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Abstract In this paper, a contraction property is proved for an adaptive finite element
method for controlling the global L2 error on convex polyhedral domains. Further-
more, it is shown that the method converges in L2 with the best possible rate. The
method that is analyzed is the standard adaptive method except that, if necessary,
additional refinements are made to keep the meshes sufficiently mildly graded. This
modification does not compromise the quasi-optimality of the resulting algorithm.
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1 Introduction and results

Consider the elliptic model problem

−Δu = f in Ω,

u = 0 on ∂Ω,
(1.1)
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where Ω ⊂ R
n , n ≥ 2, is a convex polyhedral domain and f ∈ L2(Ω). Convexity is

imposed so that the (dual) problem is H2(Ω) regular, which is used to show reliability
of the residual based a posteriori L2(Ω) error estimator. The results presented here
can be generalized to other linear second order elliptic operators having sufficiently
smooth coefficients, but we present the simplest case in order to focus on essential
ideas.

In this work we prove contraction and quasi-optimality properties for an adaptive
finite element method (AFEM) for controlling errors in the L2(Ω)-norm. An AFEM
is an iterative feedback procedure of the form

solve → estimate → mark → refine. (1.2)

Such adaptive algorithms have for many years been a standard tool for efficiently
approximating solutions to partial differential equations such as (1.1). The conver-
gence properties of AFEM have become the subject of intense theoretical study only
in the past few years, however. We refer to [6,11–14] for an overview of progress
in basic convergence theory for AFEM for linear elliptic problems. Optimal conver-
gence rates were demonstrated in [4,19]. A common feature of most theoretical results
published to date concerning convergence and quasi-optimality of AFEM is that the
error estimated in the “estimate” step in (1.2) is the global energy error. In particular,
AFEM optimality results for error notions whose analysis require non-trivial duality
arguments have not to our knowledge appeared in the literature. AFEM for controlling
other norms are sometimes of practical interest, however; in the current context we
refer for example to [5,9,24] where “pollution effects” of global solution properties
on the local energy error are measured and controlled adaptively in L2.

In order to describe our results, let (Ti )i≥0 be a nested sequence of conforming, uni-
formly shape regular partitions of Ω produced by the AFEM. In this work, we consider
simplicial partitions as they are produced by the newest vertex bisection algorithm or
by its generalization to more than two dimensions. Let Si ⊂ H1

0 (Ω) be the standard
Lagrange finite element space of some fixed degree k on Ti , and let ui ∈ Si satisfy

A(ui , vi ) :=
∫

Ω

∇ui · ∇vi dx =
∫

Ω

f vi dx, (vi ∈ Si ). (1.3)

We also let |||v||| := √
A(v, v) and |||v|||D := (∫

D |∇v|2 dx
)1/2

denote the global
and local energy (semi)norms over D, respectively.

Our first goal in this work is to prove that the AFEM for controlling the L2-error
‖u − ui‖L2(Ω) is majorized linearly convergent. In order to obtain this result, we
require that the sequence (Ti )i of partitions is sufficiently mildly graded. We will
modify the “refine” routine so that, if necessary, it bisects additional simplices in
order to preserve the mild grading of the partition. With this modification, and under
the assumption that Ω is convex, in a sequence of estimates we prove that the quanti-
ties ‖u −ui‖2

L2(Ω) +osc2
i , |||hi (u −ui )|||2 +osc2

i and η2
i are all uniformly equivalent.

Here osci is the L2-oscillation term, hi ∈ W 1∞(Ω) is a regularized local mesh size
function, and ηi is the residual based L2 a posteriori error estimator. A key ingredient
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Convergence of adaptive AFEM for L2 errors 187

of many of our proofs is that thanks to the mild grading of the partitions, the mesh
size function can be designed so that ‖∇hi‖L∞(Ω) is sufficiently small. Following an
idea from [4], we then show that a suitably weighted sum of |||hi (u − ui )|||2 and η2

i
is contracted by the AFEM, which implies the convergence result.

The approach of treating the L2-error as a weighted energy error and then employ-
ing techniques developed for proving convergence of AFEM for global energy errors
was used earlier in [5] to prove convergence of an AFEM for controlling local energy
errors. We note that the restriction that ‖∇hi‖L∞(Ω) must be sufficiently small has pre-
viously appeared in the literature in connection with a priori and a posteriori estimates
in L∞ (cf. [7,8]) and a priori estimates in L2 (cf. [3]).

Convergence of AFEM for controlling L2-errors was also addressed in [13]. There
are several substantial differences between our approach and the one taken in the lat-
ter work. Morin et al. [13] obtains convergence of AFEM for controlling weak norms
under quite general assumptions on the marking strategy and norm of interest. While
the assumptions are general, the convergence result obtained is correspondingly weak
in that no estimate of the rate of convergence is obtained. In contrast, we require stron-
ger assumptions; aside from the above-mentioned mesh restriction we also require a
Dörfler-type marking strategy. The result is a much stronger convergence theory.

The second main theorem of this work states that for the sequence of partitions pro-
duced by the AFEM, ‖u −ui‖L2(Ω) +osci can be bounded by some absolute multiple
of (#Ti )

−s for the best possible value of s. To arrive at this quasi-optimality result,
we prove a localized a posteriori upper bound for the L2-difference between Galerkin
solutions on nested partitions. Furthermore, we show that, up to an oscillation term,
the Galerkin solution is a near best approximation to u from the finite element space in
the L2-norm. The latter result is of some interest independent of the current context,
since it is known that the Ritz projection is not stable in the L2 norm (cf. [1]). Both
of these results rely on the condition that ‖∇hi‖L∞(Ω) is sufficiently small. Finally,
we show that, even if additional bisections are made to preserve the mild grading of
the partitions, at any stage in the AFEM the cardinality of the current partition can be
bounded by the cardinality of the initial partition plus some absolute multiple of the
number of all elements that so far were marked for refinement by the routine “mark”.

We finally comment on the practicality of the AFEM for which we prove optimality.
Existing AFEM optimality results for global energy norms require that an essential
user-supplied parameter in the “mark” step be sufficiently small. The L2 AFEM for
which we prove optimality requires two user-supplied parameters to be sufficiently
small, one in the “mark” and the other in the “refine” step. Whereas in the energy
case an upper bound for the parameter in terms of interpolation (Poincaré) constants
can in principal be derived theoretically, this will be harder in the L2-case as the
corresponding parameters additionally depend on H2 regularity constants.

It should also be noted that enforcing mild mesh grading may exacerbate the asymp-
totic nature of our results, since meshes satisfying a mild grading assumption with
small μ will essentially remain quasi-uniform over the first iterations of the adaptive
algorithm. On the other hand, practical experience seems to indicate that optimality in
L2 is obtained without taking precautions to keep the mesh sufficiently mildly graded,
although there is no proof of that. This might mean either that that mildly gradedness
is not really needed, or that that the typical meshes resulting from the application of an
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adaptive routine are automatically sufficiently mildly graded. Concerning the latter,
note that a mesh that is optimal for controlling L2 errors is more mildly graded than
that for H1 errors.

The paper is organized as follows. Sections 2 and 3 contain a number of prelimi-
naries and definitions. In Sect. 4 we establish relationships between the error notions
used in the paper. Our L2 AFEM is defined precisely in Sect. 5. Sections 6 and 7
contain proofs of convergence and optimality of our AFEM, respectively. Section 8
contains discussion of the relationship between optimality of AFEM for controlling
energy and L2 norms and a numerical example. Finally, a bisection routine which
preserves a mild mesh grading is given in Appendix A along with results concerning
existence and properties of mesh functions.

2 Preliminaries

2.1 Partitions and mesh functions

Let T0 be a conforming partition of Ω̄ into (essentially) disjoint closed n-simplices.
By fixing a local numbering of all vertices of all T ∈ T0, all possible descendants T of
T0 that can be created by newest vertex bisection are uniquely determined. Here, with
newest vertex bisection, we mean either the refinement procedure as it was developed
in two space dimensions, or its generalization to any space dimension. Details can be
found in Appendix A. The simplices in any of those partitions are uniformly shape
regular, dependent only on the shape regularity parameters of T0 and the dimension n.

Generally, a descendant of T0 is non-conforming. Yet, with a suitable numbering
of the vertices in the initial partition, any descendant can be refined to a conforming
partition by inflating the total number of simplices by not more than some absolute
multiple. Possibly after an initial refinement of the original initial partition, such a
numbering always exists. Assuming such a numbering, we denote the set of all con-
forming descendants T of T0 by T. For T , T̃ ∈ T, we will write T ⊂ T̃ when T̃ is a
refinement of T (or is equal to T ).

For T ∈ T ∈ T, let hT = |T |1/n . Furthermore, let ωT , ω̃T be the patches of
elements (in T ) sharing a vertex or a facet (edge, face, etc.) with T . For T ∈ T, we
construct the continuous piecewise linear “mesh-function” hT by defining, for any
vertex z of T , hT (z) as the average of the hT ′ over all T ′ ∈ T with T ′ � z. For some
constants cT and CT, it satisfies

cThT ≤ hT |T ≤ CThT (T ∈ T , T ∈ T). (2.1)

By the uniform shape regularity, for another constant ĈT we have

‖∇hT ‖L∞(Ω) ≤ ĈT (T ∈ T).
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Convergence of adaptive AFEM for L2 errors 189

For a number of our results, we will need a mesh function hT that for some suffi-
ciently small, but fixed constant μ > 0 satisfies both

‖∇hT ‖L∞(Ω) ≤ μ, (2.2)

and (2.1) for some absolute constants cT and CT that are independent of μ. By an
application of the mean value theorem, the existence of such a mesh function hT
implies that hT ≤ c−1

T
(CThT ′ + μ dist(T, T ′)) (T, T ′ ∈ T ), and so in particular that

maxT ∈T hT ≤ c−1
T

(CT minT ∈T hT + μ diam Ω). We conclude that the existence of
such an hT imposes a restriction on the grading of the partition T beyond that imposed
by shape regularity alone.

In Appendix A, we show that given a parameter μ, there is a class of sufficiently
mildly graded partitions T ∈ T such that mesh functions hT satisfying (2.1) inde-
pendent of μ and (2.2) can be constructed. Given a μ > 0, we denote the class of
such partitions by Tμ. The initial partition T0, as any of its uniform refinements, has
no grading and is therefore contained in Tμ for any μ. Each time that we apply a
mesh function hT for a T ∈ Tμ, obviously we mean the mesh function that satisfies
(2.1) and (2.2), independent of μ. These mesh functions are constructed such that,
additionally, they are pointwise non-increasing under refinements inside the class Tμ.
Finally, it is shown that any T ∈ T can be refined to a partition in Tμ by inflating the
number of simplices by not more than some fixed multiple, dependent on μ.

The restriction that ‖∇hT ‖L∞(Ω) is sufficiently small appeared previously in [7],
where a priori L∞-estimates were proved under this assumption. There μ was allowed
to depend logarithmically on minT ∈Ti hT . In the introductory Chapter 0 of the stan-
dard text [3], a priori L2-estimates are also proved under the assumption (2.2) in the
one-dimensional case; higher-dimensional versions of this result require a slightly
more involved technical development but may be obtained with a similar proof. To
our knowledge, (2.2) is the least restrictive assumption under which optimal a priori
bounds in the L2 norm have appeared in the literature for general space dimension n.

Finally, it is pointed out in [7] that the graded meshes typically needed to resolve
corner singularities occurring in elliptic problems on corner domains satisfy (2.2) with
μ small. Thus although we modify the standard “refine” routine so that it bisects addi-
tional simplices in order to preserve the mild grading of the partition if necessary, it
may be that as in our numerical example in Sect. 8 additional bisections never have to
be made.

2.2 Finite element spaces and interpolants

Given T ∈ T, let ST ⊂ H1
0 (Ω) be a space of continuous Lagrange finite element

functions which are piecewise polynomials of some fixed degree k on T . As u always
denotes the solution of the continuous problem (1.1), the notation uT will be reserved
for the solution of its Galerkin discretization A(uT , vT ) = ∫

Ω
f vT dx (vT ∈ ST ).

Note that ST ⊂ ST̃ whenever T ⊂ T̃ .
We will employ two standard finite element (quasi)-interpolators onto ST . The

first is the Lagrange interpolator, which we denote by IL ,T . We will also employ
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the Scott–Zhang interpolator ISZ ,T , which is stable in H1(Ω), uniformly in T ∈ T

(cf. [18]). We do not list further properties of ISZ ,T here, as its application in the
establishment of residual-type a posteriori upper bounds is now rather standard.

2.3 Regularity

Using that f ∈ L2(Ω) and Ω is convex, the following H2-regularity result is
well-known.

Theorem 1 The solution u of (1.1) satisfies u ∈ H2(Ω) with

‖u‖H2(Ω) ≤ Creg‖ f ‖L2(Ω).

2.4 Constants

In what follows, we shall denote by C and Ci (i = 1, 2, 3 . . .) generic constants that
may depend on the shape regularity parameters of T0, the space dimension n, the poly-
nomial degree k, the constants cT and CT in (2.2), and the H2-regularity constant Creg
from the theorem above. Other constants will be defined as necessary. In addition, we
will often write a � b instead of a ≤ Cb with C as above. Obviously, with a � b it
is meant that b � a, and with a � b that both a � b and a � b.

3 Residual based L2 a posteriori error estimator

Given T ∈ T, vT ∈ ST , and T ∈ T , we define the L2-type error indicator η(vT , T ) by

η(vT , T )2 = h4
T ‖ f + ΔvT ‖2

L2(T ) + h3
T ‖�∇vT �‖2

L2(∂T \∂Ω). (3.1)

We omit vT in the above notation when vT = uT , that is, η(T ) = η(uT , T ). Next
we define error estimators. If M ⊂ T , we define

η(vT ,M)2 =
∑

T ∈M
η(vT , T )2,

If vT = uT , we shall omit the reference to vT in our notation as above.
The following two results dealing with the reliability and efficiency of the estimator

are well-known. Proofs can be found in [22]. The first result makes use of the fact that
Ω is convex.

Proposition 1 It holds that

‖u − uT ‖L2(Ω) � η(T ) (T ∈ T).

Proposition 2 There exists a constant C1 > 0 such that

η(vT , T ) ≤ C1[‖u − vT ‖L2(Ω) + osc(T )] (T ∈ T, vT ∈ ST ).
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Convergence of adaptive AFEM for L2 errors 191

Here osc(M) (M ⊂ T ), known as the data oscillation term, is defined by

osc(M)2 =
∑

T ∈M
h4

T ‖ f − fT ‖2
L2(T ),

where fT is the L2(T )-projection of f |T onto Pk−1(T ).

Remark 1 Note that osc(M) ≤ η(vT ,M) (M ⊂ T ∈ T, vT ∈ ST ).

Remark 2 Efficient a posteriori control of the L2 error when H2 regularity is not
present is significantly more difficult than in the present case. When n = 2, reliable
estimators which control ‖u − ui‖L2(Ω) on non-convex polygonal domains by explic-
itly taking corner singularities into account can be found in [9]; these estimators do
not however satisfy a corresponding a posteriori lower bound. Reliable and efficient
estimators for bounding a weighted L2 norm on non-convex polygonal domains can
be found in [23]. Extension of both of these results to n = 3 is technically difficult
because they rely on knowledge of the exact nature of corner singularities. Analysis
of AFEM based on these estimators also would present technical difficulties beyond
those encountered in our analysis here for the most basic case, so we restrict our
attention to situations with H2 regularity.

4 Relations between several error notions

In this section we shall establish several relations between different error notions that
will be used in the succeeding sections to prove convergence and quasi-optimality of
AFEM in the L2(Ω)-norm.

Instead of directly proving that an AFEM for controlling ‖u − ui‖L2(Ω) is contrac-
tive, we shall show that a total error notion based on |||hi (u − ui )||| contracts. The
following proposition establishes that this error notion is meaningful so long as the
mesh grading is sufficiently mild. It will be used that Ω is convex.

Proposition 3 For sufficiently small μ, let T ∈ Tμ. Then

‖u − uT ‖L2(Ω) � |||hT (u − uT )|||.

Proof We first employ a duality argument. Let e = u − uT , and let z ∈ H2(Ω) ∩
H1

0 (Ω) satisfy A(v, z) = (v, e) for all v ∈ H1
0 (Ω). Employing Galerkin orthogonal-

ity, approximation properties, Theorem 1, hT |T � hT , and ‖∇hT ‖L∞(Ω) ≤ μ, we
have that
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(e, e) = A(e, z)

= A(e, z − ISZ ,T z) � ‖hT ∇e‖L2(Ω)‖h−1
T ∇(z − ISZ ,T z)‖L2(Ω)

� (|||hT e||| + ‖e∇hT ‖L2(Ω))‖z‖H2(Ω)

� |||hT e|||‖e‖L2(Ω) + μ‖e‖2
L2(Ω). (4.1)

Taking μ sufficiently small to kick back the last term completes the proof. ��
Next we prove that the a posteriori error estimator provides also an upper bound

for |||hT (u − uT )|||. Again, it is used that Ω is convex.

Proposition 4 For any T ∈ T,

|||hT (u − uT )||| � η(T ).

Proof Letting e = u−uT , after a short computation and inserting Proposition 1 while
recalling that ‖∇hT ‖L∞(Ω) � 1, we find that

A(hT e, hT e) = A(e, h2
T e) + ‖e∇hT ‖2

L2(Ω)

≤ |A(e, h2
T e)| + ‖∇hT ‖2

L∞(Ω)‖e‖2
L2(Ω)

� |A(e, h2
T e)| + η(T )2. (4.2)

Using standard techniques for proving residual-type energy estimates along while
recalling that hT |T � hT and ‖∇hT ‖L∞(Ω) � 1 yields

A(e, h2
T e) = A(e, h2

T e − ISZ ,T (h2
T e))

�
∑
T ∈T

(hT ‖ΔuT + f ‖L2(T ) + h1/2
T ‖�∇uT �‖L2(∂T ))

×‖∇(h2
T e)‖L2(ωT )

�
∑
T ∈T

η(T )(‖∇(hT e)‖L2(ωT ) + ‖∇hT ‖L∞(ωT )‖e‖L2(ωT ))

� η(T )(|||hT e||| + ‖e‖L2(Ω)). (4.3)

Inserting the result of Proposition 1 into (4.3), inserting the result into (4.2), and
kicking back the term |||hT e||| above completes the proof. ��

Next we prove a stability result for the error indicator, cf. Proposition 3.3 of [4].

Lemma 1 It holds that

|η(v, T ) − η(w, T )| � |||hT (v − w)|||ω̃T + ‖∇hT ‖L∞(ω̃T )‖v − w‖L2(ω̃T )

(T ∈ T ∈ T, v, w ∈ ST ).
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Convergence of adaptive AFEM for L2 errors 193

Proof Recalling the definition (3.1), we use the triangle inequality to compute for
T ∈ Ti that

η(v, T ) ≤ η(w, T ) + (h4
T ‖Δ(v − w)‖2

L2(T ) + h3
T ‖�∇(v − w)�‖2

L2(∂T ))
1/2. (4.4)

Employing an inverse inequality and hT |T � hT , we compute

h2
T ‖Δ(v − w)‖L2(T ) � hT ‖∇(v − w)‖L2(T )

� ‖∇[hT (v − w)]‖L2(T ) + ‖(v − w)∇hT ‖L2(T ). (4.5)

We next compute as above while employing the trace inequality ‖∇v‖L2(∂T ) �
h−1/2

T ‖∇v‖L2(T ) + h1/2
T |v|H2(T ) to obtain for the edge e = T ∩ T ′

h3/2
T ‖�∇(v − w)�‖L2(e)

≤ h3/2
T (‖∇(v − w)T ‖L2(e) + ‖∇(v − w)T ′ ‖L2(e))

� h3/2
T

(
h−1/2

T ‖∇(v − w)‖L2(T ) + h1/2
T |v − w|H2(T )

+ h−1/2
T ‖∇(v − w)‖L2(T ′) + h1/2

T |v − w|H2(T ′)
)

� |||hT (v − w)|||T ∪T ′ + ‖(v − w)∇hT ‖L2(T ∪T ′). (4.6)

Above we have employed the convention that for x lying in the edge e = T ∩ T ′,
∇(v − w)T (x) = limy∈T,y→x ∇(v − w)(y). Noting that ‖(v − w)∇hT ‖L2(T ∪T ′) ≤
‖∇hT ‖L∞(ω̃T )‖v − w‖L2(ω̃T ), summing over the edges of T , and collecting (4.5) and
(4.6) into (4.4) completes the proof. ��

The following localized upper bound will be used for proving quasi-optimality of
the AFEM. It will be used that Ω is convex.

Lemma 2 There exists a constant C2 > 0 such that for sufficiently small μ, T ∈ Tμ,
and T ⊂ T̃ ∈ T,

‖uT̃ − uT ‖L2(Ω) ≤ C2η(RT →T̃ ).

Here RT →T̃ ⊂ T is the subset of elements that are refined in passing from T to T̃ .

Proof We set E = uT̃ − uT , so that A(E, χ) = 0 for all χ ∈ ST . Arguing as in
Proposition 3, it is easy to show that

‖E‖L2(Ω) � ‖hT ∇E‖L2(Ω). (4.7)

An elementary computation yields for ε > 0

‖hT ∇E‖2
L2(Ω) = (hT ∇E, hT ∇E) = A(E, h2

T E) − 2(hT ∇E, E∇hT )

≤ |A(E, h2
T E)| + ε‖hT ∇E‖2

L2(Ω) + μ2

ε
‖E‖2

L2(Ω). (4.8)
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Taking ε small enough to kick back the second term above and inserting the result into
(4.7) yields

‖hT ∇E‖2
L2(Ω) � |A(E, h2

T E)| + μ2‖E‖L2(Ω), (4.9)

so that by (4.7) for μ sufficiently small we have

‖hT ∇E‖2
L2(Ω) � |A(E, h2

T E)|. (4.10)

Let IL ,T̃ : C0(Ω) → ST̃ and ISZ ,T be as in Sect. 2.2. It is shown in [4, Lemma 3.6]

that ISZ ,T may be defined so that for T ∈ T ∩ T̃ (i.e., for T ∈ T \ RT →T̃ ),
(χ − ISZ ,T χ)T = 0 for χ ∈ ST̃ . We assume that ISZ ,T is so defined. Then

A(E, h2
T E)

= A(E, h2
T E − IL ,T̃ (h2

T E))︸ ︷︷ ︸
I

(4.11)

+ A(E, IL ,T̃ (h2
T E) − ISZ ,T (IL ,T̃ (h2

T E)))︸ ︷︷ ︸
II

.

In order to bound the term “I” in (4.11), in essence we employ the classical super
approximation tool introduced in [15]. Restricted to T ∈ T̃ , we have hT ∈ P1 and
E ∈ Pk , and so |D2h2

T | � |∇hT |2, D j hT = 0 for j ≥ 3, and Dk+1 E = 0. Employ-
ing inverse inequalities and using that hT |T ′ � hT ′ (T ′ ∈ T ) and ‖∇hT ‖L∞(Ω) � 1,
we thus compute

‖∇(h2
T E − IL ,T̃ (h2

T E))‖L2(T ) � hk
T ‖Dk+1(h2

T E)‖L2(T )

� hk
T [‖∇h2

T ‖L∞(T )‖Dk E‖L2(T )

+‖D2h2
T ‖L∞(T )‖Dk−1 E‖L2(T )]

� hk
T [‖hT ‖L∞(T )‖∇hT ‖L∞(T )‖Dk E‖L2(T )

+‖∇hT ‖2
L∞(T )‖Dk−1 E‖L2(T )]

� [‖hT ‖L∞(T )‖∇hT ‖L∞(T )

+hT ‖∇hT ‖2
L∞(T )]‖E‖L2(T )

� ‖hT ‖L∞(T )‖∇hT ‖L∞(T )‖E‖L2(T ). (4.12)

Using that ‖∇hT ‖L∞(Ω) ≤ μ, for any ε > 0 it thus holds that

|“I”| �
∑
T ∈T̃

‖hT ∇E‖L2(T )μ‖E‖L2(T )

� ‖hT ∇E‖L2(Ω)μ‖E‖L2(Ω)

≤ ε‖hT ∇E‖2
L2(Ω) + μ2

4ε
‖E‖2

L2(Ω) (4.13)
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Convergence of adaptive AFEM for L2 errors 195

To bound the term “II”, we first note that since h2
T E is piecewise polynomial on

T̃ , the stability bound ‖∇ IL ,T̃ (h2
T E)‖L2(T ) � ‖∇(h2

T E)‖L2(T ) holds. Recall that

IL ,T̃ (h2
T E) − ISZ ,T (IL ,T̃ (h2

T E)) is in ST̃ and vanishes on all T ∈ T \ RT →T̃ . We
may then compute using Galerkin orthogonality and standard residual techniques that
for ε > 0,

|“II”| = |A(u − uT , IL ,T̃ (h2
T E) − ISZ ,T (IL ,T̃ (h2

T E))|
�

∑
T ∈RT →T̃

(hT ‖ f + ΔuT ‖L2(T ) + h1/2
T ‖�∇uT �‖L2(∂T ))

×‖∇ IL ,T̃ (h2
T E)‖L2(ωT )

�
∑

T ∈RT →T̃

h−1
T η(T )‖∇(h2

T E)‖L2(ωT )

�
∑

T ∈RT →T̃

h−1
T η(T )

×(hT ‖hT ∇E‖L2(ωT ) + hT μ‖E‖L2(ωT ))

�
∑

T ∈RT →T̃

η(T )(‖hT ∇E‖L2(ωT ) + μ‖E‖L2(ωT ))

�
(

1 + 1

ε

)
η(RT →T̃ )2 + ε‖hT ∇E‖2

L2(Ω) + μ2‖E‖2
L2(Ω). (4.14)

Inserting (4.13) and (4.14) into (4.11) yields for ε > 0,

‖hT ∇E‖2
L2(Ω) �

(
1 + 1

ε

)
η(RT →T̃ )2 + ε‖hT ∇E‖2

L2(Ω)

+μ2

ε
‖E‖2

L2(Ω). (4.15)

Taking ε small enough to kick back the second term above and then inserting the result
into (4.10) yields

‖hT ∇E‖2
L2(Ω) � η(RT →T̃ )2 + μ2‖hT ∇E‖2

L2(Ω) (4.16)

by (4.7). Taking μ small enough to kick back the last term above and again applying
(4.7) completes the proof of the lemma. ��

We next prove a quasi-orthogonality result (cf. [11] for a similar estimate in the
context of convergence of AFEM in the global energy norm for general second-order
linear elliptic problems).

Lemma 3 For any ε > 0, T ∈ T, and vT ∈ ST , it holds that

|||hT (u − uT )|||2 + |||hT (uT − vT )|||2 − (1 + ε)|||hT (u − vT )|||2
� ε−1‖∇hT ‖2

L∞(Ω)(‖u − uT ‖2
L2(Ω) + ‖u − vT ‖2

L2(Ω)). (4.17)
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Proof Writing ẽT = u − vT and eT = u − uT , we calculate

|||hT eT |||2 = |||hT ẽT |||2 − |||hT (uT − vT )|||2
−2A(hT eT , hT (uT − vT )). (4.18)

An elementary calculation yields

|A(hT eT , hT (uT − vT ))| = |A(eT , h2
T (uT − vT ))

+(|∇hT |2eT , uT − vT ) − (ẽT ∇hT ,∇(hT eT ))

+(eT ∇hT ,∇(hT ẽT ))|
≤ ‖ẽT ∇hT ‖L2(Ω)|||hT eT ||| + ‖eT ∇hT ‖L2(Ω)|||hT ẽT |||

+‖eT ∇hT ‖L2(Ω)‖(uT − vT )∇hT ‖L2(Ω)

+|A(eT , h2
T (uT − vT ))|. (4.19)

Arguments analogous to those in (4.12) and (4.13) yield

|A(eT , h2
T (uT − vT ))| = |A(eT , (I − IL ,T )h2

T (uT − vT ))|
� ‖hT ∇eT ‖L2(Ω)‖∇hT ‖L∞(Ω)‖uT − vT ‖L2(Ω)

≤ (|||hT eT || + ‖∇hT ‖L∞(Ω)‖eT ‖L2(Ω))

×‖∇hT ‖L∞(Ω)‖uT − vT ‖L2(Ω).

Inserting this bound into (4.19) and applying Young’s inequality a few times yields
for some constant C > 0 and any δ > 0 that

|A(hT eT , hT (uT − vT ))| ≤ δ

2
(|||hT eT |||2 + |||hT ẽT |||2)

+ C

(
1+ 1

δ

)
‖∇hT ‖2

L∞(Ω)

(
‖eT ‖2

L2(Ω)+‖ẽT ‖2
L2(Ω)

)
.

(4.20)

Inserting (4.20) into (4.18) then yields

(1 − δ)|||hT eT |||2 ≤ (1 + δ)|||hT ẽT |||2 − |||hT (uT − vT )|||2

+2C

(
1 + 1

δ

)
‖∇hT ‖2

L∞(Ω)

(
‖eT ‖2

L2(Ω) + ‖ẽT ‖2
L2(Ω)

)
.

(4.21)

Dividing through by 1−δ and selecting 1+δ
1−δ

as 1+ε completes the proof of Lemma 3.
��

A combination of the Propositions 4 and 2 shows that

|||hT (u − uT )||| � ‖u − uT ‖L2(Ω) + osc(T ).
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In the following lemma it is shown that this inequality is even valid with uT reading
as any vT ∈ ST .

Lemma 4 For T ∈ T, it holds that

|||hT (u − vT )||| � ‖u − vT ‖L2(Ω) + osc(T ) (vT ∈ ST ).

Proof Writing zT = u − vT , from ‖hT ‖L∞(Ω) � 1 we have for ε > 0

|||hT zT |||2 = A(hT zT , hT zT )

= (hT ∇zT ,∇(hT zT )) + (zT ∇hT ,∇(hT zT ))

≤ 1

2ε

(
‖hT ∇zT ‖2

L2(Ω) + ‖zT ‖2
L2(Ω)

)
+ ε|||hT zT |||2 (4.22)

or

|||hT zT |||2 � ‖hT ∇zT ‖2
L2(Ω) + ‖zT ‖2

L2(Ω). (4.23)

Integrating by parts, we next compute

‖hT ∇zT ‖2
L2(Ω) = (∇zT , h2

T ∇zT )

=
∑
T ∈T

∫

T

−zT ∇ · (h2
T ∇zT )dx +

∫

∂T

zT h2
T ∇zT · n dσ

≤
∑
T ∈T

‖zT ‖L2(T )(‖hT ‖2
L∞(T )‖ f + ΔvT ‖L2(T )

+2‖∇hT ‖L∞(T )‖hT ∇zT ‖L2(T ))

+‖h2
T zT ‖L2(∂T \∂Ω)‖�∇vT �‖L2(∂T \∂Ω). (4.24)

Inserting the scaled trace inequality ‖v‖L2(∂T ) � h−1/2
T ‖v‖L2(T ) + h1/2

T |||v|||T into
(4.24) yields for ε > 0

‖h2
T zT ‖L2(∂T )‖�∇vT �‖L2(∂T )

�
(

h1/2
T ‖hT zT ‖L2(T ) + h3/2

T |||hT zT |||T
)

‖�∇vT �‖L2(∂T )

≤ (‖z‖L2(T ) + ‖hT ∇zT ‖L2(T ) + ‖∇hT ‖L∞(T )‖zT ‖L2(T ))

×h3/2
T ‖�∇vT �‖L2(∂T )

� ‖z‖2
L2(T ) +

(
1 + 1

ε

)
h3

T ‖�∇vT �‖2
L2(∂T ) + ε‖hT ∇zT ‖2

L2(T ). (4.25)

Inserting (4.25) into (4.24) and then employing Proposition 2 and hT |T � hT yields
for ε > 0
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‖hT ∇zT ‖2
L2(Ω)

�
∑
T ∈T

(
1 + 1

ε

) (
‖zT ‖2

L2(T ) + h3
T ‖�∇vT �‖2

L2(∂T \∂Ω)

)

+h4
T ‖ f + ΔvT ‖2

L2(T ) + ε‖hT ∇zT ‖2
L2(T )

�
(

1 + 1

ε

) (
‖zT ‖2

L2(Ω) + η(vT , T )2
)

+ ε‖hT ∇zT ‖2
L2(T )

�
(

1 + 1

ε

) (
‖zT ‖2

L2(Ω) + osc(T )2
)

+ ε‖hT ∇zT ‖2
L2(T ). (4.26)

Taking ε small enough to kick back the last term above and inserting the result into
(4.23) completes the proof. ��

We next prove that if T is sufficiently mildly graded, then ‖u−uT ‖L2(Ω) is bounded
up to a constant by the best approximation to u lying in ST , as measured in L2, plus
a data oscillation term.

Corollary 1 There exists a constant C3 > 0 such that for sufficiently small μ and
T ∈ Tμ, it holds that

‖u − uT ‖L2(Ω) ≤ C3[ inf
vT ∈ST

‖u − vT ‖L2(Ω) + osc(T )]. (4.27)

Proof By using that ‖∇hT ‖L∞(Ω) ≤ μ, the application of Proposition 3, Lemma 3
for some fixed ε, and Lemma 4 shows that for any vT ∈ ST

‖u − uT ‖2
L2(Ω) � |||hT (u − uT )|||2

� |||hT (u − vT )|||2 + μ2
(
‖u − uT ‖2

L2(Ω) + ‖u − vT ‖2
L2(Ω)

)

� (1 + μ2)‖u − vT ‖2
L2(Ω) + osc(T )2 + μ2‖u − uT ‖2

L2(Ω).

By taking μ sufficiently small, the proof is completed. ��
Remark 3 Corollary 1 is of some interest independent of the current context because
the Galerkin approximation is not stable in L2 even on quasi-uniform meshes, that is,
(4.27) does not hold if the data oscillation term is removed. A simple one-dimensional
counterexample can be found in [1]. The counterexample to L2-stability given in [1]
also shows that ‖u−uT ‖L2(Ω) does not bound the right hand side of (4.27) up to a con-
stant. It does however trivially follow from Corollary 1 that ‖u−uT ‖L2(Ω)+osc(T ) �

infvT ∈ST ‖u −vT ‖L2(Ω) +osc(T ) uniformly in all T ∈ Tμ with μ sufficiently small.
That is, on sufficiently mildly graded meshes an analog to Céa’s Lemma holds for the
total L2 error ‖u − uT ‖L2(Ω) + osc(T ).

5 Adaptive FEM

In this section we give details of our adaptive FEM. In particular, we give pre-
cise definitions of each module solve, estimate, mark, and refine of the generic
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adaptive iteration (1.2), with the goal of constructing an AFEM that produces by
refinement a sequence of partitions (Ti )i≥0 ⊂ Tμ for reducing the weighted energy
error |||hi (u − ui )|||, and thus also the L2-error ‖u − ui‖L2(Ω). Here, and in the fol-
lowing, hi , ui , Si , osci , ηi , and, for M ⊂ Ti , ηi (M) denote hTi , uTi , STi , osc(Ti ),
η(uTi , Ti ), and η(uTi ,M), respectively. The constant μ will be assumed to be suffi-
ciently small.

1. Module solve. Given the current partition Ti , solve (1.3) for ui ∈ Si . We assume
that the finite element system is assembled and solved exactly.

2. Module estimate. In principle, the adaptive algorithm is terminated when
Cη(Ti ) ≤ tol for some prescribed tolerance tol and user-defined constant C .

3. Module mark. We employ a Dörfler marking (cf. [6]). More precisely, we fix a
parameter 0 < θ < 1, and at each step of the algorithm choose the smallest set
Mi ⊂ Ti so that

η(Mi ) ≥ θηi . (5.1)

4. Module refine. Our results below assume that each marked element T ∈ Mi is
bisected b ≥ 1 times in passing from Ti to Ti+1 and that generally additional
elements are refined in the process in order to ensure that Ti+1 is conforming
and sufficiently mildly graded in the sense that it is in Tμ. In Appendix A, we
show that, assuming the value of μ is known, the standard newest vertex bisec-
tion algorithm or its generalization to more than two dimensions, as it has been
implemented in the finite element toolbox ALBERTA [17], can be modified so
that the sequence of adaptive meshes is indeed in Tμ. As we will see in Sect. 7,
this modification does not compromise quasi-optimality of the resulting AFEM.

6 Convergence of the AFEM in L2

In this section we prove a quasi-orthogonality property, an estimator reduction inequal-
ity, and finally an error contraction property. We employ the techniques of [4], which
do not rely upon local a posteriori lower bounds as do previous proofs of convergence
of adaptive FEM.

Proposition 5 For any ε > 0, we have that

|||hi+1(u − ui+1)|||2 + |||hi+1(ui+1 − ui )|||2 − (1 + ε)|||hi (u − ui )|||2
� ε−1μ2

(
‖u − ui+1‖2

L2(Ω) + ‖u − ui‖2
L2(Ω)

)
. (6.1)

Proof Writing ei = u − ui , and using that Ti , Ti+1 ∈ Tμ and hi+1 ≤ hi , we have

|||hi+1ei ||| ≤ ‖hi+1∇ei‖L2(Ω) + ‖∇hi+1‖L∞(Ω)‖ei‖L2(Ω)

≤ ‖hi∇ei‖L2(Ω) + μ‖ei‖L2(Ω) ≤ |||hi ei ||| + 2μ‖ei‖L2(Ω).
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and so, for any ε > 0,

|||hi+1ei |||2 ≤ (1 + ε)|||hi ei |||2 +
(

1 + 1

ε

)
4μ2‖ei‖2

L2(Ω).

By substituting this result into the estimate of Lemma 3 with T = Ti+1, and thus
uT = ui+1, and vT = ui , we find (6.1) with 1 + ε reading as (1 + ε)2, which is an
equivalent statement. ��

Next we establish an estimator reduction result. Our proof closely follows
Corollary 3.4 of [4].

Proposition 6 With λ := 1 − 2− 3b
n , for any δ ∈ (0, 1] we have

η2
i+1 − (1 + δ)(1 − λθ2)η2

i

� δ−1
[
|||hi+1(ui+1 − ui )|||2 + μ2‖ui+1 − ui‖2

L2(Ω)

]
.

Proof We first apply Lemma 1 to ui , ui+1 ∈ Si+1, square the result, and apply Young’s
inequality to the resulting mixed terms to obtain for any δ ∈ (0, 1] and T ∈ Ti+1

η(ui+1, T )2 − (1 + δ)η(ui , T )2

� δ−1
[
|||hi+1(ui+1 − ui )|||2ω̃T

+ ‖∇hT ‖2
L∞(ω̃)‖ui+1 − ui‖2

L2(ω̃T )

]
.

Summing over T ∈ Ti+1 and using the fact that no element is contained in more than
n + 1 patches ω̃T , we have

η2
i+1 − (1 + δ)η(ui , Ti+1)

2

� δ−1
[
|||hi+1(ui+1 − ui )|||2 + μ2‖ui+1 − ui‖2

L2(Ω)

]
. (6.2)

For T ′ ∈ Ti , let TT ′ = {T ∈ Ti+1 : T ⊂ T ′}. Note that for a marked element

T ′ ∈ Mi and T ∈ TT ′ , hT ≤ 2− b
n hT ′ and �∇ui � = 0 across interfaces of T lying in

the interior of T ′, and so

η(ui , TT ′)2 ≤ 2− 3b
n η(ui , T ′)2. (6.3)

For T ′ ∈ Ti \ Mi , we combine (6.3) with the trivially proved monotonicity property
η(ui , TT ′) ≤ η(ui , T ′) and sum over T ∈ Ti+1 to obtain

η(ui , Ti+1)
2 ≤ η(ui , Ti \ Mi )

2 + 2− 3b
n η(ui ,Mi )

2

= η(ui , Ti )
2 − λη(ui ,Mi )

2 ≤ (1 − λθ2)η2
i (6.4)

by (5.1). Combining (6.2) and (6.4) completes the proof. ��
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We finally establish a contraction property for |||hi (u − ui )|||2 +γ η(Ti )
2 for some

properly chosen constant γ > 0.

Theorem 2 There exist constants γ > 0 and α ∈ (0, 1) depending on a generic
constant of the type defined in Sect. 2.4, the parameter θ in (5.1), and the number of
times b that each element in Mi is bisected such that for sufficiently small μ,

|||hi+1(u − ui+1)|||2 + γ η2
i+1 ≤ α2

(
|||hi (u − ui )|||2 + γ η2

i

)
. (6.5)

Proof We will use the abbreviations e j = |||h j (u − u j )||| ( j ∈ {i, i + 1}), and
Ei = |||hi+1(ui − ui+1)|||.

From Propositions 1 and 4–6, we know that there exists constants C4, C5, C6 > 0
such that for all ε, δ > 0,

ei ≤ C4ηi , (6.6)

e2
i+1 ≤ (1 + ε)e2

i − E2
i + C5ε

−1μ2
(
η2

i + η2
i+1

)
, (6.7)

η2
i+1 ≤ (1 + δ)(1 − λθ2)η2

i + C6δ
−1

[
Ei + μ2

(
η2

i + η2
i+1

)]

≤ (1 + δ)

[(
1 − 1

2
λθ2

)
η2

i − 1

2C2
4

λθ2e2
i

]
(6.8)

+C6δ
−1

[
Ei + μ2

(
η2

i + η2
i+1

)]
(6.9)

where to arrive at (6.8) we used already (6.6).
Multiplying (6.8) with γ̃ = γ̃ (δ) = δC−1

6 and adding the result to (6.7) yields

e2
i+1 + γ̃ η2

i+1 ≤ (1 + δ)

(
1 − 1

2
λθ2

)
γ̃ η2

i

+
[
(1 + ε) − (1 + δ)

γ̃

2C2
4

λθ2

]
e2

i + qμ2
(
η2

i + η2
i+1

)
, (6.10)

where q = q(ε) = C5ε
−1 +1. Now by fixing a sufficiently small δ and, subsequently,

a sufficiently small ε such that

α̃2 := max

{
(1 + δ)

(
1 − 1

2
λθ2

)
, (1 + ε) − (1 + δ)

γ̃

2C2
4

λθ2

}
< 1,

(6.10) implies that

e2
i+1 + (γ̃ − qμ2)η2

i+1 ≤ α̃2e2
i + (α̃2γ̃ + qμ2)η2

i .
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Now by choosing μ sufficiently small such that 0 <
α̃2γ̃+qμ2

γ̃−qμ2 ≤ α2 := 1+α̃2

2 , the

proof is completed for that α and γ := γ̃ − qμ2. ��
We finally show that ‖u − ui‖L2(Ω) → 0 with linear rate as i → ∞.

Corollary 2 Assume that μ is sufficiently small as in Theorem 2. Then with α from
that theorem, it holds that for i ≥ j

‖u − ui‖L2(Ω) + osci � αi− j [‖u − u j‖L2(Ω) + osc j ].

Proof The proof follows from Theorem 2 and

(‖u − ui‖L2(Ω) + osci )
2

� |||hi (u − u)|||2 + γ η2
i ,

the latter being a consequence of Propositions 1, 2 and 4, and Remark 1. ��

7 Quasi-optimality of AFEM in L2

For s > 0, we define the approximation class

As =
{
v ∈ H1

0 (Ω) : −Δv ∈ L2(Ω), |v|As

:= sup
N∈N

N s inf
{T ∈T:#T −#T0≤N }

[ inf
vT ∈ST

‖u − vT ‖L2(Ω) + osc(T )] < ∞
}

.

Thus As contains all v ∈ H1
0 (Ω) with −Δv ∈ L2(Ω), that, for some sequence

(Ti )i , can be approximated at rate s in the L2-norm by a sequence of functions from
(STi )i , and for which −Δv can be approximated by a sequence of functions from

(
∏

T ∈Ti
Pk−1(T ))i in the Ti -dependent weighted L2-norm

√∑
T ∈Ti

h4
T ‖g‖2

L2(T ).

Note that in our case of Ω being convex, v ∈ H1
0 (Ω) with −Δv ∈ L2(Ω) is equiv-

alent to v ∈ H1
0 (Ω) ∩ H2(Ω). Standard estimates show that for s ∈ [ 2

n , k+1
n

]
, we

have H1
0 ∩ Hsn(Ω) ⊂ As , where for v ∈ H1

0 ∩ Hsn(Ω) the rate s is already realized
with uniform refinements. The class As , however, is much larger than H1

0 ∩ Hsn(Ω),
which is the reason an AFEM is employed in the first place. What is in essence needed
for v ∈ H1

0 ∩ H2(Ω) to be in As is that its snth order partial derivatives are bounded

in L p(Ω) for some p >
( 1

2 + s
)−1

.
In this section, we are going to show that if, for whatever s > 0, the solution u of

(1.1) is in As , then for the sequence (Ti )i ⊂ Tμ and corresponding Galerkin solutions
(ui )i produced by our AFEM, it holds that ‖u−ui‖L2(Ω)+osci � (#Ti −#T0)

−s |u|As .
Thus our AFEM realizes the best possible convergence rate.

For earlier results on quasi-optimality of AFEM with respect to the energy-norm
and more details on approximation classes and references, we refer to [4,16,19].

The following lemma will be used to bound the number of marked elements in the
Dörfler marking.
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Lemma 5 With C1 and C2 being the constants from Proposition 2 and Lemma 2,
let θ < 1

C1(C2+1)
. Let μ be sufficiently small such that Lemma 2 is valid. Then for

(Tμ �) Ti ⊂ T ∈ T with

‖u − uT ‖L2(Ω) + osc(T ) ≤ [1 − θC1(C2 + 1)](‖u − ui‖L2(Ω) + osci ), (7.1)

it holds that

η(RTi →T ) ≥ θηi .

Proof By adding the inequalities

‖u − ui‖L2(Ω) ≤ ‖ui − uT ‖L2(Ω) + ‖u − uT ‖L2(Ω)

osci ≤ osc(RTi →T ) + osc(T )

and employing (7.1), we infer that

θ(C2 + 1)ηi ≤ θC1(C2 + 1)(‖u − ui‖L2(Ω) + osci )

≤ ‖u − ui‖L2(Ω) + osci − ‖u − uT ‖L2(Ω) − osc(T )

≤ ‖ui − uT ‖L2(Ω) + osc(RTi →T )

≤ (C2 + 1)η(RTi →T ),

where the first and last inequality follow from applications of Proposition 2 and
Lemma 2, respectively. ��
Corollary 3 For some s > 0, let u ∈ As . Assume also that μ is sufficiently small
that Corollary 1 is valid. Then under the assumptions of Lemma 5, the collection of
marked elements Mi ⊂ Ti defined by (5.1) satisfies

#Mi � |u|1/s
As (‖u − ui‖L2(Ω) + osci )

−1/s .

Proof With C3 the constant from Corollary 1, by definition of As there exists a par-
tition T ′ ∈ T with

#T ′ − #T0 � |u|1/s
As

(
1 − θC1(C2 + 1)

1 + C3
(‖u − ui‖L2(Ω) + osci )

)−1/s

, (7.2)

and a vT ′ ∈ ST ′ with

‖u − vT ′ ‖L2(Ω) + osc(T ′) ≤ 1 − θC1(C2 + 1)

1 + C3
(‖u − ui‖L2(Ω) + osci ).

As is shown in Appendix A, T ′ can be refined to a partition T ′′ ∈ Tμ with #T ′′−#T0 �
#T ′ − #T0, dependent on μ. The smallest common refinement T of Ti and T ′′ is in
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Tμ with #T − #Ti ≤ #T ′′ − #T0 (cf. [19] last lines of the proof of Lemma 5.2). Since
ST ⊂ ST ′ , Corollary 1 shows that

‖u − uT ‖L2(Ω) + osc(T ) ≤ (C3 + 1)

(
inf

vT ′ ∈ST ′
‖u − vT ′ ‖L2(Ω) + osc(T ′)

)

≤ (1 − θC1(C2 + 1))(‖u − ui‖L2(Ω) + osci ),

and so η(RTi →T ) ≥ θηi by Lemma 5. Since Mi is the smallest subset of Ti with
η(Mi ) ≥ θηi , we conclude that

#Mi ≤ #RTi →T ≤ #T − #Ti ≤ #T ′′ − #T0 � #T ′ − #T0,

so that the proof follows from (7.2). ��
Finally, in the next theorem the quasi-optimality result is stated.

Theorem 3 For some s > 0, let u ∈ As . Then, under the assumptions from Corol-
lary 3, it holds that

#Ti − #T0 � (‖u − ui−1‖L2(Ω) + osci−1)
−1/s |u|1/s

As .

Proof In Theorem 4 it is shown that #Ti − #T0 �
∑i−1

j=0 M j . The proof follows by
combining this result with Corollaries 2 and 3. ��

8 Numerical example

In this section we discuss the relationship between AFEM for controlling L2 and
energy norms and illustrate our results via a computational example. This example
highlights two interesting aspects of AFEM convergence theory. First, one generally
cannot expect simultaneous optimal control of the error in two different norms such as
the L2 and H1 norms. Secondly, in contrast to the usual intuition about the relationship
between L2 and energy convergence rates, an L2 AFEM can produce a convergence
rate which is more than 1

n greater than the best possible convergence rate for an energy
AFEM for the same problem.

As an example problem, we let Ω be a convex polyhedron in R
3 having maximum

edge opening angle 7π
8 on a given edge emax . In our computational example we took

Ω to be the union of two tetrahedron, though the precise nature of Ω is not essential
so long as the maximum edge opening angle is controlled. We then solve Poisson’s
problem (1.1) on Ω with right hand side data f = 1. By standard theory, we expect

the solution u to have an edge singularity of the form r
8
7 , where r is the distance to the

edge emax . In our example we also employed polynomial degree k = 4. Finally, the
Dörfler marking parameter θ was taken to be 0.4. Because AFEM optimality requires
that θ be small enough, we also tried lower values of θ but observed no appreciable
difference in convergence rates when doing so. Calculations were carried out using
the finite element toolbox ALBERTA (cf. [17]).
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We now describe the implications of these choices. Following the discussion in
Sect. 7, we expect our L2 AFEM to converge with the rate s = k+1

n so long
as the k + 1-st (and thus sn-th) order partial derivatives are p-integrable for some

p >
( 1

2 + s
)−1

. Note that because f = 1, no data oscillation is present in this
problem, so the L2 error is in fact equivalent to the error estimator and the approx-
imation class As can be defined only in terms of the error. A precise characteriza-
tion of As in terms of Besov spaces is also possible in this case, though heuristics
phrased in terms of L p spaces are sufficient for our purposes here. In our exam-
ple we have k + 1 = 5 and n = 3, so for a convergence rate of 5

3 we roughly
require that D5u ∈ L p(Ω) with p > 6

13 . Our example problem has been con-

structed so that the singularity r
8
7 is the strongest occurring in the solution, and it

is easy to calculate that D5r
8
7 ≈ r

8
7 −5 indeed is p-integrable for some values of

p > 6
13 .

We now compare the expected L2 convergence rate with the expected H1 conver-
gence rate for our example problem. A standard H1 AFEM will converge with rate
s ∈ [ 1

n , k
n

]
when roughly speaking u ∈ H1

0 (Ω) with its sn + 1-th partial derivatives

lying in L p for p >
( 1

2 + s
)−1

. Thus for polynomial degree k = 4, the generally best
possible convergence rate of 4

3 can be obtained if D5u ∈ L p(Ω) for some p > 6
11 .

Note that this condition is more stringent than that required above for obtaining the
generally best possible convergence rate of 5

3 in L2, and in fact for our example prob-

lem it is easy to calculate that D5r
8
7 does not lie in L p for any p > 6

11 . Solving the

conditions Dα+1r
8
7 ∈ L p(Ω) with α = sn and p >

( 1
2 + s

)−1
yields s < 8

7 , so we
predict that a standard H1 AFEM will converge with rate s < 8

7 ≈ 1.14.
In our tests we ran separate computations using L2 error indicators in themark step

and using H1 error indicators in the mark step. In both cases, we recorded both the L2
and H1 error estimators, which are uniformly equivalent to the actual respective errors
because no data oscillation is present. The results of these tests can be seen in Fig. 1.
Approximate convergence rates were calculated by a least squares fit of logarithmic
data over the range from 6 × 106 to 1.5 × 108 degrees of freedom, and corresponding
trend lines are displayed on the plot along with computed data.

We note several interesting features of this plot. First, the computed convergence
rate of s = 1.65 in the L2 norm when using the L2 AFEM is very close to the
predicted optimal rate of 5

3 , while the computed convergence rate in the energy
norm of 1.12 when using an energy AFEM is similarly close to the maximum pre-
dicted rate of 8

7 for this particular problem. Thus as predicted by AFEM conver-
gence theory, our L2 AFEM produces a convergence rate which is more than 1

n
greater than the best possible convergence rate for an energy AFEM for the same
problem.

We next discuss convergence rates in the L2 norm when energy refinement is used,
and vice versa. When energy refinement is employed, we obtain a convergence rate
s = 1.47 for the L2 error, which is roughly 1

3 = 1
n more than the observed energy

convergence rate of 1.12. Thus refining using energy indicators will not in all cases
lead to optimal convergence in the L2 norm. This difference is due to the fact that in
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Fig. 1 Error reduction in the L2 and energy norms when refining using H1 error indicator (“H1 refine-
ment”) and L2 error indicators “L2 refinement”); plot shows log(estimator) versus log(DO F)

general more severe local refinement is necessary to obtain the best possible energy
convergence rate than is necessary to obtain the best possible L2 convergence rate. One
would correspondingly expect that L2 refinement will sometimes lead to suboptimal
energy error decrease, and in our example we in fact observe a slight decrease in
energy convergence rate (from 1.12 to 1.01) when using L2 instead of energy refine-
ment. Thus we conclude that simultaneous optimal error control in multiple norms is
not generally possible.

We close this section with two concluding remarks about our experiments.

Remark 4 In our experiments we employed the standard refinement procedure imple-
mented in ALBERTA, and in particular did not take extra steps to ensure that the
meshes remained sufficiently mildly graded as is required in our theoretical results.
We are not aware of any experimental evidence that sufficiently mild grading is nec-
essary in practice.

Remark 5 Two-dimensional examples can be constructed for which convergence
order k+1

2 is expected in the L2 norm, but where the optimal H1 AFEM produces
a convergence rate of less than k

2 . However, in contrast to the three-dimensional case
such examples require a singular right-hand-side f since corner singularities have
infinite smoothness in the relevant scales of Besov spaces. As an example, take Ω

to be the unit square, and let f (x, y) = x−0.4. Theoretical considerations similar to
those above lead us to expect that for polynomial degree k = 3, the L2 AFEM will
lead to convergence rate 2 in the L2 norm, while convergence in the H1 norm when
using the energy AFEM is expected to be less than 3

2 . Coding such examples in a
meaningful way is not entirely straightforward, however, because accurate quadrature
for singular functions must be constructed and data oscillation is also present and plays
an important role in the convergence theory.
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Appendix A: Partitions and mesh functions

We specify the type of partitions that we consider, and derive some of their properties.
When doing so we recall some results from [20], which generalize upon known results
for newest vertex bisection in two dimensions. In addition, we introduce the concept
of sufficiently mildly graded partitions and define suitable mesh-functions.

A.1 Bisection and uniform shape regularity

For 0 ≤ p ≤ n − 1, a (closed) simplex spanned by p + 1 vertices of an n-simplex T
is called a hyperface of T . For p = n − 1, it will be called a facet. A partition T of a
domain Ω ⊂ R

n , i.e., a subdivision of Ω into (essentially) disjoint closed n-simplices,
is called conforming when the intersection of any two different T, T ′ ∈ T is either
empty, or a hyperface of both simplices. Different simplices T , T ′ that share a facet
will be called neighbors.

Simplices are refined by means of bisection. In order to guarantee uniform shape
regularity of all descendants, a cyclic choice of the refinement edges has to be made.
To that end, given {x0, . . . xn} ⊂ R

n , not on a joint (n − 1)-dimensional hyperplane,
we distinguish between n(n + 1)! tagged simplices given by all possible ordered
sequences (x0, x1, . . . , xn)γ and types γ ∈ {0, . . . , n − 1}. Given a tagged simplex
T = (x0, x1, . . . , xn)γ , its children are the tagged simplices

(
x0,

x0+xn
2 , x1, . . . , xγ , xγ+1, . . . , xn−1

)
(γ+1)modn

and

(
xn, x0+xn

2 , x1, . . . , xγ , xn−1, . . . , xγ+1
)
(γ+1)modn ,

where the sequences (xγ+1, . . . , xn−1) and (x1, . . . , xγ ) should be read as being void
for γ = n − 1 and γ = 0, respectively. So these children are defined by bisecting the
edge x0xn of T , i.e., by connecting its midpoint with the other vertices x1, . . . , xn−1,
and by an appropriate ordering of their vertices, and by having type (γ + 1)modn
(see Fig. 2 for an illustration). This bisection process was introduced in [21], and in
different notations, in [10]. The edge x0xn is called the refinement edge of T . In the
n = 2 case, the vertex opposite to this edge is known as the newest vertex.

Corresponding to a tagged simplex T = (x0, . . . , xn)γ , we set

TR = (xn, x1, . . . , xγ , xn−1, . . . , xγ+1, x0)γ ,
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Fig. 2 Bisection of a tagged tetrahedron of type 0 with the next two level cuts indicated

which is the tagged simplex that has the same set of children as T , and in this sense is
equal to T . So actually we distinguish between 1

2 n(n + 1)! tagged simplices.
Given a fixed, conforming initial partition T0 of Ω̄ into tagged simplices of some

fixed type γ , we exclusively consider partitions that can be created from T0 by recurrent
bisections of tagged simplices, for short, descendants of T0. Simplices from descen-
dants of T0 are uniformly shape regular, dependent only on T0 and n. In view of the
refinement by bisection, this means that there exist constants d, D > 0, dependent
only on T0, such that

d2−�(T ) ≤ vol(T ) (= hn
T ), diam(T ) ≤ D2−�(T )/n,

Here �(T ) denotes the level of a T , being the number of bisections needed to create
T from a simplex from T0.

A.2 Conforming partitions

For the application of an a posteriori error estimator, we need partitions that are con-
forming. The set of conforming descendants of T0 is denoted as T. A partition generated
from a conforming one by bisecting some marked simplices is generally non-conform-
ing, so that additional bisections have to be made to restore conformity.

To bound the cardinality of the output partition of a call of AFEM, we would
like that the total number of additional bisections needed to restore conformity after
bisecting some marked simplices can be bounded by some absolute multiple of the
total number of marked simplices inside such a call. To guarantee this property, we
assume that the simplices from T0 are tagged in such a way that any two neighbors
T = (x0, . . . , xn)γ , T ′ = (x ′

0, . . . , x ′
n)γ from T0 match in the sense that if x0xn or

x ′
0x ′

n is on T ∩ T ′, then either T and T ′ are reflected neighbors—meaning that the
ordered sequence of vertices of either T or TR coincides with that of T ′ on all but one
position—or the pair of neighboring children of T and T ′ are reflected neighbors (see
Fig. 3 for an illustration).
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Fig. 3 Matching neighbors for n = 2, and their level 1 and 2 descendants. The neighbors in the rightmost
picture are not reflected neighbors, but the pair of their neighboring children are

It is known (see [2] and the references therein) that for any conforming partition
into triangles, i.e., for n = 2, there exists a local numbering of the vertices so that the
matching condition is satisfied. For n > 2, any conforming partition of n-simplices
can be refined, by inflating the number of simplices by not more than an absolute
constant factor, into a conforming partition T0 that allows a local numbering of the
vertices so that the matching condition is satisfied.

The matching condition on T0 is a necessary and sufficient condition so that any
uniform refinement of T0—i.e., a refinement of T0 in which all simplices have the
same level—is conforming. For this reason, we always assume that T0 satisfies the
matching condition.

Tagged neighbors are called compatibly divisible when they have the same refine-
ment edge. For a descendant T of T0, and T ∈ T , we set

N (T , T ) :=
{neighbors T ′ of T in T that contain the refinement edge of T }.

As a consequence of the matching condition, we have the following result.

Corollary 4 For any conforming descendant T of T0, and T ∈ T , it holds that

1. |�(T ) − �(T ′)| ≤ 1 for any neighbor T ′ ∈ T of T ,
2. and for T ′ ∈ N (T , T ), either

– �(T ′) = �(T ) and T, T ′ are compatibly divisible, or
– �(T ′) = �(T ) − 1 and T is compatibly divisible with one of both children of

T ′.

In view of the second part of this corollary, an algorithm bisect[T , T ] for finding
the smallest T ⊂ T ′ ∈ T in which some selected simplex T ∈ T is bisected may
consist of the following two steps: firstly, by recursive calls of bisect[T , T ′′] for some
T ′′ with �(T ′′) = �(T ) − 1, construct a possibly refined partition T ⊆ T ′ ∈ T that
contains a subset T ∈ K ⊂ T ′ so that all T ′ ∈ K share their refinement edge with
T . Secondly, bisect all these T ′ ∈ K simultaneously, with which thus no “hanging
nodes” are created.

A.3 Graded partitions and the routine “bisect”

For purposes of proving convergence and optimality of L2 AFEM, we need partitions
T ∈ T whose (possible) grading is sufficiently mild. Given a constant G > 0, we call
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a descendant T of T0 G-graded when for all T, T ′ ∈ T ,

dist(T, T ′) ≤ G2−�(T )/n �⇒ �(T ′) ≥ �(T ) − 1.

Thus G-gradedness locally restricts the growth of the size of mesh elements as one
moves away from a given element. If we want to bisect a simplex in such a partition,
then generally additional bisections have to be made not only to guarantee con-
formity of the resulting partition, but also its G-gradedness. The following routine
bisect[T , T ] ensures both properties. The first part of this routine, whose steps were
already described at the end of the previous section, can be found in [20], whereas
its last, additional loop before the actual bisection of T in the last line ensures the
G-gradedness of the output partition.

bisect [T , T ] → T ′:
% T ∈ T is G-graded, and T ∈ T .
K := ∅; F = {T }
do Fnew := ∅

forall T ′ ∈ F do
forall T ′′ ∈ N (T , T ′) with T ′′ /∈ F ∪ K do

if T ′′ compatibly divisible with T ′
then Fnew := Fnew ∪ {T ′′}
else T := bisect [T , T ′′]

add to Fnew the child of T ′′ that is a
neighbor of T ′

endif
endfor

endfor
K := K ∪ F
F := Fnew

until F = ∅
forall T ′′ ∈ T with dist(K , T ′′) ≤ G2−(�(T )+1)/n and

�(T ′′) = �(T ) − 1 do
T := bisect [T , T ′′]

endfor
Create T ′ from T by simultaneously bisecting all T ′ ∈ K

Properties of bisect are stated in the following two lemmas. Similar to [20,
Theorem 5.1], the first lemma can be proven by induction to �(T ).

Proposition 7 T ′ := bisect [T , T ] terminates, and T ′ is the smallest G-graded
refinement of T in T in which T has been bisected.

If T ′ ∈ T ′ is newly created by the call, then �(T ′) ≤ �(T ) + 1.

Remark 6 Assuming that the data structure allows us to find all neighbors of a simplex
in T ∈ T in O(1) operations, the number of operations needed for T ′ := bisect [T , T ]
is O(#T ′ − #T ).
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Proposition 8 Any newly created T ′ by the call bisect [T , T ] satisfies

dist(T ′, T ) ≤ (D(1 + 21/n) + 2−1/nG)

�(T )∑
i=�(T ′)

2−i/n (
� diam(T ′)

)
.

Proof For �(T ) = 0, any newly created T ′ is a child of a T̃ that has its refinement
edge on ∂T , so that dist(T ′, T ) = 0. Note that in this case the sum over i is empty
since �(T ′) = �(T ) + 1.

Assuming that the theorem holds for �(T ) = � − 1 ≥ 0, let us consider T
with �(T ) = �. If T ′ is created by bisection of any simplex from the set K , then
dist(T ′, T ) = 0 as in the �(T ) = 0 case. If T ′ is created by a recursive call
bisect [T , T ′′], then either dist(T ′′, T ) = 0 or

dist(T ′′, T ) ≤ dist(T ′′, K ) + D2−�(T )/n ≤ (D + 2−1/nG)2−�(T )/n,

where we used that for any T̃ ∈ K , �(T̃ ) = �(T ) and thus diam(T̃ ) ≤ D2−�(T )/n .
Now by �(T ′′) = �(T ) − 1, the induction hypothesis shows that

dist(T ′, T ) ≤ dist(T ′, T ′′) + diam(T ′′) + dist(T ′′, T )

≤ (D(1 + 21/n) + 2−1/nG)

�(T ′′)∑
i=�(T ′)

2−i/n

+D21/n2−�(T )/n + (D + 2−1/nG)2−�(T )/n

= (D(1 + 21/n) + 2−1/nG)

�(T )∑
i=�(T ′)

2−i/n .

��
Our AFEM is a loop of the following form:

T := T0
do mark some set M ⊂ T for bisection

for T ∈ M do
if T ∈ T % i.e., if it has not already been bisected as a

% byproduct of a previous call of bisect in this
% for-loop

then T := bisect [T , T ]
endif

endfor
until satisfied

Remark 7 Actually, we mark simplices possibly for some fixed number of multiple
bisections. By scheduling such multiple bisections as a sequence of single ones, the
algorithm can still be written in the above form.
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The following theorem shows the important result that the difference between the
cardinalities of the output and initial partition can be bounded by some absolute multi-
ple of the total number of marked simplices. Besides the uniform shape regularity, the
proof given in [20] relies only on the result of Proposition 8 and the second statement
from Proposition 7. As we have shown, these results are still valid when considering
conforming partitions that are additionally G-graded, and so is the theorem.

We emphasize that the proof from [20] is a harmless modification of the original,
ingenious proof given in [2].

Theorem 4 Let K be the total number of calls of bisect in the above AFEM loop, so
that K is no larger than the sum of the cardinalities of all sets of marked simplices.
Then for the output partition T , it holds that #T − #T0 � K , dependent only on the
constants d, D, G, and n.

Any descendant T̃ of T0, not necessarily conforming or G-graded, is constructed
from T0 by a sequence of bisections, where #(T̃ \ T0) is equal to the number of
bisections. By replacing these bisections by calls of bisect, we infer the following
consequence of Theorem 4. It shows that there is no essential restriction in considering
only G-graded partitions from T.

Corollary 5 Any descendant T̃ of T0 can be refined to a G-graded partition T ∈ T

with #T − #T0 � #T̃ − #T0, dependent only on d, D, G, and n.

Remark 8 For any descendant T of T0, it holds that #T − #T0 ≤ #(T \T0) ≤
2(#T − #T0).

A.4 Mesh functions

In this section we construct piecewise linear mesh functions hT ∈ C(Ω̄) ∩∏
T ∈T P1(T ) such that for any μ > 0, ‖∇hT ‖L∞(Ω) ≤ μ for all G-graded T ∈ T

with G · μ sufficiently large, and such that hT |T � hT uniformly in μ, T ∈ T
and in all those G-graded T ∈ T. Moreover, these mesh functions will be pointwise
non-increasing under conforming and G-graded refinements. The class of G-graded
T ∈ T for this value of G can thus be taken as the class Tμ as introduced in Sect. 2.
In view of Corollary 5, this class is sufficiently large for our purposes.

For a T ∈ T, z a vertex of T , and p ∈ N0, we define the patches (“rings”)

Rp(z, T ) =
{∪{T ∈T :T �z}T when p = 0,

∪{z′:z′ is a vertex of T ∈R0(z,T )} Rp−1(z
′, T ) when p > 0.

Our approach to constructing a “flat” mesh function hT is to define hT (z) as some
average of hT over T ∈ Rp(z, T ) with p being sufficiently large. To ensure that at the
same time it is equivalent to the mesh size near z, it will be needed that G is sufficiently
large.

In the next proposition, we essentially establish that properly sized element rings
in G-graded meshes are in fact quasi-uniform, i.e., all elements in such rings are at
almost the same refinement level.
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Proposition 9 For G ≥ (2p + 1)D21/n, a G-graded T ∈ T, and z a vertex of T , the
levels of any two simplices in Rp(z, T ) differ at most one.

Proof Assume that T, T ′′ ∈ Rp(z, T ), and in order to reach a contradiction assume
in addition that �(T ′′) < �(T ) − 1. We take T ′′ to be the closest element to T lying
in Rp(z, T ) and satisfying �(T ′′) < �(T ) − 1 in the sense that there is a path P
along element edges from T to T ′′ which lies in Rp(z, T ), which has the smallest
possible number of edges over all such paths from T to T ′′, and for which each
edge in the path P corresponds to an element T ′ satisfying �(T ′) ≥ �(T ) − 1. Since
T, T ′′ ∈ Rp(z, T ), the path P contains at most 2p + 1 element edges, each of length

at most D2
−�(T )+1

n . Thus dist(T, T ′′) ≤ (2p +1)D2− �(T )+1
n ≤ G2− �(T )

n , which in con-
tradiction to our initial assumption implies that �(T ′′) ≥ �(T )−1 since T is G-graded
with G ≥ (2p + 1)D21/n . Thus �(T ′′) ≥ �(T ) − 1 and similarly �(T ) ≥ �(T ′′) − 1.
That is, �(T ′′) + 1 ≥ �(T ) ≥ �(T ′′) − 1, which is the desired conclusion. ��
Remark 9 Note that a patch Rp(z, T ) is not necessarily simply connected. An example
is given in Fig. 4.

For z a vertex of a conforming partition T , let

�(z) := min
{T ∈T :T �z}

�(T )

be the level of z (in T ). Next it is shown that |�(T ) − �(z)| ≤ 1 for any T ∈ T that
intersects an Euclidean ball around z with radius being a fixed multiple of the mesh
size near z, assuming G be sufficiently large, and thus that the number of such T is
uniformly bounded.

Lemma 6 For a G-graded T ∈ T, ρ ∈ (0, G2−2/n], and z a vertex of T , any two
vertices in B(z, ρ2−�(z)/n)∩T are connected by a path along the edges of T of length
at most L edges, where L depends only on ρ, n and the shape regularity parameters
d and D.

Furthermore, for any T ∈ T with T ∩ B(z, ρ2−�(z)/n) �= ∅, |�(T ) − �(z)| ≤ 1.

Proof For all T ∈ T with T ∩ B(z, ρ2−�(z)/n) �= ∅, it holds that �(T ) ≤ �(z) + 1.
Indeed, assume that such a T exists with �(T ) ≥ �(z) + 2. Then, using that the lev-
els of neighboring simplices in T differ at most one (Corollary 4(1)), there exists

Fig. 4 An example of a
non-simply connected R1(z, T )
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such a T with �(T ) = �(z) + 2. However, the existence of such a T is in conflict
with the G-gradedness of the partition since dist(T, z) ≤ G2−(�(z)+2)/n . Finally, the
G-gradedness of the partition also implies that �(T ) ≥ �(z) − 1 for any T ∈ T with
T ∩ B(z, ρ2−�(z)/n) �= ∅.

We infer that the number of T ∈ T with T ∩ B(z, ρ2−�(z)/n) �= ∅ is uniformly
bounded, dependent only on ρ, n, d and D, and, consequently, that any two vertices
in B(z, ρ2−�(z)/n) ∩ T are connected by a path along the edges of T with a length
that is uniformly bounded. ��

In the next proposition it is shown that #Rp(z, T ) � (p + 1)n when G � p (and
when �(z) is sufficiently large in relation to p since otherwise the ring “overflows” the
domain Ω is all directions). To prove that #Rp(z, T ) � (p + 1)n , it will be demon-
strated that if the Euclidean distance between vertices z, z′ ∈ T is M � G times the
local mesh size at z (or equivalently at z′ since G be sufficiently large), then there exists
a path over the edges of T of length O(M) that connects z and z′. This improves upon
Lemma 6 where no linear dependence of the path length L on ρ was demonstrated.

Proposition 10 It holds that

#Rp(z, T ) � (p + 1)n

uniformly in p ∈ N0, all G-graded T ∈ T with G ≥ (2p + 1)D21/n and vertices z
of T , as well as

#Rp(z, T ) � (p + 1)n

when additionally p2−�(z)/n � 1, dependent only on the domain Ω .
Finally, it holds that

#Rp(z, T )∑p
q=0 #Rq(z, T )

� 1

p + 1
,

uniformly in p ∈ N0, all G-graded partitions T ∈ T with G ≥ (2p + 1)D21/n and
vertices z of T .

Proof From Proposition 9, we know that diam(T ) � 2−�(z)/n uniformly in T ∈
Rp(z, T ), and thus that Rp(z, T ) is contained in a ball having radius not larger than
some absolute multiple of (p+1)2−�(z)/n . Because vol(T ) � 2−�(z) for T ∈ Rp(z, T ),
we conclude that #Rp(z, T ) � (p + 1)n .

For any z ∈ T , there exists a cone C with vertex z and fixed height and opening,
dependent only on Ω , such that C ⊂ Ω̄ . We are going to show that there exists a
constant cst > 0, such that for all M ≥ 1,

C ∩ B(z, M2−�(z)/n) ∩ T ⊂ Rp(z, T ) (G ≥ (2p + 1)D21/n, p ≥ cst M). (8.1)

Since vol(B(z, M2−�(z)/n)∩C) � Mn2−�(z) when M2−�(z)/n � 1, dependent only on
the sizes of C , and vol(T ) � 2−�(z) for T ∈ Rp(z, T ), (8.1) implies that #Rp(z, T ) �
(p + 1)n when p2−�(z)/n � 1.
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Letρ be a fixed, sufficiently large constant to be determined below. Since G ≥ (2p+
1)D21/n and p ≥ cst M ≥ cst, by taking cst sufficiently large, we have ρ < G2−2/n .

Given M ≥ 1, let z′ ∈ C ∩ B(z, M2−�(z)/n) be a vertex of T and M ′ := |z −
z′|2�(z)/n . If M ′ ≤ ρ, i.e., z′ ∈ B(z, ρ2−�(z)/n), then, by taking cst ≥ L − 1, where
L = L(ρ, n, d, D) ∈ N is the constant from Lemma 6, we have p ≥ cst M ≥ L − 1,
and so z′ is a vertex in Rp(z, T ) thanks to this lemma.

Now let M ′ > ρ. Since for any T ∈ T with T ∩ B(z, ρ2−�(z)/n) �= ∅, |�(T ) −
�(z)| ≤ 1 by Lemma 6, for ρ being sufficiently large in relation to the opening angle
α of the cone C and the shape regularity parameter D, there exists a vertex z1 of T in
C ∩ B(z, ρ2−�(z)/n) with

|z1 − z′| ≤ (
M ′ − 1

2ρ
)

2−�(z)/n .

See Fig. 5 for an illustration.
With z0 := z, a repeated application of this argument shows that there exists a

sequence of vertices z1, z2, . . . of T with zi in C ∩ B(zi−1, ρ2−�(zi−1)/n) and

|zi − z′| ≤ |zi−1 − z′| − 1
2ρ2−�(zi−1)/n (8.2)

whenever |zi−1 − z′| > ρ2−�(zi−1)/n , and with zi = z′ otherwise.

Let m ≥ 2 be the smallest integer with M − 1
2ρ − (m − 1) 1

2 2− 1
n ρ ≤ 0. When

p ≥ (m −1)L , for 1 ≤ i ≤ m −1 we have that any T ∈ T with T � zi is in Rp(z, T )

by Lemma 6. Taking G ≥ (2p + 1)D21/n then ensures that |�(zi ) − �(z)| ≤ 1 by
Proposition 9. By substituting �(zi−1) ≤ �(z) + 1 in (8.2), we conclude that zm = z′.
In addition requiring that p ≥ mL − 1 implies that z′ = zm ∈ Rp(z, T ).

Since m � M , our assumption that p ≥ mL − 1 is satisfied when cst is suf-
ficiently large, with which we have completed the proof of (8.1), and thus that of
#Rp(z, T ) � (p + 1)n whenever p2−�(z)/n � 1.

Combining the upper and lower bounds for #Rp(z, T ) yields the last statement of
this Proposition in the case when p2−�(z)/n � 1. The above arguments show that the
lower bound #Rp(z, T ) � (p + 1)n will only be violated when p is large enough that

Fig. 5 Illustration with the proof of Proposition 10
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Rp(z, T ) (nearly) fills the domain, i.e., that it is equal to T . From that value of p on,
#Rp(z, T ) will not grow anymore, from which we infer the last statement also in that
case. ��

For any T ∈ T, we define h̄T ,p ∈ C(Ω̄) ∩ ∏
T ∈T P1(T ) by

h̄T ,p(z) =
∑p

q=0

∑
T ∈Rq (z,T ) hT∑p

q=0 #Rq(z, T )

for any vertex z of T . The next proposition shows that h̄T ,p is appropriately called a
mesh function. The proof follows from Proposition 9 and the uniform shape regularity.

Proposition 11 For G-graded T ∈ T, it holds that

h̄T ,p|T � hT

uniformly in p ∈ N0, G ≥ (2p + 1)D21/n, and T ∈ T .

Next we show that h̄T ,p can be made arbitrarily flat by decreasing the grading of
the partition, i.e., by increasing G, and by increasing p proportionally.

Proposition 12 For G-graded T ∈ T, it holds that

|h̄T ,p(z) − h̄T ,p(z
′)| � 1

p+1 hT ,

uniformly in p ∈ N0, G ≥ (2p + 1)D21/n, T ∈ T , and vertices z, z′ ∈ T , and so
‖∇h̄T ,p‖L∞(Ω) � 1

p+1 .

Proof For z′′ ∈ {z, z′}, let

n(z′′) =
p∑

q=0

∑
T ′∈Rq (z′′,T )

hT ′ , d(z′′) =
p∑

q=0

#Rq(z′′, T ).

Letting R−1(·, ·) := ∅, we have Rq(z′′, T ) \ (Rq(z, T ) ∩ Rq(z′, T )) ⊂ Rq(z′′, T ) \
Rq−1(z′′, T ). Employing Proposition 10, we compute

p∑
q=0

#(Rq(z′′, T )\Rq−1(z
′′, T ))=#Rp(z

′′, T ) � 1

p + 1
d(z′′).

Applying Proposition 9 then yields |n(z)−n(z′)| � hT
p+1 (d(z)+d(z′)), |d(z)−d(z′)| �

1
p+1 (d(z) + d(z′)), and

∣∣∣ n(z′′)
d(z′′)

∣∣∣ � hT . Assuming d(z′) ≥ d(z), we may complete the

proof by writing
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n(z)

d(z)
− n(z′)

d(z′)
= n(z)

d(z)

d(z′) − d(z)

d(z′)
+ n(z) − n(z′)

d(z′)
.

��
Remark 10 Proposition 11 is still valid if the more obvious definition h̄T ,p =∑

T ∈Rp(z,T ) hT /#Rp(z, T ) of the mesh function is used. In order to prove a result
such as Proposition 12 for this mesh function, however, it is necessary to show that,
for G ≥ (2p + 1)D21/n , #(Rp(z′′, T ) \ Rp−1(z′′, T ))/#Rp(z′′, T ) � 1

p+1 , or at
least that it tends to zero for p → ∞. It turns out that such an estimate is difficult to
establish, cf. also Remark 9.

For some applications it is important to have a family of mesh functions that is
non-increasing under (conforming, G-graded) refinements. For G-graded T ∈ T, we
define hT ,p ∈ C(Ω̄) ∩ ∏

T ∈T P1(T ) by

hT ,p(z) = min
{T ′∈T is G−graded:T ′⊂T }

h̄T ,p(z),

where z is any vertex of T .

Proposition 13 The mapping T � T �→ hT ,p is pointwise non-increasing under G-
graded refinements, and for some constants cT, CT, C̃T, which are independent of p,
it holds that

cThT ≤ hT ,p|T ≤ CThT , ‖∇hT ,p‖L∞(Ω) ≤ C̃T
1

p+1 ,

for all G-graded T ∈ T with G ≥ (2p + 1)D21/n, and T ∈ T .

Proof The first two statements follow by definition of hT ,p and Proposition 11.
For vertices z1, z2 of T , let h̄T1,p(z1) = hT ,p(z1) ≤ hT ,p(z2) = h̄T2,p(z2). Then

we have |hT ,p(z1)−hT ,p(z2)| ≤ |h̄T1,p(z1)− h̄T1,p(z2)| ≤ ‖∇h̄T1‖L∞(Ω)‖z1 − z2‖.
Now an application of Proposition 12 shows the second statement. ��

We conclude that given a μ > 0, for p + 1 ≥ C̃Tμ−1 and G ≥ (2p + 1)D21/n ,
the collection of all G-graded T ∈ T can be used as the class Tμ.
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