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Abstract Termination criteria for the iterative solution of bound-constrained
optimization problems are examined in the light of backward error analysis. It is shown
that the problem of determining a suitable perturbation on the problem’s data corre-
sponding to the definition of the backward error is analytically solvable under mild
assumptions. Moreover, a link between existing termination criteria and this solution
is clarified, indicating that some standard measures of criticality may be interpreted in
the sense of backward error analysis. The backward error problem is finally considered
from the multicriteria optimization point of view and some numerical illustration is
provided.
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1 Introduction

The definition of many bound-constrained optimization problems contains uncertain-
ties or errors in the associated data, for example when they arise from the discretization
error of an underlying continuous problem (Dolan, Moré and Munson [13], Averick
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164 S. Gratton et al.

and Moré [3]) or because they contain data obtained by actual physical measurements
(Fisher [16]). It is then natural to seek a solution of the problem whose accuracy is
of the order of (or slightly better than) the level of those uncertainties. If iterative
algorithms are used, this translates into the sometimes difficult selection of a suitable
termination rule. This is especially problematic when solving industrial applications
for which one evaluation of the objective function can be really expensive, which
happens typically once per iteration. In general, defining a good stopping criterion
corresponds to finding a reasonable balance between robustness and oversolving: one
seeks to obtain an accurate solution but also to avoid performing many additional
computations for little gain. Moreover, good stopping criteria should have a meaning
that is easy to understand for the user.

A wide range of stopping criteria for bound-constrained optimization algorithms
is already available in the litterature, if one is ready to ignore the noise in the data
caused by the uncertainties and/or errors. They typically consist in requiring a certain
optimality (or criticality) measure to fall below a user-specified tolerance. The most
commonly used such measure is the norm of the projection of the negative gradient
on the feasible set (see Byrd, Lu, Nocedal and Zhu [7], Hager and Zhang [19] and
Xu and Burke [25]). Some trust-region algorithms (Conn, Gould, Sartenaer and Toint
[10], Conn, Gould and Toint [11]) use an alternative measure which approximates the
maximal linear decrease that can be achieved in the neighbourhood of unit radius. The
reduced gradient (that is the gradient where all its components which are pointing in
the direction of an already active bound are set to zero) is also used as an optimality
measure (for example in Burke ans Moré [5], Calamai and Moré [8], Burke, Moré and
Toraldo [6], Burke [4] or Dostal [14]). However, it is usually not entirely obvious how
to adapt these approaches to the case where the problem is contaminated by noise.
See for instance Moré and Wild [21], for an interesting discussion in a derivative free
optimization context.

The purpose of this paper is to present a new approach for defining easily interpret-
able stopping criteria which take advantage of known uncertainties in the problems’
data, with the double objective of ensuring robustness and avoiding unnecessary com-
putations as soon as the solution error becomes smaller than these uncertainties. Our
approach is based on the well-known linear-algebraic concept of backward error, a con-
cept which is widely used to define stopping criteria in the solution of linear systems of
equations, has been extensively studied in this framework (see Rigal and Gaches [23],
Cox and Higham [12], Golub and van Loan [18], Chatelin and Frayssé [9] or Higham
[20]) and has already been extended to the solution of nonlinear equations (see Arioli,
Duff and Ruiz [1]). The introduction of a backward error estimate in the solution of
bound-constrained nonlinear optimization will provide, at each step of the algorithm,
a measure of the perturbation of the original problem necessary to define a problem
instance of which the incumbent iterate is an exact solution. This then allows a mean-
ingful comparison of this perturbation size with the data uncertainties and suggests an
efficient termination of the solution algorithm when the former becomes smaller than
the latter.

The paper is organized as follows. In Sect. 2, we introduce the backward error con-
cept and apply it to our bound-constrained optimization problem. The link between
the backward error and several well-known criticality measures is studied in Sect. 3
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and a multicriteria analysis of the backward error problem is presented in Sect. 4.
Finally, the numerical behavior of some interesting criticality measures is illustrated
in Sect. 5 and conclusions discussed in Sect. 6.

2 Backward error analysis

2.1 Backward error analysis for bound-constrained optimization

We are interested in solving the minimization problem

min
F

f (x), (1)

where f (.) is a possibly nonlinear objective function and where F = {x ∈ �n | l ≤
x ≤ u} is a set of bound constraints with l, u ∈ �n . In practice, we are looking for a
first-order critical point of (1), that is a feasible point x∗ where [∇x f (x∗)] j = 0 for
all j /∈ A(x∗), where we denote by [v] j the j th component of a vector v and where
we define the active set of binding constraints at x ∈ F by A(x) = A−(x) ∪ A+(x)

with

A−(x) = { j ∈ {1, . . . , n} | [x] j = [l] j and [∇x f (x)] j > 0},
A+(x) = { j ∈ {1, . . . , n} | [x] j = [u] j and [∇x f (x)] j < 0}.

We consider iterative optimization methods which produce a sequence of iterates xk

which converge to a first-order solution x∗ of the problem to solve. Our objective is
to terminate this sequence as early as possible, especially for large-scale or otherwise
expensive problems, in order to achieve a reasonable reliability of the approximate
solution while avoiding unnecessary costly iterations. An obvious way of expressing
this problem is to stop the iterations when the current iterate xk is such that

||xk − x∗|| < ε,

where ε is an acceptable tolerance on the distance between the approximate and the
first-order solution and where || · || is a norm making sense for the application con-
sidered. But, unless very particular situations are considered such as the testing phase
of an optimization algorithm, x∗ is not known, and suitable choices for ε and || · ||
are often subjective, making the above test impractical and the exploitation of any
knowledge of the uncertainty on the problem data difficult. Our proposal is therefore
to adopt the backward error point of view, as has been proposed for linear algebra by
Givens [17] and Wilkinson [24]. The idea is to replace the question How far from the
solution is the current approximation xk? by If there exists a minimization problem
(P) whose xk is a first-order solution, how far from the original problem (1) is (P)?
We may then consider terminating the iterative solution algorithm as soon as this latter
distance is smaller than the known error (e.g. the discretization error). Notice that we
assume the order of magnitude of the error is known a priori. However, in the case
where the error is only estimated a posteriori, we have to solve the problem with a very
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demanding accuracy in order to avoid interferences with the estimation of the error. To
make this backward error approach for bound-constrained optimization problem more
formal, we consider, for any guess x̃ , a perturbed version of the original problem (1)
defined by

min
F�

f (x) + � f + �gT x, (2)

with F� = {x ∈ �n | l + �l ≤ x ≤ u + �u} and where the perturbations
� f,�g,�l,�u are chosen such that x̃ is an exact first-order critical point of (2).
The first-order sufficient condition for optimality then implies that � f,�g,�l and
�u satisfy [∇x f (x̃)+�g] j = 0 for all j /∈ A�(x̃), where A�(x) = A−

�(x)∪A+
�(x)

is the perturbed set of binding constraints, with

A−
�(x) = { j ∈ {1, . . . , n} | [x] j = [l] j + [�l] j and [∇x f (x) + �g] j > 0},

A+
�(x) = { j ∈ {1, . . . , n} | [x] j = [u] j + [�u] j and [∇x f (x) + �g] j < 0}.

Since the value of � f does not appear in this sufficient condition, we can set � f = 0
in (2) without loss of generality, which we do from now on. We now define the back-
ward error as the minimum of some product norm of the remaining perturbations
�g,�l,�u. We are then led to define

D def= {(�g,�l,�u) ∈ �3n | x̃ ∈ F� and [∇x f (x̃) + �g] j = 0 for all j /∈ A�(x̃)},

and to propose terminating the algorithm as soon as

inf
(�g,�l,�u)∈D

‖(�g,�l,�u)‖ < ε(εg, εl , εu),

where the perturbations �g,�l,�u are respectively measured with the norms
||.||g, ||.||l , ||.||u and ‖.‖ is a product norm of these three norms. The thresholds
εg, εl , εu ∈ � represent the known order of magnitude of the error on g, l and u
as mesured with the corresponding norm. Notice that D is always non-empty as
it always contains (−∇x f (x̃), x̃ − l, x̃ − u). Moreover, the infimum may actually
be replaced by a minimum, because D is the union of a finite number of direct
products between closed sets ( see Mouffe [22]) and is thus itself a closed set and
the minimization can be restricted to bounded perturbations (�g,�l,�u) such that
‖(�g,�l,�u)‖ ≤ ‖(−∇x f (x̃), x̃ − l, x̃ − u)‖. Thus our proposal is to terminate the
algorithm at the first iteration k such that

min
(�g,�l,�u)∈D

‖(�g,�l,�u)‖ < ε(εg, εl , εu), (3)

where min(�g,�l,�u)∈D ‖(�g,�l,�u)‖ is the backward error for x̃ = xk, xk being
the current iterate.
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2.2 Solving the backward error problem

We now wish to investigate how the value of the minimum on the left-hand-side of
(3) can be computed in practice for specific choices of the product norm. We start by
considering the weighted sum measure

χws
def= min

(�g,�l,�u)∈D
(αg||�g||g + αl ||�l||l + αu ||�u||u), (4)

and the absolute measure

χabs
def= min

(�g,�l,�u)∈D
||αg|�g| + αl |�l| + αu |�u| ||glu, (5)

where (αg, αl , αu) > 0, where |.| denotes the componentwise absolute value, and
where ||.||g, ||.||l , ||.||u and ||.||glu are monotone norms, in the sense that each of these
norms satisfies the following properties

if ∀ j ∈ {1, . . . , n}|[u] j | ≥ |[v] j |, then ||u|| ≥ ||v|| ∀u, v ∈ �n .

Notice that the product norms defined by (4) and (5) satisfy all the norm proper-
ties as long as αg, αl and αu are positive. Notice that, in particular, all the p-norms,
1 ≤ p ≤ ∞, are monotone norms. Moreover, the choice left for ||.||g, ||.||l and ||.||u
in the definition (4) of χws opens the possibility of defining, for instance, ||.||g as
the dual norm of ||.||l = ||.||u (on the obvious condition that ||.||g, ||.||l , ||.||u are all
monotone). Unfortunately, the energy-norm (or A-norm) defined by ||v||2A = vT Av,
where v is a vector of �n and A ∈ �n×n is a symmetric positive definite matrix, is
not a monotone norm.

This assumption of monotone norms is motivated by the fact that it allows a rel-
atively easy characterization of a set P ⊆ D containing the solution set of both
problems (4) and (5). Indeed we now show, in a technical theorem, that any optimal
solution (�g∗,�l∗,�u∗) of (4), as well as any optimal solution of (5), belongs to a
finite set P ⊆ D explicitly described as the cartesian product between n subsets of
�3, each of them containing at most two elements.

Theorem 2.1 Suppose that ||.||g, ||.||l , ||.||u and ||.||glu are monotone norms and
denote by Sws ⊆ D the set of solutions of (4) and by Sabs ⊆ D the set of solutions of
(5) for some arbitrary x̃ . Let V(x) = V−(x) ∪ V+(x), where

V−(x) = { j ∈ {1, . . . , n} | [x] j < [l] j and [∇x f (x)] j > 0},
V+(x) = { j ∈ {1, . . . , n} | [x] j > [u] j and [∇x f (x)] j < 0},

be the set of violated constraints pointed by the negative gradient, and let

U = { j ∈ {1, . . . , n}|[∇x f (x̃)] j = 0 and j /∈ A(x̃) and j /∈ V(x̃)}
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be the set of undecided indices. In addition, denote F j = {[x] j ∈ � | [l] j ≤ [x] j ≤
[u] j }. Then we have that Sws ⊆ P ⊆ D and Sabs ⊆ P ⊆ D, where P is the set of
perturbations (�g,�l,�u) ∈ D such that, for all 1 ≤ j ≤ n,

([�g] j ; [�l] j ; [�u] j ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) (0 ; 0 ; 0) if [x̃] j ∈ F j and j /∈ U,

(b)
or

([−∇x f (x̃)] j ; 0 ; 0) if [x̃] j ∈ F j and j ∈ U and
[∇x f (x̃)] j > 0,(c) (0 ; [x̃ − l] j ; 0)

(d)
or

([−∇x f (x̃)] j ; 0 ; 0) if [x̃] j ∈ F j and j ∈ U and
[∇x f (x̃)] j < 0,(e) (0 ; 0 ; [x̃ − u] j )

( f )
or

(0 ; [x̃ − l] j ; 0)
if [x̃] j /∈ F j and j /∈ U ,

(g) (0 ; 0 ; [x̃ − u] j )

(h)
or

([−∇x f (x̃)] j ; 0 ; [x̃ − u] j ) if [x̃] j /∈ F j and j ∈ U and
[∇x f (x̃)] j > 0,(i) (0 ; [x̃ − l] j ; [x̃ − u] j )

( j)
or

([−∇x f (x̃)] j ; [x̃ − l] j ; 0) if [x̃] j /∈ F j and j ∈ U and
[∇x f (x̃)] j < 0.(k) (0 ; [x̃ − l] j ; [x̃ − u] j )

(6)

Proof First notice that P ⊆ D. Indeed, for all undecided indices j ∈ U such that
[x̃] j ∈ F j , either we have [∇x f (x̃) + �g] j = 0 because of (6b) and (6d), or (6c)
and (6e) imply that j ∈ A�(x̃). When [x̃] j /∈ F j , the violated bound is perturbed in
addition to make x̃ feasible. We now want to prove that Sws ⊆ P and Sabs ⊆ P . For

this purpose, we consider a perturbation vector �̂
def= (�̂g, �̂l, �̂u) ∈ D \ P .

In a first step, we prove that there exists at least one (�g,�l,�u) ∈ P such that
for all j for which (6) does not hold, ([�g] j ; [�l] j ; [�u] j ) satisfies

|̂[�g] j |≥| [�g] j | and |̂[�l] j |≥| [�l] j | and |̂[�u] j |≥| [�u] j | (a)

and either |̂[�g] j |> | [�g] j | or |̂[�l] j |> | [�l] j | or |̂[�u] j |> | [�u] j | (b).
(7)

We distinguish three cases.
Suppose first that j /∈ U . If [x̃] j ∈ F j , then equation (6a) implies that

[�g] j = [�l] j = [�u] j = 0,

and thus (7) obviously holds for any other perturbation �̂ ∈ D \ P . Otherwise, if
[x̃] j < [l] j , the optimality condition imposes that ̂[�l] j ≤ [x̃ − l] j < 0 and thus a
perturbation satisfying (6f) also ensures (7). The same reasoning applies using (6g)
when [x̃] j > [u] j .

Suppose now that j ∈ U and [∇x f (x̃)] j > 0. Because �̂ ∈ D, we have both
x̃ ∈ F� and either

̂[�g] j = [−∇x f (x̃)
]

j , (8)

or

̂[�l] j = [x̃ − l
]

j , (9)
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or

̂[�u] j = [x̃ − u
]

j and ̂[�g] j <
[−∇x f (x̃)

]

j . (10)

When [x̃] j ∈ F j , a perturbation satisfying (6b) guarantees (7) for all �̂ satisfying
(10). When [x̃] j /∈ F j , j ∈ U and [∇x f (x̃)] j > 0, it follows that [x̃] j > [u] j , and
therefore (6h) ensures (7) for all �̂ such that (10) holds. In addition, if [x̃] j ∈ F j , (6b)

and (6c) imply (7) for all �̂ such that (8) holds but ̂[�l] j = 0 or ̂[�u] j = 0, and for

all �̂ such that (9) holds but ̂[�g] j = 0 or ̂[�u] j = 0, respectively. In the case where

[x̃] j /∈ F j , we need to impose ̂[�u] j ≥ [x̃ − u] j > 0 to obtain that x̃ ∈ F�, and
therefore (7) is ensured by a perturbation satisfying (6h) when (8) holds and satisfying
(6i) when (9) holds.

Finally, a symmetric reasoning leads to (7) in the case where j ∈ U and
[∇x f (x̃)] j < 0.

We therefore conclude that, for any �̂ ∈ D \ P , there always exists (�g,�l,�u)

∈ P satisfying (7) for j such that (6) does not hold. In addition, notice that (7a) is
actually satisfied for all j = 1, . . . , n, as it suffices to define

([�g] j ; [�l] j ; [�u] j ) = (̂[�g] j ; ̂[�l] j ; ̂[�u] j )

for all other j . Moreover, there necessarily exists at least one j such that (7b) holds
because we have assumed �̂ ∈ D \ P .

Using now the monotonicity of ||.||g, ||.||l and ||.||u , we deduce that

||�̂g||g ≥ ||�g||g, ||�̂l||l ≥ ||�l||l and ||�̂u||u ≥ ||�u||u . (11)

Now, as (αg, αl , αu) ∈ �3+, we have

αg||�̂g||g + αl ||�̂l||l + αu ||�̂u||u ≥ αg||�g||g + αl ||�l||l + αu ||�u||u,

which leads to

min
(�g,�l,�u)∈D

αg||�g||g + αl ||�l||l + αu ||�u||u
= min

(�g,�l,�u)∈P
αg||�g||g + αl ||�l||l + αu ||�u||u

and, therefore, Sws ⊆ P . In addition, using the monotonicity of ||.||glu , we obtain
from (7)

||αg|�̂g| + αl |�̂l| + αu |�̂u|||glu ≥ ||αg|�g| + αl |�l| + αu |�u|||glu,
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and therefore

min
(�g,�l,�u)∈D

||αg|�g| + αl |�l| + αu |�u|||glu

= min
(�g,�l,�u)∈P

||αg|�g| + αl |�l| + αu |�u|||glu,

which is Sabs ⊆ P . ��
We have just proved that the solution of the backward error in each direction corre-

sponds to perturbing the feasible set F such that the current iterate becomes feasible,
and either driving the gradient to zero or perturbing the feasible set further such that
the current iterate lies on the boundary pointed by the negative gradient. The required
monotonicity of the norms is necessary as shown on the following example. Consider
the nonmonotone energy-norm ||v||A = √

vT Av for all vectors v ∈ �n , where

A =
[

1 0.9
0.9 1

]

is positive definite. This norm is indeed nonmonotone since we have, for exam-
ple, ||(−1; 1)||2A = 1/5 but ||(1/2; 0)||2A = 1/4. Assume, in addition, that x̃ =
(4; 3),∇x f (x̃) = (3; 5), and that the bound constraints are defined by l = (0; 0) and
u = (5; 5). The set P defined by Theorem 2.1 is then composed of the vectors

P =

⎧
⎪⎪⎨

⎪⎪⎩

(�g1,�l1,�u1) = ((−3;−5), (0; 0), (0; 0)),

(�g2,�l2,�u2) = ((−3; 0), (0; 3), (0; 0)),

(�g3,�l3,�u3) = (( 0;−5), (4; 0), (0; 0)),

(�g4,�l4,�u4) = (( 0; 0), (4; 3), (0; 0)).

If we now consider the perturbation (�̂g, �̂l, �̂u)
def= ((5;−5), (4;−4), (0; 0)), it

is easy to verify that it belongs to D \ P and also that

||�̂g||A+||�̂l||A+||�̂u||A =4.0249<6.0= min
(�g,�l,�u)∈P

||�g||A+||�l||A+||�u||A.

Hence Sws ⊆ P in this case.
We observe that, if our assumption on norms is strengthened to require strict mono-

tonicity of ||.||g, ||.||l and ||.||u in the sense that

if ∃ j ∈ {1, . . . , n}|[u] j | > |[v] j |, then ||u|| > ||v|| ∀u, v ∈ �n,

then we may deduce in the proof of Theorem 2.1 not only that (11) holds, but also that
at least one of the inequalities

||�̂g||g > ||�g||g or ||�̂l||l > ||�l||l or ||�̂u||u > ||�u||u (12)

must hold as well. This will be used in Sect. 4.
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3 Practical criticality measures and backward error analysis

If we wish to find an explicit solution of problems (4) and (5), the result of previous
section does help, but does not provide a complete solution in that one still has to solve
the combinatorial problem of minimizing the perturbation norm over P . We actually
have to specify the chosen norms for ||.||g, ||.||l , ||.||u and ||.||glu to obtain an explicit
expression of the solution. The three following Corollaries are simple consequences
of the fact that we determine the point p ∈ D from Theorem 2.1 with the smallest
components and then use the monotonicity of the norms involved. Consequently, we
present here the results for three different norm choices, the proof of which are given in
the appendix in order to improve the readability of the paper. We start by considering
a specific case where an explicit solution is possible, namely the case where χabs is
chosen and ||.||glu = ||.||p for 1 ≤ p < ∞.

Corollary 3.1 Suppose that ||.||glu = ||.||p, 1 ≤ p < ∞. Then

χ
p

abs
def= min

(�g,�l,�u)∈D
||αg|�g| + αl |�l| + αu |�u| ||p = ||�||p, (13)

where � is defined componentwise and [�] j is equal to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if [x̃] j ∈ F j and [∇x f (x̃)] j = 0,

min{αg |[∇x f (x̃)] j |, αl |[x̃ − l] j |} if [x̃] j ∈ F j and [∇x f (x̃)] j > 0,

min{αg |[∇x f (x̃)] j |, αu |[x̃ − u] j |} if [x̃] j ∈ F j and [∇x f (x̃)] j < 0,

αu |[x̃ − u] j | if [x̃] j > [u] j and [∇x f (x̃)] j ≤ 0,

min{αg |[∇x f (x̃)] j |, αl |[x̃ − l] j |} + αu |[x̃ − u] j | if [x̃] j > [u] j and [∇x f (x̃)] j > 0,

αl |[x̃ − l] j | if [x̃] j < [l] j and [∇x f (x̃)] j ≥ 0,

min{αg |[∇x f (x̃)] j |, αu |[x̃ − u] j |} + αl |[x̃ − l] j | if [x̃] j < [l] j and [∇x f (x̃)] j < 0.

(14)

We now extend this result to the use of the infinity norm in the definition of χabs .

Corollary 3.2 Suppose that ||.||glu = ||.||∞, then

χ∞
abs

de f= min
(�g,�l,�u)∈D

||αg|�g| + αl |�l| + αu |�u| ||∞ = ||�||∞ (15)

where the components of the vector � are defined as in (14).

We finally show that a similar result holds for χws when ||.||g = ||.||l = ||.||u =
||.||1, because χws = χabs with ||.||glu = ||.||1 in that specific case.
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Corollary 3.3 Suppose that ||.||g = ||.||l = ||.||u = ||.||1. Then

χ1
ws

def= min
(�g,�l,�u)∈D

αg||�g||1 + αl ||�l||1 + αu ||�u||1 = ||�||1, (16)

where [�] j is defined by (14).

The above results are particularly interesting because they allows to express a close
form termination criterion in the very frequent case where the weights in (4) and (5)

are chosen such that αl = αu
def= αlu . This is often natural since the lower and upper

bounds are generally computed similarly. In this case, we define a vector representing
an augmented scaled projection of the negative gradient on the feasible set

�(αg, αlu)
def= αlu

(∣
∣
∣
∣ProjF(x̃)

[

x̃ − αg

αlu
∇x f (x̃)

]

− x̃

∣
∣
∣
∣+ |x̃ − ProjF (x̃)|

)

, (17)

where ProjF (x) is the orthogonal projection of x onto the (convex) feasible set F
and relate this quantity to the desired backward error, and where F(x̃) represents the
smallest box containing l, u and x̃ ; for example, F(x̃) = F when x̃ ∈ F . It is crucial
to note that this augmented scaled projection is easily computable (given the weights)
and reduces, as we show below, to popular termination rules for specific weight’s
choices.

We now verify our claim that (17) is the vector whose norm is the backward error.

Theorem 3.4 The augmented scaled projection of the negative gradient on the feasi-
ble set �(αg, αlu) defined in (17), is such that

�(αg, αlu) = �, (18)

where � is defined by (14).

Proof In a first step, we show that

[∣
∣
∣ProjF(x̃)

[
x̃ − αg

αlu
∇x f (x̃)

]
− x̃
∣
∣
∣

]

j

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if [x̃] j ∈ F j and [∇x f (x̃)] j = 0,

1
αlu

min{αg|[∇x f (x̃)] j |, αlu |[x̃ − l] j |} if [x̃] j ∈ F j and [∇x f (x̃)] j > 0,

1
αlu

min{αg|[∇x f (x̃)] j |, αlu |[x̃ − u] j |} if [x̃] j ∈ F j and [∇x f (x̃)] j < 0,

0 if [x̃] j > [u] j and [∇x f (x̃)] j ≤ 0,

1
αlu

min{αg|[∇x f (x̃)] j |, αlu |[x̃ − l] j |} if [x̃] j > [u] j and [∇x f (x̃)] j > 0,

0 if [x̃] j < [l] j and [∇x f (x̃)] j ≥ 0,

1
αlu

min{αg|[∇x f (x̃)] j |, αlu |[x̃ − u] j |} if [x̃] j < [l] j and [∇x f (x̃)] j < 0.

(19)
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Assume first that [x̃] j ∈ F j . The definitions of �(αg, αlu) and of the orthogonal
projection and the fact that F(x̃) = F give that

[∣
∣
∣
∣ProjF(x̃)

[

x̃ − αg

αlu
∇x f (x̃)

]

− x̃

∣
∣
∣
∣

]

j

=
⎧
⎨

⎩

min
{

αg
αlu

|[∇x f (x̃)] j |, |[x̃ − l] j |
}

if αg
αlu

[∇x f (x̃)] j ≥ 0,

min
{

αg
αlu

|[∇x f (x̃)] j |, |[x̃ − u] j |
}

if αg
αlu

[∇x f (x̃)] j ≤ 0,

=
{ 1

αlu
min{αg|[∇x f (x̃)] j |, αlu |[x̃ − l] j |} if [∇x f (x̃)] j ≥ 0,

1
αlu

min{αg|[∇x f (x̃)] j |, αlu |[x̃ − u] j |} if [∇x f (x̃)] j ≤ 0,

where we used the positiveness of the weigths. Because those two minima are zero
when [∇x f (x̃)] j = 0, we have proved (19) for all j such that [x̃] j ∈ F j . Consider-
ing now the infeasible case, we observe that, because of the weights’ positiveness, if
[x̃] j > [u] j and [∇x f (x̃)] j ≤ 0, the left-hand side of (19) is the projection on F(x̃)

of either the nul vector (if [∇x f (x̃)] j = 0) or a vector based at one of the bounds
and pointing outwards. Therefore this projection is identically zero. The same holds if
[x̃] j < [l] j and [∇x f (x̃)] j ≥ 0. On another hand, if [x̃] j > [u] j but [∇x f (x̃)] j > 0,
the projection of the scaled negative gradient on F(x̃) becomes

min

{
αg

αlu
|[∇x f (x̃)] j |, |[x̃ − l] j |

}

= 1

αlu
min{αg|[∇x f (x̃)] j |, αlu |[x̃ − l] j |}

and, similarly, the projection of the scaled negative gradient on F(x̃) is equal to

min

{
αg

αlu
|[∇x f (x̃)] j |, |[x̃ − u] j |

}

= 1

αlu
min{αg|[∇x f (x̃)] j |, αlu |[x̃ − u] j |}

when [x̃] j < [l] j but [∇x f (x̃)] j < 0, which concludes the proof of (19). Finally
notice that

[|x − ProjF (x)|] j =
⎧
⎨

⎩

0 if [x̃] j ∈ F j ,

|[x̃ − u] j | if [x̃] j > [u] j ,

|[x̃ − l] j | if [x̃] j < [l] j ,

and the proof is complete. ��
Having shown that the augmented scaled projection vector is identical to the solu-

tion of the backward error problem in the conditions specified by Corollaries 3.1–3.3,
we now restate the explicit forms taken by the associated criticality measures.

Corollary 3.5 Suppose that αl = αu = αlu , and that ‖ · ‖p, 1 ≤ p ≤ ∞, is used in
(5). Then

χabs
p = ∣∣∣∣�(αg, αlu)

∣
∣
∣
∣

p . (20)
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Proof This is an immediate consequence of Corollary 3.1, Corollary 3.2 and
Theorem 3.4. ��
Corollary 3.6 Suppose that αl = αu = αlu , and that ‖ · ‖1 is used in (4). Then

χws
1 = ∣∣∣∣�(αg, αlu)

∣
∣
∣
∣
1. (21)

Proof This is an immediate consequence of Corollary 3.3 and Theorem 3.4. ��
We now comment on formula (17). In the light of Theorem 3.4, we first see that,

if x̃ is feasible, then ||�(αg, αlu)|| reduces to the scaled projection of the negative
gradient on the feasible space

�(αg, αlu)
def= αlu

(

ProjF
[

x̃ − αg

αlu
∇x f (x̃)

]

− x̃

)

. (22)

Moreover, an immediate consequence of Corollary 3.5 and Corollary 3.6 is that, if x̃
is feasible and αg = αlu = 1, then the optimal value for (5) is

χ = ‖�(1, 1)‖p = ∥∥ProjF
[
x̃ − ∇x f (x̃)

]− x̃
∥
∥

p,

which is a quantity commonly used in actual termination rules for bound-constrained
optimization (see Byrd et al. [7], Hager and Zhang [19] and Xu and Burke [25]). The
choice of the measure (17) however allows acting on the weights αg and αlu . This
feature is useful for instance when the error on the gradient (εg) is comparatively
larger than that on the bounds (εlu), a situation which is not untypical, for instance in
discretized contact problems (see Dostal [14]). The formulation (17) then makes the
use of a single termination accuracy ε reasonable even if these errors are different, by
using

αg = 1/εg and αlu = 1/εlu . (23)

If the solution process is terminated when ‖�(αg, αlu)‖p ≤ 0.1, for instance, this
ensures that any accepted solution of the optimization problem (1) has a backward
error on the gradient at least an order of magnitude smaller than εg , and is therefore
negligible, the same being true for the backward error on the bounds constraints.

If the current point is feasible, the definition of (22) may also be related to a second
case of interest: the criticality measure defined by the norm of the reduced gradient
gred , defined by the projection of ∇x f (x̃) on the tangent cone of the constraints, or
more precisely,

[gred ] j
def=
{

0 if j ∈ A(x̃),[∇x f (x̃)
]

j otherwise.

(see Burke and Moré [5], Calamai and Moré [8], Burke et al. [6], Burke [4] or Dostal
[14], for example). It is interesting to note that in the case where αl = αu, x̃ ∈ P and
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‖ · ‖glu = ‖ · ‖p, 1 ≤ p ≤ ∞, we have that

‖gred‖p = lim
αlu→∞ ‖�(1, αlu)‖p. (24)

Indeed, since limαlu→∞ ‖�(1, αlu)‖p = ‖ limαlu→∞ �(1, αlu)‖p, (14), (22) and x̃ ∈
F imply that

lim
αlu→∞ �(1, αlu)= lim

αlu→∞

⎧
⎨

⎩

0 if [∇x f (x̃)] j = 0,

min{|[∇x f (x̃)] j |, αlu |[x̃ − l] j |} if [∇x f (x̃)] j > 0,

min{|[∇x f (x̃)] j |, αlu |[x̃ − u] j |} if [∇x f (x̃)] j < 0,

= lim
αlu→∞

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if j ∈ A(x̃) or
[∇x f (x̃)

]

j =0,

min{|[∇x f (x̃)] j |, αlu |[x̃ − l] j |} if

{
j /∈ A(x̃) and[∇x f (x̃)

]

j > 0,

min{|[∇x f (x̃)] j |, αlu |[x̃ − u] j |} if

{
j /∈ A(x̃) and[∇x f (x̃)

]

j < 0,

because [x̃] j = [l] j when j ∈ A(x̃) and
[∇x f (x̃)

]

j > 0 and [x̃] j = [u] j when

j ∈ A(x̃) and
[∇x f (x̃)

]

j < 0. Finally, taking the limit as αlu goes to infinity gives
that

lim
αlu→∞ �(1, αlu) =

{
0 if j ∈ A(x̃),

αg|[∇x f (x̃)] j | if j /∈ A(x̃),

= ‖gred‖p.

When x̃ ∈ F , we also observe that

lim
αg→∞ ‖�(αg, 1)‖p = ||d||p, (25)

where d is a vector joining the current iterate to the corner of the feasible set designated
by the negative gradient, and whose components are defined by

[d] j =

⎧
⎪⎨

⎪⎩

[l − x̃] j if
[∇x f (x̃)

]

j > 0,
[
u − x̃
]

j if
[∇x f (x̃)

]

j < 0,

0 if
[∇x f (x̃)

]

j = 0.

This is an immediate result of letting αg tend to infinity in (14) with αlu = 1. Equa-
tions (24) and (25) are an illustration of the sensitivity of backward error to the weights
αg, αl , αu . We expect that for large αg, χ will reflect the distance d from x̃ to the bounds
pointed by the negative gradient. For large αlu, χ will behave like the projection of
∇x f (x̃) on the tangent cone to the constraints.

After having recovered two well-known criticality measures from our backward
analysis approach, we now observe that not every such criticality measure can be
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viewed under that angle. For example, the measure defined by

μ
def=
∣
∣
∣
∣
∣
∣

min
x̃+d∈F‖d‖∞≤1

∇x f (x̃)T d

∣
∣
∣
∣
∣
∣

(26)

is often used in trust-region algorithms and can be interpreted as giving a first-order
approximation of the feasible decrease which can be achieved in a ball of radius one
(see Conn et al. [10]). The use of the infinity norm ‖·‖∞ in this definition is motivated
by the observation that the intersection of the feasible set with the unit ball remains a
box, which makes the computation of μ straighforward. Unfortunately, μ is in general
not a backward error in any norm, as we now show.

Lemma 3.7 The criticality measure μ is not a backward error in the sense of (3), i.e.
there does not exist a product norm ‖ · ‖tr such that, for all problems of the type (1),
we have that

μ = min
(�g,�l,�u)∈D

‖(�g,�l,�u)‖tr . (27)

Proof We only need to find one problem (one specific x̃, f,F) where there is no
norm such that (27) holds. We therefore consider the minimization of a linear function
subject to some bound constraints l ≤ x ≤ u and such that its constant gradient is neg-
ative, that is ∇x f (x̃) < 0 for all feasible iterates x̃ , where the inequality is understood
componentwise.

If we consider some x̃ > u − 1, in that specific case, d∗ = (u − x̃) for all k and

μ = |−∇x f (x̃)T (u − x̃)|.

So we suppose that there exists ‖ · ‖tr such that

μ = | − ∇x f (x̃)T (u − x̃)| = min
y∈D

‖(�g,�l,�u)‖tr = ‖(�g∗,�l∗,�u∗)‖tr . (28)

We then obtain, using the Cauchy-Schwarz inequality,

1 ≥ | − ∇x f (x̃)T (u − x̃)|
‖ − ∇x f (x̃)‖2‖u − x̃‖2

= ‖(�g∗,�l∗,�u∗)‖tr

‖ − ∇x f (x̃)‖2‖u − x̃‖2
. (29)

As we consider a feasible x̃ , the vectors �g∗,�l∗,�u∗ are such that

[∇x f (x̃) + �g∗] j = 0
or[

l + �l∗
]

j = [x̃] j and [∇x f (x̃) + �g∗] j > 0
or[

u + �u∗]
j = [x̃] j and [∇x f (x̃) + �g∗] j < 0.

(30)
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Consider now a sequence of iterates x̃k and assume first that [�g∗] j = [−∇x f (x̃k)] j

for all j and for k sufficiently large, i.e. for all k ≥ k1. In that case, because all norms
are equivalent in finite dimension, there exists a constant ν such that

‖(�g∗,�l∗,�u∗)‖tr ≥ ν(‖�g∗‖2 + ‖�l∗‖2 + ‖�u∗‖2)

≥ ν‖�g∗‖2 = ν‖ − ∇x f (x̃k)‖2, (31)

where we used the fact that ‖(u, v, w)‖ def= ‖u‖2 + ‖v‖2 + ‖w‖2 is a norm on �n ×
�n × �n , where n is the dimension of the problem. Equation (29) therefore gives
1 ≥ ν/‖u − x̃k‖2. We consider more specifically the sequence of iterates such that x̃k

is monotonically converging to the upper bound u such that [u − x̃k] j = 1/k for all
j and for all k (implying x̃k > u − 1 for all k). Then the last equation leads to

1 ≥ lim
k→∞

ν

‖u − x̃k‖2
= k

ν√
n

= +∞,

which is impossible. We thus conclude that our assumption is false and, because
of (30), we deduce that there exists at least one index j and at least one k ≥ k1 such
that either [�l∗] j = [l − x̃k] j or [�u∗] j = [u − x̃k] j . This, together with the first
inequality of (31), implies that

‖(�g∗,�l∗,�u∗)‖tr ≥ ν(‖�g∗‖2 + ‖�l∗‖2 + ‖�u∗‖2)

≥ ν min{‖�l∗‖2, ‖�u∗‖2}
≥ ν min{|[l − x̃k] j |, |[u − x̃k] j |}

and, therefore, (29) gives that

1 ≥ ν min{|[l − x̃k] j |, |[u − x̃k] j |}
‖ − ∇x f (x̃k)‖2‖u − x̃k‖2

.

The assumption [u − x̃k] j = 1/k implies that ‖u − x̃k‖2 = √
n/k and that there exists

k2 such that for all k ≥ k2 we have |[l − x̃k] j | > |[u − x̃] j |. We obtain

1 ≥ ν|[u − x̃] j |
‖ − ∇x f (x̃)‖2‖u − x̃‖2

≥ ν√
n‖ − ∇x f (x̃)‖2

,

which is impossible for all problems where the constant gradient is chosen such that
‖ − ∇x f (x̃)‖2 < ν/

√
n. We conclude that our assumption (28) is false, and the proof

is complete. ��

4 A multicriteria analysis

Solving the backward error problem corresponds to finding the minimal distance
between the original problem and the closest problem we have already solved at iter-
ation k. We have so far measured this distance by means of a product norm defined on
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the space of the perturbations, for instance by constructing a positive linear combina-
tion of the individual perturbation norms, as in Sect. 2.2. This approach is quite natural
since one often has information about �g,�l and �u and some choice of norms for
‖ · ‖g, ‖ · ‖l , ‖ · ‖u may be suggested by the underlying application. Aggregating them
in a suitable positive linear combination may therefore be reasonable. This is however
not the only possibility and we briefly explore, in this section, the use of the multicri-
teria optimization (MCO) (see Ehrgott [15] for more details on this subject) problem
of the form

“min”
(‖�g‖g, ‖�l‖l , ‖�u‖u

)

s.t. (�g,�l,�u) ∈ D.
(32)

Notice that the previous definition (4) of the backward error problem can be viewed as a
scalarization of the more general problem (32), consisting of taking a linear combina-
tion of the three objective functions with positive weights. A solution (�g∗,�l∗,�u∗)
of the general MCO problem (32) is a Pareto optimal solution, if and only if there
exists no (�g,�l,�u) ∈ D such that

‖�g‖g ≤ ‖�g∗‖g and ‖�l‖l ≤ ‖�l∗‖l and ‖�u‖u ≤ ‖�u∗‖u

‖�g‖g < ‖�g∗‖g or ‖�l‖l < ‖�l∗‖l or ‖�u‖u < ‖�u∗‖u .

In that case, we say that the feasible point (�g∗,�l∗,�u∗) is not dominated by
any other feasible point. The set DE of all Pareto optimal solutions is called the
Pareto optimal set, while YN represents the set of all nondominated points yn =
(‖�ge‖g, ‖�le‖l , ‖�ue‖u) ∈ �3, where (�ge,�le,�ue) ∈ DE , and is called the
nondominated set.

Theorem 2.1 in Sect. 2.2 has established that the solution of the backward error
problem is located in the set P . Looking back at this theorem (relation (11)) and the
subsequent comment yielding (12) from the MCO point view, we conclude that all
(�g,�l,�u) ∈ D \ P are dominated by at least one point of P , and thus cannot be
Pareto optimal for the original MCO problem. As a consequence, we deduce that

DE ⊆ P.

Unfortunately, we cannot say which solution of P is Pareto optimal without knowing
the specific values of x̃, l, u and ∇x f (x̃). In addition, notice that, because the standard
definition of the backward error is a scalarization of the MCO problem, a solution
of (4) is always also Pareto optimal, that is

Sws ⊆ DE

and (‖�g∗‖g, ‖�l∗‖l , ‖�u∗‖u) ∈ YN for all (�g∗,�l∗,�u∗) ∈ Sws .

Nevertheless, if YN is not a convex set, we may not access all yn ∈ YN by scalar-
ization (see Ehrgott [15], pp 68–73, for a proof of these two properties). We illustrate
this observation on a simple example. Consider some iterate x̃ = (3; 4; 1) obtained
during the minimization of a problem with the bound constraints l = (0; 0; 0) and
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Fig. 1 For each
(�g, �l, �u) ∈ P , we
represented (‖�g‖∞, ‖�l‖∞)

by a big dot and the elements of
YN are surrounded by a square.
�u is not represented here
because ‖�u‖∞ ∈ [0,+∞) for
all perturbations in D and
‖�u‖∞ = 0 for all
perturbations in P . We see that
the Pareto front is not convex so
we cannot access y2 = (3; 3; 0)

by means of a scalarization

u = (5; 5; 5), for which the gradient is equal to ∇x f (x̃) = (4; 3; 1). Assume that we
have chosen ‖ · ‖g = ‖ · ‖l = ‖ · ‖u = ‖ · ‖∞. In that case, P contains

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(�g1,�l1,�u1) = ((−4;−3;−1), (0; 0; 0), (0; 0; 0))

(�g2,�l2,�u2) = ((−4;−3; 0), (0; 0; 1), (0; 0; 0))

(�g3,�l3,�u3) = ((−4; 0;−1), (0; 4; 0), (0; 0; 0))

(�g4,�l4,�u4) = (( 0;−3;−1), (3; 0; 0), (0; 0; 0))

(�g5,�l5,�u5) = ((−4; 0; 0), (0; 4; 1), (0; 0; 0))

(�g6,�l6,�u6) = (( 0;−3; 0), (3; 0; 1), (0; 0; 0))

(�g7,�l7,�u7) = (( 0; 0;−1), (3; 4; 0), (0; 0; 0))

(�g8,�l8,�u8) = (( 0; 0; 0), (3; 4; 1), (0; 0; 0))

and we can compute, using the definition of a Pareto optimal solution, the set

DE = {(�g1,�l1,�u1), (�g4,�l4,�u4), (�g6,�l6,�u6), (�g8,�l8,�u8)},

leading to YN = {y1 = (4, 0, 0), y2 = (3, 3, 0), y3 = (0, 4, 0)}. The image of P and
the Pareto front are shown in Fig. 1. In this case, the possibly interesting perturbation
y2 = (3, 3, 0) cannot be reached by any scalarization.

The interest of this multicriteria approach to the backward error is that it may lead
to terminate the algorithm even sooner than with (4), at a still acceptable approximate
solution of the optimization problem. The choice of the interesting point on the Pareto
front would be left to a “decision maker” in this approach.

5 Numerical examples

In this section, we illustrate the interest of adapting the stopping criterion of a bound-
constrained optimization algorithm according to the error bounds we may know on
the data. For this purpose, we consider the well-known minimal surface problem with
obstacle

min
v∈K

∫

S2

√

1 + ‖∇xv‖2
2, (33)
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Table 1 Total number of iterations, function, gradient and Hessian evaluations when stopping the algorithm
using ‖�‖1 and ‖�(1/εg, 1/εlu)‖1

Nb Iter Evals f Evals ∇x f (x) Evals ∇xx f (x)

‖�‖1 493 147 142 80

‖�(1/εg, 1/εlu)‖1 228 137 132 80

where K = {v ∈ H1(S2) | v(x) = v0(x) on ∂S2
}
, S2 is the unit square {(x, y) ∈ �2 |

0 ≤ x ≤ 1 and 0 ≤ y ≤ 1} and where v must satisfy the constraints

v(x) ≥ 0.7 if 1
3 ≤ x1, x2 ≤ 2

3 ,

v(x) ≥ 0 otherwise.

This convex problem is discretized using a finite-element basis defined using a uniform
triangulation of S2, with the same grid spacing, h = 1/n, along the two coordinate
directions. The basis functions are the standard P1 functions which are linear on each
triangle and take the value 0 or 1 at each vertex. The boundary condition v0(x) is
chosen as

v0(x) =

⎧
⎪⎪⎨

⎪⎪⎩

x1(1 − x1), x2 = 0, 0 ≤ x1 ≤ 1,

0, x1 = 0, 0 ≤ x2 ≤ 1,

x1(1 − x1), x2 = 1, 0 ≤ x1 ≤ 1,

0, x1 = 1, 0 ≤ x2 ≤ 1,

We then modify the discretized version of this problem, here considered as the original
optimization problem, by adding the following linear term : 10−2 sin(1 :n)T x , where
n is the dimension of the discretized problem and sin(1 :n) is a vector of �n whose i th
component is equal to sin(i). This modified problem can be viewed as an approxima-
tion of the original discretized problem with an error on the gradient of O(10−2). We
now compare the behavior of two different criticality measures during the application
of an infinity-norm trust-region algorithm using a projected truncated conjugate gra-
dient algorithm as internal solver applied on this perturbed problem with n = 3969
variables. The first measure is the standard 1-norm of the projection of the negative
gradient on the feasible set with a stopping threshold set to ε = 10−15. The second
measure is the scaled version (22) of the previous measure, where the weights are
chosen as in (23) with εg = 10−2 and εlu = 10−14 because the problem has an error
of O(10−2) on ∇x f (.) but the bounds are computed exactly. In this case, as suggested
after (23), the stopping tolerance ε is set to 10−1 in order to ensure that the final solving
error on the gradient will be insignificant in comparison with the error known on its
computation. Notice that this choice also ensures that the solving error allowed on the
bound constraints will be reduced to the order of 10−15 as in the first case.

The total number of iterations, function, gradient and Hessian evaluations at conver-
gence are displayed in Table 1. The number of iterations presented here corresponds to
internal iterations or conjugate gradient iterations in the bound-constrained quadratic
trust-region subproblem. The number of external trust-region iterations has not been
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represented because it is equal to the number of function evaluations. As expected,
the scaled criticality measure is less restrictive and we can see that stopping the algo-
rithm as soon as the backward error on the gradient is significantly smaller than its
intrinsic error implies a huge reduction of the number of conjugate gradient iterations.
In addition, the use of an adapted stopping criterion allowed to save function evalua-
tions, which can be crucial when dealing with real industrial problems. Notice that the
proportion of internal iterations per function evaluation changes along the algorithm
because active bounds are detected progressively, and the conjugate gradient iterations
are stopped as soon as two bounds have been activated. Therefore, there are gener-
ally few internal iterations per external iteration at the beginning of the algorithm,
but when closer to convergence most of the active bounds have been detected by the
algorithm, and it is allowed to perform many more conjugate gradient steps before
finishing one external iteration. In addition, the equal number of Hessian evaluations
comes from the fact that the Hessian matrix is not computed at every iteration. More
precisely, the Hessian matrix is only computed whenever the preceding iteration is not
successful enough or when ‖gk −gk−1 − Hk−1sk−1‖2 > εH ‖gk‖2, where εH has been
set to 10−3. This condition may not hold at the last iterations because the minimized
function behaves like a quadratic when approaching convergence, which explains the
same number of Hessian evaluations. Moreover, no significant improvement has been
obtained on the objective function value with the more stringent stopping criteria (the
relative difference between the two values is actually 2.662e-9). Of course the scope
of illustration remains limited, but it definitely suggests that the use of termination
rule based on backward error analysis can be beneficial.

Another interesting property of the scaled criticality measure is that the choice of
the weigths in the scaling may have a significant influence on the shape of the accept-
able solution. For the purpose of illustration, consider now the following quadratic
problem

−�u(x)/10 = f (x) in S2

u(x) = 0 on ∂S2,

where f (x) is such that the analytical solution to this problem is u(x)= 2x2(x2 − 1)

+ 2x1(x1 − 1). The problem is submitted to the following bound constraint

u(x) ≥ 7.5 if 4
9 ≤ x1, x2 ≤ 5

9
u(x) ≥ 5 if 1

9 ≤ x1, x2 ≤ 2
9 , or 1

9 ≤ x1 ≤ 2
9 and 7

9 ≤ x2 ≤ 8
9 ,

or 7
9 ≤ x1 ≤ 8

9 and 1
9 ≤ x2 ≤ 2

9 , or 7
9 ≤ x1, x2 ≤ 8

9
u(x) ≥ 0 otherwise,

and is discretized using a 5-point finite-difference scheme with h = 1/3969. We con-
sider four approximate solutions of this problem, acceptable for the scaled criticality
measure with weights chosen as in (23) and where the tolerances are arbitrarily chosen
as εg = 10−8 and εlu = 10−8, εg = 10−8 and εlu = 10−2, εg = 10−2 and εlu = 10−8,
and finally εg = 10−2 and εlu = 10−2. Notice that ‖�(1/10−8, 1/10−8)‖1 is a repre-
sentative of standard stopping criteria. Figure 2 first shows the distance between the

123



182 S. Gratton et al.

0
20

40
60

0

50

0

0.5

1
x 10

−11

eps g = 10−8, eps lu = 10−8

0
20

40
60

0

50

0

1

2

3
x 10

−6

eps g = 10−8, eps lu = 10−2

0
20

40
60

0

50

0

0.5

1
x 10

−11

eps g = 10−2, eps lu = 10−8

0
20

40
60

0

50

0

1

2

3
x 10

−7

eps g = 10−2, eps lu = 10−2

Fig. 2 The distance between acceptable solutions for the scaled criticality measure with different values
of εg and εlu and the bound constraint for all active components at the exact solution

Table 2 The 1-norm of the gradient of approximate solutions on all inactive components at the exact
solution, the 1-norm of the distance between the approximate solution and the bound constraint on all active
components at the exact solution and the value of the scaled criticality measure (22) are presented with
regard to different values of εg and εlu

‖∇x f (x̃i )‖1 ‖x̃a − la‖1 ‖�(1/εg, 1/εlu)‖1

εg = 10−8, εlu = 10−8 9.1601e-11 0 0.0092

εg = 10−8, εlu = 10−2 9.1586e-11 5.5315e-05 0.0645

εg = 10−2, εlu = 10−8 6.2852e-04 0 0.0629

εg = 10−2, εlu = 10−2 6.2852e-04 5.5226e-05 0.0684

approximate solution and the bound constraint for all active components at the exact
solution (this restriction is denoted by the subscript a), while Fig. 3 illustrates the
gradient of the approximate solutions for all inactive components at the exact solu-
tion (this restriction is denoted by the subscript i). Table 2 contains the 
1-norm of
the same quantities in the three situations considered, together with the value of the
corresponding criticality measure.

We see on this example that the gradient and the distance to the bound constraints
is handled differently when the weights of the scaled criticality measure are changed.
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Fig. 3 The gradient of acceptable solutions for the scaled criticality measure with different values of εg
and εlu at all inactive components at the exact solution

For example, the flexibility left on the accuracy required on the gradient has been
used in the second and the third cases, without negatively affecting the accuracy on
the distance to the bounds when εlu is set to 10−8. In practice, of course, the shape of
the approximate solution obtained with a specific criticality measure will also depend
on the choice of the algorithm producing the iterates. For instance, if the algorithm
is designed to identify quickly the correct active set, it is possible that the backward
error on the bound constraints remains insignificant for all reasonable values of εlu

when using the scaled criticality measure.

6 Conclusion

We have applied the concept of backward error analysis on the problem of finding
meaningful stopping criteria for nonlinear bound-constrained optimization algorithms.
We have first shown that known criticality measures for this problem based on the pro-
jected and reduced gradient can be viewed as backward error measures. Variants of
the first of these measures have been suggested for the case where the error on the
gradient and on the bounds are known and of different orders of magnitude. We have
also indicated why a measure constructed on the feasible linear decrease in a unit ball
can not be interpreted in this way, and have defined a multicriteria backward error that
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opens the way to the use of new stopping criteria. A numerical example has finally
been presented to illustrate the potential benefits of our approach.

The authors believe that backward-error-based termination criteria have a real
potential for avoiding oversolving optimization problems, both at the nonlinear level
and at the level of the subproblem solution, where approximate formulations are typi-
cally considered. For instance the present results already cover the solution of the 
∞
trust-region subproblem, but the case of the Euclidean norm is also of interest. These
ideas of course need further analysis and more extensive numerical confirmation, but
the initial results are encouraging. Moreover, the extention of the theory to the use of
possibly nonmonotone norms, such as energy norms (see Arioli, Loghin and Wathen
[2]) should be considered in the future in order to apply backward error stopping crite-
ria to the solution of optimization problems resulting from the discretization of partial
differential equations.
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la Terre, l’Atmosphère et l’Océan (ADTAO)” project, funded by the Fondation “Sciences et Technologies
pour l’Aéoronautique et l’Espace (STAE)”, Toulouse, France, within the “Réseau Thématique de Recherche
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Appendix: Proofs of Corollaries 3.1–3.3

Proof of Corollary 3.1: The application of Theorem 2.1 and the definition of the
p-norm first give

χ
p

abs = min
(�g,�l,�u)∈P

p

√
√
√
√

n∑

j=1

([αg|�g| + αl |�l| + αu |�u|] j )p.

Then, considering the positiveness of the terms and the definition of P , together with
the fact that all the components j of the elements of P are chosen independently
between at most two possibilities, we have that

χ
p

abs = p

√
√
√
√
√
√

n∑

j=1

⎛

⎜
⎝ min

([�g] j ; [�l] j ; [�u] j ),

(�g,�l,�u)∈P
(αg|[�g] j | + αl |[�l] j | + αu |[�u] j |)

⎞

⎟
⎠

p

.

The measure χ
p

abs is thus equal to the p-norm of the vector � defined by

[�] j = min
([�g] j ; [�l] j ; [�u] j ),

(�g,�l,�u)∈P
(αg|[�g] j | + αl |[�l] j | + αu |[�u] j |),

the value of which will be determined in the second part of the proof. Consider first
the case where [x̃] j ∈ F j . The definition of P yields [�g] j = [�l] j = [�u] j = 0
that for all j /∈ U . Otherwise, that is if j ∈ U , the definition of P leaves the choice
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between two solutions (depending on the sign of the gradient) for the minimization
corresponding to the j-th component. The first solution is

([�g] j ; [�l] j ; [�u] j ) = ([−∇x f (x̃)] j ; 0 ; 0)

and [�] j is equal to αg|[�g] j | = αg|[∇x f (x̃)] j | in this case. If the second solution

([�g] j ; [�l] j ; [�u] j ) =
{

(0 ; [x̃ − l] j ; 0) if [∇x f (x̃)] j > 0,

(0 ; 0 ; [x̃ − u] j ) if [∇x f (x̃)] j < 0,

is preferred, then [�] j is equal to either αl |[�l] j | = αl |[x̃ − l] j | if [∇x f (x̃)] j > 0, or
to αu |[�u] j | = αu |[x̃ − u] j | if [∇x f (x̃)] j < 0. Thus [�] j is defined as in (14) when
[x̃] j ∈ F j . Now consider the infeasible case. If j /∈ U , the definition of P implies
that [�] j is equal to either (0 ; [x̃ − l] j ; 0) when [x̃] j < [l] j , or to (0 ; 0 ; [x̃ − u] j )

when [x̃] j > [u] j . Therefore we have that

[�] j =
{

αu |[x̃ − u] j | if [x̃] j > [u] j and [∇x f (x̃)] j ≤ 0,

αl |[x̃ − l] j | if [x̃] j < [l] j and [∇x f (x̃)] j ≥ 0.

If j ∈ U and [∇x f (x̃)] j > 0, notice that the infeasibility automatically implies
[x̃] j > [u] j . In that case, the definition of P lets the choice between two solutions:
([−∇x f (x̃)] j ; 0 ; [x̃ − u] j ) and (0 ; [x̃ − l] j ; [x̃ − u] j ), leading to a value of the
objective function equal to

[�] j = min{αg|[∇x f (x̃)] j |, αl |[x̃ − l] j |} + αu |[x̃ − u] j |.

Similarly, the two solutions in P when j ∈ U and [∇x f (x̃)] j < 0 correspond to a
situation where [x̃] j < [l] j , and give that

[�] j = min{αg|[∇x f (x̃)] j |, αu |[x̃ − u] j |} + αl |[x̃ − l] j |.

Gathering the values obtained in the different cases, we finally obtain that χ
p

abs =
||�||p, with [�] j defined by (14). ��
Proof of Corollary 3.2: First notice that the definition of P implies that #P , the car-
dinal of P , is a finite number since it is smaller than 2n (because we have the choice
between at most two solutions for each j = 1, . . . , n). As a consequence, Theorem 2.1
implies that

χ∞
abs = min

(�g,�l,�u)∈P
||αg|�g| + αl |�l| + αu |�u| ||∞

= min {||(�g1,�l1,�u1)||∞, . . . , ||(�g#P ,�l#P ,�u#P )||∞}
= min

{

lim
p→∞ ||(�g1,�l1,�u1)||p, . . . , lim

p→∞ ||(�g#P ,�l#P ,�u#P )||p

}
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where we used the identity lim p→∞ ||.||p = ||.||∞. The fact that #P is finite now
allows us to write that

χ∞
abs = lim

p→∞ min{||(�g1,�l1,�u1)||p, . . . , ||(�g#P ,�l#P ,�u#P )||p}
= lim

p→∞ min
(�g,�l,�u)∈D

||αg|�g| + αl |�l| + αu |�u| ||p,

where we used Theorem 2.1 to derive the last equality. Finally, Corollary 3.1 then
gives that

χ∞
abs = lim

p→∞ ||�||p = ||�||∞,

where � is defined by (14). ��
Proof of Corollary 3.3: We prove this result by showing that χ1

ws = χ
p

abs where p = 1.
Applying the definitions of χ1

ws and of the 1-norm, we first obtain that

χ1
ws = min

(�g,�l,�u)∈D
αg||�g||1 + αl ||�l||1 + αu ||�u||1

= min
(�g,�l,�u)∈D

αg

n∑

j=1

|[�g] j | + αl

n∑

j=1

|[�l] j | + αu

n∑

j=1

|[�u] j |

= min
(�g,�l,�u)∈D

n∑

j=1

[αg|�g| + αl |�l| + αu |�u|] j .

Then, the positiveness of the terms and the definitions of χ
p

abs and of the 1-norm give
that

χws = min
(�g,�l,�u)∈D

n∑

j=1

|[αg|�g| + αl |�l| + αu |�u|] j |

= min
(�g,�l,�u)∈D

||αg|�g| + αl |�l| + αu |�u| ||1
= χ

p
abs

with p = 1. We conclude the proof by applying Corollary 3.1. ��
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