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Abstract We investigate the decay rate for an adaptive finite element discretization
of a second order linear, symmetric, elliptic PDE. We allow for any kind of estimator
that is locally equivalent to the standard residual estimator. This includes in particular
hierarchical estimators, estimators based on the solution of local problems, estimators
based on local averaging, equilibrated residual estimators, the ZZ-estimator, etc. The
adaptive method selects elements for refinement with Dörfler marking and performs
a minimal refinement in that no interior node property is needed. Based on the local
equivalence to the residual estimator we prove an error reduction property. In com-
bination with minimal Dörfler marking this yields an optimal decay rate in terms of
degrees of freedom.
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1 Introduction

We consider the approximation to second order, linear symmetric elliptic partial dif-
ferential equations by adaptive finite elements with the standard adaptive loop

SOLVE → ESTIMATE → MARK → REFINE. (1.1)
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680 C. Kreuzer, K. G. Siebert

This is: compute the Ritz-approximation in a H1 conforming finite element space over
the current triangulation, calculate an a posteriori error estimator, use Dörfler marking
for the selection of elements to be refined, and refine the current grid into a new one.
For sake of clarity we restrict ourselves to the Poisson problem, conforming refinement
of simplicial grids by bisection, and continuous, piecewise affine finite elements.

After fixing the modules SOLVE, MARK, and REFINE we vary in the module
ESTIMATE by taking different kinds of estimators into account. In particular we use
the standard residual estimator as used in [14], variations of it [1,39,41], hierarchi-
cal estimators [5,35,38,39], an estimator based on local problems on stars [25], an
equilibrated residual estimator [8,6], and the ZZ-estimator [42,12]. We prove that the
standard iteration (1.1) with any of these estimators produces a sequence of discrete
solutions that converges with an optimal rate in terms of degrees of freedom (DOFs)
to the true solution.

Before embarking on the details we want to refer to the books [1,9,7,39] for the
basic theory of adaptive finite elements and additional references. Plain convergence
of the adaptive iteration (1.1) is by now completely understood, even for a larger prob-
lem class, different kind of estimators and marking strategies, and more general type
of grids; compare with the results by Morin, Siebert, and Veeser [26] and Siebert [31].
We also would like to mention the overview article by Nochetto, Siebert, and Veeser
summarizing the main aspects in the convergence and optimality analysis for adaptive
finite elements [27]. Below we restrict ourselves to references intimately connected
with this article.

One key ingredient in constructive approximation of some given function u is a
discrete function U that is completely determined from local values. This means,
changing U within a single element does not affect U in any other element of the grid.
Another important ingredient is an upper bound for the local error on an element that
reduces by a constant factor upon refining the element; compare with [4] and [27].

A fundamental problem in the optimality analysis of adaptive finite element meth-
ods is the fact that the Ritz approximation U is a global projection. Consequently,
refinement of a single element affects the Ritz approximation everywhere. This in turn
inhibits a completely local upper bound on single elements.

Despite this problem it turns out that a global error quantity that is strictly reduced
by (1.1) can be used to prove an optimal decay rate. Based on the fundamental paper
by Dörfler [18], Morin et al. showed that the energy error is such a contracting quan-
tity when using Dörfler marking for both estimator and oscillation and asking for a
sufficient refinement of marked elements and its direct neighbors [23,24]. This result
was generalized in several directions, for instance in [13,22,25]. In particular impor-
tant in the course of this article is the paper by Diening and Kreuzer dealing with
the p-Laplacian [16]. Observing that oscillation is dominated by the estimator they
showed that the sum of error and oscillation is strictly reduced by (1.1) without marking
for oscillation.

Binev et al. were the first to prove an optimal decay rate for an adaptive finite ele-
ment method [3]. Roughly speaking, they utilized the algorithm from [23] to improve
the discrete solution and then added a coarsening step to regain the optimal rate.
Stevenson realized that minimal Dörfler marking makes it possible to relate an optimal
approximation to u with the current Ritz approximation [33]. Thanks to this important
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Decay rates of adaptive finite elements with Dörfler marking 681

observation he was able to remove the coarsening step of [3]. In respect thereof, Dörfler
marking is needed for ensuring an improvement of the discrete solution, and minimal
Dörfler marking then in turn yields an optimal decay rate for the error.

Stevenson altered the standard loop (1.1) by separating marking for the estimator
and oscillation using an inner loop for improving oscillation. In light of the discussion
in [14, Sect. 6] it is clear that marking for two independent quantities simultaneously
might lead to sub-optimal convergence rates.

Based on [16], Cascón et al. showed that marking for oscillation is not mandatory
for deriving a contractive error quantity for (1.1) [14]. To be more precise: considering
the standard residual estimator ÊT , they showed that Dörfler marking implies that a
scaled sum of energy error and estimator is strictly reduced by (1.1). Up to oscillation
this error notion is equivalent to the true error. Asking for minimal Dörfler marking
they also proved an optimal decay rate for the standard iteration (1.1) by adapting the
ideas of Stevenson to this error notion.

The contribution of this article is an optimality result for the standard adaptive loop
(1.1) for different kind of estimators, in particular the ones mentioned above that are
of a quite different nature. Following the ideas in [14], an optimal decay rate would be
an immediate consequence from a contraction result for a scaled sum of energy error
and estimator. However, it is not clear that for a general kind of estimator such a result
holds true. Indeed, even monotonicity is not clear.

Philosophically spoken, the contraction result for the residual estimator ÊT is a
combination of the following two extreme cases. If oscillation is zero (or relatively
small) the energy error strictly reduces as already used in [23,24,33]. The strict reduc-
tion of the energy error does even compensate for a possible non-monotone behavior
of ÊT . Assume next that the discrete solution does not change and therefore the energy
error stalls. In this situation oscillation is large and ÊT strictly reduces thanks to a strict
reduction of the weights of the indicators on refined elements. A suitable combination
of these extreme cases gives the aforementioned contraction for a scaled sum of both
quantities.

The behavior of the residual estimator in the latter case is related to the fact that
it is a scaled L2 norm of the residual, which is stronger than the H−1 norm. There-
fore, ÊT has a tendency to overestimate the true error, in particular when oscillation
is large. Other estimators compute for instance an approximation to the H−1 norm
of the residual by only evaluating it on an enlarged but still finite dimensional space.
Consequently, theses estimators have the tendency to underestimate the error. In fact,
such estimators only become reliable, if one adds oscillation to the upper bound.

The dilemma that the contraction result in [14] is a consequence of the potential
overestimation of ÊT and we are now dealing with estimators that potentially under-
estimate the error makes it evident that we should not aim at a reduction property in
one single iteration.

We master this problem by utilizing a local equivalence of an estimator ET to the
standard residual estimator ÊT . This equivalence has the following important con-
sequence: The Dörfler marking for ET in (1.1) implies a Döfler property for ÊT .
Consequently, [14] implies a contraction of a scaled sum of energy error and ÊT .
Although ÊT is not explicitly used in (1.1), this contracting quantity is then the key to
start the optimality analysis.
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Another approach would be to split the indicators into two parts, where one part
is reducing upon refining an element and the other one can be handled by a discrete
local lower bound; compare for instance with [16]. Following this approach one can
show that a scaled sum of energy error and oscillation is strictly reduced after a fixed
number of iterations. This approach needs a modification of the module MARK and
is considered currently by Cascón and Nochetto. Utilizing the local equivalence of a
given estimator ET to ÊT we do not need to modify any of the modules in (1.1).

For the outline of the article and summary of the main result we next state the prob-
lem under consideration. Given a bounded polyhedral domain � ⊂ R

d and a source
term f ∈ L2(�) we look for a weak solution u such that

−�u = f in �, u = 0 on ∂�. (1.2)

In Sect. 2 we introduce the variational formulation of (1.2) and state the discrete
problem. We then consider several estimators and list their basic properties. In Sect.
3 we state and prove the main results. We start with the basic assumptions on the
adaptive iteration (1.1) and then define the appropriate approximation class As , which
involves the true solution u as well as data f . We then prove the following results for
the sequence {Tk,Uk, Ek}k≥0 of grids, discrete solutions, and estimators produced by
(1.1).

Main Result 1 (Reduction Property) There exist 0 < α < 1 and �1 > 0 such that

(
|||Uk − u|||2 + E2

k

)1/2 ≤ �1 α
k−� (

|||U� − u|||2 + E2
�

)1/2 ∀ 0 ≤ � ≤ k.

Main Result 2 (Optimal Decay Rate) There exists a constant�2 such that if (u, f ) ∈
As there holds

(
|||Uk − u|||2 + E2

k

)1/2 ≤ �2 |u, f |s (#Tk − #T0)
−s .

Concerning the constants �1 and �2 it is important that the constants of the local
equivalence to the standard residual estimator are of moderate size. This is true for
the Poisson problem. In fact, the reliability and efficiency proofs for some estimators
rely on this local equivalence. We conclude this article in Sect. 4 with an extension of
the theory to singularly perturbed problems relying on robust estimators.

We finally would like to point out that the presented framework is neither restricted
to the Poisson problem nor to linear finite elements. This restriction solely accounts
for the clarity of the used arguments. For a generalization of the results we shortly list
the important ingredients for the used arguments.

The results transfer to other elliptic problems that stem from a minimization of
some energy and where the standard residual estimator ÊT provides an upper and
lower bound for the true error; compare for instance with [14] for a more general sym-
metric and linear problem and [16] for a nonlinear problem. In case of linear problems,
the energy minimization implies a crucial orthogonal error decomposition that is heav-
ily used. The indicators of ÊT strictly reduce under refinement, if the discrete solution
does not change. This is one key to construct a suitable contracting quantity for (1.1).
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The proof of Main Result 1 additionally utilizes the local equivalence of some
estimator ET to the standard residual estimator ÊT . Such an equivalence can be shown
for a larger problem class and other discretizations. Dörfler marking then ensures the
refinement of sufficiently many elements for the reduction property of Main Result 1.

The proof of Main Result 2 follows the ideas of [33] and relies besides the reduction
property on a localized upper bound for the difference of two Ritz-projections. Such a
bound can be deduced as consequence of the local equivalence of ET and ÊT or may
be derived directly for ET . In combination with minimal Dörfler marking this implies
that not too many elements are refined, which in turn yields the optimal decay rate of
Main Result 2.

2 Problem, discretization, and error estimation

In this section we introduce the continuous and discrete problem. In order to avoid
technical difficulties we consider the Poisson problem discretized by linear finite ele-
ments. Subsequently we introduce diverse kinds of estimators.

2.1 Continuous and discrete problem

For any measurable subset ω ⊂ R
d with non-empty interior let L2(ω) be the space

of real square integrable Lebesgue functions over ω with scalar product 〈·, ·〉ω. We
denote by H1(ω) the usual Sobolev space of functions in L2(ω)whose first derivatives
are also in L2(ω), endowed with the norm

‖u‖H1(ω) :=
(
‖u‖2

L2(ω)
+ ‖∇u‖2

L2(ω)

)1/2
.

Finally, we let V := H1
0 (�) be the space of functions in H1(�) with vanishing trace

on ∂�.

Continuous Problem. The weak solution u of (1.2) is the unique solution of the
variational problem

u ∈ V : B[u, v] = 〈 f, v〉� ∀ v ∈ V, (2.1)

where the bilinear B : V × V → R form is defined to be B[w, v] := ∫
�

∇v · ∇w dx .
The semi-norm |·|H1(�) := ‖∇ · ‖L2(�) is a norm on V = H1

0 (�) that is equivalent
to ‖·‖H1(�), thanks to the Poincaré–Friedrichs inequality [19]. Therefore, B is a scalar
product on V inducing the energy norm |||·||| := B[·, ·]1/2 = |·|H1(�) . The restriction
of the energy norm to a subset ω ⊂ � is denoted by |||v|||ω := (

∫
ω

|∇v|2 dx)1/2.
Existence and uniqueness of a weak solution u ∈ V to (2.1) is therefore a direct
consequence of the Riesz Representation Theorem [19, Theorem 5.7].

Discrete Problem. We use linear finite elements for the discretization. To be more
precise: Given a conforming triangulation T of �, which is built from closed sim-
plexes, we let V(T ) be the space of continuous, piecewise affine functions over T with
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vanishing trace on ∂�. The discrete solution is the Ritz-approximation U ∈ V(T ) of
u, i.e., U is the unique solution of the discrete problem

U ∈ V(T ) : B[U, V ] = 〈 f, V 〉� ∀ V ∈ V(T ). (2.2)

Note, that we hereby assume exact integration and exact linear algebra.

2.2 Error estimation

In general, a posteriori error estimation aims at deriving a computable bound for a
negative norm of the residual Res(U ) ∈ H−1(�) defined as

〈Res(U ), v〉 := B[U, v] − 〈 f, v〉� = B[U − u, v] ∀ v ∈ H1
0 (�).

In our setting, the norm of Res(U ) is induced by the energy norm

|||Res(U )|||∗ := sup
v∈V

〈Res(U ), v〉
|||v||| .

In the derivation of such bounds, the normal flux of ∇U across inter-element sides
plays an important role. Denoting by 	 the skeleton of T , i.e., the union of all sides
in T , we define the jump residual J (U ) ∈ L2(	) as follows. For an interior side
σ = T1 ∩ T2 we let J (U ) be the normal flux of ∇U , i.e.,

J (U )|σ := [[∇U ]]|σ = (∇U|T1 · nT1 + ∇U|T2 · nT2

)
|σ ,

where nT is the outer normal of T . On a boundary side σ ⊂ ∂� we set J (U ) = 0.
Note, that J (U ) is piecewise constant over	. The definition of the jump residual and
Green’s formula then imply

〈Res(U ), v〉 =
∫

	

J (U )v do − 〈 f, v〉�.

We next introduce the standard residual estimator ÊT and then consider several
error estimators ET that are equivalent to ÊT . In the context of convergence and, espe-
cially, optimality analysis of adaptive methods, the specific choice of the weights in
the definition of ÊT is one of the key ingredients. The equivalence of another estimator
ET to ÊT substitutes for this as we shall see in Sect. 3.

Any explicit constant C or implicit constant hidden in ‘�’,‘�’, or ‘≈’ only depends
on the shape regularity of the grid T , �, and the dimension d.

2.2.1 Standard residual estimator

A paramount role in this paper plays the following definition of the residual estimator
that we denote by ÊT . Denoting by hT : � → R

+ the piecewise constant mesh size
function defined as
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hT |T = |T |1/d ∀ T ∈ T ,

the element indicators of the standard residual estimator are given by

Ê2
T (U, T ) := ‖hT f ‖2

L2(T ) + ‖h1/2
T J (U )‖2

L2(∂T ) ∀ T ∈ T . (2.3)

The set {Ê2
T (U, T )}T ∈T of indicators builds up the estimator Ê2

T (U, T ), which is
reliable and efficient, i.e.,

|||U − u|||2 ≤ Ĉ1Ê2
T (U, T ) := Ĉ1

∑
T ∈T

Ê2
T (U, T ), (2.4a)

Ĉ2Ê2
T (U, T ) ≤ |||U − u|||2 + ôsc2

T ( f, T ) := |||U − u|||2 +
∑
T ∈T

ôsc2
T ( f, T ). (2.4b)

Local data oscillation on T is defined with the mean value fT := 1
|T |

∫
T f dx of f as

ôscT ( f, T ) := ‖hT ( f − fT )‖L2(T ).

Generically, data oscillation is of higher order.

2.2.2 Variants of the residual estimator

In this section we briefly introduce two variants of the residual estimator introduced
above. These variants are not directly included in [14].

A common definition of the indicators for the residual estimator is

E2
T (U, T ) := h2

T ‖ f ‖2
L2(T ) +

∑
σ⊂∂T

hσ‖J (U )‖2
L2(σ )

∀ T ∈ T , (2.5)

where we have some scope of choosing the weights hT and hσ . A typical choice is
hT := diam(T ) and hσ := diam(σ ), see for instance [23,39]. Any choice of hT and
hσ such that

hT |T � hT � hT |T and hT |T � hσ � hT |T ∀ T ∈ T

results in the obvious element by element equivalence

E2
T (U, T ) � Ê2

T (U, T ) � E2
T (U, T ) ∀ T ∈ T . (2.6)

The equivalence of the indicators readily implies

|||U − u|||2 � E2
T (U, T ) :=

∑
T ∈T

E2
T (U, T ), (2.7a)

E2
T (U, T ) � |||U − u|||2 + osc2

T ( f, T ), (2.7b)

where oscillation is defined as above, i.e., oscT = ôscT .
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Veeser and Verfürth have given a definition of the residual estimator with explicit
constants that is organized by stars [41]. Denote by N = N (T ) the set of all vertices
of T . The finite element star ωz at z ∈ N is the support of the hat function φz at z,
which is

ωz := ω(T , z) =
⋃

{T ∈ T : z ∈ T }.

Note that
∑

z∈N φz ≡ 1 is a partition of unity and that the set of hat functions at

interior nodes z ∈ N̊ := N ∩� is a basis of V(T ).
The indicators are not given element-wise but are indexed by the vertices and defined

as follows:

E2
T (U, z) := c(ωz) h2

z‖ f ‖2
L2(ωz)

+ c(	z)
∑
σ⊂	z

h2
z

h⊥
σ

‖J (U )‖2
L2(σ )

∀ z ∈ N , (2.8)

where 	z is the union of all sides that have z as a common vertex. The derivation of
the estimator relies on a precise tracking of constants from local Poincaré and trace
inequalities. These constants scale as stated in (2.8) with the local mesh sizes

hz := diam(ωz) and h⊥
σ := |ωσ |

|σ | ,

where for σ ∈ S with the two adjacent elements T1, T2 ∈ T such that σ = T1 ∩ T2
we set ωσ = ωσ (T , σ ) = T1 ∪ T2. Shape regularity of T readily implies

hT |T ≤ hz � hT |T and hT |T � h2
z/h⊥

σ � hT |T ∀ T ⊂ ωz . (2.9)

The additional constants c(ωz) and c(	z) are related to the shape of the star and are
uniformly bounded [41, Sect. 5].

The estimator satisfies the upper

|||U − u|||2 � E2
T (U,N ) :=

∑
z∈N

E2
T (U, z). (2.10a)

Standard techniques, in combination with the uniform estimates for c(ωz) and c(	z)

give the lower bound

E2
T (U,N ) � |||U − u|||2 + osc2

T ( f,N ) := |||U − u|||2 +
∑
z∈N

osc2
T ( f, z). (2.10b)

Hereby, local data oscillation on the star ωz is defined as

osc2
T ( f, z) := c(ωz) h2

z‖( f − fz)φ
1/2
z ‖2

L2(ωz)
,

where fz |T = 1
|T |

∫
T f φz dx is the weighted mean value of f in T ∈ T .
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We next turn to the local equivalence to ÊT . For N ′ ⊂ N we have

E2
T (U,N

′) �
∑

T ⊂T (N ′)
Ê2
T (U, T ) =: Ê2

T
(
U, T (N ′)

)
(2.11a)

with T (N ′) := {T ∈ T | T ⊂ ωz for some z ∈ N ′}. On the other hand, any indicator
ÊT (U, T ) is controlled by the sum of the indicators ET (U, z) with z ∈ T . Moreover,
for T ′ ⊂ T we have

Ê2
T (U, T

′) �
∑

z∈N (T ′)
E2
T (U, z) =: E2

T
(
U,N (T ′)

)
, (2.11b)

where N (T ′) := {z ∈ N | z ∈ T for some T ∈ T ′}. In summary, both variants of the
residual estimator are locally equivalent to ÊT .

2.2.3 Hierarchical estimators

The idea of hierarchical estimators is based upon evaluating the residual with suffi-
ciently many discrete functions that do not belong to V(T ). Suitable functions are side
and element bubble functions that are either higher order finite elements on the same
grid or linear finite elements on a refined mesh. Most results of this section can, e.g.,
be found in [35,38,39]; compare also with [1,5,17].

We use a variant of the hierarchical estimator indexed by the interior sides of T ,
which we denote by S. For the precise definition of the side and element bubble func-
tions we introduce the following spaces. We let Vp(T ) ⊂ V be continuous piecewise
polynomials of degree p ∈ N over T with vanishing trace on ∂�. Furthermore, we
denote by T+ the conforming refinement of T such that for any σ ∈ S and T ∈ T
there exist zσ , zT ∈ N (T+) \ N (T ) that belong to the interior of σ respectively T .
Recall the notation ωσ , σ ∈ S for the union of adjacent elements given in Sect. 2.2.2.
We then let either φσ ∈ Vd(T ) or φσ ∈ V(T+) be the unique function satisfying

φσ (zσ ) > 0, supp(φσ ) ⊂ ωσ , and |||φσ ||| = 1.

For T ∈ T we either select φT ∈ Vd+1(T ) or φT ∈ V(T+) uniquely determined by

φT (zT ) > 0, supp(φT ) ⊂ T, and |||φT ||| = 1.

For σ ∈ S the associated indicator is then given as

E2
T (U, σ ) := 〈Res(U ), φσ 〉2 +

∑
T ⊂ωσ

(
〈Res(U ), φT 〉2 + ‖hT ( f − fT )‖2

L2(T )

)
.
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Assuming S �= ∅, the estimator is reliable and efficient, i.e.,

|||U − u|||2 �
∑
σ∈S

E2
T (U, σ ) =: E2

T (U,S) (2.12a)

E2
T (U,S) � |||U − u|||2 + osc2

T ( f,S) =: |||U − u|||2 +
∑
σ∈S

osc2
T ( f, σ ), (2.12b)

where local oscillation on ωσ is defined as

osc2
T ( f, σ ) :=

∑
T ⊂ωσ

ôsc2
T ( f, T ),

compare with [38,39]. Note, that the assumption S �= ∅ just rules out trivial cases like
#T = 1.

Recalling |||φT ||| = 1, the local Friedrich’s inequality ‖φT ‖L2(T ) ≤ hT := diam(T )
directly implies

|〈Res(U ), φT 〉| =
∣∣∣∣∣∣

∫

T

f φT dx

∣∣∣∣∣∣
≤ ‖hT f ‖L2(T ).

In this vein, ‖φσ‖L2(ωσ )
≤ hσ := diam(ωσ ) and in combination with a scaled trace

inequality we bound

|〈Res(U ), φσ 〉|=
∣∣∣∣∣∣

∫

σ

J (U ) φσ do−
∫

ωσ

f φσ dx

∣∣∣∣∣∣
� ‖h1/2

σ J (U )‖L2(σ )+‖hσ f ‖L2(ωσ )
.

The local mesh sizes hT and hσ are locally equivalent to hT in ωσ . Consequently,
thanks to the finite overlap of patches ωσ , σ ∈ S, we have

E2
T (U,S

′) �
∑

T ∈T (S ′)
Ê2
T (U, T ) = Ê2

T
(
U, T (S ′)

)
, (2.13a)

for all S ′ ⊂ S with T (S ′) := {T ∈ T | T ⊂ ωσ for some σ ∈ S ′}. Note, that we
also have used the fact that oscillation is dominated by the residual estimator, i.e.,
oscT ( f, σ ) ≤ ÊT (U, T ({σ })).

Verfürth has shown in [39, (1.52) & (1.57)] the estimates

‖h1/2
σ J (U )‖2

L2(σ )
� 〈Res(U ), φσ 〉2 + ‖hT f ‖2

L2(ωσ )
,

‖hT f ‖2
L2(T ) � 〈Res(U ), φT 〉2 + ‖hT ( f − fT )‖2

L2(T ).
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Therefore, the indicator ÊT (U, T ) on T is controlled by the hierarchical indicators at
its interior sides. Hence, for S(T ′) := {σ ∈ S | σ ⊂ T for some T ∈ T ′}, T ′ ⊂ T :

Ê2
T (U, T

′) �
∑

σ⊂T ∩�
E2
T (U, σ ) := E2

T
(
U,S(T ′)

)
, (2.13b)

which proves local equivalence of the residual estimator ÊT and the hierarchical esti-
mator.

2.2.4 Estimators based on local problems

Morin, Nochetto, and Siebert have introduced for two space dimension an estimator
that is based on solving local problems on stars [25]. For z ∈ N , the finite element
star ωz , its skeleton 	z , and the hat-function φz are already introduced in Sect. 2.2.2.

The local problems are solved in a local function space Wz consisting of continuous
piecewise quadratic finite elements inside the starωz that have vanishing trace on ∂ωz .
For an interior node z ∈ N̊ = N ∩� the elements ψ ∈ Wz are additionally required
to satisfy

∫
ωz
ψ φz dx = 0.

The star estimator is then defined as follows. For each vertex z ∈ N solve the linear
problem

ηz ∈ Wz :
∫

ωz

∇ηz · ∇ψ φz dx =
∫

	z

J (U )ψφz do −
∫

ωz

f ψφz dx ∀ψ ∈ Wz

and set

E2
T (U, z) := ‖∇ηzφ

1/2
z ‖2

L2(ωz)
+ h2

z‖( f − fz)φ
1/2
z ‖2

L2(ωz)
.

Hereafter, fz = ∫
ωz

f φz dx/
∫
ωz
φz dx is for z ∈ N̊ a weighted mean value of f over

ωz and fz = 0 for a boundary vertex z ∈ N ∩ ∂�. As above, the local mesh size is
defined to be hz = diam(ωz).

In [25] it has been shown that this estimator is reliable and efficient, i.e.,

|||U − u|||2 �
∑
z∈N

E2
T (U, z) =: E2

T (U,N ) (2.14a)

E2
T (U,N ) � |||U − u|||2 + osc2

T ( f,N ) := |||U − u|||2 +
∑
z∈N

osc2
T ( f, z), (2.14b)

where osc2
T ( f, z) := ‖hz( f − fz)φ

1/2
z ‖2

L2(ωz)
.

Similar arguments as for the hierarchical estimator yield

E2
T (U, z) � h2

z‖ f φ1/2
z ‖2

L2(ωz)
+ hz‖J (U )φ1/2

z ‖2
L2(	z)

,
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whence, recalling that {φz}z∈N is a partition of unity, we arrive at

E2
T (U,N

′) �
∑

T ∈T (N ′)
Ê2
T (U, T ) := Ê2

T
(
U, T (N ′)

)
, N ′ ⊂ N , (2.15a)

with T (N ′) as in Sect. 2.2.2.
To bound the residual estimator in terms of the star estimator we first construct

suitable test functions. For σ ∈ S let ψσ ∈ V2(T ) be the piecewise quadratic edge
bubble function with supp(ψσ ) = ωσ ; compare with Sect. 2.2.3. For z ∈ N let
ψz ∈ V2(T ) be the piecewise quadratic Lagrange basis function associated with z.
Therefore, supp(ψz) = ωz , ψz(z) = 1, and ψz equals zero at the midpoints of all
edges σ ⊂ 	z .

Let σ ∈ S be arbitrarily chosen and fix any of its vertices z ∈ N ∩ σ . Follow-
ing ideas for the construction of an interpolation operator into Wz in the proof of
[25, Lemma 3.7] we set

αz = 4
d

|ωσ |
|ωz | , ασ = 3

d − αz
2 , and ασ ′ = −αz

2 ∀σ ′ ⊂ 	z, σ
′ �= σ

and define

ψ z
σ :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
σ ′⊂	z

ασ ′ψσ ′ + αzψz, z ∈ N̊ ,

ψσ /

∫

σ

ψσφz do, otherwise.

The construction of the test function ψ z
σ implies the following properties:

ψ z
σ ∈ Wz,

∫

σ

ψ z
σ φz do = 1

d |σ |,
∫

σ ′
ψ z
σ φz do = 0, ∀σ ′ ⊂ 	z, σ

′ �= σ,

and

‖∇ψ z
σ φ

1/2
z ‖L2(ωz)

� 1;

see the proof of [25, Lemma 3.7]. Using the short form Jσ = J (U )|σ ∈ R we obtain
by definition of the solution ηz of the local problem and the definition of ψ z

σ

∫

σ

J 2(U )φz do = J 2
σ

∫

σ

φz do = J 2
σ

∫

σ

ψ z
σ φz do =

∫

	z

J (U )
(
Jσψ

z
σ

)
φz do

=
∫

ωz

∇ηz · (
Jσ∇ψ z

σ

)
φz dx −

∫

ωz

f
(
Jσψ

z
σ

)
φz dx,

since Jσψ z
σ ∈ Wz . Recalling the definition of fz we conclude from Jσψ z

σ ∈ Wz the
identity

∫
ωz

f
(
Jσψ z

σ

)
φz dx = ∫

ωz
( f − fz)

(
Jσψ z

σ

)
φz dx . The Cauchy–Schwartz
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inequality therefore implies

∫

σ

J 2
σ φz do ≤

(
‖∇ηzφ

1/2
z ‖2

L2(ωz)
+ h2

z‖( f − fz)φ
1/2
z ‖2

L2(ωz)

)1/2

×
(
‖Jσ∇ψ z

σ φ
1/2
z ‖2

L2(ωz)
+ h−2

z ‖Jσψ
z
σ φ

1/2
z ‖2

L2(ωz)

)1/2
.

The equivalence of norms on Wz together with standard scaling arguments yields

‖Jσ∇ψ z
σ φ

1/2
z ‖L2(ωz)

� h−1/2
z ‖Jσ φ

1/2
z ‖L2(σ ),

‖Jσψ
z
σ φ

1/2
z ‖L2(ωz)

� h1/2
z ‖Jσ φ

1/2
z ‖L2(σ ).

Summarizing, for any T ′ ⊂ T we have deduced

∑
T ∈T ′

‖h1/2
T J (U )‖2

L2(∂T ) �
∑

z∈N (T ′)
‖h1/2

z J (U )φ1/2
z ‖2

L2(	z)

�
∑

z∈N (T ′)
‖∇ηzφ

1/2
z ‖2

L2(ωz)
+ h2

z‖( f − fz)φ
1/2
z ‖2

L2(ωz)

= E2
T (U,N (T ′)),

where we used the definition of N (T ′) from Sect. 2.2.2.
We next turn to ‖hT f ‖L2(T ) where we use the well-known fact, that the element

residual is dominated by the jump residual plus oscillation on the star. To be more
precise: for any interior node z ∈ N̊ we deduce from the discrete problem (2.2) for
the hat-function φz ∈ V(T )

∫

ωz

f φz dx = B[U, φz] =
∫

	z

J (U )φz do.

Since fz ∈ R we therefore infer

∫

ωz

| fz |2φz dx =
∫

ωz

f fzφz dx +
∫

ωz

( fz − f ) fzφz dx

=
∫

	z

J (U ) fzφz do +
∫

ωz

( fz − f ) fzφz dx

�
(

h−1
z ‖J (U )φ1/2

z ‖2
L2(	z)

+ ‖( f − fz)φ
1/2
z ‖2

L2(ωz)2

)1/2 ‖ fz‖L2(ωz)
,
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using hz‖ fz‖2
L2(	z)

� ‖ fz‖2
L2(ωz)

. Recalling that fz = 0 for boundary nodes, which
implies

∑
T ∈T ′

‖hT f ‖2
L2(T ) ≤

∑
z∈N (T ′)

‖hT f φ1/2
z ‖2

L2(T )

≤
∑

z∈N (T ′)
2h2

z‖ fzφ
1/2
z ‖2

L2(ωz)
+ 2h2

z‖( f − fz)φ
1/2
z ‖2

L2(ωz)

� hz‖J (U )φ1/2
z ‖2

	z
+ h2

z‖( f − fz)φ
1/2
z ‖2

L2(ωz)

for all T ′ ⊂ T . Combining this with the bound for the jump residual we see

Ê2
T (U, T

′) �
∑

z∈N (T ′)
hz‖J (U )‖2

	z
+ h2

z‖( f − fz)φ
1/2
z ‖2

L2(ωz)

�
∑

z∈N (T ′)
E2
T (U, z) =: E2

T (U,N (T ′)), T ′ ⊂ T . (2.15b)

In summary, we have shown that the residual estimator ÊT and the star estimator are
locally equivalent.

2.2.5 Equilibrated residual estimators

In this section we analyze error estimators motivated by the fundamental theorem of
Prager and Synge: For any ξ ∈ H(div;�) with div ξ + f = 0 it holds

‖∇(v − u)‖2
L2(�)

+ ‖ξ − ∇u‖2
L2(�)

= ‖∇v − ξ‖2
L2(�)

∀v ∈ V;

compare with [8,30]. Assuming that for the Ritz projection v = U ∈ V(T ) we can
compute a suitable function ξ , we obtain the constant free a posteriori error bound

‖∇(U − u)‖2
L2(�)

≤ ‖∇U − ξ‖2
L2(�)

.

Braess and Schöberl construct a suitable ξ based on a local flux equilibration using
broken Raviart–Thomas spaces; see [10]. For ease of exposition we restrict ourselves
here to the case d = 2 and consider the broken Raviart–Thomas space

RT
−1(T ) :=

{
g ∈ L2(�; R

2) | g|T (x) = a + bx, a ∈ R
2, b ∈ R ∀T ∈ T

}
.

The space RT
−1(T ) does not require any continuity across inter-element sides.

The construction of the estimator is based on the solution of local divergence equa-
tions in the local spaces RT

−1(T ; z) := {g|ωz
| g ∈ RT

−1(T )}, z ∈ N . To be more
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precise: Given z ∈ N find ξz ∈ RT
−1(T ; z) with minimal L2-norm such that

div ξz |T = − 1

|T |
∫

T

f φz dx =: fz |T , in each T ⊂ ωz,

[[
ξz

]]
|σ =

∫

σ

J (U )φz do = 1

2
J (U )|σ , on each σ ⊂ 	z,

ξz · n = 0, on ∂ωz,

(2.16)

where n denotes the outer unit normal on ∂ωz . Note, that a necessary condition for
(2.16) being well-posed is the Galerkin orthogonality

∫
	z

J (U )φz do = ∫
ωz

f φz dx .
The solution ξz of (2.16) depends linearly on discrete data fz and ∇U|ωz . Since ξz

has minimal L2-norm we conclude ξz ≡ 0 if and only if fz ≡ 0 in ωz and ∇U is
constant onωz . Therefore, applying equivalence of norms on finite dimensional spaces
in combination with standard scaling arguments we arrive at

‖ξz‖2
L2(ωz)

≈ h2
z‖ fzφ

1/2
z ‖2

L2(ωz)
+ hz‖J (U )φ1/2

z ‖2
L2(	z)

. (2.17)

This means, that up to oscillation ‖ξz‖L2(ωz)
is locally equivalent to the residual esti-

mator organized by stars; compare with Sect. 2.2.2.
We next construct ξ ∈ H(div;�) by using the partition of unity {φz}z∈N :

div ξT (U ) := div
∑
z∈N

ξz = Res(U )+ f − fT

in distributional sense, where we used that fT = ∑
z∈N fzφz for the piecewise con-

stant L2 best approximation fT to f of Sect. 2.2.1. Taking ξ := ∇U + ξT (U ) the
theorem of Prager and Synge in combination with a perturbation argument yields

‖∇u − ∇U‖2
L2(�)

≤ ‖ξT (U )‖2
L2(�)

+ C
∑
z∈N

h2
z‖( f − fz)φ

1/2
z ‖2

L2(ωz)
. (2.18a)

see [8,10]. This is the upper bound for the indicators

E2
T (U, z) := ‖ξz‖2

L2(ωz)
+ h2

z‖( f − fz)φ
1/2
z ‖2

L2(ωz)
.

The equivalence (2.17), in combination with (2.10b) yields the lower bound

E2
T (U,N ) :=

∑
z∈N

E2
T (U, z) � ‖∇u − ∇U‖2

L2(�)
+ osc2

T ( f,N ) (2.18b)

with

osc2
T ( f, z) := h2

z‖( f − fz)φ
1/2
z ‖2

L2(ωz)
and osc2

T ( f,N ) :=
∑
z∈N

osc2
T ( f, z).

123



694 C. Kreuzer, K. G. Siebert

The local equivalence to the standard residual estimator follows by (2.17) similar to
Sect. 2.2.2. In addition we have to use the fact that the residual estimator dominates
the oscillation to obtain

E2
T (U,N

′) � Ê2
T (U, T (N

′)), ∀N ′ ⊂ N , (2.19a)

Ê2
T (U, T

′) � E2
T (U,N (T ′)), ∀T ′ ⊂ T , (2.19b)

where T (N ′) and N (T ′) are defined in Sect. 2.2.2.

Remark 2.1 Assuming that f is piecewise constant over an initial triangulation T0,
we could also include the estimator by Braess et al. [6]. However, it is unclear how to
adopt the result for general f .

2.2.6 Recovery based estimators

Zienkiewicz and Zhu introduced an estimator based upon gradient recovery [42].
Philosophically, the ZZ-estimator is an estimate for ‖∇(U − u)‖L2(�) rather than for
|||Res(U )|||∗. For the particular problem at hand it holds |||·||| = ‖∇ ·‖L2(�), whence the
ZZ-estimator is also an estimator for the energy norm that fits into our framework.

Denoting by V(T ; R
d) the space of continuous, piecewise affine vector fields over

T , the averaging operator GT : V → V(T ; R
d) is defined from the nodal values

(GT V )(z) = 1
|ωz |

∫
ωz

∇V dx for z ∈ N . Based on this operator we define the local
error indicators by

E2
T (U, z) :=

{
‖(∇U − GT U )φ1/2

z ‖2
L2(ωz)

+ h2
z‖( f − fz)φ

1/2
z ‖2

L2(ωz)

}
, z ∈ N .

Here, we use hz = diam(ωz), and fz = ∫
ωz

f φz dx/
∫
ωz
φz dx , if z ∈ N̊ := N ∩�,

and fz = 0, otherwise. The resulting estimator indexed by vertices is reliable and
efficient, i.e.,

‖∇(U − u)‖2
L2(�)

�
∑
z∈N

E2
T (U, z) =: E2

T (U,N ) (2.20a)

E2
T (U,N ) � ‖∇(U − u)‖2

L2(�)
+ osc2

T ( f,N ). (2.20b)

Here, oscillation for a vertex z is defined by

osc2
T ( f, z) := h2

z‖( f − fz)φ
1/2
z ‖2

L2(ωz)
and osc2

T ( f,N ) :=
∑
z∈N

osc2
T ( f, z);

compare for instance with [12].
Using equivalence of norms on finite dimensional spaces in combination with scal-

ing arguments we obtain

h1/2
z ‖J (U )‖L2(	z)

� ‖∇U − GT U‖L2(ωz)
� h1/2

z ‖J (U )‖L2(	z)
∀ z ∈ N

(2.21)
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recalling that 	z is the union of sides emanating from z ∈ N . The oscillation part of
the indicator ET (U, z) is dominated by the element residuals of ÊT which in summary
implies

E2
T (U,N

′) �
∑

T ∈T (N ′)
Ê2
T (U, T ) =: Ê2

T (U, T (N
′)), N ′ ⊂ N , (2.22a)

with T (N ′) defined as in Sect. 2.2.2.
For estimating the residual estimator by the ZZ-estimator we proceed as in

Sect. 2.2.4 to obtain

h2
z‖ f φ1/2

z ‖2
L2(ωz)

� hz‖J (U )φ1/2
z ‖2

L2(	z)
+ h2

z‖( f − fz)φ
1/2
z ‖2

L2(ωz)
∀z ∈ N .

Combining this with (2.21) and recalling that {φz}z∈N is a partition of unity we deduce

Ê2
T (U, T

′) �
∑

z∈N (T ′)
E2
T (U, z) = E2

T (U,N (T ′)), T ′ ⊂ T , (2.22b)

where we use the definition of N (T ′) from Sect. 2.2.2. This shows that the residual
estimator ÊT and the ZZ-estimator are locally equivalent.

3 An optimal adaptive finite element method

In this section we analyze the standard adaptive loop (1.1) with main focus on different
estimators. We first state the precise assumptions on the adaptive algorithm and then
prove the main results.

3.1 Adaptive discretization

Before embarking on the adaptive algorithm we describe the framework for refinement
and error estimation.

3.1.1 Framework for refinement

We restrict ourselves to refinement by bisection; compare with [2,20,21,37] as well
as [27,32] and the references therein. To be more precise: Refinement is based on an
initial conforming triangulation T0 of � and a procedure REFINE with the follow-
ing properties. Given a conforming triangulation T and a subset M ⊂ T of marked
elements

T∗ = REFINE(T ,M)

is a conforming refinement of T such that all elements in M are bisected. In general,
additional elements are refined in order to ensure conformity. The input T can either
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be T0 or the output of a previous application of REFINE. The class of all conforming
triangulations that can be produced from T0 by REFINE we denote by T. For T ∈ T

we call T∗ ∈ T a refinement of T if T∗ is produced from T by a finite number of
applications of REFINE and we denote this by T ≤ T∗ or T∗ ≥ T .

One key property of the refinement rule is uniform shape regularity for any T ∈ T.
This means that constants depending on the shape regularity are uniformly bounded
by a constant depending on T0. In particular, all constants of Sect. 2.2 are uniform for
T ∈ T. Hereafter, all explicit constants C , Ci , or implicit constants hidden in ‘�’,
‘�’, and ‘≈’ do only depend on the class T, the domain �, and the dimension d.
Furthermore, we only deal with conforming grids, this means, whenever we refer to
some triangulation T or T∗ we implicitly assume T , T∗ ∈ T.

3.1.2 Framework for error estimation

We next set up a framework for error estimation that includes all estimators presented
in Sect. 2.2 and that might also be suitable to treat other estimators. As we have seen,
the various estimators are indexed differently, namely by elements, sides, or vertices,
and the local equivalence of Sect. 2.2 involves local element patches depending on the
index set of ET . We introduce some notation that allows for a unified presentation.
We denote by I the index set that is used for indexing the estimator, i.e., I is either
T , S, or N . For any subset I ′ ⊂ I we use the notation

E2
T (U, I

′) :=
∑
I∈I ′

E2
T (U, I ) and osc2

T (U, I
′) :=

∑
I∈I ′

osc2
T (U, I ).

The local equivalences of Sect. 2.2 involve the patchesωI that are defined as follows.
If I = T then ωT := ω(T , T ) := T , else if I = S we use ωσ := ω(T , σ ) = T1 ∪ T2
for an interior side σ = T1 ∩ T2, and if I = N we set ωz := ω(T , z) = supp(φz).
Note, that the definition of the patches depends on the underlying triangulation.
A patch ω(T , I )may change during refinement although the index I does not change.

We use the following relation between an index set and the corresponding triangu-
lation

T (I ′) := {T ∈ T | T ⊂ ωI for some I ∈ I ′} ∀I ′ ⊂ I

and the converse relation

I(T ′) := {I ∈ I | I ⊂ T for some T ∈ T ′} ∀T ′ ⊂ T .

The definition of T (I ′) and I(T ′) for subsets I ′ ⊂ I and T ′ ⊂ T allows us to sum
indicators over the corresponding subsets.

For a given index I ∈ I, the set T ({I }) contains exactly those elements T ∈ T that
enter in the definition of ET (U, I ). In this vein, the set of active indices on T ∈ T
is I({T }), i.e., T enters in the definition of ET (U, I ) for all I ∈ I({T }). Using this
notion, the local equivalences (2.6), (2.11), (2.13), (2.15), and (2.22) for the different
estimators then read
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E2
T (U, I

′) � Ê2
T (U, T (I

′)) and Ê2
T (U, T

′) � E2
T (U, I(T

′)) (3.1)

for all I ′ ⊂ I and T ′ ⊂ T .
When dealing with a refinement T ≤ T∗ we need the notion of refined index set.

Denoting by I = I(T ) and I∗ = I(T∗) the respective index sets, the set of refined
indices is

RT →T∗(I) := I \ I∗ ∪ {I ∈ I ∩ I∗ | ω(T , I ) �= ω(T∗, I )},

i.e., RT →T∗(I) contains all those indices I ∈ I such that at least one element inside
the patch ω(T , I ) is refined when going from T to T∗. Note, that RT →T∗(T ) is the
set of refined elements, i.e., RT →T∗(T ) = T \ T∗. The notion of refined index set is
more involved than the set of refined elements, which can be seen from the following
lemma.

Lemma 3.1 (Relation of Refined Indices and Elements) For given triangulation T
and refinement T∗ ≥ T holds

RT →T∗(I) = I(RT →T∗(T )) = I(T∗\T ).

Proof 1 We first show RT →T∗(I) ⊆ I(T∗\T ). Considering the case I ∈ I \I∗ =
I(T ) \ I(T∗) we realize that there is a T ∈ T \ T∗ such that I ⊂ T . There-
fore, I ∈ I(T \ T∗). For I ∈ {I ∈ I ∩ I∗ | ω(T , I ) �= ω(T∗, I )} there exists
T ∈ T \ T∗ such that T ⊂ ω(T , I ). This implies I ⊂ T and consequently
I ∈ I(T \ T∗).

2 We next show I(T∗ \ T ) ⊆ RT →T∗(I). For I ∈ I(T \ T∗) we distinguish
two cases: I ∈ I \ I∗ and I ∈ I ∩ I∗. In the first case we obviously have
I ∈ RT →T∗(I). In the later one there is T ∈ T and T∗ ∈ T∗ such that I ⊂ T and
I ⊂ T∗. This in turn implies ω(T , I ) �= ω(T∗, I ) and therefore I ∈ RT →T∗(I).��

3.1.3 The adaptive algorithm: assumptions and basic properties

We are now in the position to formulate the adaptive method and to state the assump-
tions on its modules. Starting with T0 the adaptive loop is an iteration of the following
main steps:

(1)Uk := SOLVE (V(Tk)) .

(2) {Ek(Uk, I )}I∈Ik := ESTIMATE (Uk, Ik, Tk) .

(3)Mk := MARK
({Ek(Uk, I )}I∈Ik , Ik

)
.

(4) Tk+1 := REFINE (Tk, T (Mk)) , increment k.

(3.2)

We next state the precise assumptions on the modules.
SOLVE. Given a grid T ∈ T, the output

U = SOLVE(T )

123



698 C. Kreuzer, K. G. Siebert

is the exact Ritz-approximation U ∈ V(T ) to u, i.e., U is the solution to (2.2).
The presented results crucially rely on the following properties of the finite ele-

ment spaces. Whenever T ≤ T∗ holds, the finite element spaces are nested, i.e.,
V(T ) ⊂ V(T∗). Nesting of spaces in combination with the fact that B is a scalar
product yields the following orthogonal error decomposition

|||U − u|||2 = |||U∗ − u|||2 + |||U∗ − U |||2 , (3.3)

where U ∈ V(T ) and U∗ ∈ V(T∗) are the Ritz-approximations to u in V(T ) respec-
tively V(T ∗).

ESTIMATE. Given a grid T ∈ T, the index set I, and the discrete solution U ∈ V(T )
the output

{ET (U, I )}I∈I = ESTIMATE(U, I, T )

is a set of local error indicators ET (U, I ) that build up an error estimator ET (U, I)
with the following properties:

(1) The estimator is reliable and efficient, i.e., there exist constants C1 and C2 such
that

|||U − u|||2 ≤ C1E2
T (U, I) (3.4a)

and

C2E2
T (U, I) ≤ |||U − u|||2 + osc2

T ( f, I). (3.4b)

(2) The estimator provides a localized upper bound, i.e., there exists a constant C̄1
such that for any refinement T∗ ≥ T and the Ritz-approximation U∗ ∈ V(T∗)
there holds

|||U − U∗|||2 ≤ C̄1E2
T

(
U,RT →T∗(I)

)
. (3.5)

(3) We require that ET is locally equivalent to the residual estimator ÊT , i.e., there
exist constants 0 < C3 ≤ C4 with

C3E2
T (U, I

′) ≤ Ê2
T (U, T (I ′)) ∀ I ′ ⊂ I (3.6a)

and

Ê2
T (U, T

′) ≤ C4E2
T (U, I(T ′)) ∀T ′ ⊂ T ; (3.6b)

(4) We suppose that oscillation oscT has the following properties. The estimator
dominates oscillation, i.e.,

oscT ( f, I ) ≤ ET (U, I ) ∀ I ∈ I, (3.7a)
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Let T∗ ≤ T be a refinement of T . Oscillation is quasi-monotone in the sense that

oscT∗( f, I∗) ≤ C5 oscT ( f, I), (3.7b)

and oscillation does not change in non-refined regions, i.e., there holds

oscT∗( f, I ) = oscT ( f, I ) ∀ I ∈ I \ RT →T∗(I). (3.7c)

All the estimators of Sect. 2.2 satisfy these assumptions. In particular, estimates
(2.4), (2.10), (2.12), (2.14), (2.20), and (2.18) are the upper and lower bound (3.4).
The local equivalences of the estimators to ÊT (2.6), (2.11), (2.13), (2.15), (2.19), and
(2.22) are summarized in (3.6). We shall prove the localized upper bound (3.5) in Sect.
3.2 separately.

The required properties (3.7) of oscillation are rather standard. That is why we did
not label them explicitly in Sect. 2.2. In fact, the residual type estimators of Sects. 2.2.1
and 2.2.2 dominate the oscillation since oscillation is defined as an L2 projection of
the element residual to the piecewise constant functions. In Sects. 2.2.3–2.2.5 oscilla-
tion is part of the estimator, which obviously implies (3.7a). Assumptions (3.7b) and
(3.7c) are a direct consequence of the local mesh-size reduction; compare with [23]
and [25]. Moreover, in most cases C5 = 1.

MARK. The marking procedure utilizes Dörfler Marking [18], i.e., for fixed parameter
θ ∈ (0, 1] the output

M = MARK({ET (U, I )}I∈I , I)

is a subset M ⊂ I of selected indices satisfying the Dörfler property

θET (U, I) ≤ ET (U,M). (3.8)

We additionally suppose that the output M has minimal cardinality and that the mark-
ing parameter θ satisfies θ ∈ (0, θ∗) with

θ2∗ = C2/(C̄1 + 1), (3.9)

where C2 is the constant of the lower bound (3.4b) and C̄1 the constant of the localized
upper bound (3.5).

Dörfler marking for ET in combination with the local equivalence (3.6) of ET and
ÊT implies a Dörfler property of ÊT with parameter θ̂ ∈ (0, θ ]. This observation is
the key to derive a strictly monotone error quantity; compare with Theorem 3.6 and
Corollary 3.6 below.

Proposition 3.2 (Dörfler Property) For given T let U ∈ V(T ) be the Ritz projection
and ET (U, I) the corresponding estimator. Assume that ET is locally equivalent to
ÊT in the sense of (3.6) and that ET satisfies the Dörfler property (3.8) on M ⊂ I.
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Then the residual estimator ÊT satisfies the Dörfler property on T (M)with param-
eter θ̂ = (C3/C4)

1/2 θ ∈ (0, θ ], i.e.,

θ̂ ÊT (U, T ) ≤ ÊT (U, T (M)).

Proof The local equivalence of ET and ÊT readily imply

Ê2
T (U, T (M))≥C3E2

T (U,M) ≥ C3θ
2E2

T (U, I) ≥ C3

C4
θ2Ê2

T (U, T )= θ̂2Ê2
T (U, T ).

This is the assertion. ��
REFINE. From the output M ⊂ I from MARK of marked indices we have to define
a set of marked elements as input for REFINE. We recall that for any I ∈ M exactly
the elements in T ({I }) enter the definition of ET (U, I ), whence a natural choice as
input for refine is T (M). Note, that thanks to uniform shape-regularity there holds

#T (M) � #M.

We therefore suppose that REFINE(T , T (M)) outputs the smallest conforming
refinement T∗ of T such that all elements in T (M) are bisected b times, where b ∈ N

is fixed. In addition, we pose restrictions on the initial grid ensuring that any uniform
refinement Tg of generation g ∈ N0 of T0 is conforming. We thereby call Tg a uniform
refinement of generation g, if Tg is generated by bisecting recurrently all elements in
T0 exactly g times. Note, that in general Tg is non-conforming but a proper distribu-
tion of refinement edges on the initial triangulation T0 guarantees that any uniform
refinement of generation g ∈ N0 is conforming. Conditions how to assign the refine-
ment edges for the elements on T0 are given in Sect. 4 in [34]; compare also with [27,
Assumption 1]. The restriction on the initial grid T0 has the following consequence.

Lemma 3.3 (Complexity of REFINE) Assume that any uniform refinement Tg of
generation g ∈ N0 of T0 is conforming. For k ≥ 0 let {Tk}k≥0 be any sequence of
refinements of T0 where Tk+1 is generated from Tk by Tk+1 = REFINE(Tk, Tk(Mk))

with a subset Mk ⊂ Ik .
Then, there exists a constant C0 solely depending on T0, the number b of bisections,

and the dimension d such that

#Tk − #T0 ≤ C0

k−1∑
�=0

#M� ∀ k ≥ 1.

Proof Binev et al. have shown for d = 2 [3, Theorem 2.4] and Stevenson for d ≥ 2
[34, Theorem 6.1] the estimate

#Tk − #T0 �
k−1∑
�=0

#T�(M�) ∀ k ≥ 1,
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when REFINE bisects all marked elements once. The claim follows readily from
#T�(M�) � #M�. For the generalization to b > 1 bisections compare with the
remark after Lemma 2.3 in [14]. ��

3.2 Localized upper bound

One key ingredient in the optimality proof is the localized upper bound (3.5) for
the difference of two Ritz projections. Such a bound is a consequence of Galerkin
orthogonality in combination with a suitable interpolation operator that locally pre-
serves discrete functions. It was first proved by Stevenson [33, Theorem 4.1] with a
Clément interpolant [15]. Cascón et al. completely localized the bound to the set of
refined elements by using a Scott–Zhang interpolant [36] with the following properties
[14, Lemma 3.6].

Lemma 3.4 For given T ≤ T∗ let RT →T∗ := T \ T∗ be the set of refined elements
and set �R := ⋃{T : T ∈ RT →T∗}.

There exists interpolation operator PR : V → V(T ) such that

V∗ − PRV∗ ≡ 0 in � \�R ∀ V∗ ∈ V(T∗). (3.10a)

The operator is H1 stable, i.e.,

‖∇(PRv − v)‖2
L2(�)

≤ CPR‖∇v‖2
L2(�)

∀ v ∈ V, (3.10b)

and satisfies the interpolation estimate

∑
T ∈T

{
‖hT (v − PRv)‖2

L2(T ) + ‖h−1/2
T (v − PRv)‖2

L2(∂T )

}
� ‖∇v‖L2(�). (3.10c)

for all v ∈ V. The operator PR depends on T and T∗ whereas CPR and the constant
hidden in ‘�’ do only depend on T and not on the particular choice of T and T∗.

Using the interpolation operator PR the localized upper bound (3.5) for the residual
estimator of Sect. 2.2.1 and its first variant in Sect. 2.2.2 can be shown exactly with
the same arguments as the upper bound (3.4a). The localization to the set of refined
elements in the localized upper bound is a direct consequence of (3.10a). Moreover,
using PR in both upper bound and localized upper bound results in the same constant
C1 = C̄1. Note, that this is an important aspect, since the constant C̄1 of the localized
upper bound enters in the restriction of the marking parameter θ∗ in (3.9).

Unfortunately, the upper bounds for all other estimators but the equilibrated resid-
ual estimator from Sect. 2.2.5 are derived with different kind of interpolation operators
that are not locally preserving discrete functions. The derivation of the upper bound
for the equilibrated residual estimator does not use any interpolant. Galerkin orthog-
onality is only used implicitly in that the local problems (2.16) are well-posed. It is
therefore not obvious how to localize the upper bound for the difference of two discrete
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solutions. Before addressing the localized upper bounds for these estimators we want
to investigate the relation of the constants C1 and C̄1.

Assume that C1 and C̄1 are the optimal constants, which are in general not known.
Since the localized upper bound has to be valid for any refinement T∗ of T we can
conclude C1 ≤ C̄1. We may wonder if we can expect C1 = C̄1. In order to explore
this matter we assume the ‘best’ estimator, namely the exact error |||U − U∗|||, which
satisfies (3.4a) with C1 = 1. In general, U∗ �= U in � \ �R , using the notion of
Lemma 3.4. This implies

|||U − U∗|||�R < |||U − U∗|||� .

Consequently, we cannot expect the same constant C1 = C̄1. Moreover, an estimate

|||U − U∗|||� ≤ C̄1 |||U − U∗|||�R (3.11)

cannot be valid for generic functions U ∈ V(T ) and U∗ ∈ V(T∗) but relies on U being
the Ritz approximation to U∗. Galerkin orthogonality implies for the energy error of
E∗ = U − U∗ ∈ V(T∗)

|||U − U∗|||2� = B[U − U∗, E∗] = B[U − U∗, E∗ − PRE∗]
≤ |||U − U∗|||�R |||PRE∗ − E∗|||�R ≤ |||U − U∗|||�R CPR |||U − U∗|||� ,

thanks to (3.10a). This shows (3.11) with C̄1 ≤ CPR .
This motivates to prove the localized upper bound for any estimator where the

upper bound involves an interpolation operator as follows. In a first step localize a test
function V∗ ∈ V(T∗) by employing Galerkin orthogonality with PRV∗:

sup
|||V∗|||=1

〈Res(U ), V∗〉 = sup
|||V∗|||=1

〈Res(U ), V∗ − PRV∗〉 ≤ CPR sup
|||W∗|||=1

supp W∗⊂�R

〈Res(U ), W∗〉.

Proceed then further as in the proof of the upper bound using the interpolation operator
applied to W∗ with support in �R . For all the estimators but the one from Sect. 2.2.5
the respective interpolation operators are defined via local projections �I W∗ on ωI ,
I ∈ I. By definition of the refined index set RI→I∗ we see W∗ ≡ 0 in ωI and there-
fore �I W∗ ≡ 0 for all I ∈ I \ RI→I∗ . From this we conclude the localized upper
bound (3.5) with C̄1 ≤ CPRC1, where C1 is the constant from the upper bound (3.4a).
Recalling the discussion above using the true error as estimator, it is apparent that we
cannot expect a better bound for C̄1 in general.

It remains to derive the localized upper bound for the equilibrated residual estimator
from Sect. 2.2.5. Since Galerkin orthogonality only enters implicitly the derivation of
the upper bound (2.18a) it is not clear that a localized upper bound can directly be
shown. We master this difficulty by employing the equivalence to the standard resid-
ual estimator. The following result can be used for any estimator ET that is locally
equivalent to ÊT in the sense of (3.6).
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Lemma 3.5 (Localized Upper Bound) For given grids T ≤ T∗ let U ∈ V(T ) and
U∗ ∈ V(T∗) be the corresponding Ritz projections. Assume that the estimator ET is
locally equivalent to ÊT in the sense of (3.6).

Then there holds with C̄1 = Ĉ1C4 the localized upper bound

|||U − U∗|||2 ≤ C̄1 E2
T

(
U,RT →T∗(I)

)
. (3.12)

Proof From [14, Lemma 3.6] we know

|||U − U∗|||2 ≤ Ĉ1Ê2
T (U,RT →T∗(T )), (3.13)

where RT →T∗(T ) = T∗ \ T is the set of all refined elements and Ĉ1 is the same con-
stant as in the upper bound (2.4a). The local equivalence of ET to ÊT (3.6) therefore
implies

|||U − U∗|||2 ≤ Ĉ1Ê2
T

(
U,RT →T∗(T )

) ≤ Ĉ1C4E2
T

(
U,RT →T∗(I)

)
,

since I(RT →T∗(T )) = RT →T∗(I); compare with Lemma 3.1. ��

3.3 Error reduction and optimal decay rate

In this section we prove the main results of this article. In doing this, we denote
by {Tk,Vk,Uk, Ek, Ik,Mk}k≥0 the sequence of refinements Tk of T0, conforming
discrete spaces Vk = V(Tk) ⊂ V, discrete solutions Uk ∈ Vk , a posteriori error esti-
mators Ek , index sets Ik , and marked indices Mk ⊂ Ik generated by iteration (3.2).
For sake of convenience we replace the subscript Tk by the iteration counter k, for
instance Ek = ETk .

3.3.1 Error reduction property

We next proof under the assumptions of Sect. 3.1.3 Main Result 1. The Dörfler prop-
erty of the residual estimator ÊT , which is a consequence of Dörfler marking for ET ,
compare with Proposition 3.2, allows us to prove the following contraction property.

Theorem 3.6 (Contraction Property) Iteration (3.2) is a contraction for a scaled sum
of energy error and residual estimator, i.e., there exist α ∈ (0, 1) and γ > 0 such that
for all k ≥ 0

(
|||Uk+1 − u|||2 + γ Ê2

k+1(Uk+1, Tk+1)
)1/2 ≤ α

(
|||Uk − u|||2 + γ Ê2

k (Uk, Tk)
)1/2

.

Proof We observe that the argument of REFINE is T (M). On T (M) the residual
estimator ÊT satisfies the Dörfler property

θ̂ ÊT (U, T ) ≤ ÊT (U, T (M))
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with θ̂ =
√

C3
C4
θ > 0, thanks to Proposition 3.2. Therefore, the assertion is an imme-

diate consequence of [14, Theorem 4.1]. ��
We want to remark that this contraction property does not require any restriction

θ < θ∗ of the marking parameter nor minimality of the set M of marked indices.
Moreover, the restrictive assumption on T0 that any uniform refinement is conforming
is not used. The Dörfler property for ÊT hinges on the definition of marked elements
T (M) in Sect. 3.1.3.

Main Result 1 is now a direct consequence of the estimator equivalence and the
contraction property.

Corollary 3.7 (Reduction Property) Let α ∈ (0, 1) and γ > 0 be the contraction and
scaling constants from Theorem 3.6.

Then there holds with �1 = max{1, γC4}1/2/min{1, γC3}1/2 for all 0 ≤ � ≤ k

(
|||Uk − u|||2 + E2

k (Uk, Ik)
)1/2 ≤ �1 α

k−� (
|||U� − u|||2 + E2

� (U�, I�)
)1/2

.

Proof Set Ek = Ek(Uk, Ik) and Êk = Êk(Uk, Ik). Recalling the equivalence (3.6) of
the estimators and the contraction property of the residual estimator from Theorem 3.6
we estimate

min{1, γC3}
(
|||Uk − u|||2 + E2

k

)
≤ |||Uk − u|||2 + γC3E2

k

≤ |||Uk − u|||2 + γ Ê2
k ≤ α2(k−�) (|||U� − u|||2+γ Ê2

�

)

≤ α2(k−�) (|||U� − u|||2 + γC4E2
�

)

≤ α2(k−�) max{1, γC4}
(
|||U� − u|||2 + E2

�

)
.

This is the desired error reduction property and finishes the proof. ��
As already alluded in the introduction, relying on the local equivalence of ET to

ÊT it is of importance that the constants C3 and C4 are of moderate size, which is
true for the Poisson problem. In Sect. 4 we consider robust estimators for perturbed
Poisson problems and discuss how this affects the constant �1.

3.3.2 Approximation class

We next introduce an appropriate error notion for the adaptive method together with
the corresponding approximation class. Decisions of AFEM are driven only by virtue
of the local error indicators. This indicates that the estimator is the quantity we can
expect optimal rates for. On the one hand, oscillation is dominated by the estimator
(3.7a), hence by the upper bound (3.4a) we have

|||u − U |||2 + osc2
T ( f, T ) ≤ (1 + C1) E2

T ( f, T ).
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On the other hand we have by the lower bound (3.4b) that

C2E2
T ( f, T ) ≤

(
|||u − U |||2 + osc2

T ( f, T )
)
,

i.e., the right-hand side is equivalent to the estimator and its square root is called the
total error.

This motivates the following definition of As . Let TN ⊂ T be the set of all possible
conforming triangulations generated from T0 with at most N elements more than T0:

TN := {T ∈ T | #T − #T0 ≤ N }.

The quality of the best approximation to the total error in the set TN is given by

σ(N ; u, f ) := inf
T ∈TN

inf
V ∈V(T )

(
|||u − V |||2 + osc2

T ( f, T )
)1/2

.

We now define the nonlinear approximation class As to be

As :=
{
(u, f ) | |u, f |s := sup

N>0

(
N s σ(N ; u, f )

)
< ∞

}
.

Remark 3.8 (Equivalent definitions of As) The definition of As seems to depend on
the particular error estimator, respectively its oscillation. This is not the case, which
can be seen as follows. Let

σ̂ (N ; u, f ) := inf
T ∈TN

inf
V ∈V(T )

(
|||u − V |||2 + ôsc2

T ( f, T )
)1/2

and

Âs :=
{
(u, f ) | |̂u, f |s := sup

N>0

(
N s σ̂ (N ; u, f )

)
< ∞

}

be the approximation class according to the standard residual estimator of Sect. 2.2.1.
Recalling the equivalence of estimators (3.6) and observing the optimality of the Ritz
approximation U ∈ V(T )

|||u − U |||2 + osc2
T ( f, T ) = inf

V ∈V(T )
|||u − V |||2 + osc2

T ( f, T )

we obtain equivalence of the total errors, namely

|||u − U |||2 + osc2
T ( f, T ) ≈ E2

T (U, I) ≈ Ê2
T (U, T ) ≈ |||u − U |||2 + ôsc2

T ( f, T ),

and vice versa. Therefore, we conclude for all N
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σ̂ (N ; u, f ) ≈ σ(N ; u, f ),

which yields Âs = As .

Remark 3.9 The definition of the approximation class As follows [14]. It is not a
standard approximation class as used in approximation theory in contrast to

As :=
{
v ∈ V | |v|As

:= sup
N>0

(
N s inf

T ∈TN

inf
V ∈V(T )

|||v − V |||
)
< ∞

}
,

Ās :=
{

g ∈ L2(�) | |g|Ās
:= sup

N>0

(
N s inf

T ∈TN

‖hT (g − PT g)‖L2(�)

)
< ∞

}
,

where PT is the L2 projection onto the space of piecewise constants over T ; compare
with [3,4,33]. However we have the following equivalence

(u, f ) ∈ As ⇐⇒ u ∈ As and f ∈ Ās;

compare for instance with [14, Lemma 5.3]. Moreover, from the reduction of the
mesh-size hT using uniform refinement and f ∈ L2(�) it can easily be shown that
f ∈ Ā1/d [14, Lemma 5.4]. The highest attainable order for linear elements is s = 1/d.
Therefore, for all s ≤ 1/d we have

(u, f ) ∈ As ⇐⇒ u ∈ As .

The membership of (u, f ) in As implies the following property: For any ε > 0
there exists Tε ∈ T and Uε ∈ V(Tε) such that

|||Uε − u|||2 + osc2
Tε ( f, Iε) ≤ ε2 and #Tε − #T0 � |u, f |1/ss ε−1/s, (3.14)

where the constant hidden in ‘�’ is close to 1.

3.3.3 Minimal Dörfler marking

We next derive properties that are related to the minimal Dörfler marking. The proofs
mainly follow the presentations in [14,27]. However there are some important modi-
fications that cannot be shortly summarized.

Lemma 3.10 (Optimal Marking) Let T ≤ T∗ two grids with corresponding index sets
I = I(T ), I∗ = I(T∗) and discrete solutions U ∈ V(T ) and U∗ ∈ V(T∗) such that

|||U∗ − u|||2 + osc2
T∗(U∗, I∗) ≤ μ

(
|||U − u|||2 + osc2

T (U, I)
)

with μ := (
1 − θ2/θ2∗

)
> 0.

Then the set R = RT →T∗(I) of refined indices satisfies the Dörfler property

θ ET (U, I) ≤ ET (U,R).
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Proof 1 Combining the global lower bound with the assumption of the lemma we
can write

(1 − μ)C2 E2
T (U, I) ≤ (1 − μ)

(
|||U − u|||2 + osc2

T ( f, I)
)

≤
(
|||U − u|||2 − |||u − U∗|||2

)

+
(

osc2
T ( f, I)− osc2

T∗( f, I∗)
)
. (3.15)

2 The orthogonality relation (3.3) in combination with the localized upper bound
Lemma 3.5 yields

|||U − u|||2 − |||u − U∗|||2 = |||U − U∗|||2 ≤ C̄1 E2
T (U,R). (3.16)

To deal with oscillation we consider two subsets of I. In R we use that oscillation
is dominated by the estimator (3.7a) to deduce

osc2
T ( f,R)− osc2

T∗( f,R) ≤ osc2
T ( f,R) ≤ E2

T (U,R).

In the complement I \ R oscillation does not change, compare with (3.7c).
Therefore,

osc2
T ( f, I \ R)− osc2

T∗( f, I \ R) = 0.

In summary we have deduced

osc2
T ( f, I)− osc2

T∗( f, I∗) ≤ E2
T (U,R). (3.17)

3 Bounding the right-hand side of (3.15) by (3.16) and (3.17) we end up with

(1 − μ)C2 E2
T (U, T ) ≤ (C̄1 + 1) E2

T (U,R).

The definition ofμ implies θ2 = (1−μ)θ2∗ = (1−μ)C2/(C̄1 +1)which yields

θ2E2
T (U, I) ≤ E2

T (U,R).

��
Combining this result with properties of the approximation class As we are in the

position to bound the cardinality of Mk in terms of |u, f |1/ss and the total error.

Proposition 3.11 (Cardinality of Mk) Let θ be the marking parameter of AFEM and
let μ = 1 − θ2/θ2∗ > 0 as in Lemma 3.10. If (u, f ) ∈ As then

#Mk � μ−1/(2s)|u, f |1/ss

(
|||u − Uk |||2 + osc2

k(Uk, Ik)
)−1/(2s) ∀ k ≥ 0.
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Proof 1 We set

ε2 := μ

C5

(
|||u − Uk |||2 + osc2

k(Uk, Tk)
)
.

Since (u, f ) ∈ As , in view of (3.14) there exists Tε ∈ T and Uε ∈ V(Tε) such
that

|||u − Uε|||2 + osc2
Tε (Uε, Iε) ≤ ε2 and #Tε − #T0 � |u, f |1/ss ε−1/s .

(3.18)

To relate the total error with respect to U and Uε we introduce the overlay
T∗ = Tk ⊕ Tε, which is is the smallest common refinement of Tk and Tε, i.e.,
T∗ ∈ T with minimal cardinality such that Tk, Tε ≤ T∗. The cardinality of T∗
can be estimated by

#T∗ ≤ #Tk + #Tε − #T0; (3.19)

compare for instance [14, Lemma 3.7].
2 Let U∗ be the Ritz-projection in V(T∗). Since Tε ≤ T∗ nesting of spaces implies

V(Tε) ⊂ V(T∗). Therefore, the best approximation property of U∗ with respect
to |||·||| and (3.7b) yield

|||u − U∗|||2 + osc2
T∗( f, T∗) ≤ C5

(
|||u − Uε|||2 + osc2

Tε ( f, Tε)
)

≤ C5 ε
2 = μ

(
|||u − Uk |||2 + osc2

k(Uk, Tk)
)
,

i.e., the total error over T∗ reduces by a factorμ relative to that one over Tk . Upon
applying Lemma 3.10 we therefore conclude that the set Rk = RTk→T∗(Ik) of
refined indices satisfies a Dörfler property (3.8) with parameter θ < θ∗.

3 Since MARK selects a minimal set Mk ⊂ Ik satisfying this property we deduce

#Mk ≤ #Rk � #T∗ − #Tk ≤ #Tε − #T0 � |u, f |1/ss ε−1/s,

where we have employed (3.19). Recalling the definition of ε we have proved
the assertion. ��

3.3.4 Optimal decay rate

We are ready to prove Main Result 2. It is an immediate consequence of the fol-
lowing theorem, which combines the strict error reduction of Corollary 3.7 with
Proposition 3.11.

Theorem 3.12 (Optimal Decay Rate) If (u, f ) ∈ As then iteration (1.1) generates
a sequence {Tk,Vk,Uk}k≥0 with an optimal decay rate for the total error and the
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estimator, this is

(
|||u − Uk |||2 + osc2

k(Uk, Tk)
)1/2

� μ−1/2|u, f |s (#Tk − #T0)
−s ∀ k ≥ 0

and

Ek(Uk, Tk) � μ−1/2|u, f |s (#Tk − #T0)
−s ∀ k ≥ 0.

Proof 1 In this proof we use the notation Ek = Ek(Uk, Tk) and osck = osck( f, Tk).
Since oscillation is dominated by the estimator (3.7a) we conclude in combina-
tion with the lower bound (3.4b)

|||U� − u|||2 + osc2
� ≤ |||U� − u|||2 + E2

� ≤
(

1 + C−1
2

) (
|||U� − u|||2 + osc2

�

)
.

We utilize error reduction property of Corollary 3.7 to proceed for 0 ≤ � < k by

|||Uk − u|||2 + osc2
k ≤ |||Uk − u|||2 + E2

k ≤ �2
1α

2(k−�) (
|||U� − u|||2 + E2

�

)

≤ �2
1(1 + C−1

2 ) α2(k−�) (
|||U� − u|||2 + osc2

�

)
.

2 From of Lemma 3.3 and Proposition 3.11 we therefore conclude

#Tk − #T0 �
k−1∑
�=0

#M� � μ−1/(2s)|u, f |1/ss

k−1∑
�=0

(
|||U� − u|||2 + osc2

�

)−1/(2s)

� μ−1/(2s)|u, f |1/ss

(
|||Uk − u|||2 + osc2

k

)−1/(2s) k−1∑
�=0

α(k−�)/s

≤ C(α)μ−1/(2s)|u, f |1/ss

(
|||Uk − u|||2 + osc2

k

)−1/(2s)
,

where we have used boundedness of the geometric series

k−1∑
�=0

α(k−�)/s =
k∑

j=1

α j/s <

∞∑
j=1

α j/s =: C(α) < ∞,

since α < 1. This shows the first assertion. The second assertion follows imme-
diately once again using the lower bound (3.4b). ��

4 Extensions: robust estimators

In this section we apply our theory to two variants of the Poisson problem, namely
a diffusion problem with jumping diffusion parameter and a reaction dominated dif-
fusion-reaction problem. The problems are included in the theory presented in [14]
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710 C. Kreuzer, K. G. Siebert

relying on the standard residual estimator, which is not robust with respect to the con-
ditions of the problems. The result in [14] implies asymptotically an optimal decay
rate. However, the non-robustness of the estimator leads to a degeneration of the max-
imal marking parameter θ∗ in (3.9) as well as the constant in the complexity result
with increasing condition number.

For both problem robust estimators are known [29,40]. Robustness means that the
constants C1 and C2 of the upper and lower bound are independent of the condition.
Relying on such robust estimators we analyze the adaptive iteration with main focus
on robustness in the maximal marking parameter θ∗.

4.1 Discontinuous coefficients

We consider the diffusion problem

− div a(x)∇u = f in �, u = 0 on ∂�. (4.1)

with a diffusion coefficient a : � → R that is strictly positive and bounded, i.e., there
exists 0 < a∗ ≤ a∗ < ∞ with

a∗ ≤ a ≤ a∗ in �.

In addition, we assume that a is piecewise constant over some initial triangulation T0
and that the jumps of a are quasi monotone with respect to the triangulation T0. This
last condition is preserved during refinement if d = 2, whereas in 3d we suppose
that this condition is preserved during refinement. For more details on this topic see
[11,29,28] and the references therein.

This problem gives rise to the following intrinsic scalar product with corresponding
energy norm on V:

B[v, w] :=
∫

�

a ∇v · ∇w dx, |||v||| := B[v, v]1/2.

We next recall the robust estimator derived by Petzold [29]. For T ∈ T and σ ∈ S
define the weights

βT := hT a−1/2
|T and βσ := hσ max{a|T | T ⊂ ωσ }−1

with hT := diam(T ) and hσ := diam(σ ). The local indicators are then given by

E2
T (U, T ) := β2

T ‖ f ‖2
L2(T ) +

∑
σ⊂∂T

βσ‖J (U )‖2
L2(σ )

.

In this case J (U )|σ = [[a ∇U ]]|σ denotes the normal flux of a ∇U across interior sides
σ ∈ S and 0 if σ is a boundary side.
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Petzold has shown in [29], that there are constants C1,C2 that are independent of
the global condition number κ = a∗/a∗ of the problem such that

|||u − U |||2 ≤ C1

∑
T ∈T

E2
T (U, T ) = C1E2

T (U, T ) (4.2a)

C2E2
T (U, T ) ≤ |||u − U |||2 + osc2

T ( f, T ) := |||u − U |||2 +
∑
T ∈T

osc2
T ( f, T ). (4.2b)

Local data oscillation on T is defined by the mean value fT := 1
|T |

∫
T f dx of f as

osc2
T ( f, T ) := β2

T ‖ f − fT ‖2
L2(T ).

The robustness of the estimator with respect to κ relies on suitable interpolation esti-
mates utilizing the energy norm |||·|||. Hereby, the quasi-monotonicity of the jumps of
a with respect to the T is important; compare with [29, Lemma 4.9].

Problem (4.1) is included in the theory in [14] using the non-robust residual esti-
mator ÊT that is built in this case from the indicators

Ê2
T (U, T ) := ‖hT f ‖2

L2(T ) + ‖h1/2
T J (U )‖2

L2(∂T ), T ∈ T .

Using the bounds for a we therefore have the element by element equivalence

a∗ E2
T (U, T ) � Ê2

T (U, T ) and Ê2
T (U, T ) � a∗ E2

T (U, T ) (4.3)

where we explicitly traced the dependence on a∗ and a∗. This implies the error reduc-
tion property for the sum of error and estimator according to Corollary 3.7.

Moreover, the local equivalence (4.3) allows us to employ Lemma 3.5, i.e., the
robust estimator ET of Petzold satisfies the localized upper bound (3.5). Consequently,
Theorem 3.12 implies an optimal decay rate for true error and estimator.

However, establishing the localized upper bound for a robust estimator via the
equivalence to a non-robust estimator results in a maximal Dörfler marking param-
eter θ∗ that degenerates with the condition of the problem. To be more precise, the
explicit constants in (4.3) gives C̄1 = Ĉ1 C4 ≈ κ since Ĉ1 ≈ a−1∗ . This in turn implies
θ2∗ = C2/(C̄1 + 1) ≈ C2/(κ + 1), which gets small for large condition numbers
κ . Such a restriction for the choice of the marking parameter θ when using a robust
estimator is not acceptable.

It is therefore of utter importance to derive a localized upper bound with a constant
C̄1 that is independent of the condition κ . We sketch the proof of such a bound in
Sect. 4.3. Consequently the restriction of the marking parameter θ∗ is robust with
respect to κ . Utilizing the equivalence of ET and ÊT the constants �1 and �2 of the
main results depend on κ . We next comment on this.

Remark 4.1 The constant �1 = max{1, γC4}1/2/min{1, γC3}1/2 in Corollary 3.7
obviously depends on C4/C3 ≈ a∗/a∗ = κ . It additionally depends on κ via γ ; com-
pare with [14, Theorem 4.1]. Moreover, the contraction constant α from Theorem 3.6
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712 C. Kreuzer, K. G. Siebert

degenerates with κ getting large. Both constants�1 and α enter in the constant�2 of
Theorem 3.12, the first one linearly, the latter one via the geometric series

∑∞
j=1 α

j/s .

Replacing on T the local mesh-sizes hT = diam(T ) and hσ = diam(σ ) in the
definition of the weights βT and βσ by |T |1/d = hT |T , it is easy to see that the result-
ing estimator fits into the framework considered in [14] and we deduce Theorems 3.6
and 3.12 directly. However, the constant �2 still depends on κ due to the techniques
used in [14] that employ both the H1 norm and the energy norm.

For the particular problem at hand, we can avoid the H1 norm by replacing
[14, Propositon 3.3] utilizing the following robust estimate for two discrete functions
V,W ∈ V(T ) that only involves the energy norm:

E2
T (V, T ) ≤ E2

T (W, T )+ C
∑
σ∈∂T

|||V − W |||2ωσ .

This modification in turn allows for a proof of an optimal decay rate with a constant
�2 that is robust with respect to the condition κ .

4.2 A singularly perturbed reaction-diffusion problem

We investigate the singularly perturbed reaction-diffusion equation

−�u + κ u = f in �, u = 0 on ∂�, (4.4)

where κ � 1 is the condition of the problem. The variational formulation of the
problem leads to an intrinsic scalar product on V with corresponding energy norm:

B[v, w] :=
∫

�

∇v · ∇w + κ vw dx, |||v||| := B[v, v]1/2.

Verfürth has derived for this problem an estimator that is robust in κ [40]. For
T ∈ T and σ ∈ S we define the weights

βT := min{hT , κ
−1/2} and βσ := min{hσ , κ−1/2},

where the local mesh-sizes hT and hσ are defined as in Sect. 2.2.2. The indicators are
then defined as

E2
T (U, T ) := β2

T ‖ f − κ U‖2
L2(T ) +

∑
σ⊂∂T

βσ‖J (U )‖2
L2(σ )

.
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Thereby, J (U ) = [[∇U ]] is the normal flux of ∇U over interior sides and J (U ) = 0
for boundary sides. Thanks to the choice of the weights βT , βσ and a suitable interpo-
lation operator [40, Proposition 4.1] there exist constants C1 and C2 independent of κ
such that

|||u − U |||2 ≤ C1

∑
T ∈T

E2
T (U, T ) =: E2

T (U, T ) (4.5a)

C2E2
T (U, T ) ≤ |||u − U |||2 + osc2

T ( f, T ) := |||u − U |||2 +
∑
T ∈T

osc2
T ( f, T ). (4.5b)

For this problem we let fT ∈ P1 be the L2-projection of f onto the affine functions
over T which results in the data oscillation term

osc2
T ( f, T ) := β2

T ‖ f − fT ‖2
L2(T );

compare with [40, Proposition 4.1].
The reaction-diffusion problem (4.4) is also included in the theory in [14] relying

on the non-robust standard residual estimator defined from the indicators

Ê2
T (U, T ) := ‖hT ( f − κ U )‖2

L2(T ) + ‖h1/2
T J (U )‖2

L2(∂T ) T ∈ T .

Obviously, the estimators ÊT and ET are locally equivalent with a constant depend-
ing on the condition κ . To be more precise: In case hT ≤ κ−1/2 it holds βT = hT ≈
hT |T and for hT > κ−1/2 we estimate κ−1/2 = βT ≤ hT � βT (κ

1/2hT |T ). The same
estimates apply to βσ with σ ⊂ T , whence

E2
T (U, T ) � Ê2

T (U, T ) ≤ C4E2
T (U, T ) (4.6)

with C4 ≈ ‖hT0‖2∞κ . This is the local equivalence of indicators (3.6), which in turn
yields the reduction property as stated in Corollary 3.7.

In Sect. 4.3 we derive the localized upper bound (3.5) for ET with a constant C̄1
independent of κ . This again implies an optimal decay rate in terms of DOFs for both
true error and estimator with a maximal marking parameter θ∗ in (3.9), which is robust
in κ .

The constants�1 and�2 of the main results do depend on κ; compare with Remark
4.1. For this problem the techniques from [14] do not apply to the estimator ET since
the weights βT and βσ are not strictly monotone during refinement. In view of this,
robustness of the constants �1 and �2 with respect to κ is an open problem and
deserves future investigation.

4.3 Localized upper bound

Given T ≤ T∗ we aim for a robust estimate of the error E∗ = U∗ −U between the two
Ritz approximations U ∈ V(T ) and U∗ ∈ V(T∗) involving only the error indicators
of the refined elements R = RT →T∗(T ) = T \T∗. The key ingredient in the proof of
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714 C. Kreuzer, K. G. Siebert

the localized upper bound is an interpolation operator�T that localizes E∗ −�T E∗
to the set of refined elements; see Sect. 3.2.

We observe that the estimators of Sects. 4.1 and 4.2 have a similar structure, namely

E2
T (U, T ) = β2

T ‖R(U )‖2
L2(T ) +

∑
σ⊂∂T

βσ‖J (U )‖2
L2(σ )

T ∈ T ,

with the interior residual R(U ) ∈ L2(T ), the jump residual J (U ) ∈ L2(σ ), and the
respective weights βT , βσ introduced in Sects. 4.1 and 4.2. We call an interpolation
operator �T : V → V(T ) robust with respect to the condition κ of the problem if
there exists a constant C̄ independent of κ such that

∑
T ∈T

{
β−2

T ‖v −�T v‖2
L2(T ) +

∑
σ⊂T

β−1
σ ‖v −�T v‖2

L2(σ )

}
≤ C̄ |||v|||2 . (4.7)

Utilizing modifications of the Clément interpolant, such interpolation estimates
are proved in [29, Lemma 4.9] for the discontinuous coefficient problem from Sect.
4.1 and in [40, Proposition 4.1] for the reaction-diffusion problem of Sect. 4.2. The
modified Clément interpolants preserve locally discrete functions but do not strictly
localize to the set of refined elements R. However, it holds for any V∗ ∈ V(T∗)

V∗ −�T V∗ ≡ 0 in T if T ∩ T ′ = ∅ for all T ′ ∈ R.

Therefore, enlarging R by one ring of additional elements around R, namely

R = RT →T∗ := {T ∈ T | T ∩ T ′ �= ∅ for some T ′ ∈ R},

we see V∗ − �T V∗ ≡ 0 for all T ∈ T \ RT →T∗ . Utilizing Galerkin orthogonality
and standard arguments we therefore conclude

|||E∗|||2 = B[E∗, E∗ −�T E∗]
=

∑

T ∈R
〈rT , E∗ −�T E∗〉T − 1

2 〈J (U ), E∗ −�T E∗〉∂T

≤
∑

T ∈R

{
βT ‖rT ‖L2(T ) β

−1
T ‖E∗ −�T E∗‖L2(T )

+
∑
σ⊂T

β1/2
σ ‖Jk(U )‖L2(σ ) β

−1/2
σ ‖E∗ −�T E∗‖L2(σ )

}

≤ C̄ET (U,R) |||E∗||| , (4.8)

using (4.7) in the last step. Upon replacing R by R in (3.5) we have shown the local-
ized upper bound with C̄1 bounded by the interpolation constant C̄ of�T that is robust
in κ . The constant is the same as in the upper bound (4.2a) respectively (4.5a).
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We would like to remark that a complete localization to R as discussed in Sect.
3.2 by first using the interpolation operator PR of Lemma 3.4 is out of question. This
operator is only stable with respect to the H1 norm and not with respect to the energy
norm. Consequently, any use of PR would result in a κ dependent constant.

The replacement of R by R in (3.5) does not prevent us from proving Theorem
3.12. This can be seen as follows. Lemma 3.10 still holds true if we also substitute
R by R. This Lemma comes into play in Step 3 of the proof to Proposition 3.11. In
particular, adopting the notation of the proof, we first use shape-regularity to bound
#R � #R and then proceed by

#M ≤ #Rk ≤ #Rk � #Rk ≤ |u, f |1/ss ε−1/s,

which proves the proposition. This in turn yields Theorem 3.12.
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