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Abstract We consider a differential system based on the coupling of the Navier–
Stokes and Darcy equations for modeling the interaction between surface and
porous-media flows. We formulate the problem as an interface equation, we analyze
the associated (nonlinear) Steklov–Poincaré operators, and we prove its well-posed-
ness. We propose and analyze iterative methods to solve a conforming finite element
approximation of the coupled problem.
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196 L. Badea et al.

1 Introduction and problem setting

Let � ⊂ R
d (d = 2, 3) be a bounded domain, decomposed into two non intersecting

subdomains� f and�p separated by an interface �, i.e. �̄ = �̄ f ∪�̄p,� f ∩�p = ∅
and �̄ f ∩ �̄p = �. We suppose the boundaries ∂� f and ∂�p to be Lipschitz contin-
uous. From the physical point of view, � is a surface separating the domain � f filled
by a fluid, from a domain �p formed by a porous medium. We assume that the fluid
contained in� f has a fixed surface (i.e. we do not consider the free surface fluid case)
and can filtrate through the adjacent porous medium. See for example Fig. 1.

In this paper, we will refer explicitely to the hydraulic situation of Fig. 1 left. How-
ever, the mathematical results that we present can apply with minor changes also to
the more general framework introduced above (see Remark 1).

In order to describe the motion of the fluid in � f , we introduce the Navier–Stokes
equations: ∀t > 0,

∂t u f − ∇ · T(u f , p f )+ (u f · ∇)u f = f in � f ,

∇ · u f = 0 in � f ,
(1)

where T(u f , p f ) = ν(∇u f + ∇T u f )− p f I is the Cauchy stress tensor, ν > 0 is the
kinematic viscosity of the fluid, while u f and p f are the fluid velocity and pressure,
respectively; ∇ is the gradient operator with respect to the space coordinates.

In the domain �p we define the piezometric head ϕ = z + pp/(ρ f g), where z
is the elevation from a reference level, pp is the pressure of the fluid in �p, ρ f its
density and g is the gravity acceleration.

The fluid motion in �p is described by the equations:

nup = −K∇ϕ in �p,

∇ · up = 0 in �p,
(2)

where up is the fluid velocity, n is the volumetric porosity and K is the hydraulic
conductivity tensor K = diag(K1, . . . , Kd) with Ki ∈ L∞(�p), i = 1, . . . , d.
The first equation is Darcy’s law. In the following we shall denote K = K/n =

Fig. 1 Schematic representation of a 2D section of possible computational domains: the surface-ground-
water setting on the left, and the blood-flow problem on the right
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Numerical analysis of the Navier–Stokes/Darcy coupling 197

diag(Ki/n)(i = 1, . . . , d). Darcy’s law provides the simplest linear relation between
velocity and pressure in porous media under the physically reasonable assumption that
fluid flows are usually very slow and all the inertial (nonlinear) terms may be neglected.
Extensions of Darcy’s law are given, e.g., by the Forchheimer’s or Brinkman’s equa-
tions when the Reynolds number in �p is not small (see [8,15,16,24]), or by more
complicated models like Richards’ equations apt to describe saturated-unsaturated
fluid flows (see, e.g., [3] and references therein).

For the sake of clarity, in our analysis we shall adopt homogeneous boundary
conditions. The treatment of non-homogeneous conditions involves some additional
technicalities, but neither the guidelines of the theory nor the final results are affected.
We refer to [10]. In particular, for the Navier–Stokes problem we impose the no-slip
condition u f = 0 on ∂� f \�, while for the Darcy problem, we set the piezometric
head ϕ = 0 on�D

p and we require the normal velocity to be null on�N
p , up ·np = 0 on

�N
p , where ∂�p = � ∪�D

p ∪�N
p (see Fig. 1, left). np and n f denote the unit outward

normal vectors to the surfaces ∂�p and ∂� f , respectively, and we have n f = −np

on �. We suppose n f and np to be regular enough. In the following we shall indicate
n = n f for simplicity of notation.

We supplement the Navier–Stokes and Darcy problems with the following condi-
tions on �:

up · n = u f · n, (3)

−n · (T(u f , p f ) · n) = gϕ, (4)

−ετ i · (T(u f , p f ) · n) = νu f · τ i , i = 1, . . . , d − 1, (5)

where τ i (i = 1, . . . , d − 1) are linear independent unit tangential vectors to the
boundary �, and ε is the characteristic length of the pores of the porous medium.

Conditions (3) and (4) impose the continuity of the normal velocity on �, as well
as that of the normal component of the normal stress, however they allow pressure to
be discontinuous across the interface. The so-called Beavers–Joseph–Saffman condi-
tion (5) does not yield any coupling. Indeed, it provides a boundary condition for the
Navier–Stokes problem since it involves only quantities in the domain � f .

A mathematical justification of these interface conditions can be found in [18–20].
The same interface conditions have been considered in [11–13,22] for the coupling
of Stokes and Darcy equations.

Remark 1 Our results could be extended, e.g., to the filtration of blood through the
arterial wall. Indeed, the wall of the blood vessel can be described as a porous media
replacing the piezometric head in (2) by the blood pressure. The coupling conditions
(3) and (4) would apply as well since they require the continuity of normal fluxes and
that of normal stresses, as investigated in [28]. Only condition (5) could be simplified
requiring u f · τ i = 0 on �, but this would not significantly modify the coupling as
this condition is simply a boundary condition for the fluid problem in � f .

From now on, we focus on the steady problem obtained by dropping the time
derivative in the momentum equation (1). This can be motivated by, e.g., the use of
an implicit time-advancing scheme on the time-dependent problem (1). Moreover,
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198 L. Badea et al.

instead of (2), we consider the following equivalent formulation for Darcy problem:

find ϕ : −∇ · (K∇ϕ) = 0 in �p. (6)

We define the following functional spaces:

H f =
{

v ∈ (H1(� f ))
d : v = 0 on ∂� f \�

}
, (7)

H0
f = {

v ∈ H f : v · n = 0 on �
}
, (8)

V f = {
v ∈ H f : ∇ · v = 0 in � f

}
, V 0

f =
{

v ∈ H0
f : ∇ · v = 0 in � f

}
,

(9)

Hp =
{
ψ ∈ H1(�p) : ψ = 0 on �D

p

}
, H0

p = {
ψ ∈ Hp : ψ = 0 on �

}
,

(10)

Q = L2(� f ), Q0 =

⎧⎪⎨
⎪⎩

q ∈ Q :
∫

� f

q = 0

⎫⎪⎬
⎪⎭
. (11)

We denote by | · |1 and ‖·‖1 the H1-seminorm and norm, respectively, and by ‖·‖0 the
L2-norm; it will always be clear form the context whether we are referring to spaces
on � f or �p.

Finally, we consider the trace space 	 = H1/2
00 (�) (see [23]) and its subspace

	0 = {µ ∈ 	 : ∫
�
µ = 0}.

Then, we introduce the bilinear forms

a f (v,w) =
∫

� f

ν

2

(
∇v + ∇T v

)
·
(
∇w + ∇T w

)
∀v,w ∈

(
H1(� f )

)d
, (12)

b f (v, q) = −
∫

� f

q ∇ · v ∀v ∈ (H1(� f ))
d , ∀q ∈ Q, (13)

ap(ϕ, ψ) =
∫

�p

∇ψ · K∇ϕ ∀ϕ,ψ ∈ H1(�p), (14)

and, for all v,w, z ∈ (H1(� f ))
d , the trilinear form

c f (w; z, v) =
∫

� f

[(w · ∇)z] · v =
d∑

i, j=1

∫

� f

w j
∂zi

∂x j
vi . (15)

The coupling conditions (3) and (4) can be incorporated in the weak form of the
Navier–Stokes/Darcy problem as natural conditions on �. In fact, the weak formula-
tion reads:
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Numerical analysis of the Navier–Stokes/Darcy coupling 199

find u f ∈ H f , p f ∈ Q, ϕ ∈ Hp such that

a f (u f , v)+ c f (u f ; u f , v)+ b f (v, p f )

+
∫

�

g ϕ(v · n)+
∫

�

d−1∑
j=1

ν

ε
(u f · τ j )(v · τ j ) =

∫

� f

f · v, (16)

b f (u f , q) = 0, (17)

ap(ϕ, ψ) =
∫

�

ψ(u f · n), (18)

for all v ∈ H f , q ∈ Q, ψ ∈ Hp.
The rest of the paper is organized as follows. In Sect. 2, we introduce and analyze

some nonlinear extension operator that will be used in Sect. 3 to reformulate the cou-
pled problem (16)–(18) as a nonlinear interface equation, say S(λ) = 0, whose sole
scalar unknown λ is the common value of the normal velocity u f · n = up · n across
�. S is a nonlinear Steklov–Poincaré operator. The well-posedness of this interface
problem is proved in Sect. 3. Finally, in Sect. 4, after briefly discussing a conforming
finite element approximation of the Navier–Stokes/Darcy problem, we propose and
analyze three different iterative methods to compute its solution.

2 Some nonlinear extension operators: definition and analysis

In this section we apply domain decomposition techniques at the differential level to
study the Navier–Stokes/Darcy problem, as done in an abstract setting in [25]. We
identify the subdomains with � f and �p, then we introduce and analyze some non-
linear extension operators that will be used in Sect. 3 to write the Steklov–Poincaré
interface equation associated to the coupled problem.

We consider two linear continuous extension operators:

R1 : 	 → H f s.t. R1µ · n = µ on � , ∀µ ∈ 	, (19)

R2 : H1/2(�) → Hp s.t. R2µ = µ on �, ∀µ ∈ H1/2(�). (20)

Since there holds H f = H0
f + {R1

f µ : µ ∈ 	}, we can prove the following result
(see also [10]).

Proposition 1 The coupled Navier–Stokes/Darcy problem (16)–(18) can be equiva-
lently reformulated in the multidomain form:

find u f ∈ H f , p f ∈ Q, ϕ ∈ Hp such that

a f (u f , v)+ c f (u f ; u f , v)+ b f (v, p f )+
∫

�

d−1∑
j=1

ν

ε
(u f · τ j )(v · τ j )

=
∫

� f

f · v ∀v ∈ H0
f , (21)
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200 L. Badea et al.

b f (u f , q) = 0 ∀q ∈ Q , (22)

ap(ϕ, ψ) = 0 ∀ψ ∈ H0
p , (23)∫

�

(u f · n)µ = ap(ϕ, R2µ) ∀µ ∈ 	, (24)

∫

�

g ϕµ =
∫

� f

f · (R1
f µ)− a f (u f , R1µ)− c f (u f ; u f , R1µ)

−b f (R1µ, p f )−
∫

�

d−1∑
j=1

ν

ε
(u f · τ j )(R1µ · τ j ) ∀µ ∈ 	. (25)

We would like to rewrite (21)–(25) as an interface equation in a scalar interface
unknown defined on � corresponding to the trace of the fluid normal velocity u f · n
on �. First of all, we need to introduce and analyze some further extension operators.

Let us consider the (unknown) interface variable λ = (u f · n)|� . Due to the incom-
pressibility constraint in � f and to the boundary conditions imposed on ∂� f \�, it
must be λ ∈ 	0.

Let us define the linear extension operator:

R f : 	0 → H f × Q0, η → R f η = (R1
f η, R2

f η), (26)

satisfying R1
f η · n = η on �, and, for all v ∈ H0

f , q ∈ Q0,

a f (R1
f η, v)+ b f (v, R2

f η)+
∫

�

d−1∑
j=1

ν

ε
(R1

f η · τ j )(v · τ j ) = 0, (27)

b f (R1
f η, q) = 0. (28)

Moreover, we consider the linear extension operator

Rp : 	0 → Hp, η → Rpη (29)

such that

ap(Rpη,ψ) =
∫

�

ηψ ∀ψ ∈ Hp. (30)

It is easy to see that problems (27), (28) and (30) both have a unique solution.
Finally, let us introduce the following nonlinear extension operator:

R f : 	0 → H f × Q0, η → R f (η) =
(
R1

f (η),R2
f (η)

)
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such that R1
f (η) · n = η on �, and, for all v ∈ H0

f , q ∈ Q0,

a f (R1
f (η), v)+ c f (R1

f (η);R1
f (η), v)+ b f (v,R2

f (η))

+
∫

�

d−1∑
j=1

ν

ε
(R1

f (η) · τ j )(v · τ j ) =
∫

� f

f · v , (31)

b f (R1
f (η), q) = 0. (32)

In order to prove the existence and uniqueness of R f , we define the auxiliary
nonlinear operator

R0 : 	0 → H0
f × Q0, η → R0(η) = (R1

0(η),R2
0(η)),

with Ri
0(η) = Ri

f (η)− Ri
f η, i = 1, 2.

(33)

Clearly, R1
0(η) · n = 0 on �, and it satisfies:

a f (R1
0(η), v)+ c f

(
R1

f η + R1
0(η); R1

f η + R1
0(η), v

)

+b f (v,R2
0(η))+

∫

�

d−1∑
j=1

ν

ε
(R1

0(η) · τ j )(v · τ j ) =
∫

� f

f · v, (34)

b f (R1
0(η), q) = 0, (35)

for all v ∈ H0
f , q ∈ Q0. Remark that problem (34) and (35) is analogous to (31) and

(32), but here R1
0(η) ∈ H0

f , while R1
f (η) ∈ H f .

Moreover, given η ∈ 	0, we define the form

a(w; z, v) = a f (z, v)+ c f (w; z, v)+ c f (R1
f η; z, v)+ c f (z; R1

f η, v)

+
∫

�

d−1∑
j=1

ν

ε
(z · τ j )(v · τ j ) ∀w, z, v ∈ (H1(� f ))

d , (36)

and the functional

〈�, v〉 = −c f (R1
f η; R1

f η, v)+
∫

� f

f · v ∀v ∈ (H1(� f ))
d . (37)

Thus, we can rewrite (34) and (35) as: given η ∈ 	0,

find R1
0(η) ∈ V 0

f : a(R1
0(η);R1

0(η), v) = 〈�, v〉 ∀v ∈ V 0
f . (38)
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202 L. Badea et al.

Finally, let us recall some useful inequalities: the Poincaré inequality (see, e.g., [25,
p. 11])

∃C� f > 0 : ‖v‖0 ≤ C� f |v|1 ∀v ∈ H f , (39)

the Korn inequality (see, e.g., [26, p. 149])

∃Cκ > 0 :
∫

� f

d∑
i, j=1

(
∂v j

∂xi
+ ∂vi

∂x j

)2

≥ Cκ‖v‖2
1 ∀v = (v1, . . . , vd) ∈ H f ,

(40)

and the following inequality

∃CN > 0 : |c f (w; z, v)| ≤ CN |w|1 |z|1 |v|1 ∀w, z, v ∈ H f , (41)

which follows from the Poincaré inequality (39) and the inclusion (H1(� f ))
d ⊂

(L4(� f ))
d (for d = 2, 3) due to the Sobolev embedding theorem (see [1]).

We can now state the following result.

Proposition 2 Let f ∈ L2(� f ) be such that

CN C� f ||f ||0 <
(

Cκν

2

)2

, (42)

where Cκ and CN are the constants introduced in (40) and (41), respectively. If

η ∈

⎧⎪⎪⎨
⎪⎪⎩
µ ∈ 	0 : |R1

f µ|1 <
Cκν −

√(
Cκ ν

2

)2 + 3CN C�||f ||0
3CN

⎫⎪⎪⎬
⎪⎪⎭
, (43)

then there exists a unique nonlinear extension R f (η) = (R1
f (η),R2

f (η)) ∈ H f ×Q0.

Remark 2 Notice that (43) imposes a constraint on η. In particular, since the norms
|R1

f η|1 and ‖η‖	 are equivalent (see [12, Lemma 4.1]), this condition implies that a
unique extension R f (η) exists, provided the norm of η is small enough. In our specific
case, this means that we would be able to consider an extension R f (λ) only if the
normal velocity λ across the interface � is sufficiently small. Finally, remark that (42)
guarantees that the radius of the ball in (43) is positive.
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Proof The proof is made of several steps and it is based on Theorems 3–4.

1. Let v,w ∈ V 0
f and η ∈ 	0. Then, we have

a(w; v, v) = a f (v, v)+ c f (w; v, v)

+c f (R1
f η; v, v)+ c f (v; R1

f η, v)+
∫

�

d−1∑
j=1

ν

ε
(v · τ j )(v · τ j ).

(44)

Integrating by parts and recalling that w ∈ V 0
f , then

c f (w; v, v) = 1

2

∫

∂� f

w · n|v|2 − 1

2

∫

� f

∇ · w|v|2 = 0 ,

where |v| is the Euclidean norm of the vector v. Since

∫

�

d−1∑
j=1

ν

ε
(v · τ j )(v · τ j ) ≥ 0,

from (44) we get

a(w; v, v) ≥ a f (v, v)+ c f (R1
f η; v, v)+ c f (v; R1

f η, v) (45)

and using the inequalities (40) and (41) we obtain

a(w; v, v) ≥ Cκν

2
|v|21 − 2CN |v|21 |R1

f η|1.

Then, thanks to (43), the bilinear form a(w; ·, ·) is uniformly elliptic on V 0
f with

respect to w, with constant αa (independent of w)

αa = Cκν

2
− 2CN |R1

f η|1.

2. Still using (41), we easily obtain:

|a(w1; z, v)− a(w2; z, v)| = |c f (w1 − w2; z, v)| ≤ CN |w1 − w2|1|v|1|z|1.
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204 L. Badea et al.

3. We have

‖��‖(V 0
f )

′ = sup
v∈V 0

f ,v �=0

∣∣∣−c f (R1
f η; R1

f η, v)+ ∫
� f

f · v
∣∣∣

|v|1

≤ sup
v∈V 0

f ,v �=0

CN |R1
f η|21 |v|1 + C� f ||f ||0 |v|1

|v|1
= CN |R1

f η|21 + C� f ||f ||0.
Conditions αa > 0 and

CN
‖��‖(V 0

f )
′

α2
a

< 1

are satisfied if

CN |R1
f η|1 <

1

2

Cκν

2
(46)

and

3
(

CN |R1
f η|1

)2 − 4
Cκν

2
CN |R1

f η|1 +
(

Cκν

2

)2

− CN C� f ||f ||0 > 0

(47)

respectively. Condition (46) imposes (Cκν/2)2 > CN C� f ||f ||0 in (47). This con-
dition is (42), and, in this case, conditions (46) and (47) hold if (43) is satisfied.

4. Thanks to (43) and 1–3, a(·; ·, ·) and � satisfy the hypotheses of Theorem 3 of
Appendix, which allows us to conclude that there exists a unique solution R1

0(η) ∈
V 0

f to (38).
5. Since the inf–sup condition is satisfied, Theorem 4 guarantees that there exists a

unique solution (R1
0(η),R2

0(η)) to (34) and (35). The thesis follows from (33)
and from the uniqueness of the operator R f (26). ��

3 The interface equation associated to the coupled problem

In this section we reformulate the global coupled problem (21)–(25) as an interface
equation depending solely on λ = (u f · n)|� .

We formally define the nonlinear pseudo-differential operator S : 	0 → 	′
0,

〈S(η), µ〉 = a f (R1
f (η), R1µ)+ c f (R1

f (η);R1
f (η), R1µ)+ b f (R1µ,R2

f (η))

+
∫

�

d−1∑
j=1

ν

ε
(R1

f (η) · τ j )(R1µ · τ j )−
∫

� f

f · (R1µ)

+
∫

�

g(Rpη)µ ∀η ∈ 	0,∀µ ∈ 	. (48)
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The operator S is composed of two parts: a non-linear component associated to the
fluid problem in � f (the terms in the first two lines), and a linear part related to the
problem in the porous media (corresponding to the last integral). The fluid part plays
the role of a non-linear Dirichlet-to-Neumann map that associates at any given normal
velocity η on � the normal component of the corresponding Cauchy stress tensor on
�. On the other hand, the linear porous-media part is a Neumann-to-Dirichlet map
that associates the trace on � of the piezometric head whose conormal derivative on
� is equal to η.

We have the following equivalence result, whose proof follows the guidelines of
Theorem 4.1 in [12].

Theorem 1 The solution of (21)–(25) can be characterized as follows:

u f = R1
f (λ), p f = R2

f (λ)+ p̂ f , ϕ = Rpλ , (49)

where p̂ f = (meas(� f ))
−1

∫
� f

p f , and λ ∈ 	0 is the solution of the nonlinear
interface problem:

〈S(λ), µ〉 = 0 ∀µ ∈ 	0. (50)

Moreover, p̂ f can be obtained from λ by solving the algebraic equation

p̂ f = (meas(�))−1〈S(λ), ε〉,

where ε ∈ 	 is a fixed function such that

1

meas(�)

∫

�

ε = 1. (51)

Notice that a more useful characterization of the operator S can be provided. Indeed,
with the special choice R1 = R1

f in (48), thanks to (27), we obtain

b f

(
R1

f µ,R2
f (η)

)
= 0 ∀η,µ ∈ 	0.

Moreover, owing to (33), for η,µ ∈ 	0, we have

〈S(η), µ〉 = a f

(
R1

0(η)+ R1
f η, R1

f µ
)
+c f

(
R1

0(η)+ R1
f η;R1

0(η)+ R1
f η, R1

f µ
)

+
∫

�

d−1∑
j=1

ν

ε

(
(R1

0(η)+ R1
f η) · τ j

)
(R1

f µ · τ j )−
∫

� f

f · (R1
f µ)+

∫

�

g(Rpη)µ.
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206 L. Badea et al.

By taking R1
0(η) ∈ H0

f as test function in (27), we obtain:

a f

(
R1

f µ,R1
0(η)

)
+ b f

(
R1

0(η), R2
f µ

)
+

∫

�

d−1∑
j=1

ν

ε

(
R1

f µ · τ j

) (
R1

0(η) · τ j

)
= 0.

Finally, since R2
f µ ∈ Q0, owing to (34) and (35) it follows that

a f

(
R1

f µ,R1
0(η)

)
+

∫

�

d−1∑
j=1

ν

ε

(
R1

f µ · τ j

) (
R1

0(η) · τ j

)
= 0,

so that, for all η,µ ∈ 	0, the operator S can be characterized as

〈S(η), µ〉 = a f

(
R1

f η, R1
f µ

)
+ c f

(
R1

0(η)+ R1
f η;R1

0(η)+ R1
f η, R1

f µ
)

+
∫

�

d−1∑
j=1

ν

ε
(R1

f η · τ j )(R1
f µ · τ j )−

∫

� f

f · (R1
f µ)+

∫

�

g(Rpη)µ. (52)

We study now the well-posedness of the nonlinear interface problem (50).
Note that in view of (52), S(λ) is defined in terms of the operator R1

0(λ), which,
thanks to (34) and (35), satisfies in its turn the following problem:

a f

(
R1

0(λ), v
)

+ c f

(
R1

0(λ)+ R1
f λ;R1

0(λ)+ R1
f λ, v

)

+
∫

�

d−1∑
j=1

ν

ε

(
R1

0(λ) · τ j

)
(v · τ j ) =

∫

� f

f · v ∀v ∈ V 0
f . (53)

Therefore, in order to prove the existence and uniqueness of the solution of the
interface problem, we have to consider (50), with the characterization of S given in
(52), coupled with (53), i.e., we have to guarantee at once the existence and uniqueness
of λ ∈ 	0 and R1

0(λ) ∈ V 0
f . To this aim we apply Theorem 3 considering the product

space W = 	0 × V 0
f endowed with the norm:

‖v̄‖W =
(
|R1

f µ|21 + |v|21
)1/2 ∀v̄ = (µ, v) ∈ W. (54)

We introduce the trilinear form and the linear functional associated with our prob-
lem in the space W . For any fixed (η,w) ∈ W , we define the following operator
depending on w̄:
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Ã(η,w) : W → W ′,
〈(Ã(η,w))(ξ,u), (µ, v)〉 = 〈(A f (η,w))(ξ,u), µ〉 + 〈(A0(η,w))(ξ,u), v〉

where, for every test function µ ∈ 	0,

〈(A f (η,w))(ξ,u), µ〉 = a f

(
R1

f ξ, R1
f µ

)
+ c f

(
w + R1

f η; u + R1
f ξ, R1

f µ
)

+
∫

�

d−1∑
j=1

ν

ε
(R1

f ξ · τ j )(R1
f µ · τ j )+

∫

�

g(Rpξ)µ,

whereas for any test function v ∈ V 0
f ,

〈(A0(η,w))(ξ,u), v〉 = a f (u, v)+ c f

(
w + R1

f η; u + R1
f ξ, v

)

+
∫

�

d−1∑
j=1

ν

ε
(u · τ j )(v · τ j ).

We indicate by ã the form associated to the operator Ã:

ã(w̄; ū, v̄) = 〈(Ã(η,w))(ξ,u), (µ, v)〉 (55)

for all w̄ = (η,w), ū = (ξ,u), v̄ = (µ, v) ∈ W .
Next, we define two functionals � f : 	0 → R and �0 : V 0

f → R as:

〈� f , µ〉 =
∫

� f

f · (R1
f µ) ∀µ ∈ 	0 ,

〈�0, v〉 =
∫

� f

f · v ∀v ∈ V 0
f ,

and denote

〈�̃, v̄〉 = 〈� f , µ〉 + 〈�0, v〉 ∀v̄ = (µ, v) ∈ W. (56)

Thus, the problem defined by (50) and (53) can be reformulated as:

find ū = (λ, u) ∈ W : ã(ū; ū, v̄) = 〈�̃, v̄〉 ∀v̄ = (µ, v) ∈ W. (57)

We shall prove the existence and uniqueness of the solution only in a closed convex
subset of W .

123



208 L. Badea et al.

Lemma 1 Let f ∈ L2(� f ) be such that

2(1 + √
2)

√
2CN C� f ‖f‖0 ≤ Cκν, (58)

and consider two constants

rm =
C1 −

√
C2

1 − 4C2

2
and rM = C1 −

√√
2C2, (59)

where

C1 = Cκν

4CN
, C2 =

√
2C� f ‖f‖0

2CN
. (60)

Notice that, thanks to (58), there holds

0 ≤ rm < rM . (61)

If we consider

Br =
{
w̄ = (η,w) ∈ W : |R1

f η|1 ≤ r
}
, (62)

with

rm < r < rM , (63)

then, there exists a unique solution ū = (λ, u) ∈ Br of (57) with u = R1
0(λ).

Remark 3 Condition (58) is equivalent to

C2
1 ≥ 3 + 2

√
2√

2
C2. (64)

Proof The proof is composed of several parts.
1. For each w̄ = (η,w) ∈ Br the bilinear form ã(w̄; ·, ·) is uniformly coercive

on W .
By definition, for all v̄ = (µ, v) ∈ W we have

ã(w̄; v̄, v̄) = a f

(
R1

f µ, R1
f µ

)
+ a f (v, v)+

∫

�

g(Rpµ)µ

+c f

(
w + R1

f η; v + R1
f µ, v + R1

f µ
)

+
∫

�

d−1∑
j=1

ν

ε
(R1

f µ · τ j )(R1
f µ · τ j )+

∫

�

d−1∑
j=1

ν

ε
(v · τ j )(v · τ j ).
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Thanks to (30), we have
∫
�

g(Rpµ)µ ≥ 0. Using the inequalities (40) and (41) and
the fact that w ∈ V 0

f , we obtain

ã(w̄; v̄, v̄) ≥ Ckν

2

(
|R1

f µ|21 + |v|21
)

− 2CN |R1
f η|1

(
|R1

f µ|21 + |v|21
)
.

Thus,

ã(w̄; v̄, v̄) ≥ αã

(
|R1

f µ|21 + |v|21
)
, (65)

having set

αã = Ckν

2
− 2CN |R1

f η|1. (66)

Condition αã > 0 is equivalent to |R1
f η|1 < C1, which is satisfied in view of (61),

(59) and (63). Thus, the bilinear form ã(w̄; ·, ·) is uniformly coercive with respect to
any w̄ ∈ Br .

Thanks to the Lax–Milgram Lemma (see, e.g., [25, p. 133]) the operator Ã(w̄) ∈
L(W ; W ′) is invertible for each w̄ ∈ Br . Moreover, the inverse T (w̄) = (Ã(w̄))−1

belongs to L(W ′; W ) and it satisfies

‖T (w̄)‖L(W ′;W ) ≤ 1

αã
.

Now, we prove that there exists a unique ū ∈ Br such that ū = T (ū)�̃, i.e. (57) has a
unique solution in Br .

2. v̄ → T (v̄)�̃ maps Br into Br and is a strict contraction in Br .
For all v̄ = (µ, v) ∈ Br we have

‖T (v̄)�̃‖W ≤ ‖T (v̄)‖L(W ′;W )||�̃||W ′ ≤ ||�̃||W ′

αã
.

Moreover,

||�̃||W ′ = sup
v̄∈W,v̄ �=0

∣∣∣∫� f
f · (R1

f µ)+ ∫
� f

f · v
∣∣∣

‖v̄‖W

≤ C� f ‖f‖0 sup
v̄∈W,v̄ �=0

|R1
f µ|1 + |v|1
‖v̄‖W

≤ √
2C� f ‖f‖0. (67)

From (67) and (66), corresponding to some w̄ = (η,w) ∈ Br , condition

||�̃||W ′

αã
≤ r
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is satisfied if

r2 − C1r + C2 ≤ 0, (68)

that is rmin ≤ r ≤ rmax with

rmin =
C1 −

√
C2

1 − 4C2

2
and rmax =

C1 +
√

C2
1 − 4C2

2
.

Since C2
1 − 4C2 ≥ 0 from (64), for any v̄ ∈ Br with r satisfying (68), T (v̄)�̃ belongs

to Br .
Finally, to find r such that that the map v̄ → T (v̄)�̃ is a strict contraction in Br ,

we should guarantee (see [17, p. 282]) that for any w̄1, w̄2 ∈ Br

‖(T (w̄1)− T (w̄2))�̃‖W ≤ ||�̃||W ′

α2
ã

L(r)‖w̄1 − w̄2‖W < ‖w̄1 − w̄2‖W , (69)

L(r) being the Lipschitz continuity constant associated to Ã. However,

|〈(Ã(w̄1)− Ã(w̄2))(ū), v̄〉| = |ã(w̄1; ū, v̄)− ã(w̄2; ū, v̄)|
= |c f (w1 + R1

f η1 − (w2 + R1
f η2); u + R1

f λ, v + R1
f µ)|

≤ CN |w1 + R1
f η1 − w2 − R1

f η2|1 |u + R1
f λ|1 |v + R1

f µ|1
≤ 2

√
2CN ‖w̄1 − w̄2‖W ‖ū‖W ‖v̄‖W ,

so that L(r) = 2
√

2CN . Thus, condition

||�̃||W ′

α2
ã

L(r) < 1

is satisfied if

r2 − 2C1r + C2
1 − √

2C2 > 0 (70)

i.e.,

r < rMIN = C1 −
√√

2C2 or r > rMAX = C1 +
√√

2C2.

It is easy to see that rmax < rMAX. Consequently, there exists a r which satisfies
(68) and (70) if and only if rmin ≤ rMIN, which is equivalent to condition (64) or to
condition (58). Under this condition, any r in the interval (63) with rm = rmin and
rM = rMIN, will satisfy both (68) and (70).

3. The existence and uniqueness of the solution ū = (λ,R1
0(λ)) ∈ Br to (57) is

now a simple consequence of the Banach contraction theorem (see, e.g., [27]). ��
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The following theorem is a direct consequence of the previous lemma.

Theorem 2 If (58) holds, then problem (57) has a unique solution ū = (λ,R1
0(λ))

in the set

BrM =
{
w̄ = (η,w) ∈ W : |R1

f η|1 < rM

}
,

and it satisfies |R1
f λ|1 ≤ rm, where rm and rM are defined in (59). In particular, it fol-

lows that (50) has a unique solutionλ in the set SrM = {η ∈ 	0 : |R1
f η|1 < rM } ⊂ 	0

which indeed belongs to Srm = {η ∈ 	0 : |R1
f η|1 ≤ rm}.

Proof Since problem (50) has a solution λ if and only if ū = (λ,R1
0(λ)) is a solution

of problem (57), we prove only the first part of theorem.
From the previous Lemma 1, if (58) holds, (57) has at least a solution in BrM as it

has a solution in Br ⊂ BrM , for any rm < r < rM . To prove the uniqueness, let us
assume that (57) has two solutions ū1 = (λ1, (R1

0(λ))1) �= ū2 = (λ2, (R1
0(λ))2) in

BrM . Then, r1 = |R1
f λ1|1 < rM and r2 = |R1

f λ2|1 < rM . Therefore, any set Br

with max{rm, r1, r2} < r < rM contains two different solutions of problem (57). This
contradicts the result of Lemma 1. Now, let ū = (λ,R1

0(λ)) be the unique solution
of problem (57) in BrM . According to Lemma 1, it belongs to each Br ⊂ BrM with
rm < r < rM , and consequently |R1

f λ|1 ≤ rm . ��
Remark 4 Notice that condition (58) is analogous to that usually required to prove
existence and uniqueness of the solution of the Navier–Stokes equations. Moreover,
we have proved that the solution is unique in SrM . Thus, in view of Remark 2,
Theorem 2 states that the solution is unique only for sufficiently small normal velocities
λ across the interface �. Finally, notice that (58) implies (42) and that Srm is included
in the set (43), so that the existence and uniqueness of the nonlinear extension R1

0(λ)

is ensured as well.

4 Iterative finite element solution of the coupled problem

In this section, we introduce and analyze some iterative methods to compute the
solution of a conforming finite element approximation of (16)–(18). For the easiness
of notation, we will write the algorithms in continuous form. However, they can be
straightforwardly translated into a discrete setting considering conforming internal
Galerkin approximations of the spaces (7)–(11).

Moreover, the convergence results that we will present hold in the discrete case
without any dependence of the convergence rate on the grid parameter h, since they
are established by using the properties of the operators in the continuous case.

As concerns the finite element approximation, let us just indicate our basic assump-
tions, referring to [10,13,14] for a more detailed description.

We consider a regular triangulation of the domain� f ∪�p, depending on a positive
parameter h > 0, made up of triangles if d = 2, or tetrahedra in the 3-dimensional
case. We assume that the triangulations induced on the subdomains � f and �p are
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compatible on �, that is they share the same edges (if d = 2) or faces (if d = 3)
therein. Finally we suppose the triangulation induced on � to be quasi-uniform (see,
e.g., [25]).

Several choices of finite element spaces can be made. However, in order to guar-
antee the stability of the approximation of the coupled problem, we must only ensure
that the finite element spaces which approximate the velocity and pressure fields in
the fluid domain, say H f h and Qh , respectively, satisfy an inf-sup condition. Indeed,
there must exist a positive constant β∗ > 0, independent of h, such that ∀qh ∈ Qh ,
∃vh ∈ H f h , vh �= 0 such that

∫

� f

qh ∇ · vh ≥ β∗‖vh‖1‖qh‖0. (71)

No additional condition is required on the discrete space used to approximate the
piezometric head in �p.

Several families of finite element spaces satisfying the inf-sup condition (71) are
provided in [4]. The classical error estimates hold for the Navier–Stokes equations
(see, e.g., [17, Chapter II]) and for the Darcy problem (6) (see, e.g., [25]). In our
numerical results we will make the special choice of piecewise quadratic elements for
the velocity components and piecewise linear for the pressure (the so-called Taylor-
Hood elements), while we will use piecewise quadratic elements for approximating
the piezometric head ϕ in �p. For such choices, it is well-known that the following
error estimates hold: there exist two positive constants C1 and C2 such that:

Eh
N S ≤ C1hr (‖u f ‖r+1 + ‖p f ‖r ), r = 1, 2, (72)

if u f ∈ Hr+1(� f ) and p f ∈ Hr (� f ), where

Eh
N S = ‖∇u f − ∇u f h‖0 + ‖p f − p f h‖0,

while

Eh
D ≤ C2hl‖ϕ‖l+1, l = min(2, s − 1), (73)

if ϕ ∈ Hs(�p), s ≥ 2, with

Eh
D = ‖ϕ − ϕh‖1.

We have indicated by the subscript h the finite element approximations of u f , p f and
ϕ. We will verify these estimates numerically in Sect. 5.
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4.1 Fixed-point iterations

Fixed-point iterations to solve the coupled problem (16)–(18) can be written as follows.
Given u0

f ∈ H f , for n ≥ 1, find un
f ∈ H f , pn

f ∈ Q, ϕn ∈ Hp such that

a f (un
f , v)+ c f (u

n−1
f ; un

f , v)+ b f (v, pn
f )

+
∫

�

g ϕn(v · n)+
∫

�

d−1∑
j=1

ν

ε
(un

f · τ j )(v · τ j ) =
∫

� f

f · v, (74)

b f (un
f , q) = 0 , (75)

ap(ϕ
n, ψ) =

∫

�

ψ(un
f · n), (76)

for all v ∈ H f , q ∈ Q, ψ ∈ Hp.
Algorithm (74)–(76) requires to solve at each iteration a linear coupled problem,

and it can be reinterpreted as a fixed-point method to solve the interface problem (57).
Indeed, let us first rewrite (74) and (75) in the equivalent form:

find un
f ∈ V f such that

a f (un
f , v)+ c f (u

n−1
f ; un

f , v)+
∫

�

g ϕn(v · n)

+
∫

�

d−1∑
j=1

ν

ε
(un

f · τ j )(v · τ j ) =
∫

� f

f · v ∀v ∈ V f . (77)

We denote λn = un
f · n on � and we remark that λn ∈ 	0. Then, we consider

R1
f λ

n ∈ H f and we set un = un
f − R1

f λ
n . By definition, un · n = 0 on �. Moreover,

remark that for all η ∈ 	0, (28) implies ∇ · R1
f η = 0 in � f since we can choose

q = ∇ · R1
f η. Thus, un ∈ V 0

f .
From (76) it follows −K∇ϕn · n = un

f · n = λn on �, so that by definition of Rp,
we can write ϕn = Rpλ

n .
Finally, since v ∈ V f , proceeding as for un

f , we can split v = w + R1
f µ with

µ = v · n on � and w ∈ V 0
f . Thus, (77) becomes

a f

(
un + R1

f λ
n,w + R1

f µ
)

+ c f

(
un−1 + R1

f λ
n−1; un + R1

f λ
n,w + R1

f µ
)

+
∫

�

g(Rpλ
n)(w + R1

f µ) · n +
∫

�

d−1∑
j=1

ν

ε

(
(un + R1

f λ
n) · τ j

) (
(w + R1

f µ) · τ j

)

=
∫

� f

f · (w + R1
f µ).
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Taking into account that w ∈ V 0
f and the definition of R1

f (27) and (28), this corre-

sponds to the fixed-point method: given ūn−1 = (λn−1,un−1) ∈ W , for n ≥ 1,

find ūn = (λn,un) ∈ W : ã(ūn−1; ūn, w̄) = 〈�̃, w̄〉 ∀w̄ = (µ,w) ∈ W.

Then, in view of this equivalence, the convergence of (74)–(76) is a direct con-
sequence of Lemma 1. We can state the following result which is a straightforward
corollary of Theorem 2.

Proposition 3 If (58) holds and if u0
f is such that |R1

f (u
0
f · n)|1 < rM with rM given

in (59), then the sequence (un
f , pn

f , ϕ
n) converges for n → ∞ to the unique solution

(u f , p f , ϕ) of problem (16)–(18), and |R1
f (u f · n)|1 ≤ rm.

4.2 Newton-like methods

Let us consider now the Newton method to solve (the discrete form of) (16)–(18).
Let u0

f ∈ H f be given. Then, for n ≥ 1, the Newton method reads: find un
f ∈ H f ,

pn
f ∈ Q, ϕn ∈ Hp such that

a f (un
f , v)+ c f (un

f ; un−1
f , v)+ c f (u

n−1
f ; un

f , v)+ b f (v, pn
f )+

∫

�

gϕn(v · n)

+
∫

�

d−1∑
j=1

ν

ε
(un

f · τ j )(v · τ j ) = c f (u
n−1
f ; un−1

f , v)+
∫

� f

f · v , (78)

b f (un
f , q) = 0 , (79)

ap(ϕ
n, ψ) =

∫

�

ψ(un
f · n) , (80)

for all v ∈ H f , q ∈ Q, ψ ∈ Hp.
In order to reduce the computational cost, we might consider the modified Newton

method: find un
f ∈ H f , pn

f ∈ Q, ϕn ∈ Hp such that

a f (un
f , v)+ c f (un

f ; u0
f , v)+ c f (u0

f ; un
f , v)+ b f (v, pn

f )+
∫

�

gϕn(v · n)

+
∫

�

d−1∑
j=1

ν

ε
(un

f · τ j )(v · τ j ) = c f (u
n−1
f ; u0

f , v)

+ c f (u0
f − un−1

f ; un−1
f , v)+

∫

� f

f · v, (81)
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b f (un
f , q) = 0 , (82)

ap(ϕ
n, ψ) =

∫

�

ψ(un
f · n), (83)

for all v ∈ H f , q ∈ Q, ψ ∈ Hp.
Like for fixed-point iterations, we have to solve a linearized coupled problem at

each iteration of the Newton algorithms.
We would like to rewrite the Newton methods (78)–(80) and (81)–(83) as iterative

schemes for the interface equation (57). Let us consider the exact Newton method.
First of all, notice that it can be expressed in the equivalent form:

find un
f ∈ V f , ϕn ∈ Hp such that

a f (un
f , v)+ c f (un

f ; un−1
f , v)+ c f (u

n−1
f ; un

f , v)+
∫

�

gϕn(v · n)

+
∫

�

d−1∑
j=1

ν

ε
(un

f · τ j )(v · τ j ) = c f (u
n−1
f ; un−1

f , v)+
∫

� f

f · v , (84)

ap(ϕ
n, ψ) =

∫

�

ψ(un
f · n), (85)

for all v ∈ V f , ψ ∈ Hp.
Furthermore (84) can be equivalently restated as: find un

f ∈ V f such that

a f (un
f − un−1

f , v)+ c f (un
f − un−1

f ; un−1
f , v)+ c f (u

n−1
f ; un

f − un−1
f , v)

+
∫

�

g(ϕn − ϕn−1)(v · n)+
∫

�

d−1∑
j=1

ν

ε
((un

f − un−1
f ) · τ j )(v · τ j )

= −a f (u
n−1
f , v)− c f (u

n−1
f ; un−1

f , v)−
∫

�

gϕn−1(v · n)

−
∫

�

d−1∑
j=1

ν

ε
(un−1

f · τ j )(v · τ j )+
∫

� f

f · v, ∀v ∈ V f . (86)

Let us now indicate by P(ū) the operator associated to (57): P(ū) : W → W ′,
P(ū) = (Ãū)ū − �̃, ū = (λ,u) ∈ W , Ã and �̃ being defined in Sect. 3. More
precisely,
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〈P(ū), w̄〉 = a f (R1
f λ, R1

f µ)+ a f (u,w)+ c f

(
u + R1

f λ; u + R1
f λ,w + R1

f µ
)

+
∫

�

d−1∑
j=1

ν

ε
(R1

f λ · τ j )(R1
f µ · τ j )+

∫

�

d−1∑
j=1

ν

ε
(u · τ j )(w · τ j )

+
∫

�

g(Rpλ)µ−
∫

� f

f · (w + R1
f µ) , ∀w̄ = (µ,w) ∈ W.

The Gateaux derivative of the operator P in ū reads, for all v̄ = (η, v), w̄ = (µ,w) ∈
W ,

〈(P ′(ū))(v̄), w̄〉 = a f (R1
f η, R1

f µ)+ a f (v,w)

+ c f

(
v + R1

f η; u + R1
f λ,w + R1

f µ
)

+ c f

(
u + R1

f λ; v + R1
f η,w + R1

f µ
)

+
∫

�

d−1∑
j=1

ν

ε
(R1

f η · τ j )(R1
f µ · τ j )

+
∫

�

d−1∑
j=1

ν

ε
(v · τ j )(w · τ j )+

∫

�

g(Rpη)µ.

Notice also that, in view of the definition of R1
f , we have

〈P(ū), w̄〉 = a f (u + R1
f λ,w + R1

f µ)+ c f

(
u + R1

f λ; u + R1
f λ,w + R1

f µ
)

+
∫

�

d−1∑
j=1

ν

ε

(
(u + R1

f λ) · τ j

) (
(w + R1

f µ) · τ j

)

+
∫

�

g(Rpλ)µ−
∫

� f

f · (w + R1
f µ),

and

〈(P ′(ū))(v̄), w̄〉=a f

(
v + R1

f η,w + R1
f µ

)
+ c f

(
v + R1

f η; u + R1
f λ,w + R1

f µ
)

+c f

(
u + R1

f λ; v + R1
f η,w + R1

f µ
)

+
∫

�

d−1∑
j=1

ν

ε

(
(v + R1

f η) · τ j

) (
(w + R1

f µ) · τ j

)
+

∫

�

g(Rpη)µ.
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Following the same argument used in Sect. 4.1, we can write in (86) uk
f = uk+R1

f λ
k

with uk ∈ V 0
f and λk = uk

f · n on �, and we can set ϕk = Rpλ
k (k = n − 1, n).

Moreover, using again the fact that V f = V 0
f + {R1

f µ : µ ∈ 	0}, we can write

v = w + R1
f µ for w ∈ V 0

f and µ = v · n ∈ 	0 on �.
Substituting into (86), we can easily see that it corresponds to the following Newton

method to solve (57): given ū0 = (λ0,u0) ∈ W , for n ≥ 1, find ūn = (λn,un) ∈ W
such that

〈(P ′(ūn−1))(ūn − ūn−1), w̄〉 = −〈P(ūn−1), w̄〉 ∀w̄ = (µ,w) ∈ W. (87)

Proceeding in an analogous way, one can show that algorithm (81)–(83) corre-
sponds to the modified Newton method to solve (57): given ū0 = (λ0,u0) ∈ W , for
n ≥ 1, find ūn = (λn,un) ∈ W such that

〈(P ′(ū0))(ūn − ūn−1), w̄〉 = −〈P(ūn−1), w̄〉 ∀w̄ = (µ,w) ∈ W. (88)

Concerning the convergence of the Newton methods we can prove the following
result.

Proposition 4 Let f ∈ L2(� f ) and let

C̃1 = 32CN C� f ‖f‖0

(Cκν)2
, C̃2 = 2

√
2C� f ||f ||0

Cκν
. (89)

If

C̃1 ≤ 1

2
, (90)

then, there exists a unique solution ū = (λ,R1
0(λ)) ∈ Br0 of (57), with

Br0 = {w̄ = (η,w) ∈ W : ‖w̄‖W ≤ r0} (91)

and

r0 = 1 −
√

1 − 2C̃1

C̃1
C̃2. (92)

Moreover, the sequence ūn = (λn,un), n ≥ 1, obtained by the Newton algorithms
(87) or (88), taking ū0 = (0, 0) ∈ W , converges to this solution.

The following error estimate hold for the Newton method:

||ū − ūn||W ≤ 1

2n
(2C̃1)

2n C̃2

C̃1
, n ≥ 0, (93)
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while for the modified Newton method we have (if C̃1 < 1/2):

||ū − ūn||W ≤ C̃2

C̃1

(
1 −

√
1 − 2C̃1

)n+1

, n ≥ 0. (94)

Proof The proof is a corollary of Theorem 5. Consider ū0 = (λ0,u0) = (0, 0) ∈ W .
Then, for all w̄ = (η,w) ∈ W , we have:

〈(P ′(ū0))(w̄), w̄〉 = a f (R1
f η, R1

f η)+ a f (w,w)+
∫

�

d−1∑
j=1

ν

ε
(R1

f η · τ j )(R1
f η · τ j )

+
∫

�

d−1∑
j=1

ν

ε
(w · τ j )(w · τ j )+

∫

�

g(Rpη)η

≥ Cκν

2
(|R1

f η|21 + |w|21) = Cκν

2
||w̄||2W .

Consequently, [P ′(ū0)]−1 exists and

||[P ′(ū0)]−1||L(W ′,W ) ≤ 2

Cκν
. (95)

Moreover,

〈P(ū0), w̄〉 = −
∫

� f

f · (w + R1
f η) ≤ √

2C� f ‖f‖0||w̄||W ,

and therefore,

||P(ū0)||W ′ ≤ √
2C� f ‖f‖0. (96)

The second derivative of the operator P reads:

〈((P ′′(ū))(v̄))(w̄), ζ̄ 〉 = c f

(
w + R1

f η; v + R1
f µ, z + R1

f ξ
)

+c f

(
v + R1

f µ; w + R1
f η, z + R1

f ξ
)
,

for ū = (λ,u), v̄ = (µ, v), w̄ = (η,w), ζ̄ = (ξ, z) ∈ W . Thus,

〈((P ′′(ū))(v̄))(w̄), ζ̄ 〉 ≤ 2CN |w + R1
f η|1|v + R1

f µ|1|z + R1
f ξ |1

≤ 4
√

2CN |v̄|W |w̄|W |ζ̄ |W ,
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so that

||P ′′(ū)||L(W,L(W,W ′)) ≤ 4
√

2CN .

Consequently, in our case, inequality (106) corresponds to (90).
Moreover, since the operator P is defined and has continuous second derivative on

W , we can select a radius r satisfying (107)–(110) with r0 in (92) and

r1 = 1 +
√

1 − 2C̃1

C̃1
C̃2.

Finally, the error estimates (93) and (94) are directly obtained from (111) and (112),
respectively. ��
Remark 5 With the help of a little algebra we can see that C̃1 and C̃2 are related to
the constants C1 and C2 in (60) as: C1 = 2

√
2C̃2/C̃1 and C2 = 2

√
2C̃2

2/C̃1. Thus,
condition (58) can be reformulated as C̃1 ≤ (3 + 2

√
2)/8. If we compare it with (90),

we can see that the condition required for the convergence of the Newton method is
more restrictive than condition (58).

Finally, notice that rm becomes

rm = 1 −
√

1 − √
2C̃1

C̃1

√
2C̃2.

Thus, rm has a form similar to r0 in (92) and r0 ≥ rm . Notice however that in the
definition of Brm (see (62)) we control only |R1

f λ|1, while in Br0 in (91) we take the
whole norm ‖ū‖W . We can conclude that the well-posedness results of Lemma 1 and
Proposition 4 are consistent.

4.3 Preconditioned Richardson method

We consider the following iterative method to solve (16)–(18): given u0
f ∈ H f , ϕ0 ∈

Hp, for n ≥ 1, find un
f ∈ H f , qn

f ∈ Q, ϕn ∈ Hp such that

a f (un
f − un−1

f , v)+ b f (v, pn
f − pn−1

f )+
∫

�

d−1∑
j=1

ν

ε
((un

f − un−1
f ) · τ j )(v · τ j )

= θ

⎛
⎜⎝

∫

� f

f · v − a f (u
n−1
f , v)− c f (u

n−1
f ; un−1

f , v)− b f (v, pn−1
f )

−
∫

�

d−1∑
j=1

ν

ε
(un−1

f · τ j )(v · τ j )−
∫

�

g ϕn−1(v · n)

⎞
⎟⎠ , (97)
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b f (un
f − un−1

f , q) = 0, (98)

ap(ϕ
n, ψ) =

∫

�

ψ(un
f · n), (99)

for all v ∈ H f , q ∈ Q, ψ ∈ Hp. θ > 0 is a suitably chosen relaxation parameter.
Unlike the fixed-point and the Newton methods, this algorithm requires to solve at
each iteration two decoupled linear equations at each iteration: one in the fluid domain
and one in the porous media subdomain.

Proceeding as in Sects. 4.1 and 4.2, we can interpret (97)–(98) as an iterative method
for the interface problem (57) and we can prove its convergence for θ chosen in a suit-
able interval (0, θmax) with θmax depending on ν, g and ‖f‖0. For details we refer the
reader to [2].

5 Some numerical experiments

We consider the computational domain� = (0, 1)× (0, 2)with� f = (0, 1)× (1, 2)
and�p = (0, 1)×(0, 1), and uniform regular triangulations characterized by a param-
eter h. We use Taylor–Hood elements for the Navier–Stokes equations and quadratic
Lagrangian elements for the Darcy equation (6).

In a first test, we set the boundary conditions in such a way that the analytical solution
for the coupled problem is u f = (ex+y + y,−ex+y − x), p f = cos(πx) cos(πy)+ x ,
ϕ = ex+y −cos(πx)+ xy. In order to check the behavior of the iterative methods that
we have studied with respect to the grid parameter h, to start with we set the physical
parameters (ν, K, ε, g) all equal to 1.

The algorithms are stopped as soon as ‖xn − xn−1‖2/‖xn‖2 ≤ 10−10, where ‖ · ‖2
is the Euclidean norm and xn is the vector of the nodal values of (un

f , pn
f , ϕ

n). Our

initial guess is u0
f = 0.

The number of iterations obtained using the fixed-point algorithm (74)–(76), the
Newton method (78)–(80), and the Richardson method (97)–(99) are displayed in
Table 1. All methods converge in a number of iterations which does not depend on h.

In Fig. 2 (left), we show the convergence history of the three methods in the case
h = 1/14, while in Fig. 2 (right) we plot the errors with respect to h between the
exact solution and the solution obtained by the Newton method. We can see that the
theoretical estimates (72) and (73) are fulfilled.

Table 1 Number of iterations
for the iterative methods with
respect to h

h Fixed-point Newton Richardson
(θ = 0.5)

1/7 11 5 72

1/14 11 5 72

1/28 11 5 72
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A second test is carried out in order to assess the influence of the physical parameters
on the convergence rate of the algorithms. In this case, we consider the same compu-
tational domain, however the analytical solution now is u f = ((y − 1)2 + (y − 1)+
ε, x(x −1)), p f = 2ν(x + y −1), and ϕ = K−1(x(1−x)(y −1)+(y − 1)3/3)+2νx .
We choose several values for the physical parameters ν and K as indicated in Table 2,
and we set ε = √

K/10. The numerical results in Table 2 show that the smaller the
parameters the higher the number of iterations. This is particularly evident for the
Richardson method where the relaxation parameter θ must be chosen very small.

In Fig. 3 we show the convergence history of the different methods for h = 1/14
and ν = 10−1, K = 10−1 (on the left), and ν = 10−2, K = 10−1 (on the right).

Concerning the computational cost, we remark that the fixed-point algorithm
requires at each iteration to assemble the matrix corresponding to the linearized form
c f (un

f ; un−1
f , v).

On the other hand, at each iteration n ≥ 1 of the Newton method we have to assemble
two matrices associated to the linearized forms c f (un

f ; un−1
f , v) and c f (u

n−1
f ; un−1

f , v)
besides updating the right-hand side, which requires the multiplication of the matrix
of c f (u

n−1
f ; w, v) by the vector un−1

f of the nodal values of the velocity obtained at
the previous iteration. For the set-up of the linear system, the Newton method is thus
computationally more expensive than the fixed-point one.

Fig. 2 Convergence history for the three methods corresponding to h = 1/14 (left) and errors with respect
to the exact solutions (right)

Fig. 3 Convergence history for the three methods corresponding to h = 1/14 and ν = 10−1, K = 10−1

(left), and ν = 10−2, K = 10−1 (right)
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Table 2 Convergence behavior of the iterative methods with respect to the parameters ν and K

Number of iterations for the fixed-point method

ν K h = 1/7 h = 1/14 h = 1/28

1 1 7 7 7

1 10−4 5 5 5

10−1 10−1 10 10 10

10−2 10−1 17 17 17

10−2 10−3 14 14 14

Number of iterations for the Newton method

ν K h = 1/7 h = 1/14 h = 1/28

1 1 5 5 5

1 10−4 4 4 4

10−1 10−1 5 5 5

10−2 10−1 6 6 6

10−2 10−3 5 5 5

Number of iterations for the Richardson method

ν K θ h = 1/7 h = 1/14 h = 1/28

1 1 0.5 33 33 33

1 10−4 0.01 * * *

10−1 10−1 0.5 44 44 44

10−2 10−1 0.01 * * *

10−2 10−3 0.001 * * *

* More than 200 iterations are required

In both cases we have to solve a linear system of similar structure and, in partic-
ular, we have to deal with both the fluid and the porous-media subproblems at once.
Each of the algorithms (74)–(76) and (78)–(80) involves indeed a linearized Navier–
Stokes/Darcy problem in � f ∪�p.

The set-up of each iteration of the preconditioned Richardson method is much less
expensive. Indeed, only a few matrix-vector multiplications are required to update the
right-hand side in (97). Then, one has to solve the Stokes equations (97) and (98) in
� f and the Darcy problem (99) in �p. These two problems can be solved separately
in a sequential mode, since only un

f is needed in (99) while ϕn does not appear in the
formulation of the fluid subproblem.

In terms of computational effort required to perform each iteration, the Richardson
scheme is then the cheapest one. In addition, this method is quite attractive for its
decoupling property.

In practice, the extra computational effort for the Newton method pays back with
fewer iterations compared to the other algorithms as shown in Tables 1 and 2. More-
over, Newton iterations seem to be more robust since their number is substantially
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Fig. 4 Computational domain
for the third test case

Table 3 Newton iterations to
solve the problem illustrated in
Fig. 4

Grid elements Newton iterations

792 7

3168 8
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Fig. 5 Computed solution: piezometric head ϕ (top left), velocity field u f (top right), contour lines of the
velocity in x- (bottom left) and y-direction (bottom right). Notice that the Kovasznay flow is modified due to
the presence of the porous media: indeed, the velocity in y-direction has negative values in correspondence
to the porous media interface

independent of both the grid parameter h and of the values of the viscosity ν and the
hydraulic conductivity.

For these reasons, we adopt the Newton method for the following test case.
We consider the computational domain illustrated in Fig. 4 to represent the 2D sec-

tion of a channel alongside a porous material. In this case, the boundary conditions are
chosen in such a way that, if we would disregard the porous media, the Navier–Stokes
equations would admit the following Kovasznay solution

123



224 L. Badea et al.

u f =
(

1 − eλx cos(2πy),
λ

2π
eλx sin(2πy)

)
, p f = −e2λx

2
,

with λ = 0.5Re −
√

0.25Re2 + 4π2, Re = 1/ν and ν = 0.025. Moreover, we impose
that the conormal derivative of the piezometric head is null on �N

p and ϕ = −0.25 on
�D

p . The hydraulic conductivity coefficient is K = 10−1.
We have solved this problem using two different grids and adopting the Newton

method. The convergence results are reported in Table 3, the computed velocity and
piezometric head are displayed in Fig. 5.

Appendix A: Some existence and uniqueness results

In this section we recall some existence and uniqueness results for nonlinear sad-
dle-point problems, referring the reader to, e.g., [5–7,9] and also [17] for a rigorous
study.

Let (X, ‖ · ‖X ) and (Y, ‖ · ‖Y ) be two real Hilbert spaces and consider a bilin-
ear continuous form b(·, ·) : X × Y → R, (v, q) → b(v, q), and a trilinear form
a(·; ·, ·) : X × X × X → R, (w, u, v) → a(w; u, v), where, for w ∈ X the mapping
(u, v) → a(w; u, v) is a bilinear continuous form on X × X .

Then, we consider the following problem: given l ∈ X ′, find a pair (u, p) ∈ X × Y
satisfying

a(u; u, v)+ b(v, p) = 〈l, v〉 ∀v ∈ X
b(u, q) = 0 ∀q ∈ Y.

(100)

Introducing the linear operators A(w) ∈ L(X; X ′) for w ∈ X , and B ∈ L(X; Y ′):

〈A(w)u, v〉 = a(w; u, v) ∀u, v ∈ X, 〈Bv, q〉 = b(v, q) ∀v ∈ X, ∀q ∈ Y,

problem (100) becomes: find (u, p) ∈ X × Y such that

A(u)u + BT p = l in X ′,
Bu = 0 in Y ′. (101)

Taking V = Ker(B), we associate (100) with the problem

find u ∈ V : a(u; u, v) = 〈l, v〉 ∀v ∈ V, (102)

or, equivalently: find u ∈ V such that �A(u)u = �l in V ′, where the linear operator
� ∈ L(X ′; V ′) is defined by 〈�l, v〉 = 〈l, v〉, ∀v ∈ V .

If (u, p) is a solution of problem (100), then u solves (102). The converse may
be proved provided an inf–sup condition holds. Indeed, the following results can be
proved.

Theorem 3 (Existence and uniqueness) Suppose that:
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1. the bilinear form a(w; ·, ·) is uniformly elliptic in the Hilbert space V with respect
to w, i.e. there exists a constant α > 0 such that

a(w; v, v) ≥ α‖v‖2
X ∀v,w ∈ V ;

2. the mapping w → �A(w) is locally Lipschitz-continuous in V , i.e. there exists a
continuous and monotonically increasing function L : R

+ → R
+ such that for

all m > 0

|a(w1; u, v)− a(w2; u, v)| ≤ L(m)‖u‖X‖v‖X‖w1 − w2‖X (103)

∀u, v ∈ V , ∀w1, w2 ∈ Sm with Sm = {w ∈ V |‖w‖X ≤ m};
3. it holds

‖�l‖V ′

α2 L

(‖�l‖V ′

α

)
< 1. (104)

Then (102) has a unique solution u ∈ V .

We consider now problem (100).

Theorem 4 Assume that the bilinear form b(·, ·) satisfies the inf–sup condition:
∃β > 0

inf
q∈Y

sup
v∈X

b(v, q)

‖v‖X‖q‖Y
≥ β. (105)

Then for each solution u of (102) there exists a unique p ∈ Y such that the pair (u, p)
is a solution of (100).

Appendix B: Convergence of the Newton methods

Let X and Y be two Banach spaces. We consider the sphere of radius R > 0 centered
in x0 ∈ X :� = {x ∈ X : ||x −x0||X < R}, and the closed sphere of radius 0 < r < R
centered in x0:�0 = {x ∈ X : ||x − x0||X ≤ r}. We assume that� contains a zero of
an operator P : � ⊂ X → Y , i.e. a point x∗ ∈ � such that P(x∗) = 0.

If P has a continuous derivative in�, we can apply the Newton method to compute
the zero x∗: given an initial approximation x0 ∈ � of x∗, for n ≥ 0,

xn+1 = xn − [P ′(xn)]−1(P(xn)) ,

assuming that [P ′(xn)]−1 exists.
Alternatively, we can use the modified Newton algorithm: given x0 ∈ �, for n ≥ 0,

xn+1 = xn − [P ′(x0)]−1(P(xn)).
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Concerning the convergence of these methods, we have the following theorem
(Theorem 6 (1.XVIII) in [21, p. 708]).

Theorem 5 (Kantorovich Theorem) Let P be defined on � ⊂ X with continuous
second derivative in �0. Moreover assume that

(1) there exists the continuous linear operator [P ′(x0)]−1;
(2) there exists a positive constant K1 > 0 : ||[P ′(x0)]−1(P(x0))||X ≤ K1;
(3) there exists a positive constant K2 > 0 : ||[P ′(x0)]−1P ′′(x)||X ≤ K2 for all

x ∈ �0.

If

K3 = K1 K2 ≤ 1

2
, (106)

and the radius r of �0 satisfies

r ≥ r0 = 1 − √
1 − 2K3

K3
K1 , (107)

then, there exists a zero x∗ of P to which the Newton and the modified Newton methods
converge. In this case,

||x∗ − x0||X ≤ r0. (108)

Furthermore, if for K3 < 1/2

r < r1 = 1 + √
1 − 2K3

K3
K1, (109)

or for K3 = 1/2

r ≤ r1, (110)

the solution x∗ is unique in the sphere �0.
The convergence rate of the Newton method is characterized by

||x∗ − xn||X ≤ 1

2n
(2K3)

2n K1

K3
, n ≥ 0, (111)

while that of the modified method, for K3 < 1/2, by

||x∗ − xn||X ≤ K1

K3
(1 − √

1 − 2K3)
n+1, n ≥ 0. (112)
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