somewhat abusive notation
F : ∪k∈Z[t+k , t−k+1] → R to stress this fact. Given two piecewise functions F and G
on (I, T), the equality F = G thus means that F(x) = G(x) for all x ∈ I \{tk, k ∈ Z}
and both F(t−k ) = G(t−k ) and F(t+k ) = G(t+k ) for all k ∈ Z, which we shall summa-
rise as F(x) = G(x) for all x ∈ ∪k∈Z[t+k , t−k+1]. Similarly F is positive if F(x) > 0
for all x ∈ ∪k∈Z[t+k , t−k+1]. We denote by PCn(I, T) the set of piecewise Cn functions
on I , that is, all piecewise functions on (I, T) which are Cn on each interval [t+k , t−k+1].

From now on we assume that n ≥ 0 is a given integer. Before introducing our
spline spaces, we need to recall a few definitions and classical related properties. Let
Ek ⊂ Cn([t+k , t−k+1]) be (n + 1)-dimensional. Then, Ek is said to be a W-space on
[t+k , t−k+1] if the Wronskian of any of its bases never vanishes on [t+k , t−k+1], or, equiva-
lently, if no non-zero element of Ek can have a zero of multiplicity (n+1) in [t+k , t−k+1].
It is said to be an Extended Chebyshev space (in short EC-space) on [t+k , t−k+1] if no
non-zero element of Ek can vanish more than n times on [t+k , t−k+1], counting multi-
plicities up to (n + 1), see [11,33]. Clearly an EC-space on [t+k , t−k+1] is a W-space on
[t+k , t−k+1], but the converse is not true. Assume that Ek contains constants and con-
sider the n-dimensional space DEk := {DF := F ′ | F ∈ Ek}. Then, Ek is W-space
on [t+k , t−k+1] if and only if so is DEk . In contrast, the fact that Ek is an EC-space on
[t+k , t−k+1] does not guarantee that DEk will be an EC-space on [t+k , t−k+1] in turn. From
Rolle’s theorem it is easy to deduce that the converse implication does hold.

Definition 2.1 Let us consider

– a bi-infinite sequence R := (Rk)k∈Z of connection matrices: for each k ∈ Z, Rk

is a lower triangular matrix of order (n + 1) with positive diagonal elements,
– a bi-infinite sequence E := (Ek)k∈Z of section-spaces: for each k ∈ Z, Ek ⊂

Cn([t+k , t−k+1]) is an (n + 1)-dimensional W-space on [t+k , t−k+1].
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Then, the (n +1)-dimensional linear subspace E of PCn(I, T) composed of all piece-
wise functions such that

(1) for each k ∈ Z, the restriction of F to [t+k , t−k+1] belongs to Ek ,
(2) F satisfies the connection conditions:

(
F(tk

+), F ′(t+k ),. . ., F (n)(tk
+)

)T= Rk .
(
F(tk

−), F ′(t−k ),. . ., F (n)(tk
−)

)T
, k ∈Z,

(1)

is said to be a piecewise W-space (in short PW-space) on (I, T). If the space Ek is
an (n + 1)-dimensional EC-space on [t+k , t−k+1] for any k ∈ Z, we say that E is a
piecewise Extended Chebyshev space (in short PEC-space) on (I, T).

Remark 2.2 For design purposes it is interesting to consider the case where the PW- or
PEC-space E contains constants. This occurs if and only the following two properties
hold : firstly, each space Ek contains constants, and secondly the first column of each
connection matrix Rk is equal to (1, 0, . . . , 0︸ ︷︷ ︸

n times

)T . In such a case, all elements of E are

continuous functions on I . They are geometrically continuous in the weak sense of
continuity of the Frenet frames of order n (see [14]).

Remark 2.3 Assume that the PW-space E contains constants. Then, from the reminder
preceding Definition 2.1, one can say that the space DE obtained by (possibly left/right
differentiation) is in turn a PW-space on (I, T), the connection matrix at a knot tk being
obtained by deleting the first row and column of Rk . Moreover, if DE is a PEC-space
on (I, T), so is E, but the converse implication does not hold.

When each knot tk is allocated a multiplicity mk ≥ 0, we obtain a knot-vector
based on the sequence T, defined as K := (

tk [mk ])
k∈Z

. In the latter equality as well as
throughout the paper, for any x ∈ I and any non-negative integer μ, the notation x [μ]
will stand for x repeated μ times. With the latter knot-vector we can associate splines
as follows.

Definition 2.4 Let E be the (n + 1)-dimensional PW- or PEC-space on (I, T) intro-
duced in Definition 2.1. Based on E and on the knot-vector K we denote by S(E, K)

the linear space composed of all piecewise functions S on (I, T) which satisfy

(1) on each [t+k , t−k+1], k ∈ Z, S coincides with an element of E;
(2) S satisfies the connection conditions

(
S(t+k ), S′(t+k ),. . ., S(n−mk )(t+k )

)T= Mk .
(
S(t−k ), S′(t−k ),. . ., S(n−mk )(t−k )

)T
, k ∈Z,

(2)

where Mk is obtained from Rk by deleting its last mk rows and columns.

In short, depending on the case, we shall say that S(E, K) is the PW- or PEC-spline
space based on E and on the knot-vector K.
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At each knot tk of multiplicity mk ≥ n + 1, there is no connection condition. In
general it is convenient to work with multiplicities at most n. However, later on, we
shall “differentiate” our spline spaces, and we shall thereby have to deal with section-
spaces of lower and lower dimensions, for which the latter condition will not hold.
This is why we directly allow multiplicities mk > n.

Remark 2.5 As soon as at least one multiplicity is positive, a given PW-spline space
S(E, K) is based on infinitely many different PW-spaces. When the PW-spline space
contains constants ( i.e., each section-space Ek contains constants and, for any k ∈
Z, the first row of the connection matrix Mk is equal to (1, 0, . . . , 0︸ ︷︷ ︸

(n−mk )times

)T , without

loss of generality we shall systematically assume that the PW-space E itself contains
constants.

Remark 2.6 Assume that the PW-spline space S(E, K) contains constants. All splines
in S(E, K) are continuous at each knot tk such that mk ≤ n. Then, the space DS(E, K)

is in turn a PW-spline space. In contrast (see Remark 2.3) in case S(E, K) is a PEC-
space on (I, T) there is a priori no guarantee that the space DS(E, K) should be a
PEC-spline space on (I, T).

2.2 Splines spaces good for design

For design purposes it is convenient to introduce the set An(K) of all admissible
n-tuples (relative to the knot-vector K). Suppose for a while that mk ≤ n for all k ∈ Z.
Then, an n-tuple (x1, . . . , xn) is said to be admissible when, for any integer k ∈ Z

such that

Min(x1, . . . , xn) < tk < Max(x1, . . . , xn)

the knot tk appears in the sequence (x1, . . . , xn) a number of times at least equal to its
multiplicity mk . Let us now drop the assumption mk ≤ n for all k ∈ Z. Then, we can
always write the interval I as a union of subintervals with pairwise disjoints interiors:
I = ∪q∈Qn(K) In,q , where Qn(K) is a set of consecutive integers such that:

– for each q ∈ Qn(K), each knot tk in the interior of In,q is of multiplicity mk ≤ n;
– if q, q + 1 ∈ Qn(K), then In,q has a right endpoint, In,q+1 has a left one, and both

are equal to some knot tk of multiplicity mk ≥ n + 1.

Let us split the knot-vector in subsequences Kn,q := (
tk [mk ])

tk∈In,q
, q ∈ Qn(K). For

each q ∈ Qn(K), we then define the set An,q(Kn,q) exactly as we did previously, sim-
ply replacing K by Kn,q . The set An(K) is then defined as the union of all An,q(Kn,q).
It is essential to note that if tk is the right-hand point of In,q and the left-hand point of
In,q+1 (which implies that mk ≥ n + 1), then as an element of In,q , it always has the
meaning of t−k , while as an element of In,q+1 it always has the meaning of t+k . One
can similarly define the set Ap(K) of all admissible p-tuples, for p ≤ n + 1.

Assume that the PW-spline space S(E, K) contains constants. We denote by 1 the
constant function 1(x) = 1 for all x ∈ ∪k∈Z[t+k , t−k+1], and, for each k ∈ Z, by 1k
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its restriction to [t+k , t−k+1]. Let � ∈ S(E, K)n be a fixed non-degenerate spline. This
means that, for each k ∈ Z, the affine flat spanned by {�(x), x ∈ [t+k , t−k+1]} is of
dimension n, or, equivalently, the restrictions of its components to [t+k , t−k+1] and the
constant function 1k span the whole space Ek .

Suppose that i is a given integer, 0 ≤ i ≤ n. When x ∈ I is not a knot, we can
consider the i th order osculating flat of � at x , that is, the affine flat passing through
�(x) with direction spanned by the i th first derivatives of � at x , i.e.,

Osci�(x) := {�(x) +
i∑

j=1

λ j�
( j)(x), λ1, . . . , λi ∈ R}. (3)

It is i-dimensional. At a knot tk , a priori we have to consider two osculating flats,
Osci�(t−k ) and Osci�(t+k ) defined using either the left derivatives or the right ones.
However, whenever i ≤ n − mk , both osculating flats coincide due to the structure of
all connection matrices. In that case we simply write Osci�(tk). This is obviously no
longer valid when i > n − mk . In that case, we are not allowed to write Osci�(tk)
unless the context makes it clear whether this notation has the meaning of Osci�(t−k )

or of Osci�(t+k ). In any case, it is also i-dimensional.

Definition 2.7 Assume the PW-spline space S(E, K) to contain constants. We say
that blossoms exist in S(E, K), if, for any admissible (x1, . . . , xn) ∈ An(K) equal to
(a1

[μ1], . . . , ap
[μp]), up to permutation (with positive μ1, . . . , μp and pairwise dis-

tinct a1, . . . , ap), all osculating flats Oscn−μi �(ai ) have in common a unique point,
labelled as σ(x1, . . . , xn). If blossoms exist, the function σ so defined on An(K) is
called the blossom of �.

Remark 2.8 1. With the notations introduced in the previous definition, suppose that
p ≥ 2. Then, the admissibility of (x1, . . . , xn) guarantees that all osculating flats in
question are well-defined, except possibly the first and last ones which are naturally
meant as Oscn−μ1�(a+

1 ) and Oscn−μp�(a−
p ) in case a1 (resp. ap) is a knot tk with

μ1 < mk (resp. μp < mk).
2. If blossoms exist in S(E, K), the blossom s of any S ∈ S(E, K)d is then defined

on An(K) from the blossom σ of � via affine maps. This does not depend of the
chosen non-degenerate spline (see [18]).

Definition 2.9 A PW-spline space S(E, K) will be said to be good for design if it
contains constants and if blossoms exist in S(E, K).

Our terminology is justified by the fact that, in any PW-spline space good for design it
is possible to develop all the classical geometric design algorithms. This is made possi-
ble by the three main properties of blossoms derived from their geometrical definition.
We recall them in Theorem 2.10 below.

Theorem 2.10 ([18,24]) Let S(E, K) be a PW-spline space (I, T) with (n + 1)-
dimensional section-spaces, n ≥ 1. Suppose that S(E, K) is good for design. Then,
the blossom s of any spline S ∈ Sd satisfies the following properties:
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(B)1 symmetry: s(x�(1), . . . , x�(n)) = s(x1, . . . , xn) for any (x1, . . . , xn) ∈ An(K)

and any permutation � of {1, . . . , n};
(B)2 diagonal property: for all x ∈ ∪k∈Z[t+k , t−k+1], s(x [n]) = S(x);
(B)3 pseudoaffinity property: given any admissible (n−1)-tuple (x1, . . . , xn−1), any

subinterval J ⊂ I such that, for any y, z ∈ J, (x1, . . . , xn−1, y, z) is admis-
sible, any a, b ∈ J , with a < b, there exists a continuous strictly increasing
function β(x1, . . . , xn−1; a, b; .) : J → R (independent of S) such that:

s(x1, . . . , xn−1, x) = [
1 − β(x1, . . . , xn−1; a, b; x)

]
s(x1, . . . , xn−1, a)

+β(x1, . . . , xn−1; a, b; x)s(x1, . . . , xn−1, b), x ∈ J.

(4)

With the same data as in (B)3, the pseudoaffinity function β satisfies

β(x1, . . . , xn−1; a, b; a) = 0, β(x1, . . . , xn−1; a, b; b) = 1,

0 < β(x1, . . . , xn−1; a, b; t) < 1 for t ∈]a, b[. (5)

Let us conclude the present subsection with the following important observation.

Proposition 2.11 If a PW-spline space S(E, K) is good for design, then S(E, K) and
DS(E, K) are PEC-spline spaces on (I, T).

Proof For each k ∈ Z, blossoms do exist in the W-space Ek . This means that the space
DEk is an n-dimensional space EC-space on [t+k , t−k+1], which implies that Ek is an
(n + 1)-dimensional space EC-space on [t+k , t−k+1] [19]. ��

2.3 B-spline bases and knot insertion

Insertion of knots is a classical tool in geometric design, and it plays a prominent rôle
in the present work. Let E

∗ be another PW-space of dimension (n +1) as E, but based
on another sequence of knots T

∗ := (t∗k )k∈Z. Given any knot-vector K
∗ based on

T
∗, the spline space S(E∗, K

∗) is said to be obtained from S(E, K) by knot insertion
whenever S(E∗, K

∗) ⊃ S(E, K). Equivalently, this means that:

– any knot tk in T is a knot t∗k′ in T
∗, with m∗

k′ ≥ mk (we equivalently say that K
∗

is obtained from K by knot insertion) and in the spline space S(E∗, K
∗), the con-

nection matrix at t∗k′ is obtained by deleting the last (m∗
k′ − mk) rows and columns

in Mk ;
– the section-spaces in E

∗ are obtained by restricting those of E to all intervals of
the form [t∗k , t∗k+1];

– at any “new” knot t∗k in T
∗ which is not in T, the connection matrix in S(E∗, K

∗)
is the identity matrix of order (n − m∗

k + 1).
If needed, one can thus assume that E

∗ = E without loss of generality. When K
∗ is

obtained from K by knot insertion, the corresponding sets of admissible n-tuples
satisfy An(K) ⊃ An(K∗). Accordingly, if the PW-spline space S(E, K) is good for
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design, then S(E, K
∗) is good for design in turn. Moreover, blossoms in S(E, K

∗)
are obtained by restricting blossoms in S(E, K) to An(K∗).

The presence of B-spline bases being essential for design, Theorem 2.12 below
gives another justification of the terminology introduced in our Definition 2.9.

Theorem 2.12 [18,24] Let E be a PW-space on (I, T), supposed to contain con-
stants, and let K be a knot-vector based on T. Then, the following two properties are
equivalent:

(i) the spline space S(E, K) is good for design;
(ii) the spline space S(E, K) possesses a B-spline basis, and so does any spline space

obtained from S(E, K) by knot insertion.

Theorem 2.12 was first proved in [18] under the assumption that Ek ⊂ C∞([t+k , t−k ])
for all k ∈ Z, then in [24] under the weaker assumption Ek ⊂ Cn([t+k , t−k ]) for all
k ∈ Z, via completely different techniques. Due to their importance in the present
article, we cannot avoid recalling the precise definition of B-spline(-like) bases. For
the sake of simplicity, unless explicitly stated differently, we assume the knot-vector
K := (

tk [mk ])
k∈Z

to be bi-infinite. This enables us to also write it as

K = (ξ�)�∈Z, with ξ� ≤ ξ�+1 for all � ∈ Z.

Subsequently, by 	n(K) we denote the set of all integers � ∈ Z such that ξ� < ξ�+n+1.

Definition 2.13 Given a bi-infinite knot-vector K, let S(E, K) be a PW-spline space
based on K, with (n + 1)-dimensional section-spaces. A sequence N�, � ∈ 	n(K),
of elements of S(E, K), is said to be a B-spline-like basis of S(E, K) if it meets the
following requirements:

(BSB)1 support property: for each � ∈ 	n(K), N�(x) = 0 for x /∈ [ξ+
� , ξ−

�+n+1];
(BSB)2 positivity property: for each � ∈ 	n(K), N�(x) > 0 for x ∈ ∪k∈Z[t+k , t−k+1]

such that ξ� < x < ξ�+n+1;
(BSB)3 endpoint property: for each � ∈ 	n(K), N� vanishes exactly (n − s + 1)

times at ξ� and exactly (n − s′ +1) at ξ�+n+1, where s := 
{ j ≥ � | ξ j = ξ�}
and s′ := 
{ j ≤ � + n + 1 | ξ j = ξ�+n+1}.

It is said to be a B-spline basis of S(E, K) when it is a B-spline-like basis of S(E, K)

which is normalised, i.e., which satisfies the additional requirement

(BSB)4 normalisation property:
∑

�∈	n(K) N�(x) = 1 for all x ∈ ∪k∈Z[t+k , t−k+1].
The three properties (BSB)i, i = 1, 3, 4, guarantee the uniqueness of a possible

B-spline basis. Assume that the spline space S(E, K) is good for design. Then, the
B-spline basis of S(E, K) is a natural product of blossoms via the so-called de Boor
algorithm. Indeed, thanks to the three properties of blossoms recalled in Theorem 2.10,
the latter algorithm computes all values of any spline S ∈ S(E, K)d as convex com-
binations of it poles P�, � ∈ 	n(K), with coefficients independent of S, i.e.,

S(x) =
∑

�∈	n(K)

N�(x)P�, with P� := s(ξ�+1, . . . , ξ�+n), � ∈ 	n(K). (6)
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The latter coefficients form the B-spline basis of S(E, K). Due to (5), the de Boor algo-
rithm is a corner-cutting algorithm. Because the B-spline basis emerges from a corner-
cutting algorithm, it is automatically totally positive, i.e., for given any x1 < . . . < xq

in ∪k∈Z[t+k , t−k+1], the matrix with entries N�(x j ), � ∈ 	n(K), 1 ≤ j ≤ q, is totally
positive (see the introduction). However our purpose in the present article is not to
insist on this property. For further acquaintance with the subject, we thus refer the
reader to [17] and also to [9,10,30].

Let us now assume that S(E∗, K
∗) is obtained from S(E, K) by insertion of knots.

Then, the corresponding knot insertion algorithm computes the new poles of a spline
S ∈ S(E, K)d in terms of its initial poles. To understand how this works it is sufficient
to consider the case where we insert only one additional knot. For any x ∈ I , let m(x)

denote the multiplicity of x in K, that is, m(x) := 0 if x is not a knot, and m(tk) := mk

for all k ∈ Z. If the new knot-vector K
∗ is obtained from K by inserting one knot x such

that m(x) ≥ n + 1, then clearly S(E∗, K
∗) = S(E, K), the poles remain unchanged,

up to shifts in the indices. Accordingly, we can limit ourselves to considering insertion
of a knot x such that m(x) ≤ n. In the new knot-vector K = (ξ∗

� )�∈Z, the numbering
is supposed to be as follows:

ξ∗
� := ξ� if ξ� ≤ x, ξ∗

� := ξ�−1 if ξ� > x .

As a result of the de Boor evaluation algorithm we then get the following [22]:

Proposition 2.14 Assume that the PW-space S(E, K) is good for design and that
S(E∗, K

∗) is obtained from S(E, K) by insertion of one knot x such that m(x) ≤ n.
Let P�, � ∈ 	n(K) be the poles of a given S ∈ S(E, K)d . Then, the poles of S
considered as an element of S(E∗, K

∗)d can be computed as follows:

P∗
� = (1 − α�)P�−1 + α� P�, � ∈ 	n(K), (7)

with

α� :=
⎧⎨
⎩

1 if ξ�+n ≤ x,

0 for ξ� ≥ x,

β(ξ�+1, . . . , ξ�+n−1; ξ�, ξ�+n; x) ∈]0, 1[ otherwise.
(8)

The dual version of Proposition 2.14 can be stated as follows:

Corollary 2.15 The assumptions are the same as in Proposition 2.14. Then the
B-spline basis N�, � ∈ 	n(K), of S(E, K) can be decomposed in the B-spline ba-
sis N∗

� , � ∈ 	n(K∗) = 	n(K), of S(E∗, K
∗) as follows:

N� = α�N∗
� + (1 − α�+1)N∗

�+1, � ∈ 	n(K), (9)

the coefficients α� being the same as in (8).
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3 A simple process to construct good spline spaces

Weight functions and associated linear differential operators are classical tools for
EC-spaces (see [11,33]). In this section we show how to build good spline spaces by
analogy with the non-piecewise case: they will be based on linear piecewise differen-
tial operators associated with piecewise weight functions.

3.1 Extended Chebyshev piecewise spaces

Given a bi-infinite sequence R := (Rk)k∈Z of connection matrices as in Definition 2.1,
we denote by PCn(I, T,R) the set of all piecewise functions F ∈ PCn(I, T) which
satisfy the connection conditions (1). The regular lower triangular structure of each
matrix Rk enables us to count zeros in PCn(I, T,R). Indeed, for any k ∈ Z, t+k
is a zero of multiplicity p ≤ n + 1 (resp., of exact multiplicity p ≤ n) of some
F ∈ PCn(I, T,R), if and only if so is t−k . Hence, for any F ∈ PCn(I, T,R), we can
introduce the total number Zn+1(F) of all zeros of F in I , including their multiplicities
up to (n + 1).

Definition 3.1 An (n + 1)-dimensional linear subspace E of PCn(I, T,R) is said
to be an Extended Chebyshev Piecewise space (in short, ECP-space) on (I, T) if any
non-zero element F ∈ E satisfies Zn+1(F) ≤ n.

We already considered such ECP-spaces in [20] where we proved that they behaved
exactly as EC-spaces, as recalled in Theorem 3.2 below. Before stating it, observe that
a PW-space E ⊂ PCn(I, T,R) coincides with the spline space S(E, K0) based on
E corresponding to the knot-vector K0 := (

tk [0])
k∈Z

obtained when all multiplicities
are 0. When E contains constants, the question of existence of blossoms, defined on
An(K0) = I n , thus arises (see [20]), and Definition 2.9 applies to PW-spaces as well.

Theorem 3.2 Let E be an (n + 1)-dimensional PW-space on (I, T) containing con-
stants. Then the following five properties are equivalent:

(i) any spline space S(E, K) based on E is good for design;
(ii) E itself is good for design;

(iii) the PW-space DE obtained by (possibly left/right) differentiation is an ECP-space
on (I, T);

(iv) given any (a, b) ∈ I 2, a < b, DE possesses a Bernstein-like basis relative to
(a, b), that is, a basis (V0, . . . , Vn−1) such that, for 0 ≤ i ≤ n − 1, Vi is positive
on ]a, b[ and it vanishes exactly i times at a and exactly (n − 1 − i) times at b.

(v) given any (a, b) ∈ I 2, a < b, E possesses a Bernstein basis relative to (a, b),
that is, a Bernstein-like basis (B0, . . . , Bn) which is normalised, in the sense that∑n

i=0 Bi = 1;

The main reason why we are interested in ECP-spaces is the equivalence (i) ⇔ (iii)
of Theorem 3.2. We mentioned the other ones because they will be useful later on.
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3.2 A procedure to build ECP-spaces

The equivalence between the two properties (iii) and (i) of Theorem 3.2 is a good moti-
vation to try and build as many ECP-spaces as possible. In the present subsection we
shall see that it is possible to adapt to the piecewise framework a classical procedure
to build EC-spaces by means of linear differential operators associated with weight
functions. Let us briefly recall the procedure in question here. Given a non-trivial real
interval J , let w0, . . . , wn be any positive functions on J such that wi ∈ Cn−i (J ) for
0 ≤ i ≤ n. We then say that (w0, . . . , wn) is a system of weight functions on J . For
any F ∈ Cn(J ), set:

L0 F := F

U0
, Li F := 1

wi
DLi−1 F, 1 ≤ i ≤ n. (10)

Then, each Li is a linear differential operator of order i on Cn(J ) and the set of all
F ∈ Cn(J ) for which Ln F is constant on J is an (n + 1)-dimensional EC-space
on J . We say that it is the EC-space associated with (w0, . . . , wn) and we denote it
by EC(w0, . . . , wn).

Let us introduce the following terminology by analogy with the non-piecewise case.

Definition 3.3 A given sequence (w0, . . . , wn) of piecewise functions on (I, T) will
be said to be a system of piecewise weight functions on (I, T) if it meets the two
requirements below:

(1) for i = 0, . . . , n, wi ∈ PCn−i (I, T);
(2) each wi is positive on ∪k∈Z[t+k , t−k+1].

We shall now see that systems of piecewise weight functions produce ECP-spaces
on (I, T) just as systems of weight functions produce EC-spaces. This will be due
to some stability properties of the class of all ECP-spaces on (I, T) stated in the
proposition below.

Proposition 3.4 The class of all ECP-spaces on (I, T) is stable under multiplication
by positive piecewise functions and integration, in the following sense. Assuming that
E ⊂ PCn(T,R) is an (n + 1)-dimensional ECP-space on (I, T), then:

– for any positive piecewise function ω ∈ PCn(I, T), the set E : {ωF | F ∈ E} is an
(n + 1)-dimensional ECP-space on (I, T), contained in PCn(T,R), each matrix
Rk of the sequence R being defined by

Rk := Cn(ω, t+k ). Rk . Cn(ω, t−k )
−1

, k ∈ Z,

where for any x ∈ ∪k∈Z[t+k , t−k+1], Cn(w, x) = (
Cn(w, x)p,q

)
0≤p,q≤n stands for

the lower triangular square matrix of order (n + 1) defined by

Cn(w, x)p,q :=
(

p
q

)
w(p−q)(x), 0 ≤ q ≤ p ≤ n;
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– for any sequence of positive numbers ak, k ∈ Z, the set Ê of all piecewise functions
F̂ ∈ PCn+1(I, T) such that

DF̂ ∈ E and F̂(t+k ) = ak F̂(t−k ) for each k ∈ Z,

is an (n +2)-dimensional ECP-space on (I, T) contained in PCn+1(T, R̂), where
each matrix R̂k of the sequence R̂ is the block diagonal matrix (ak, Rk).

Proof The fact that E ⊂ PCn(T,R) comes from Leibnitz’s rule. It should be observed
that each Rk has positive diagonal elements like Rk due to the positivity of the piece-
wise function ω. On the other hand, we clearly have Zn+1(ωF) = Zn+1(F) for
any F ∈ E. This proves the first part of the proposition. The second one follows from
the piecewise version of Rolle’s theorem stated below. We leave its proof to the reader.

��
Lemma 3.5 Given any positive numbers ak, bk, k ∈ Z, assume that a given piecewise
function F ∈ PC1(I, T) satisfies:

F(t+k ) = ak F(t−k ), F ′(t+k ) = bk F ′(t−k ), k ∈ Z.

Then, for any a, b ∈ I, a < b, such that F(a) = F(b) = 0, there exists ξ ∈]a, b[
such that F ′(ξ) = 0.

Remark 3.6 As a straightforward consequence of Proposition 3.4 and of (ii) ⇔ (iii)
in Theorem 3.2, we can state that any PW-space on (I, T) supposed to be good for
design is an ECP-space on (I, T).

With any system of piecewise weight functions on I , it is clearly possible to asso-
ciate linear piecewise differential operators on the set PCn(I, T) defined exactly by
the same formulæ (10) as in the non-piecewise case.

Theorem 3.7 Let L0, . . . , Ln be the piecewise differential operators on PCn(I, T)

associated with a given system (w0, . . . , wn) of piecewise weight functions on (I, T)

via (10), and for i = 0, . . . , n, let ai
k, k ∈ Z, be a bi-infinite sequence of positive

numbers. Then, the set E of all piecewise functions F ∈ PCn(I, T) such that:

(1) Ln F is piecewise constant on (I, T);
(2) F satisfies the connection conditions

Li F(t+k ) = ai
k Li F(t−k ), k ∈ Z, 0 ≤ i ≤ n,

is an (n + 1)-dimensional ECP-space on (I, T).

Proof Let R{n} denote the bi-infinite sequence an
k , k ∈ Z. The set E

{n} composed of
all F {n} ∈ PC0(I, T,R{n}) which are piecewise constants on (I, T) is clearly a one-
dimensional ECP-space on (I, T). By application of the first part of Proposition 3.4,
we can thus deduce that the set wnE

{n} := {wn F {n} | F {n} ∈ E
{n}} is a one-dimensional

ECP-space contained in PC0(I, T,R{n}
), where each R

{n}
k is obtained by multiplying
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an
k by the positive number wn(t

+
k )/wn(t

−
k ). The second part of Proposition 3.4 ensures

that the set E
{n−1} of all F {n−1} ∈ PC1(I, T) such that

DF {n−1} ∈ wnE
{n} and F {n−1}(t+k ) = an−1

k F {n−1}(t−k ) for all k ∈ Z, (11)

is a two-dimensional ECP-space on (I, T), contained in PC1(I, T,R{n−1}), where

each R{n−1}
k is the diagonal matrix (an−1

k , R
{n}
k ). Continuing the same way by repeated

application of the two parts of Proposition 3.4 we build a sequence E
{ j}, j = n,

n − 1, . . . , 1, 0, where each E
{ j} is an (n − j + 1)-dimensional ECP-space on (I, T)

contained in PCn− j (I, T,R{ j}), where the matrices R{ j}
k are block diagonal lower

triangular matrices of order (n − j + 1) defined by

R{ j}
k := (a j

k , Cn− j−1(ω, t+k ). R{ j+1}
k . Cn− j−1(ω, t−k )

−1
, k ∈ Z.

We clearly have E = E
{0}. ��

Remark 3.8 Let us recall that a matrix is said to be totally positive if all its minors
are non-negative. Under the same assumptions as in Theorem 3.7, all elements F in E

satisfy the connection conditions

(
L0 F(t+k ), L1 F(t+k ), . . . , Ln F(t+k )

)= Nk .
(
L0 F(t−k ), L1 F(t−k ) . . . , Ln F(t−k )

)
, k ∈Z,

where, for each k, Nk is the diagonal matrix (a0
k , . . . , an

k ). Since the real numbers
a0

k , . . . , an
k are positive, obviously each matrix Nk is totally positive. Accordingly, the

fact that E is an ECP-space on (I, T) also follows from arguments similar to those
used by Barry [1], Corollary 1, based on Budan–Fourier’s theorem for EC-spaces (see
proof of Theorem 6.10 in [14]). However it was interesting to obtain Theorem 3.7 via
different techniques based in particular on a generalised version Rolle’s theorem, thus
copying the classical procedure of the non-piecewise case. Moreover, the recursive
computation of the connection matrices will be useful later on.

Choose an integer k ∈ Z, consider the system (w̃0, . . . , w̃n) of piecewise weight
functions on (I, T) defined by

w̃i (xε) := wi (xε) for xε ≤ t−k , w̃i (xε) := 1

ai
k

wi (xε) for xε ≥ t+k , 0 ≤ i ≤ n.

Then, the ECP-space Ẽ built according to Theorem 3.7 is equal to E provided that we
simultaneously replace all real numbers a0

k , a1
k , . . . , an

k by 1. Accordingly, in respect
of building ECP-spaces, without loss of generality we can assume that ai

k = 1 for
0 ≤ i ≤ n and for all k ∈ Z, as we are doing in the following definition.

Definition 3.9 Let L0, . . . , Ln be the piecewise differential operators associated with
a given system (w0, . . . , wn) of piecewise weight functions on (I, T). Then, the set
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of all piecewise functions F ∈ PCn(I, T) such that Ln F is piecewise constant on
(I, T) and for which

(
L0 F(t+k ), L1 F(t+k ), . . . , Ln F(t+k )

)=(
L0 F(t−k ), L1 F(t−k ) . . . , Ln F(t−k )

)
, k ∈ Z,

will be called the ECP-space associated with (w0, . . . , wn). We denote it by
EC P(w0, . . . , wn).

Note that one can as well define it as the set of all F ∈ PCn(I, T) such that Ln F is
constant on the whole of I and for which Li F(t+k ) = Li F(t−k ) for i = 0, . . . , n − 1.

Remark 3.10 As in the non-piecewise case, a given system (w0, . . . , wn) piecewise
weight functions on (I, T) provides us with a nested sequence of ECP-spaces:

ECP(w0) ⊂ ECP(w0, w1) ⊂ · · · ⊂ ECP(w0, . . . , wn−1)

⊂ ECP(w0, . . . , wn−1, wn) ⊂ PCn(I, T), (12)

along with a non-nested one

E
{i} :=ECP(1, wi+1, . . . , wn)= Li (ECP(w0, . . . , wn)) ⊂ PCn−i (I, T), 0≤ i ≤n,

which is actually the space E
{i} built in the proof of Theorem 3.7. The latter sequence

also satisfies

DE
{i} = ECP(wi+1, . . . , wn), 0 ≤ i ≤ n − 1.

3.3 Splines based on ECP-spaces

Definition 3.11 Given any system (w0, w1, . . . , wn) of piecewise weight functions on
(I, T) and any knot-vector K := (

tk [mk ])
k∈Z

, we denote by EC P S(w0, . . . , wn; K)

the spline space based on the ECP-space EC P(w0, . . . , wn) and on the knot-vector
K. If L0, . . . , Ln are the associated piecewise differential operators, it can be defined
as the set of all piecewise functions S ∈ PCn(I, T) such that

(1) Ln S is piecewise constant on (I, T);
(2) S satisfies the connection conditions

(
L0S(t+k ), L1(t

+
k ),. . ., Ln−mk (t

+
k )

)T=(
L0S(t−k ), L1(t

−
k ),. . ., Ln−mk (t

−
k )

)T
, k ∈Z,

(13)

Observe that, for any S ∈ ECPS(w0, . . . , wn; K), the piecewise function Ln S is con-
stant on any subinterval of I the interior of which contains no knot tk of multiplicity
mk ≥ n + 1, that is, on each In,q , q ∈ Qn(K) (with the notations introduced in
Subsect. 2.2).
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As an application of Theorem 3.2 one can then state:

Theorem 3.12 Given any system (w1, . . . , wn) of piecewise weight functions on
(I, T), and any knot-vector K, the spline space ECPS(1, w1, . . . , wn; K) is good
for design. Moreover, if L0 = Id, L1, . . . , Ln are the piecewise differential operators
associated with (1, w1, . . . , wn), then, each PW-spline space L p (ECPS(1, w1, . . . ,

wn; K)) , 1 ≤ p ≤ n, is good for design too.

Proof We know that E := ECP(1, w1, . . . , wn) is an ECP-space on (I, T) and that
it contains constants. According to Theorem 3.2, in order to prove that the spline
space ECPS(1, w1, . . . , wn; K) is good for design, it thus suffices to check that DE

is an ECP-space on (I, T). This is due to the equality DE = ECP(w1, . . . , wn) (see
Remark 3.10). Finally, from Definition 3.11 and (10) it is easy to check that

L p (ECPS(1, w1, . . . , wn; K)) = ECPS(1, wp+1, . . . , wn; K), 1 ≤ p ≤ n.

��
Equivalently, Theorem 3.12 can be stated as follows.

Corollary 3.13 For any k ∈ Z, let (wk
1, . . . , w

k
n) be a system of weight functions

on [tk, tk+1] and let Lk
0, Lk

1, . . . , Lk
n be the differential operators on Cn([tk, tk+1])

associated with (1k, w
k
1, . . . , w

k
n). Given any knot-vector K = (

tk [mk ])
k∈Z

, the spline
space composed of all piecewise functions S ∈ PCn(I, T) meeting the following
requirements:

(1) for any k ∈ Z, the restriction of S to [t+k , t−k+1] belongs to Ek := EC(1k, w
k
1,

. . . , wk
n),

(2) for any k ∈ Z, S satisfies the connection condition:

(
S(t+k ), Lk

1S(t+k ), . . . , Lk
n−mk

S(t+k )
)T=

(
S(t−k ), Lk−1

1 S(t−k ), . . . , Lk−1
n−mk

S(t−k )
)T

,

(14)

is good for design.

Proof It suffices to apply Theorem 3.12 to the system (w1, . . . , wn) of piecewise
weight functions on (I, T) defined by

wi (x) := wk
i (x) for all x ∈ [t+k , t−k+1], k ∈ Z.

The connections in ECPS(1, w1, . . . , wn; K) being given by (13), they can as well be
written as (14). ��
Remark 3.14 Given a system (w0, w1, . . . , wn) of piecewise weight fuctions on
(I, T), and the associated piecewise differential operators (10), it is easy to deduce
that, for any piecewise function F ∈ PCn(I, T), we have

F (p) =
p∑

q=0

�p,q(w0, . . . , wq ; .)Lq F, 0 ≤ p ≤ n, (15)
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where each piecewise function �p,q(w0, . . . , wq ; .) depends only on w0, . . . , wq , not
on F . The latter piecewise functions can be calculated by induction as follows:

�0,0(w0; .) := w0 and, for p = 0, . . . , n − 1 and 0 ≤ q ≤ p :
�p+1,q(w0, . . . , wq; .) := D

(
�p,q(w0, . . . , wq ; .)

) + wq�p,q−1(w0, . . . , wq−1; .),

(16)

with the convention that �p,−1 = 0. For instance we thus have

�p,0(w0; .) = w0
(p), �p,p(w0, . . . , wp; .) =

p∏
i=0

wi , 0 ≤ p ≤ n.

Setting �p,q(w0, . . . , wq; .) = 0 for p < q ≤ n, let us introduce the following lower
triangular matrices of order (n + 1):

�n(w0, . . . , wn; x) := (
�p,q(w0, . . . , wq); x

)
0≤p,q≤n , x ∈ ∪k∈Z[t+k , t−k+1].

As a consequence of (15), for any knot-vector K, in the spline space ECPS(w0,

w1, . . . , wn; K), in terms of the ordinary derivatives the connections are given by (2),
with the matrices

Mk := �n−mk (w0, . . . , wn−mk ; t+k ). �n−mk (w0, . . . , wn−mk ; t−k )−1, k ∈ Z. (17)

4 All spline spaces good for design

Given any system (w1, . . . , wn) of piecewise weight functions on (I, T) and any knot-
vector K = (

tk [mk ])
k∈Z

, we know that the spline space ECPS(1, w1, . . . , wn; K) is
good for design (see Theorem 3.12). The question we address here is the converse
one: given any PW-spline space which is good for design, based on K, is it of the form
ECPS(1, w1, . . . , wn; K)? We shall actually be able to give a positive answer to the
latter question provided that the knot-vector K is bi-infinite. As a consequence, in the
latter case we shall also be able to give a simple description of all PW-spline spaces
which are good for design. Of course our results can easily be adapted to PW-spline
spaces over a closed bounded interval (see Sect. 6).

Throughout the present section we thus assume that K = (
tk [mk ])

k∈Z
is a given

bi-infinite knot-vector.

4.1 The main results

On account of Proposition 2.11, looking for all PW-spline spaces which are good for
design amounts to looking for all PEC-spline spaces which are good for design. The
most important result of the paper is the following one, in which we use the notations
introduced in Subsect. 2.2.
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Theorem 4.1 Assume that n ≥ 1. Given any PEC-space E on (I, T), with (n + 1)-
dimensional section-spaces, and any bi-infinite knot-vector K based on T, assume that
the spline space S(E, K) is good for design. Let a�, � ∈ 	n(K), denote the poles of a
given element U ∈ S(E, K). The following properties are then equivalent:

(i) for any q ∈ Qn(K), the poles a�, � ∈ 	n(Kn,q), form a strictly increasing
sequence;

(ii) the piecewise function w1 := DU is strictly positive on ∪k∈Z[t+k , t−k+1] and

the set L1S(E, K) := {L1S := DS

w1
| S ∈ S} is a PW-spline space (with n-

dimensional section-spaces) which is good for design.

Theorem 4.1 will be proved in the next subsection. The reason why it is essential
is that it enables to determine all good spline spaces, as stated below:

Theorem 4.2 Let E be an (n + 1)-dimensional PEC-space on (I, T) and let
K = (

tk [mk ])
k∈Z

be any bi-infinite knot-vector. The following three properties are
then equivalent:

(i) the space S(E, K) is good for design;
(ii) there exists a system (w1, . . . , wn) of piecewise weight functions on (I, T), such

that

S(E, K) = ECPS(1, w1, . . . , wn; K); (18)

(iii) for each k ∈ Z, there exists a system (wk
1, . . . , w

k
n) of weight functions on

[t+k , t−k+1] such that S(E, K) can be described as the set of all piecewise functions
S ∈ PCn(I, T) such that

– for any k ∈ Z, the restriction of S to [t+k , t−k+1] belongs to EC(1k, w
k
1, . . . ,

wk
n);

– for any k ∈ Z, S satisfies the connection condition

(
S(t+k ), Lk

1S(t+k ) . . . , Lk
n−mk

S(t+k )
)T=

(
S(t−k ), Lk−1

1 S(t−k ) . . . , Lk−1
n−mk

S(t−k )
)T

,

(19)

where, for each k, Lk
0 = Id, Lk

1, . . . , Lk
n are the differential operators on

Cn([t+k , t−k+1]) associated with (1k, w
k
1, . . . , w

k
n).

Proof The equivalence between (ii) and (iii) is clear. The implication (ii) ⇒ (i) was
proved in Theorem 3.12. Assuming that (i) holds, let us prove (ii). It is actually suffi-
cient to prove the existence of a system (w1, . . . , wn) of piecewise weight functions
on (I, T) such that

ECP(1, w1, . . . , wn) ⊂ S(E, K). (20)

This will be done by induction on n ≥ 0. For n = 0, there is nothing to prove. Suppose
that n ≥ 1, and that the result holds for (n − 1). Theorem 4.1 ensures the existence of
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a positive piecewise function w1 such that the corresponding PW-space L1S(E, K),
with section-spaces of dimension n, is good for design. From the recursive assumption
we can attest the existence of a system (w2, . . . , wn) of piecewise weight functions on
(I, T) such that ECP(1, w2, . . . , wn) ⊂ L1S(E, K). For any k ∈ Z such that mk ≤ n,
each spline S ∈ S(E, K) is continuous at tk . The inclusion (20) readily follows. ��

Remark 4.3 The bi-infinite knot-vector K being given, let us now consider the class
C of all spline spaces on (I, T) described by all requirements in (iii) of Theorem 4.2,
obtained when involving all possible bi-infinite sequences of systems of weight func-
tions (wk

1, . . . , w
k
n), k ∈ Z. The latter theorem tells us that it is the class of all PEC-

spline spaces on (I, T) based on K which are good for design. Let us now compare
it with the class Ĉ of all spaces obtained in a similar way, but after replacing the
connection conditions (19) by

(
S(t+k ), Lk

1S(t+k ) . . . , Lk
n−mk

S(t+k )
)T = Nk .

(
S(t−k ), Lk−1

1 S(t−k ) . . . , Lk−1
n−mk

S(t−k )
)T

,

(21)

where, for each k, Nk denotes any totally positive regular lower triangular matrix. Note
that the class Ĉ is somewhat larger than the class of spline spaces which was consid-
ered by Barry [1]. Indeed, in [1], each wk

i , 1 ≤ i ≤ n, k ∈ Z, was supposed to belong
to Cmax(n−i,i−1)([t+k , t−k+1]), each multiplicity to be at least 1, and the last colum of
each Nk to be (0, . . . , 0, 1)T , due in particular to the proofs strongly involving dual
EC-spaces, and dual connection matrices.

A priori, the class Ĉ seems much larger than C, since we have a choice for
each Nk . Nevertheless, let us choose a spline space S in the class Ĉ. For each k,
let us add min(mk, n + 1) rows and columns to the corresponding matrix Nk so as
to obtain a totally positive regular lower triangular matrix Ñk , of order (n + 1), with
(1, 0, . . . , 0)T as its first column. Each such choice leads to an (n + 1)-dimensional
PEC-space E on (I, T) which is contained in S. A slight adaptation of Corollary 1
of [1] (see [14]) ensures that this is actually an ECP-space on (I, T). Accordingly,
Theorem 3.2 guarantees that the space S is good for design, i.e., it belongs to the class
C. The two classes C and Ĉ are thus identical.

4.2 Generalised differentiation within existence of blossoms: proof of Theorem 4.1

Throughout the present subsection we work under the same global assumption as in
Theorem 4.1. The PEC-spline space S(E, K) being good for design, it possesses a
B-spline basis, which we denote by N�, � ∈ 	n(K). Let us start with the following
two lemmas.

Lemma 4.4 Consider the following piecewise functions in PCn−1(I, T):

B�(x) :=
∑

i≥�, i∈	n(K)

DNi (x), x ∈ ∪k∈Z[t+k , t−k+1], � ∈ Z. (22)
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If � /∈ 	n−1(K), then B� ≡ 0. The sequence B�, � ∈ 	n−1(K), is a B-spline-like basis
in the space DS(E, K).

Proof The B-spline being normalised, we can as well define each piecewise function
B� as

B�(x) = −
∑

i≤�−1, i∈	n(K)

DNi (x), x ∈ ∪k∈Z[t+k , t−k+1], � ∈ 	n−1(K). (23)

Using the two expressions (22) and (23) along with the support property (BSLB)1 of
the B-spline basis N�, � ∈ 	n(K), it is easy to derive that, for any � ∈ Z,

B�(x) = 0 for any x ∈ ∪k∈Z[t+k , t−k+1] such that either x ≤ ξ−
� or x ≥ ξ+

�+n . (24)

This guarantees that, whenever � /∈ 	n−1(K), the piecewise B� ∈ PCn−1(I, T) is
identically 0. Let us thus only consider integers � ∈ 	n−1(K). From (22) and (23)
and the endpoint property(BSLB)1 of the B-spline basis one can derive that, for any
� ∈ 	n−1(K),

B� vanishes exactly (n − s) times at ξ+
� and exactly (n − s′) times at ξ−

�+n, (25)

where s := 
{ j ≥ � | ξ j = ξ�} and s′ := 
{ j ≤ � + n + 1 | ξ j = ξ�+n+1}. Taking
account of the positivity property (BSB)2 of the B-spline basis we can additionally
state that

B�
(n−s)(ξ+

� ) = N�
(n−s+1)(ξ+

� ) > 0,

(−1)n−s′
B�

(n−s′)(ξ−
�+n) = (−1)n−s′+1 N�−1

(n−s+1)(ξ−
�+n) > 0. (26)

Let us now prove that

B�(x) > 0 for any x ∈ ∪k∈Z[t+k , t−k+1] such that ξ+
� < x < ξ−

�+n, � ∈ 	n−1(K).

(27)

Without loss of generality we can assume that mk ≤ n + 1 for all k ∈ Z, in which
case 	n(K) = Z. Consider a knot-vector K

∗ obtained by inserting one knot x in K,
such that m(x) ≤ n. We also have 	n(K∗) = Z. From the B-spline basis N∗

� , � ∈ Z,
of the new spline space S(E, K

∗), we can similarly build the piecewise functions

B∗
� (x) :=

∑
i≥�

DN∗
i (x) = −

∑
i≤�−1

DN∗
i (x), x ∈ ∪k∈Z[t+k , t−k+1], � ∈ Z.

From relations (9) we can derive, for any x ∈ ∪k∈Z[t+k , t−k+1]:

∑
j≥�

N�(x) = α�N∗
� (x) +

m∑
k≥�+1

N∗
� (x) = α�

∑
k≥�

N∗
k (x) + α�

∑
k≥�+1

N∗
k (x), � ∈ Z.
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By differentiation, this yields

B� = α� B∗
� + (1 − α�)B∗

�+1, � ∈ Z. (28)

If ever the new sequence B∗
� , � ∈ Z, is known to satisfy the positivity property (27), then

the decomposition relations (28) ensure that so does the initial sequence B�, � ∈ Z. It
is thus sufficient to check that the positivity property (27) is satisfied by the sequence
B�, � ∈ Z, when each knot tk, k ∈ Z, has multiplicity mk = n + 1. In the latter case,
the support of each B-spline is then composed of a single interval. Choose any integer
k ∈ Z. Denote by jk the unique integer which satisfies

ξ jk ≤ tk, ξ jk+1 ≥ tk+1. (29)

Then, only the piecewise functions B jk−n+1, . . . , B jk , are not identically 0 on the
interval [t+k , t−k+1]. Let us denote by βk,0, . . . , βk,n−1 their restrictions to [t+k , t−k+1].
On account of (BSLB)3 and (26), each function βi belongs to DEk , it vanishes exactly
i times at t+k and exactly (n − 1 − i) times at t−k+1, and it satisfies βi

(i)(t+k ) > 0.
Since the space DEk is an n-dimensional EC-space on [t+k , tk+1]−, each function βi is
positive on [t+k , t−k+1]. As a matter of fact, (βk,0, . . . , βk,n−1) is a Bernstein-like basis
relative to (tk, tk+1) in the space DEk . ��
Lemma 4.5 The spline U in S(E, K) satisfies (i) of Theorem 4.1 if and only if the
decomposition of w1 := DU in any given B-spline-like basis of the spline space
DS(E, K) involves only positive coefficients.

Proof In Lemma 4.4 we have exhibited one special B-spline-like basis in the spline
space DS(E, K). There exists many other ones, each of their elements being com-
pletely determined by its three properties (BSB)i, i = 1, 2, 3, up to multiplication by
a positive constant (see, for instance, the proof of Proposition 2.7 in [16]). Accord-
ingly, it is sufficient to check that the claimed result holds when using the special
B-spline-like basis defined in Lemma 4.4. Now, from

U (x) =
∑

�∈	n(K)

a�N�(x), x ∈ ∪k∈Z[t+k , t−k+1],

and from (22), one can easily deduce that w1 can be decomposed as

w1(x) =
∑

�∈	n−1(K)

b� B�(x), x ∈ ∪k∈Z[t+k , t−k+1], (30)

with

b� = a� − a�−1 for any � ∈ 	n−1(K).

One can readily check that (i) is satisfied if and only if b� > 0 for all � ∈ 	n−1(K).
��
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Lemma 4.6 Suppose that the spline U ∈ S(E, K) satisfies (i) of Theorem 4.1. Then
U satisfies the same property when considered as an element of any PW-spline space
S(E, K

∗) obtained from S(E, K) by insertion of knots.

Proof It suffices to prove this when K
∗ is obtained from K by insertion of one addi-

tional knot x ∈ I of multiplicity m(x) ≤ n. Let a∗
� , � ∈ 	n(K∗), denote the poles

of U considered as an element of the new spline space S(E, K
∗). Let us write I =

∪q∈Qn(K∗) I ∗
n,q , q ∈ Qn(K∗). We have to prove that, for any q ∈ Qn(K∗), the poles

a∗
� , � ∈ 	n(K∗

n,q), form a strictly increasing sequence. Without loss of generality we
can assume that 	n(K) = Z, in which case we shall also have 	n(K∗) = Z. Then, x
is located in the interior of some In,q . The new poles of U are given by (see (7)):

a∗
� = (1 − α�)a�−1 + α�a�, � ∈ Z,

where the α’s are given in (8). Two cases must be considered:

1. m(x) < n: then, x is interior to some In,q = I ∗
n,q , and we only have to consider

the sequence a∗
� , � ∈ 	n(K∗

n,q). Choose any � such that both � and (�+ 1) belong
to 	n(K∗

n,q). Then, �− 1, �, �+ 1 ∈ 	n(Kn,q). From (5) and (8) one can say that

a∗
� ≤ a� ≤ a∗

�+1.

The equality a∗
� = a∗

�+1 could be satisfied if and only if we had both α� = 1 and
α�+1 = 0, which would occur if and only if we had both x ≥ ξ�+n and x ≤ ξ�+1,
that is, if and only if x = ξ�+1 = · · · = ξ�+n . The assumption m(x) < n makes it
impossible. Accordingly, the sequence a�, � ∈ 	n(K∗

n,q), is strictly increasing.
2. m(x) = n: this means that x is a knot tk interior to In,q , with multiplicity mk = n.

The insertion of tk splits In,q in two parts I ∗
n,q and I ∗

n,q+1, and the sequence
a�, � ∈ 	n(Kn,q), in two parts too, each of which is strictly increasing: firstly
a� = a∗

� , � ∈ 	n(Kn,q), � ≤ jk − mk = jk − n, and secondly a� = a∗
�+1, � ∈

	n(Kn,q), � ≥ jk − n, the integer jk being defined in (29). ��
After the preliminary results above we are in a position to prove Theorem 4.1.

Theorem 4.1: Proof of (ii)⇒(i).
Let us assume that (ii) holds. Then, according to Theorem 2.12, the space L1S(E, K)

possesses a B-spline basis, which we denote by N {1}
� , � ∈ 	n−1(K). Multiplying both

hand-sides of its normalisation property

∑
�∈	n−1(K)

N {1}
� (x) = 1, x ∈ ∪k∈Z[t+k , t−k+1],

by w1 leads to

w1(x) =
∑

�∈	n−1(K)

w1(x)N {1}
� (x), x ∈ ∪k∈Z[t+k , t−k+1].
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The sequence w1 N {1}
� , � ∈ 	n−1(K), satisfies the same support, positivity and end-

point properties as the B-spline basis N {1}
� , � ∈ 	n−1(K). It is thus a B-spline-like

basis of the piecewise space DS(E, K). All coefficients of the expansion of w1 in the
latter basis are thus positive, since they all are equal to 1. Lemma 4.5 ensures that (i)
holds.

Theorem 4.1: Proof of (i)⇒(ii).
According to Lemmas 4.4 and 4.5 we can use the special B-spline-like basis B�, � ∈

	n−1(K), defined in (22) and the corresponding decomposition (30) in which we
assume all coefficients b�, � ∈ 	n−1(K), to be positive. Select any x ∈ ∪k∈Z[t+k , t−k+1].
Each B�(x), � ∈ 	n−1(K), is non-negative and there is at least one such integer � for
which B�(x) > 0. We thus have w1(x) > 0. The positivity of w1 on ∪k∈Z[t+k , t−k+1]
is proved.

We can thus introduce the piecewise differential operator L1 defined on
PCn(I, T) by:

L1 F(x) := DF(x)

w1(x)
, x ∈ ∪k∈Z[t+k , t−k+1].

The first two things to observe is that the space L1S(E, K) contains constants (since
U1 ∈ S(E, K)) and that, restricted to any [t+k , t−k+1], it is a W-space. In order to make
sure that L1S(E, K) is indeed a PW-space on (I, T), we must consider the connec-
tions at any knot tk . Obviously, if mk ≥ n, there is no connection condition at tk in
L1S(E, K). Let us assume that mk ≤ n − 1. Select any S ∈ S(E, K). Since the space
S(E, K) contains constants, we know that

(
DS(t+k ), D2S(t+k ),. . ., Dn−mk S(t+k )

)T= Mk .
(
DS(t−k ), D2S(t−k ),. . ., Dn−mk S(t−k )

)T
,

where the matrix Mk , of order (n − mk), is obtained by deleting the first row and the
first column in Mk . Exactly as in the proof of Proposition 3.4, this leads to

(
L1S(t+k ), . . . , Dn−1−mk L1S(t+k )

)T = M {1}
k .

(
L1S(t−k ), . . . , Dn−1−mk L1S(t−k )

)T
,

(31)

with

M {1}
k := Cn−mk−1(w1, t+k )−1. Mk . Cn−mk−1(w1, t−k ).

This is a lower triangular matrix the diagonal of which is positive since it is obtained
by multiplying the diagonal of Mk by w1(t

−
k )/w1(t

+
k ). Accordingly, L1S(E, K) is a

PW-spline space on (I, T).
Division of both sides of (30) by w1(x) yields

1 =
∑

�∈	n−1(K)

b� B�(x)

w1(x)
, x ∈ ∪k∈Z[t+k , t−k+1]. (32)
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The sequence b� B�/w1, � ∈ 	n−1(K), satisfies the same support, positivity and end-
point properties as the B-spline-like basis B�, � ∈ 	n−1(K). Relation (32) proves
that it is normalised. It follows that the space L1S(E, K) does possess a B-spline
basis, namely, the sequence b� B�/w1, � ∈ 	n−1(K). In order to prove that the space
L1S(E, K) is good for design, we have to also prove the existence of a B-spline basis
in L1S(E, K

∗) for any knot-vector K
∗ obtained from K by insertion of knots (see

Theorem 2.12).
Now, clearly, existence of a B-spline basis in the new space L1S(E, K

∗) in question
will be obtained via the same arguments as those used for the initial space L1S(E, K)

provided that we can make sure that the poles a∗
� , � ∈ 	n(K∗), of U considered as an

element of the new spline space S(E, K
∗) satisfy the corresponding property (i). This

was proved in Lemma 4.6.

4.3 Piecewise weight functions for spline spaces

In Theorem 4.2 we have established the existence of a system (w1, . . . , wn) of piece-
wise weight functions on (I, T) ensuring the equality (18). In the present subsection
we shall complement it by determining all such possibilities. Let us start with the
following proposition.

Proposition 4.7 The global assumptions are the same as in Theorem 4.2. For a given
integer i, 0 ≤ p ≤ n −1, assume that there exists a system (w1, . . . , wp) of piecewise
weight functions on (I, T), such that ECP(1, w1, . . . , wp) ⊂ S(E, K), and let L p be
the linear piecewise differential operator of order p associated with (1, w1, . . . , wp).
Then, the following two properties are equivalent:

(i) the PW-spline space L pS(E, K), with (n − p + 1) dimensional section-spaces,
is good for design.

(ii) there exists a positive piecewise function wp+1 ∈ PCn−p−1(I, T) such that the
space L p+1S(E, K) is good for design, where the piecewise differential operator
L p+1 is defined on PCn(I, T) by L p+1 := (DL p F)/wp+1.

(iii) there exists a system (wp+1, . . . , wn) of piecewise weight functions on (I, T),
such that

S(E, K) = ECPS(1, w1, . . . , wp, wp+1, . . . , wn; K);
Moreover, when (i) holds, the piecewise functions wp+1 leading to (ii) are all splines
wp+1 in DL pS(E, K) of which the decompositions in a B-spline-like basis of
DL pS(E, K) involve only positive coefficients.

Proof Assume that condition (i) is satisfied. We can now apply Theorems 4.1 and 4.2
in the spline space L pS(E, K). The former implies both (ii) and the last sentence of
the theorem. The latter ensures the existence of a system (wp+1, . . . , wn) of piecewise
weight functions on (I, T), such that that ECP(1, wp+1, . . . , wn) ⊂ L pS(E, K). The
assumption ECP(1, w1, . . . , wp) ⊂ S(E, K) implies that any S ∈ S(E, K) satisfies
we have

Li S(t+k ) = Li S(t−k ), 0 ≤ i ≤ min(n − mk, p), k ∈ Z.
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Accordingly, from ECP(1, wp+1) ⊂ L pS(E, K) one can deduce that ECP(1, w1, . . . ,

wp, wp+1) ⊂ S(E, K). We thus have proved that (i) implies (iii), but at the same time
that (ii) implies (iii).

Finally the fact that (iii) implies (i) follows from Theorem 3.12. ��

Theorem 4.8 Given an (n + 1)-dimensional PEC-space E on (I, T), with n ≥ 1,
and given any bi-infinite knot-vector K = (

tk [mk ])
k∈Z

, assume that the spline space
S(E, K) is good for design. Then there exist infinitely many different nested sequences

ECP(1, w1) ⊂ ECP(1, w1w2) ⊂ · · · ⊂ ECP(1, w1, . . . , wn) ⊂ S(E, K). (33)

More precisely, at each stage 0 ≤ p ≤ n − 1, there exist infinitely many different
ECP-spaces ECP(1, w1, . . . , wp) to start or continue the nested sequence (33).

Proof Consider first the case p = 0. Let B�, � ∈ 	n−1(K), be a B-spline-like basis in
DS(E, K). Given two families b�, b�, � ∈ 	n−1(K), of positive real numbers, consider
the splines

w1(x) =
∑

�∈	n−1(K)

b� B�(x), w1(x) =
∑

�∈	n−1(K)

b� B�(x), x ∈ ∪k∈Z

[
t+k , t−k+1

]
,

The two splines satisfy ECP(1, w1) = ECP(1, w1) if and only there exist a positive
real number α such that w1 = αw1, that is, if and only if b� = αb� for each � ∈
	n−1(K). There thus exist infinitely many different spaces ECP(1, w1) ⊂ S(E, K)

such that L1S(E, K) is good for design. Given an integer p, with 0 ≤ p ≤ n − 1,
assume that we have chosen w1, . . . , wp. With our usual notations, we now know the
existence of infinitely many different spaces ECP(1, wp+1) ⊂ L pS(E, K) such that
that L p+1S(E, K) is good for design. This proves the expected result. ��

Remark 4.9 Let the PEC-spline space S(E, K) be good for design. Then, there exist
infinitely many sequences of piecewise differential operators L0 = Id, L1, . . . , Ln so
that the S(E, K) can be described as in Definition 3.11. Each of them plays for S(E, K)

exactly the same rôle as the sequence D j , 0 ≤ j ≤ n, for ordinary polynomial spline
spaces. On the other hand, each nested sequence of ECP-spaces (33) also leads to the
following nested sequence of spline spaces good for design.

ECPS(1, w1; K1) ⊂ ECPS(1, w1w2; K2)

⊂ · · · ⊂ ECPS(1, w1, . . . , wn; Kn) ⊂ S(E, K), (34)

where, for p = 1, . . . , n, the multiplicity of the knot tk in the knot-vector Kp is equal
to max(0, mk + p − n).

Remark 4.10 We would like to conclude the present section with an important obser-
vation concerning blossoms. Let the PEC-spline space S(E, K) be good for design.
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Then, the blossom f of any element F of the PEC-space E is not necessarily defined
on I n . We can only say that f is defined on the restricted set An(K). Nevertheless
Theorem 4.8 ensures that one can find infinitely many (n +1)-dimensional ECP-space
on (I, T), Ẽ, such that:

– S(E, K) = S(Ẽ, K);
– the blossom f̃ of any element F̃ in Ẽ is defined on the whole of I n .

5 Spaces possessing B-spline-like bases

In geometric design we generally assume the spaces used to create parametric curves
to contain constants. Nevertheless there exist lots of examples of spline spaces which
do not meet the latter requirement and which are interesting to consider for other
purposes, for instance for spline interpolation. The presence of minimally supported
bases remains essential, and this is the question the present section is devoted to.

5.1 S versus DS

Let us have a look at the equivalence “(ii) ⇔ (iv)” of Theorem 3.2 concerning PW-
spaces. It characterises the property “being good for design” by the existence of a
certain type of bases in the space obtained by differentiation. The result below can be
considered the spline version of the latter characterisation.

Theorem 5.1 Let E be an (n + 1)-dimensional PW-space on (I, T) containing
constants. Then, for any bi-infinite knot-vector K, the following two properties are
equivalent:

(i) the spline space S(E, K) is good for design;
(ii) the spline space DS(E, K) possesses a B-spline-like basis and so does any

spline space obtained from DS(E, K) by knot insertion.

Proof • (i i) ⇒ (i) : In Lemma 4.4 we have built a B-spline-like basis in the space
DS(E, K). In its proof we mentioned why the same holds too in any spline space
DS(E, K

∗) such that K
∗ is obtained from K by knot insertion.

• (i i) ⇒ (i) : Let B�, � ∈ 	n−1(K), be a given B-spline-like basis in DS(E, K).
For each � ∈ 	n(K), we consider the piecewise function N� ∈ PCn(I, T)

defined by

N�(x) = 0 if x /∈ [ξ+
� , ξ−

�+n+1],

N�(x) =
∫ x
ξ�

B�(t) dt
∫ ξ�+n
ξ�

B�(t) dt
−

∫ x
ξ�+1

B�+1(t) dt
∫ ξ�+n+1
ξ�+1

B�+1(t) dt
if x ∈ [ξ+

� , ξ−
�+n+1]. (35)
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Due to the positivity property (BSB)2 satisfied by the B-spline-like basis, the piece-
wise function N� is well defined on each interval [t+k , t−k+1], at least with the usual
convention, namely:

if ξ� = ξ�+n, then replace the first quotient of integrals by 1,
(36)

if ξ�+1 = ξ�+n+1, then replace the second one by 0.

The piecewise function N� so defined clearly belongs to S(E, K). It satisfies the sup-
port and end point properties (BSB)1 and (BSB)4. Select any integer k ∈ Z. Consider
the integer jk introduced in (29). On the interval [t+k , t−k+1], all piecewise functions
N�, such that � ∈ 	n(K) \ { jk − n, . . . , jk} are identically 0. Therefore, taking (35)
into account, we obtain

∑
�∈	n(K)

N�(x) =
jk∑

�= jk−n

N�(x), x ∈ [t+k , t−k+1] ⊂ [ξ+
jk
, ξ−

jk+1],

=
∫ x
ξ jk−n

B jk−n(t) dt
∫ ξ jk
ξ jk−n

B jk−n(t) dt
−

∫ x
ξ jk+1

B jk+1(t) dt
∫ ξ jk+n+1

ξ jk+1
B jk+1(t) dt

= 1, (37)

which proves the normalisation property (BSB)3.
Choose any points P� ∈ R

n, � ∈ 	n(K), so as to ensure the affine independence of
the points Pjk−n, . . . , Pjk for each k ∈ Z, where jk is defined in (29). Such a choice
is always possible. We then consider the piecewise spline S ∈ S(E, K)n defined by

S(x) :=
∑

�∈	n(K)

N�(x)P�, x ∈ ∪k∈Z[t+k , t−k+1].

This spline S is non-degenerate. On the other hand, choose any integer j ∈ 	n(K).
One can always write the n-tuple (ξ j+1, . . . , ξ j+n) as follows

(ξ j+1, . . . , ξ j+n+1) =
(

tk
[α], tk+1

[mk+1], . . . , tk+s
[mk+s ], tk+s+1

[β]) ,

with 0 ≤ α < mk and 0 ≤ β < mk+s+1. Then, because the piecewise functions
N�, � ∈ 	n(K), satisfy (BSB)1, (BSB)3, and (BSB)4, one can prove that all osculat-
ing flats Oscn−α S(t+k ), Oscn−mi S(ti ), k +1 ≤ i ≤ k + s, and Oscn−β S(t−k+s+1) have
in common the only point Pjk−α . The arguments are exactly those used in the proofs
of Proposition 2.3 and Theorem 3.1 of [16] which we refer the reader to (also see
the comment after the latter theorem). Similar arguments can also be applied starting
with any knot-vector K

∗ obtained from K by insertion of knots, and any B-spline-like
basis B∗

� , � ∈ 	n−1(K
∗), of the corresponding spline space S(E, K

∗). Accordingly,
existence of blossoms in S(E, K) is proved. ��
Remark 5.2 From (35) and from the positivity of the B�’s, � ∈ 	n−1(K), we could
easily have deduced the positivity of each N�, � ∈ 	n(K), close to ξ+

� or to ξ−
�+n+1.
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However, this would not be sufficient to directly conclude that N� is positive on
]ξ�, ξ�+n+1[. Once the existence of blossoms proved, we can assert that the piecewise
functions N�, � ∈ 	n(K), built via (35), form the B-spline basis in S(E, K). Hence
they also satisfy the positivity property (BSB)2.

5.2 Consequences

In consequence of Theorem 5.1, the results of Sect. 4 lead to the following one:

Theorem 5.3 Let E be an (n + 1)-dimensional PW-space on (I, T) and let the knot-
vector K be bi-infinite. The following three properties are then equivalent:

(i) the space S(E, K) possesses a B-spline-like basis and so does the space S(E, K
∗)

for any knot-vector K
∗ obtained from K by insertion of knots;

(ii) there exists a positive spline w0 ∈ S(E, K) such that L0S(E, K) := {S/w0 | S ∈
S(E, K)} is good for design.

(iii) there exists a system (w0, . . . , wn) of piecewise weight functions such that

S(E, K) = ECPS(w0, . . . , wn; K). (38)

Suppose that (i) is satisfied, and select one B-spline-like basis B�, � ∈ 	n(K), in
S(E, K). Then, in order to obtain a positive spline w0 ∈ S(E, K) so that the corre-
sponding spline space L0S(E, K) is good for design, it is necessary and sufficient to
take

w0(x) :=
∑

�∈	n(K)

b� B�(x), x ∈ ∪k∈Z[t+k , t−k+1],

where b�, � ∈ 	n(K), are any positive real numbers.

Proof Let Ê be the (n + 2)-dimensional space composed of all piecewise functions
F̂ ∈ PCn+1(I, T) which are continuous at each knot tk of multiplicity mk ≤ n + 1
and for which DF ∈ E. We then have S(E, K) = DS(Ê, K). Theorem 5.1 says that
(i) is satisfied if and only if S(Ê, K) is good for design. Accordingly, the various equiv-
alences are obtained by applying Theorem 4.2 in S(Ê, K). The remaining assertion
concerning how to choose w0 follows from applying Theorem 4.1 and Lemma 4.5 in
S(Ê, K). ��

Any “interesting” spline space is thus good for design, at least up to multiplication
by a positive piecewise function. This fully justifies that we can limit investigations
on Chebyshevian spline spaces to those which are good for design, see, for instance,
Sect. 7.

Let us conclude the present section with the following special case of Theorem 5.3.

Corollary 5.4 Assume that (i) of Theorem 5.3 is satisfied. Then, the following two
statements are equivalent:
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(i) the space S(E, K) possesses a B-spline basis;
(ii) the space S(E, K) is good for design.

Proof The implication (ii)⇒(i) being contained in Theorem 2.12, the interesting part
is the converse implication. Assuming that (i) holds, and let N�, � ∈ 	n(K), denote
the B-spline basis in S(E, K). Then,

1 =
∑

�∈	n(K)

b�N�(x), x ∈ ∪k∈Z[t+k , t−k+1], with b� := 1 for all � ∈ 	n(K).

Accordingly (ii) follows by application of Theorem 5.3 with w0 := 1. ��

6 Comments. Consequences

We shall now comment on several points: what about a non-bi-infinite knot-vector?
what about splines on a closed bounded interval? what are the implications of our
results?

6.1 Non bi-infinite knot-vectors

Throughout Sects. 4 and 5 we have assumed the knot-vector K to be bi-infinite. Let
us now consider the case where K is finite, i.e., only a finite number of knots have
positive multiplicities, and let us assume the spline space S(E, K) to be good for
design. Do all results previously obtained remain valid? As a matter of fact, the defi-
nition of B-splines bases must be slightly modified (see [18]) and in a given spline
space good for design, uniqueness is no longer guaranteed. In particular we know that
the B-splines are no longer necessarily positive on the interior of their supports. An
analogous remark holds in the space DS(E, K). For this reason, if we choose U as
in (i) of Theorem 4.1 we cannot guarantee that the piecewise function w1 := DU
will be positive everywhere on ∪k∈Z[t+k , t−k+1]. We therefore cannot ensure that we
can find a system (w1, . . . , wn) of piecewise weight functions on (I, T) such that
S(E, K) = ECPS(1, w1, . . . , wn; K). Of course the same situation occurs when the
knot-vector is infinite only on one side.

Let us now consider the case of PEC-splines on a given closed bounded interval
[a, b], a < b. To distinguish between it and the previous case of a bi-infinite knot-
vector we shall use calligraphic letters. We start with a finite sequence T of interior
knots, i.e.,

t0 := a < t1 < · · · < tq < tq+1 := b,

and with interior multiplicities 0 ≤ mk ≤ n for k = 1, . . . , q. The data are the same as
previously apart from the fact that now, the indices for the section-spaces are limited
to 0 ≤ k ≤ q and those for the connection matrices to 1 ≤ k ≤ q. The knot-vector K
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is now

K :=
(

tk
[mk ]

)
0≤k≤q+1

= (ξ−n, . . . , ξn+m+1),

with m0 := mq+1 := n +1 and m := ∑q
k=1 mk . All definitions previously introduced

on (I, T) can easily be adapted to ([a, b], T ): PEC- or ECP-spaces on ([a, b], T ),
piecewise weight functions on ([a, b], T ), and so forth. In particular, an (n + 1)-
dimensional PEC-space E on ([a, b], T ) being given, with section-spaces Ek, 0 ≤
k ≤ q, the spline space S(E,K) is then defined as the set of all continuous functions
S on [a, b] with kth sections in Ek, 0 ≤ k ≤ q, and with connection condition (2)
at tk, 1 ≤ k ≤ q. It is well known that S(E,K) is then (n + m + 1)-dimensional.
A possible B-spline(-like) basis is then defined as in Definition 2.13, but only for
indices � = −n, . . . , m. The space S(E,K) can always be considered the restriction
to [a, b] = [t+0 , t−q+1] of a space S(E, K) of PEC-splines with a bi-infinite knot-vec-

tor K = (
tk [mk ])

k∈Z
, chosen so that S(E,K) is good for design (resp., possesses a

B-spline(-like) basis) if and only if the same property holds for S(E, K). For instance,
one can assume that outside [a, b], the elements of S(E, K) are Cn−1 functions, piece-
wise in the degree n polynomial space.

By restriction to [a, b], we can then state:

Theorem 6.1 All results of Sections 4 and 5 remain valid for PW-/PEC-spline spaces
on a closed bounded interval as described above.

For the rest of the subsection we consider the special case where mk = 0 for
1 ≤ k ≤ q. Then S(E,K) = E is an (n + 1)-dimensional PEC-space on ([a, b], T ),
and the B-spline basis in S (if it exists) is just its Bernstein basis relative to (a, b).
Let us observe that in spite of the general statement of Theorem 6.1, there exists one
precise point where we should change our statement: in Theorem 4.8, for p = n − 1,
there is obviously only one way to continue the nested sequence (33).

Applying Theorem 5.3 in S(E, K) provides us with all ECP-spaces on ([a, b], T ):

Theorem 6.2 Let E be an (n + 1)-dimensional PEC-space on ([a, b], T ), with
section-spaces Ek, k = 0, . . . , q. Then the following three properties are equivalent:

(i) E is an ECP-space on ([a, b], T );
(ii) there exists a system (w0, . . . , wn) of piecewise weight functions on ([a, b], T ),

such that E = ECP(w0, . . . , wn);
(iii) for each k ∈ Z, there exists a system (wk

0, . . . , w
k
n) of weight functions on

[t+k , t−k+1] with associated differential operators Lk
0, . . . , Lk

n on Cn([t+k , t−k+1])
such that E can be described as the set of all piecewise functions F ∈ PCn(I, T )

such that
– for any k = 0, . . . q, the restriction of F to [t+k , t−k+1] belongs to EC(wk

0, . . . ,

wk
n);

– for any k = 1, . . . , q, F satisfies the connection conditions

(
Lk

0 F(t+k ), Lk
1 F(t+k ) . . . , Lk

n F(t+k )
)T=

(
Lk−1

0 F(t−k ), Lk−1
1 F(t−k ) . . . , Lk−1

n F(t−k )
)T

.

(39)
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We first achieved the latter result in [21], via completely different arguments which
we shall now briefly recall. We first proved that an (n + 1)-dimensional ECP-space E
on ([a, b], T ) can be viewed as the restriction to [a, b] of an (n+1)-dimensional ECP-
space Ê on ([̂a, b̂], T ), for some â, b̂ such that â < a, b̂ > b. Any c ∈ [̂a, b̂]\[a, b] then
yields a nested sequence of ECP-spaces on ([a, b], T ) : E0 ⊂ E1 ⊂ · · · ⊂ En = E ,
where, for 0 ≤ i ≤ n, Ei is obtained by restricting to [a, b] the set of all F̂ ∈ Ê which
vanish (n − i) times at c. One can prove that such a nested sequence is necessarily
of the form Ei = ECP(w0, . . . , wi ), 0 ≤ i ≤ n, where (w0, . . . , wn) is a system of
piecewise weight functions on ([a, b], T ). The latter arguments already provided us
with infinitely many systems of piecewise weight functions on ([a, b], T ), such that
E = ECP(w0, . . . , wn). Thanks to Theorem 5.3, we can now state how to obtain all of
them, that is, how to build all nested sequences of ECP-spaces on ([a, b], T ) contained
in a given one.

Theorem 6.3 Let E be an (n + 1)-dimensional ECP-space on ([a, b], T ). Then, all
possible systems (w0, . . . , wn) of piecewise weight functions on ([a, b], T ), such that
E = EC P(w0, . . . , wn) are obtained as follows. Given an integer p, 0 ≤ p ≤ n,
assume that we already have built w0, . . . , wp−1 so that DL p−1E is an (n − p +
1)-dimensional ECP-space on ([a, b], T ), with DL−1E := E . In DL p−1E select a
Bernstein-like basis (V p

0 , . . . , V p
n−p) relative to (a, b). Then, all possible piecewise

weight functions wp are obtained as

wp :=
n−p∑
i=0

α
p
i V p

i , with any positive α
p
0 , . . . , α

p
n−p, 0 ≤ p ≤ n.

Observe that, at each step p ≥ 1, the Bernstein-like basis (V p
0 , . . . , V p

n−p) rel-
ative to (a, b) can be obtained from the Bernstein basis in L p−1E via Lemma 4.4.
As a consequence, all successive Bernstein-like bases can be derived from the initial
Bernstein basis relative to (a, b) in the space E itself (see proof of Theorem 4.1). Note
that, when q = 0, under the assumption of Theorem 6.3, E is an EC-space on [a, b].
As a special case, Theorem 6.3 provides us with all systems of weight functions on
[a, b] such that E = EC(w0, . . . , wn). We thus recover the results obtained in [25].

6.2 New type of shape parameters

Let us come back to the general situation of a bi-infinite knot-vector K. Theorem 4.2
provided us with ALL possible PEC-spline spaces which are good for design, thus
giving us the answer to Question 1 (see the introduction). We now consider a slightly
different problem: we would like to determine ALL possible PEC-spline spaces good
for design, but with prescribed section-spaces.

In other words we would like to give an answer to Question 2: for given section-
spaces, we want to determine all sequences of connection matrices leading to spline
spaces good for design. In theory, they must be chosen so as to ensure existence of
blossoms in the corresponding spline space (see Definition 2.9). The problem is that,
in practice, existence of blossoms is not easy to check, especially in high dimensions.
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Now that we have all results of the previous sections at our disposal, with the help of
formula (17) we can state the following theorem:

Theorem 6.4 Let the sequence Ek, k ∈ Z, of section-spaces be given, each Ek ⊂
Cn([tk, tk+1]) being an (n + 1)-dimensional space containing constants such that the
space DEk is an EC-space on [tk, tk+1]. A bi-infinite knot-vector K being given, let S

denote the PEC-spline space composed of all splines with kth sections in Ek, k ∈ Z,
and with connection conditions (2) at the knots. For simplicity of the statement, assume
that mk ≤ n for all k. The sequences of connection matrices Mk, k ∈ Z, for which
the spline space S is good for design are all sequences of block diagonal matrices
Mk := (1, Mk), of the form

Mk :=�n−mk−1(w
k
1, . . . , wk

n−mk
; t+k ). �n−mk−1(w

k−1
1 , . . . , wk−1

n−mk
; t−k )−1, k ∈ Z,

(40)

where, for each k ∈ Z, (wk
1, . . . , w

k
n) is any system of weight functions on [t+k , t−k+1]

such that Ek = EC(1k, w
k
1, . . . , w

k
n).

The important point is that we know how to build all such systems of weight functions
as a special case of Theorem 6.3. Choose any positive real numbers

α
p
k,i , 0 ≤ i ≤ n − p, 1 ≤ p ≤ n, k ∈ Z.

From p = 1 up to p = n, set

wk
p :=

n−p∑
i=0

α
p
k,i V p

k,i , k ∈ Z, (41)

where (V p
k,0, . . . , V p

k,n−p) is a given Bernstein-like basis in the space DLk
p−1Ek , for

instance the one deduced from the Bernstein basis of Lk
p−1Ek via Lemma 4.4. Note

that it depends on wk
1, . . . , w

k
p−1, that is, of the real numbers α

j
k,i , 0 ≤ i ≤ n − j, 1 ≤

j ≤ p − 1. This provides us with shape parameters of a new type. Indeed, the α’s are
free positive parameters which determine the weight functions, and each matrix Mk is
then obtained from them via (40) and (41). It depends on the free positive parameters
α

p
k−1,i , α

p
k,i , 0 ≤ i ≤ n − p, , 0 ≤ p ≤ n − mk , relative to the two section-spaces

Ek−1 and Ek . Due to the length of the paper we will not investigate more the resulting
form of Mk .

Remark 6.5 In [15], for n = 3 and mk = 1 for all k, the geometrical definition of
blossoms enabled us to achieve practical necessary and sufficient conditions for their
existence. In other words, we managed to produce all suitable matrices Mk , lower
triangular of order two and with positive diagonals, leading to a good spline space.
Apart from this special case or for n ≤ 2, up to now the only way we could build
PEC-spline spaces good for design was to choose them in the class Ĉ introduced in
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Remark 4.3. Assuming each section-space Ek to be defined by a given system of
weight functions, i.e.,

Ek := EC(1k, W k
1 , . . . , W k

n ), k ∈ Z,

and taking (15) into acount, the corresponding connection matrices were thus of the
form:

Mk := �n−mk−1(W k
1 , . . . , W k

n−mk
; t+k ). Nk

.�n−mk−1(W k−1
1 , . . . , W k−1

n−mk
; t−k )−1, k ∈ Z, (42)

where Nk was any totally positive regular lower triangular matrix of order (n − mk).
Although no totally positive matrix appears in (40), the class of all matrices Mk of the
form (40) is bigger than that of all matrices of the form (42). This is due to the fact
that we consider all other possible systems of weight functions associated with the
same section-spaces. The “difference” between the two classes may be significant, as
shown in [15].

6.3 An elementary example

Let us start with the following immediate consequence of Theorem 4.2.

Proposition 6.6 Let S be a PW-spline space on (I, T) assumed to be good for
design. Let (w1, . . . , wp) be any system of piecewise weight functions on (I, T), with
wi ∈ PCn+p−i (I, T) for 1 ≤ i ≤ p, and let L0 = Id, L1, . . . , L p be the piecewise
differential operators associated with (1, w1, . . . , wp). Then, the set Ŝ composed of
all piecewise functions Ŝ on (I, T) such that

(1) L p Ŝ belongs to S,
(2) for each k ∈ Z and for each i , 0 ≤ i ≤ min(p, n+ p−mk), Li Ŝ(t+k ) = Li Ŝ(t−k ),

is a PEC-spline space on (I, T) which good for design.

Proof If S has (n + 1)-dimensional section-spaces, Theorem 4.2 ensures the exis-
tence of a system (wp+1, . . . , wp+n) of piecewise weight functions on (I, T) such
that S = ECPS(1, wp+1, . . . , wp+n; K). Then it can be easily checked that Ŝ =
ECPS(1, w1, . . . , wp, wp+1, . . . , wp+n; K). ��

For a given sequence of section-spaces, it may be interesting to know if choosing
Mk := In−mk (identity matrix of order (n − mk)) for all k ∈ Z leads to a spline
space which is good for design. To illustrate the previous subsection we take the
section-spaces in the class studied in [5].

Proposition 6.7 For any k ∈ Z, let Uk ⊂ C1([tk, tk+1]) be a two-dimensional
EC-space on [tk, tk+1]. Assuming that n ≥ 2, let S be the piecewise spline space
composed of all piecewise functions S on (I, T) such that
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• for each k ∈ Z, the restriction of S to [t+k , t−k+1] belongs to the EC-space Ek :=
{F ∈ Cn([tk, tk+1]) | Dn−1 F ∈ Uk};

• for k = 1, . . . , q, S is Cn−mk at tk .

If mk ≥ 1 for all k ∈ Z, then the spline space S is good for design.

Proof Without loss of generality we can assume that mk = 1 for all k ∈ Z. According
to Proposition 6.6, we can also limit ourselves to considering the case n = 2.

For each integer k, since Uk is a two-dimensional EC-space on [tk, tk+1], there exist
infinitely many ways to write it as Uk = EC(wk

n−1, w
k
n). Any such choice implies that

Ek = (1, wk
1, w

k
2). Let Lk

0 = Id, Lk
1, Lk

2 be the associated differential operators on
Cn([tk, tk+1]). The problem is thus the following: can we choose the weight functions
wk

1, k ∈ Z, so that

Lk
1S(t+k ) = Lk−1

1 S(t−k ) for all k ∈ Z ⇔ S′(t+k ) = S′(t−k ) for all k ∈ Z?

(43)

Since Lk
1S(t+k ) := S′(t+k )/wk

1(t
+
k ) and Lk−1

1 S(t−k ) := S′(t−k )/wk−1
1 (t−k ), and S is

Cn−1 at tk , the question turns to be: can we choose the weight functions so that

wk
1(t

+
k ) = wk−1

1 (t−k ), k ∈ Z? (44)

For each k ∈ Z, let (Bk,0, Bk,1) be the basis of Uk defined by

Bk,0(t
+
k ) = Bk,1(t

−
k+1) = 1, Bk,0(t

−
k+1) = Bk,1(t

+
k ) = 0.

It is a Bernstein-like basis relative to (tk, tk+1). We know that the weights wk
1 must be

chosen as

wk
1 = αk,0 Bk,0 + αk,1 Bk,1,

with positive αk,0, αk,1. Accordingly, to obtain (44) we just have to require αk,0 :=
αk−1,1 for each k ∈ Z. Whence the claimed result. ��
Example 6.8 For any k ∈ Z, assume that Uk is spanned on [tk, tk+1] either by the
two functions cosh x, sinh x , or by the two functions cos x, sin x . In the first case Uk

is always an EC-space on [tk, tk+1]. In the second one, for Uk to be an EC-space on
[tk, tk+1] it is necessary and sufficient to require that

hk := tk+1 − tk < π. (45)

Then, for any positive n, we denote by Ek the (n + 1)-dimensional EC-space spanned
on [tk, tk+1] either by the functions 1, x, . . . , xn−2, cosh x, sinh x (hyperbolic space)
or by the functions 1, x, . . . , xn−2, cos x, sin x (trigonometric space). Let us require
that condition (45) be satisfied for each integer k such that Ek is a trigonometric space.
Then, according to Proposition 6.7, the set of all Cn−1 functions on I with kth sections
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in Ek is automatically a PEC-spline space good for design. Hyperbolic and trigono-
metric spaces having complementary shape effects, it is especially interesting to mix
them. This shows the interest of the present example. Illustrations can be found in [15]
in the case n = 3.

Remark 6.9 The previous example can be used to emphasise that the condition pro-
vided by Proposition 6.7 is only a sufficient one. Let us illustrate this with simple
knots and n = 3. In that case, a necessary and sufficient condition can be found in
[15], from which we showed that it was actually sufficient to prescribe

hk ≤ 3π/2 if the kth section is trigonometric and next to an hyperbolic section,

hk + hk−1 < 2π if the kth and the (k − 1)th sections are both trigonometric.

(46)

Proposition 6.6 shows that the conditions (46) are sufficient to obtain Cn−1 mixed
hyperbolic/trigonometric splines good for design not simply for n = 3, but even for
any n ≥ 3.

7 Integral recurrence relations for B-splines

In consequence of our results, in any PW-spline space good for design, B-splines
do satisfy integral recurrence relations (Theorem 7.1 below). This fact is sufficiently
important to deserve a brief outline of its proof.

Indeed, any system (w1, . . . , wn) of piecewise weight functions on (I, T) leads
to integral relations in any associated spline space ECPS(1, w1, . . . , wn; K). Though
proved in [23] in a slightly different context (finite number of interior knots in a
closed bounded interval), all results of [23] remain true in the present one. Let us
observe that we were not far from integral recurrence relations in (35). However,
once we have piecewise weight functions and associated piecewise differential oper-
ators, it is interesting to obtain them in connection with a very nice differentiation
formula for blossoms. Select any strictly increasing function U1 ∈ ECP(1, w1) ⊂
ECP(1, w1, . . . , wn), and let u1 denote its blossoms in n variables, i.e., the blos-
som of U1 considered as an element of ECP(1, w1, . . . , wn). Then, given any F ∈
ECP(1, w1, . . . , wn), the blossoms f {1} of L1 F := DF/w1 ∈ ECP(1, w2, . . . , wn)

(defined on I n−1), can be calculated as follows

f {1}(x1, . . . , xn−1) := f (x1, . . . , xn−1, z) − f (x1, . . . , xn−1, y)

u1(x1, . . . , xn−1, z) − u1(x1, . . . , xn−1, y)
, (47)

where y, z denote any two distinct points in I . For a detailed proof of (47), we refer
to [23] and other references therein, limiting ourselves to mentioning the two points
which it is based on:

– firstly, the geometrical definition of blossoms;
– secondly, the fact that the blossom u1 is strictly increasing in each variable on I n .
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Let us now recall the main steps from (47) towards integral recurrence relations.
Due to (47), if P�, � ∈ 	n(K), are the poles of a spline S ∈ ECPS(1, w1, . . . , wn; K),
then the poles P{1}

� , � ∈ 	n−1(K), of the spline L1S ∈ ECPS(1, w2, . . . , wn; K) can
be calculated as follows

P{1}
� = P� − P�−1

u1,� − u1,�−1
, � ∈ 	n−1(K), (48)

where u1,� := u1(ξ�+1, . . . , ξ�+n), � ∈ 	n(K), are the poles of U1 considered as
an element of ECPS(1, w1, . . . , wn; K). Let us denote by N {1}

� , � ∈ 	n−1(K), the
B-spline basis in

L1 (ECPS(1, w1, . . . , wn; K)) = ECPS(1, w2, . . . , wn; K).

For a given j ∈ 	n(K), applying (48) with P� := δ�, j , � ∈ 	n(K), yields

L1 N j = 1

u1, j − u1, j−1
N {1}

j − 1

u1, j+1 − u1, j
N {1}

j+1, (49)

given that the quantity
1

u1,� − u1,�−1
N {1}

� is to be replaced by 0 whenever � /∈
	n−1(K). This eventually yields:

N�(x) =
∫ x
ξ�

w1(t)N {1}
� (t) dt

u1,� − u1,�−1
−

∫ x
ξ�+1

w1(t)N {1}
�+1(t) dt

u1,�+1 − u1,�

, � ∈ 	n(K), (50)

with the convention that, for any index � /∈ 	n−1(K),

∫ x
ξ�

wk(t)N {k}
� (t) dt

u1,� − u1,�−1
:= 0 if x ≤ ξ−

� , := 1 if x ≥ ξ+
� . (51)

From the support and normalisation properties of B-splines it is then easy to derive
the following interesting property of the poles of U1:

u1,� − u1,�−1 =
ξ�+n∫

ξ�

w1(t)N {1}
� (t) dt, � ∈ 	n−1(K). (52)

Replacing all numerators in (53) by the appropriate integrals yields the usual form of
the first step of integral recurrence relations.

As a result of the previous reminder and of Theorems 3.12 and 4.2, we can therefore
state, with w∗

i := wn+1−i , 1 ≤ i ≤ n:
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Theorem 7.1 For 1 ≤ i ≤ n, consider a positive piecewise function w∗
i ∈ PCi−1

(I, T). For any x ∈ ∪k∈Z[t+k , t−k+1], and any � ∈ 	0(K), let us set:

N 0
� (x) := 1 when ξ+

� ≤ x ≤ ξ−
�+1, := 0 otherwise,

and then, for 1 ≤ k ≤ n,

N k
� (x) :=

∫ x
ξ�

w∗
k (t)N k−1

� (t) dt
∫ ξ�+k
ξ�

w∗
k (t)N k−1

� (t) dt
−

∫ x
ξ�+1

w∗
k (t)N k−1

�+1 (t) dt
∫ ξ�+k+1
ξ�+1

w∗
k (t)N k−1

�+1 (t) dt
, � ∈ 	k(K), (53)

with a convention similar to (51). Then, the set S composed of all piecewise func-
tions on (I, T) defined by S(x) := ∑

�∈	n(K) a�N n
� (x), x ∈ ∪k∈Z[t+k , t−k+1], where

a�, � ∈ 	n(K), are any real numbers, is well defined. It is a PW-spline space based on
K which is good for design and the sequence N n

� , � ∈ 	n(K), forms its B-spline basis.
This procedure yields all PW-spline spaces based on K which are good for design.

Remark 7.2 Formulæ (53) are the ones used by Bister and Prautzsch [2] in order
to build B-spline-type bases in the general framework of integral positive locally
Lebesgue integrable functions w∗

1, . . . , w∗
n , in the sense that their integrals on any

compact interval with positive length are positive (see also Theorem 2.17 in [3]).
Apparently the authors of [2] have never exploited their integral approach in the large
interesting subclass considered in Theorem 7.1 ( i.e., the case where (1, w∗

n, . . . , w∗
1)

is a system of piecewise weight functions on (I, T)) leading to PEC-spline spaces.
We could actually have used their results as a key-step towards existence of a B-spline
basis in any spline space of the form ECPS(1, w∗

n, . . . , w∗
1). Nevertheless, we did

prefer to explain the latter existence via the fact that the space ECP(w1, . . . , wn) is
an ECP-space on (I, T), due to a generalised version of Rolle’s (see Sect. 3). We took
this opportunity to precisely describe the matrices connecting the left/right ordinary
derivatives at the knots. The main point of our approach is that it enabled us to take
advantage of the powerfulness of blossoms both in the space ECP(1, w∗

n . . . , w∗
1) and

in all spline spaces based on it. On the other hand, we would like to emphasise that
the difficult part of Theorem 7.1 (stated in its last sentence) is a totally new result.
It could not be expected from Bister–Prautzsch’s work. It is a consequence of our
Theorem 4.2 and, therefore, of the forcefulness of blossoms.

As a consequence of Theorem 4.8 we can even state:

Theorem 7.3 In any piecewise PW-spline space S which is good for design, there
exist infinitely many ways to obtain the B-spline basis by means of integral recurrence
relations of the type (53).

Remark 7.4 In any PW-spline space satisfying (i) of Theorem 5.3, differentiation/
integration formulæ for B-spline-like bases can be derived from the ones for B-splines
after division by an appropriate positive function w0.
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8 Conclusion

In this article we achieved a simple practical description of all spaces of geometri-
cally continuous piecewise Chebyshevian splines which can be used for geometric
design, with prescribed section-spaces or not. Once more blossoms and their three
fundamental properties proved to be extremely efficient tools. The crucial part of the
article consisted in showing that any such spline space, supposed to be good for design,
can be associated with infinitely many piecewise differential operators which are the
analogues of the nth order ordinary differentiation for ordinary polynomial splines. Its
proof strongly involved knot insertion and B-spline bases which are direct products
of the three properties of blossoms.

By way of conclusion, let us mention that the existence of such operators is impor-
tant in many ways. We have already seen that it guarantees differentiation/integration
formulæ for B-splines, but it can also serve for other purposes, e.g. for simultaneous
approximation.
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