
Numer. Math. (2010) 115:229–259
DOI 10.1007/s00211-009-0275-x

Numerische
Mathematik

On a regularized Levenberg–Marquardt method
for solving nonlinear inverse problems

Qinian Jin

Received: 5 January 2009 / Revised: 8 June 2009 / Published online: 18 November 2009
© Springer-Verlag 2009

Abstract We consider a regularized Levenberg–Marquardt method for solving
nonlinear ill-posed inverse problems. We use the discrepancy principle to terminate
the iteration. Under certain conditions, we prove the convergence of the method and
obtain the order optimal convergence rates when the exact solution satisfies suitable
source-wise representations.
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1 Introduction

In this paper we will consider the equations

F(x) = y, (1.1)

arising from nonlinear inverse problems, where F : D(F) ⊂ X �→ Y is a nonlinear
Fréchet differentiable operator between two Hilbert spaces X and Y whose norms and
inner products are denoted as ‖ · ‖ and (·, ·) respectively. We assume that (1.1) has a
solution x† in the domain D(F) of F such that

F(x†) = y.
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230 Q. Jin

A characteristic property of such equations is their ill-posedness in the sense that
their solutions do not depend continuously on the data. Since the right hand side is
usually obtained by measurement, thus, instead of y itself, the available data is an
approximation yδ satisfying

∥
∥yδ − y

∥
∥ ≤ δ (1.2)

with a given small noise level δ > 0. Due to the ill-posedness, the computation of a
stable solution of (1.1) from yδ becomes an important issue.

Many regularization methods have been suggested for solving (1.1) in a stable way
using the available data yδ , see [1,3,6–11] and the references therein. In [3] Hanke
considered the Levenberg–Marquardt method which defines the iterative solutions
{xδ

k } by

xδ
k+1 = xδ

k − (

αk I + F ′(xδ
k )∗F ′(xδ

k )
)−1

F ′(xδ
k )∗

(

F(xδ
k ) − yδ

)

, (1.3)

where xδ
0 := x0 ∈ D(F) is an initial guess of x†, F ′(x) denotes the Fréchet derivative

of F at x ∈ D(F), and F ′(x)∗ denotes the adjoint of F ′(x). Under certain condi-
tions on F , it has been shown in [3] that if the sequence {αk} of positive numbers is
determined by a suitable adaptive strategy during computations and the discrepancy
principle

∥
∥F(xδ

kδ
) − yδ

∥
∥ ≤ τδ <

∥
∥F(xδ

k ) − yδ
∥
∥, 0 ≤ k < kδ, (1.4)

with τ > 1, is used as a stopping rule, then xδ
kδ

converges to x† as δ → 0. Further inves-
tigations have been made by Rieder in [11,12] by establishing rates of convergence
under the source conditions

x0 − x† =
(

F ′(x†)∗F ′(x†)
)ν

ω (1.5)

with ν > 0. Under the condition

F ′(z) = Q(x, z)F ′(x) and ‖I − Q(x, z)‖ ≤ K0‖x − z‖ (1.6)

for all x, z in a neighborhood of x†, it has been proved in [12] that there is a problem
dependent number 0 < η < 1/2 such that the convergence rate O(δ2(ν−η)/(1+2ν))

holds if x0 − x† satisfies (1.5) with η < ν ≤ 1/2. This is not the optimal rate of
convergence. It is not yet clear if the optimal convergence rate can be established
under weaker source conditions. Thus, the investigation on convergence rates is still
far from complete.1

1 Recently, Hanke established in [4] the order optimality of the regularizing Levenberg–Marquardt scheme
proposed in [3].
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Levenberg–Marquardt method for solving nonlinear inverse problems 231

On the other hand, one may consider the Levenberg–Marquardt method (1.3) with
{αk} given in an a priori way. In the recent book [10] Kaltenbacher et al. considered
the choice

αk = α0rk, k = 0, 1, . . . (1.7)

for some α0 > 0 and 0 < r < 1. By assuming the source condition (1.5) with
0 < ν ≤ 1/2, they terminated the iteration by the a priori stopping rule

η(1 + kδ)
−(1+ε)α

ν+1/2
kδ

≤ δ < η(1 + k)−(1+ε)α
ν+1/2
k , 0 ≤ k < kδ (1.8)

with η > 0 and ε > 0. Under the condition (1.6), they proved in [10, Theorem 4.7]
that xδ

kδ
converges to x† with the rate O((δ(1 + | log δ|)1+ε)2ν/(1+2ν)) which is only

almost optimal. Their result does not guarantee the convergence of xδ
kδ

to x† if no
source condition is assumed. Moreover, the stopping rule (1.8) depends heavily on the
information from (1.5) which is difficult to check in practice. In order to make (1.3)
and (1.7) to be a useful method in practical applications, (1.8) should be replaced by
an a posteriori stopping rule.

In this paper we will consider the Levenberg–Marquardt method (1.3) with {αk}
chosen as in (1.7). We will terminate the iteration by the discrepancy principle (1.4)
to produce an approximation xδ

kδ
. Under the condition (1.6) on F , we will show that

xδ
kδ

always converges to x† as δ → 0, and, if, in addition, x0 − x† satisfies the source
condition (1.5) with 0 < ν ≤ 1/2, we will establish the order optimal convergence
rate. Consequently, we improve the corresponding result in [10] significantly. The
method of the present paper is essentially different from those in [3,11,12] in that the
sequence {αk} is given in an a priori way. This has the advantage of saving the effort
of computing {αk} during computations.

This paper is organized as follows. In Sect. 2 we will state the main results on
the method given by (2.1), (2.2) and (2.3). After some preliminary estimates given in
Sect. 3, we then devote to the proof of the main results by establishing various esti-
mates in Sects. 4–8. Finally, in Sect. 9 we report some numerical experiments to test
our theoretical results.

2 Main results

The method we will consider is the Levenberg–Marquardt method

xδ
k+1 = xδ

k − (

αk I + F ′(xδ
k )∗F ′(xδ

k )
)−1

F ′(xδ
k )∗

(

F(xδ
k ) − yδ

)

, (2.1)

where {αk} is given by

αk = α0rk, k = 0, 1, . . . (2.2)
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232 Q. Jin

for some α0 > 0 and 0 < r < 1. We will produce a reasonable approximation to x†

by terminating the iteration (2.1) according to the discrepancy principle

‖F(xδ
kδ

) − yδ‖ ≤ τδ < ‖F(xδ
k ) − yδ‖, 0 ≤ k < kδ, (2.3)

where τ > 1 is a given number.
In order to obtain the approximation property of xδ

kδ
to x† as δ → 0, we need to

impose certain conditions on F . We assume that

Bρ(x†) :=
{

x ∈ X : ‖x − x†‖ < ρ
}

⊂ D(F) (2.4)

for some ρ > 0 and there is a constant K0 ≥ 0 such that for any pair x, z ∈ Bρ(x†)

there is a bounded linear operator Q(x, z) : Y → Y such that

F ′(x) = Q(x, z)F ′(z) and ‖I − Q(x, z)‖ ≤ K0‖x − z‖. (2.5)

For simplicity of the presentation, we assume that F ′(x†) is properly scaled so that

‖F ′(x†)‖ ≤ α
1/2
0 . (2.6)

This scaling condition can always be fulfilled by multiplying the equation (1.1) by a
sufficiently small constant.

To formulate the main results on xδ
kδ

precisely, we introduce the two constants

c0 := 1√
r

and c1 := 1

1 − √
r
.

For the sequence {αk} given by (2.2), it is easy to verify that

⎛

⎝

k
∑

j=0

α−1
j

⎞

⎠

−1/2

≤ c0α
1/2
k+1 (2.7)

and

k
∑

m=0

α
−1/2
m

⎛

⎝

k
∑

j=m

α−1
j

⎞

⎠

−1/2

≤ c1 (2.8)

for all integers k ≥ 0.
Now we are ready to state the main result of this paper.2

2 The choice of {αk } in (2.2) is the most important case in applications. The main result, however, is still
true for any sequence {αk } of positive numbers satisfying α−1

k+1 ≤ cσk for all k, where σk = ∑k
j=0 α−1

j
and c is a positive constant independent of k. This can be established by modifying slightly the arguments
in the present paper.
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Levenberg–Marquardt method for solving nonlinear inverse problems 233

Theorem 1 Let F satisfy (2.4)–(2.6) for some ρ > 0, let {αk} be given by (2.2), let
τ > 1 be a given number and let γ0 > c0/(τ − 1). There is a positive constant η0
depending only on τ and r such that if (2+c1γ0)‖x0−x†‖ < ρ and K0‖x0−x†‖ ≤ η0
then the method (2.1)–(2.3) is well-defined, the integer kδ determined by the discrep-
ancy principle (2.3) satisfies

kδ = O(1 + | log δ|), (2.9)

and if x0 − x† ∈ N (F ′(x†))⊥ then

lim
δ→0

xδ
kδ

= x†. (2.10)

If, in addition, x0 − x† = (F ′(x†)∗F ′(x†))νω for some 0 < ν ≤ 1/2 and ω ∈
N (F ′(x†))⊥ ⊂ X, and if K0‖ω‖ ≤ η1 for some η1 > 0 depending only on α0 and r,
then

‖xδ
kδ

− x†‖ ≤ Cν‖ω‖1/(1+2ν)δ2ν/(1+2ν), (2.11)

where Cν is a constant depending only on τ , r and ν.

Theorem 1 shows the order optimality of the method defined by (2.1)–(2.3) for
each 0 < ν ≤ 1/2. The inequality (2.9) indicates that the method has fast conver-
gence property. We emphasize that our main result is established for any fixed τ > 1
for the number τ in the discrepancy principle (2.3) provided that ‖x0 − x†‖ is suitably
small, which is important in practical applications.

When F is a linear operator, the method defined by (2.1)–(2.3) has been considered
in [5] in which it is called the nonstationary iterated Tikhonov regularization. The
detailed convergence analysis has been carried out there and the order optimality has
even been established for all ν > 0. Due to the nonlinearity of F , in Theorem 1 we
are only able to show the order optimality for 0 < ν ≤ 1/2.

The proof of Theorem 1 will occupy the remaining part of this paper. Throughout the
paper we will use {xk} to denote the iterative solutions defined by (2.1) corresponding
to the noise free case, i.e.

xk+1 = xk − (

αk I + F ′(xk)
∗F ′(xk)

)−1
F ′(xk)

∗ (F(xk) − y). (2.12)

We will use the notations

ek := xk − x†, A := F ′(x†)∗F ′(x†), Ak := F ′(xk)
∗F ′(xk),

eδ
k := xδ

k − x†, B := F ′(x†)F ′(x†)∗, Aδ
k := F ′(xδ

k )∗F ′(xδ
k ).

For ease of exposition, we will use C to denote a generic constant depending only on
τ and r , we will also use the convention � � � to mean that � ≤ C� for some
generic constant C . Moreover, when we say K0‖e0‖ is suitably small we will mean
that K0‖e0‖ ≤ η for some small positive constant η depending only on τ and r .

Since the proof is somewhat involved, we give a brief outline of the arguments.
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234 Q. Jin

• We first show the method given by (2.1)–(2.3) is well-defined. This is done in Sect. 4.
• We establish in Sect. 5 the stability estimate ‖xδ

k − xk‖ � δ/
√

αk together with
other crucial estimates. This enables us to write

‖eδ
kδ

‖ � ‖ekδ‖ + δ√
αkδ

.

• We then establish in Sect. 6 the various estimates on the noise-free iterates {xk},
in particular we show that ‖ek‖ → 0 as k → ∞. This, together with the above
estimates, is enough to prove xδ

kδ
→ x† as δ → 0.

• In order to obtain the optimal convergence rates, in Sect. 7 we connect ‖ekδ‖ with
‖ek‖ for k ≥ kδ by establishing the inequality

‖xkδ − xk‖ � 1√
αk

‖F(xkδ ) − y‖.

Consequently, with the help of the definition of kδ , we derive

‖eδ
kδ

‖ � ‖ek‖ + δ√
αk

, k ≥ kδ.

When e0 satisfies (1.5) with 0 < ν ≤ 1/2, the optimal rate of convergence can be
obtained by choosing a k ≥ kδ carefully.

3 Preliminary estimates

In this section we will give some preliminary estimates which will be frequently used
during the proof of Theorem 1.

It is well-known that the condition (2.5) on F implies for x, z ∈ Bρ(x†) that (see
[6])

‖F(x) − F(z) − F ′(z)(x − z)‖ ≤ 1

2
K0‖x − z‖‖F ′(z)(x − z)‖ (3.1)

and

‖F(x) − F(z) − F ′(x)(x − z)‖ ≤ 3

2
K0‖x − z‖‖F ′(z)(x − z)‖. (3.2)

The following result gives some additional consequences of (2.5).

Lemma 1 Let F satisfy (2.5). For any x, z ∈ Bρ(x†) let Ax := F ′(x)∗F ′(x) and
Az := F ′(z)∗F ′(z). Then, for any α > 0, there hold

(α I + Ax )
−1 − (α I + Az)

−1 = (α I + Az)
−1 F ′(z)∗ Rα(x, z) (3.3)
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Levenberg–Marquardt method for solving nonlinear inverse problems 235

and

(α I + Ax )
−1 F ′(x)∗ − (α I + Az)

−1 F ′(z)∗ = (α I + Az)
−1 F ′(z)∗Sα(x, z),

(3.4)

where Rα(x, z) : X → Y and Sα(x, z) : Y → Y are two bounded linear operators
satisfying

‖Rα(x, z)‖ ≤ K0‖x − z‖α−1/2 and ‖Sα(x, z)‖ ≤ 3K0‖x − z‖. (3.5)

Proof With the help of (2.5), we have

(α I + Ax )
−1 − (α I + Az)

−1

= (α I + Az)
−1 [

F ′(z)∗
(

F ′(z)−F ′(x)
) + (

F ′(z)∗−F ′(x)∗
)

F ′(x)
]

(α I + Ax )
−1

= (α I + Az)
−1 F ′(z)∗

[

(Q(z, x) − I ) + (

I − Q(x, z)∗
)]

F ′(x) (α I + Ax )
−1

and

(α I + Ax )
−1 F ′(x)∗ − (α I + Az)

−1 F ′(z)∗

= (α I + Az)
−1 (

F ′(x)∗ − F ′(z)∗
) +

[

(α I + Ax )
−1 − (α I + Az)

−1
]

F ′(x)∗

= (α I + Az)
−1 F ′(z)∗

(

Q(x, z)∗ − I
)

+ (α I + Az)
−1 F ′(z)∗

[

(Q(z, x) − I ) + (

I − Q(x, z)∗
)] Bx (α I + Bx )

−1 ,

where Bx := F ′(x)F ′(x)∗. We thus obtain (3.3) and (3.4) with

Rα(x, z) := [

(Q(z, x) − I ) + (

I − Q(x, z)∗
)]

F ′(x) (α I + Ax )
−1 ,

Sα(x, z) := (

Q(x, z)∗ − I
) + [

(Q(z, x) − I ) + (

I − Q(x, z)∗
)]Bx (α I + Bx )

−1

which clearly verify (3.5). 
�
Lemma 2 Let {αk} be a sequence of positive numbers. Then for any bounded linear
operator A : X → Y there holds

∥
∥
∥
∥
∥
∥

k
∏

j=m

α j
(

α j I + A∗ A
)−1

(A∗ A)ν

∥
∥
∥
∥
∥
∥

≤
⎛

⎝

k
∑

j=m

α−1
j

⎞

⎠

−ν

(3.6)

for any 0 ≤ ν ≤ 1 and any integers 0 ≤ m ≤ k < ∞.

Proof It is easy to see that

k
∏

j=m

(α j + λ) ≥ λ

⎛

⎝

k
∑

j=m

α−1
j

k
∏

i=m

αi

⎞

⎠
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for all λ ≥ 0 since the right hand side is the first order term of the polynomial in λ on
the left hand side. This inequality implies immediately that

λ

k
∏

j=m

α j (α j + λ)−1 ≤
⎛

⎝

k
∑

j=m

α−1
j

⎞

⎠

−1

.

Thus for 0 ≤ ν ≤ 1 and λ ≥ 0 we have

λν
k

∏

j=m

α j (α j + λ)−1 ≤
⎛

⎝λ

k
∏

j=m

α j (α j + λ)−1

⎞

⎠

ν

≤
⎛

⎝

k
∑

j=m

α−1
j

⎞

⎠

−ν

.

Now the desired inequality (3.6) follows easily from the spectral theory of self-adjoint
operators. 
�
Remark 1 More general inequalities than (3.6) have been derived in [5], see also [2],
when {αk} satisfies certain conditions. We will not use such general inequalities since
(3.6) is already enough for our purpose.

During the proof of Theorem 1, we need the estimates on various sums formed by
the sequence {αk} satisfying (2.2). All these estimates can be verified easily. In the
following result we give two such estimates which will be used in Sect. 6. These two
estimates are not sharp, but good enough for our purpose.

Lemma 3 Let {αk} be given by (2.2). For any 0 ≤ ν ≤ 1/2 there hold

k
∑

m=0

α
2ν−1/2
m

⎛

⎝

k
∑

j=m

α−1
j

⎞

⎠

−1/2

≤ C0α
ν
k+1 (3.7)

and

k
∑

m=0

α
2ν−1/2
m

⎛

⎝

k
∑

j=m

α j

⎞

⎠

−1

≤ C1α
ν+1/2
k+1 , (3.8)

where C0 and C1 are positive constants depending only on r and α0.

Proof The argument is elementary, we will only indicate the proof of (3.7). Let Jk(ν)

denote the left hand side. Since α j = α0r j and 0 < r < 1, we have

k
∑

j=m

α−1
j = α−1

k+1
1 − rk+1−m

r−1 − 1
≥ α−1

k+1
1 − r

r−1 − 1
= rα−1

k+1.
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This implies

Jk(ν) ≤ 1√
r
α

1/2
k+1

k
∑

m=0

α
2ν−1/2
m .

When 2/5 ≤ ν ≤ 1/2, we have 2ν − 1/2 ≥ 3/10. Thus

k
∑

m=0

α
2ν−1/2
m ≤ α

2ν−1/2
0

1 − r2ν−1/2 ≤ α
2ν−1/2
0

1 − r3/10 .

Therefore, with C2 := 1/(
√

r(1 − r3/10)), we obtain

Jk(ν) ≤ C2α
2ν−1/2
0 α

1/2
k+1 = C2α

ν
0r1/2−ναν

k+1 ≤ C2α
ν
0αν

k+1.

When 1/5 ≤ ν ≤ 2/5, we have 2ν − 1/2 ≥ −1/10. Thus

k
∑

m=0

α
2ν−1/2
m ≤ α

2ν−1/2
0

k
∑

m=0

r−m/10 ≤ α
2ν−1/2
0

r−(k+1)/10

r−1/10 − 1
.

Consequently, with C3 := 1/(
√

r(r−1/10 − 1)),

Jk(ν) ≤ C3α
1/2
k+1α

2ν−1/2
0 r−(k+1)/10 = C3α

ν
0r (2/5−ν)(k+1)αν

k+1 ≤ C3α
ν
0αν

k+1.

When 0 ≤ ν ≤ 1/5, we have 2ν − 1/2 ≤ −1/10. Thus

k
∑

m=0

α
2ν−1/2
m ≤ α

2ν−1/2
0

r (2ν−1/2)(k+1)

r2ν−1/2 − 1
≤ 1

r−1/10 − 1
α

2ν−1/2
0 r (2ν−1/2)(k+1)

Therefore

Jk(ν) ≤ C3α
2ν−1/2
0 r (2ν−1/2)(k+1)α

1/2
k+1 = C3α

ν
0rν(k+1)αν

k+1 ≤ C3α
ν
0αν

k+1.

Note that αν
0 ≤ max{1, α

1/2
0 } for 0 ≤ ν ≤ 1/2, we complete the proof of (3.7). 
�

4 Justification of the method

In this section we will show, under the conditions in Theorem 1, that the method given
by (2.1)–(2.3) is well-defined. We will achieve this by proving that xδ

k ∈ Bρ(x†) for
0 ≤ k ≤ kδ and kδ is finite. To this end, we introduce the integer k̃δ defined by
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αk̃δ
≤

(
δ

γ0‖e0‖
)2

< αk, 0 ≤ k < k̃δ, (4.1)

where, as in Theorem 1, γ0 > c0/(τ − 1) is a fixed number.

Lemma 4 Let F satisfy (2.4)–(2.6) for some ρ > 0, let {αk} be given by (2.2), let
τ > 1 be a given number, and let (2 + c1γ0)‖e0‖ < ρ. If K0‖e0‖ is suitably small,
then

xδ
k ∈ Bρ(x†), ‖eδ

k‖ � ‖e0‖ and ‖F ′(x†)eδ
k‖ � α

1/2
k ‖e0‖

for all integers 0 ≤ k ≤ k̃δ .

Proof It suffices to show for 0 ≤ k ≤ k̃δ that

‖eδ
k‖ ≤ (2 + c1γ0) ‖e0‖ and ‖F ′(x†)eδ

k‖ ≤ (2c0 + c2γ0) ‖e0‖α1/2
k , (4.2)

where c0 and c1 are given in Sect. 2 such that (2.7) and (2.8) hold, and c2 > 0 is a
constant such that

k
∑

m=0

α
−1/2
m

⎛

⎝

k
∑

j=m

α−1
j

⎞

⎠

−1

≤ c2α
1/2
k+1 (4.3)

for all k ≥ 0. By using (2.2) we can take c2 = 1/(
√

r(1 − √
r)).

From (2.6) it is easy to see that (4.2) is trivial for k = 0. Now for any fixed
0 ≤ l < k̃δ we assume that (4.2) is true for every 0 ≤ k ≤ l, and we will show it is
also true for k = l + 1.

We set for each 0 ≤ k ≤ l

uδ
k := F(xδ

k ) − y − F ′(xδ
k )eδ

k .

It follows from (2.1) that

eδ
k+1 = αk

(

αk I + Aδ
k

)−1
eδ

k − (

αk I + Aδ
k

)−1
F ′(xδ

k )∗
(

y − yδ + uδ
k

)

= αk (αk I + A)−1 eδ
k + αk

[(

αk I + Aδ
k

)−1 − (αk I + A)−1
]

eδ
k

− (αk I + A)−1 F ′(x†)∗
(

y − yδ + uδ
k

)

−
[(

αk I + Aδ
k

)−1
F ′(xδ

k )∗ − (αk I + A)−1 F ′(x†)∗
] (

y − yδ + uδ
k

)

.

With the help of Lemma 1 we then have

eδ
k+1 = αk (αk I + A)−1 eδ

k + (αk I + A)−1 F ′(x†)∗wδ
k, (4.4)
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where

wδ
k := αk Rαk (xδ

k , x†)eδ
k + (yδ − y) − uδ

k − Sαk (xδ
k , x†)

(

y − yδ + uδ
k

)

.

By telescoping (4.4) we obtain

eδ
l+1 =

l
∏

j=0

α j
(

α j I + A)−1
e0 +

l
∑

m=0

α−1
m

l
∏

j=m

α j
(

α j I + A)−1
F ′(x†)∗wδ

m .

(4.5)

We multiply (4.5) by F ′(x†) and obtain

F ′(x†)eδ
l+1 =

l
∏

j=0

α j
(

α j I + B)−1
F ′(x†)e0 +

l
∑

m=0

α−1
m

l
∏

j=m

α j
(

α j I + B)−1 Bwδ
m .

(4.6)

By applying (3.2) to estimate uδ
m , and then using (3.5) and (1.2) we have

‖wδ
m‖ ≤ K0‖eδ

m‖2α
1/2
m + (

1 + 3K0‖eδ
m‖)

(

δ + 3

2
K0‖eδ

m‖‖F ′(x†)eδ
m‖

)

.

From (4.1) we note that δ < γ0‖e0‖α1/2
m for 0 ≤ m ≤ l, therefore we may use the

induction hypothesis to conclude

‖wδ
m‖ ≤ (γ0 + C K0‖e0‖) ‖e0‖α1/2

m . (4.7)

By using (3.6), (4.7), (2.7), (2.8) and (4.3), we can obtain from (4.5) and (4.6) that

‖eδ
l+1‖ ≤ ‖e0‖ +

l
∑

m=0

α−1
m

⎛

⎝

l
∑

j=m

α−1
j

⎞

⎠

−1/2

‖wδ
m‖

≤ ‖e0‖ + (γ0 + C K0‖e0‖) ‖e0‖
l

∑

m=0

α
−1/2
m

⎛

⎝

l
∑

j=m

α−1
j

⎞

⎠

−1/2

≤ (1 + c1γ0 + C K0‖e0‖) ‖e0‖
≤ (2 + c1γ0) ‖e0‖
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and

‖F ′(x†)eδ
l+1‖ ≤

⎛

⎝

l
∑

j=0

α−1
j

⎞

⎠

−1/2

‖e0‖ +
l

∑

m=0

α−1
m

⎛

⎝

l
∑

j=m

α−1
j

⎞

⎠

−1

‖wδ
m‖

≤ c0α
1/2
l+1‖e0‖ + (γ0 + C K0‖e0‖) ‖e0‖

l
∑

m=0

α
−1/2
m

⎛

⎝

l
∑

j=m

α−1
j

⎞

⎠

−1

≤ (c0 + c2γ0 + C K0‖e0‖) ‖e0‖α1/2
l+1

≤ (2c0 + c2γ0) ‖e0‖α1/2
l+1

if K0‖e0‖ is suitably small. The proof is therefore complete. 
�
By applying the same argument to the noise-free iterative solutions {xk} defined by

(2.12) we can obtain

Lemma 5 Let F satisfy (2.4)–(2.6) for some ρ > 0, let {αk} be given by (2.2) and let
2‖e0‖ < ρ. If K0‖e0‖ is suitably small then

xk ∈ Bρ(x†), ‖ek‖ � ‖e0‖ and ‖F ′(x†)ek‖ � α
1/2
k ‖e0‖ (4.8)

for all integers k ≥ 0.

Finally we conclude this section by showing that the integer kδ defined by the dis-
crepancy principle (2.3) must satisfy kδ ≤ k̃δ . This together with Lemma 4 shows that
the method given by (2.1)–(2.3) is well-defined.

Lemma 6 Under the conditions in Lemma 4, if K0‖e0‖ is suitably small, then the inte-
ger kδ determined by the discrepancy principle (2.3) satisfies kδ ≤ k̃δ . Consequently
kδ = O(1 + | log δ|).
Proof We first show kδ ≤ k̃δ . If k̃δ = 0, then α0 ≤ (δ/(γ0‖e0‖))2. Thus, by using
(1.2), (3.1) and (2.6) we have

‖F(x0) − yδ‖ ≤ δ + ‖F(x0) − y − F ′(x†)e0‖ + ‖F ′(x†)e0‖
≤ δ +

(

1 + 1

2
K0‖e0‖

)

‖F ′(x†)e0‖

≤ δ +
(

1 + 1

2
K0‖e0‖

)

α
1/2
0 ‖e0‖

≤ δ +
(

1 + 1

2
K0‖e0‖

)

γ −1
0 δ.

Since γ0 > c0/(τ − 1) and c0 > 1, it is easy to see that if K0‖e0‖ is suitably small
then ‖F(x0) − yδ‖ ≤ τδ. Thus kδ = 0.
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In the following we will assume k̃δ > 0. We will use (4.6). By Lemma 4 we note
that for 0 ≤ k ≤ k̃δ there holds wδ

k = yδ − y + w̃δ
k with

‖w̃δ
k‖ � K0‖e0‖2α

1/2
k + K0‖e0‖δ. (4.9)

Therefore, it follows from (4.6) that

F ′(x†)eδ
k − yδ + y

=
k−1
∏

j=0

α j
(

α j I + B)−1
F ′(x†)e0 +

k−1
∑

m=0

α−1
m

k−1
∏

j=m

α j
(

α j I + B)−1 Bw̃δ
m

+
⎡

⎣I −
k−1
∑

m=0

α−1
m

k−1
∏

j=m

α j
(

α j I + B)−1 B
⎤

⎦ (y − yδ).

Note that

I −
k−1
∑

m=0

α−1
m

k−1
∏

j=m

α j
(

α j I + B)−1 B =
k−1
∏

j=0

α j
(

α j I + B)−1
. (4.10)

We may use (3.6), (2.7), (2.2) and (4.9) to obtain

‖F ′(x†)eδ
k − yδ + y‖ ≤ c0α

1/2
k ‖e0‖ + δ + C K0‖e0‖δ

k−1
∑

m=0

α−1
m

⎛

⎝

k−1
∑

j=m

α−1
j

⎞

⎠

−1

+ C K0‖e0‖2
k−1
∑

m=0

α
−1/2
m

⎛

⎝

k−1
∑

j=m

α−1
j

⎞

⎠

−1

≤ c0α
1/2
k ‖e0‖ + δ + C

(

K0‖e0‖δ + K0‖e0‖2α
1/2
k

)

.

By taking k = k̃δ in the above inequality, noting from (4.1) that αk̃δ
≤ (δ/(γ0‖e0‖))2

with γ0 > c0/(τ − 1), and using Lemma 4, we have

‖F(xδ

k̃δ
) − yδ‖ ≤ ‖F(xδ

k̃δ
) − y − F ′(x†)eδ

k̃δ
‖ + ‖F ′(x†)eδ

k̃δ
− yδ + y‖

≤ 1

2
K0‖eδ

k̃δ
‖‖F ′(x†)eδ

k̃δ
‖ + c0α

1/2
k̃δ

‖e0‖ + δ

+ C
(

K0‖e0‖2α
1/2
k̃δ

+ K0‖e0‖δ
)

≤ (1 + c0/γ0 + C K0‖e0‖) δ

≤ τδ

if K0‖e0‖ is suitably small. According to the definition of kδ , this implies that kδ ≤ k̃δ .
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From the definition (4.1) of k̃δ and (2.2) it follows that

α0r k̃δ−1 = αk̃δ−1 ≥
(

δ

γ0‖e0‖
)2

.

Note that 0 < r < 1, we then obtain

k̃δ − 1 ≤ 1

log r
log

(

δ2

α0γ
2
0 ‖e0‖2

)

.

Therefore kδ ≤ k̃δ = O(1 + | log δ|). 
�

5 Stability estimates

In this section we will derive the stability estimate on ‖xδ
k − xk‖ for 0 ≤ k ≤ k̃δ . We

will set

uk := F(xk) − y − F ′(xk)ek and uδ
k := F(xδ

k ) − y − F ′(xδ
k )eδ

k .

It then follows from (2.1) and (2.12) that

xδ
k+1 − xk+1 = xδ

k − xk + (

αk I + Aδ
k

)−1
F ′(xδ

k )∗(yδ − y)

− (

αk I + Aδ
k

)−1
F ′(xδ

k )∗uδ
k + (αk I + Ak)

−1 F ′(xk)
∗uk

+
[

(αk I + Ak)
−1 Akek − (

αk I + Aδ
k

)−1 Aδ
keδ

k

]

.

Note that

(αk I + Ak)
−1Akek − (

αk I + Aδ
k

)−1 Aδ
keδ

k

= (αk I + Ak)
−1 Ak

(

xk − xδ
k

) + αk

[(

αk I + Aδ
k

)−1 − (αk I + Ak)
−1

]

eδ
k

= (αk I + A)−1 A (

xk − xδ
k

) + αk

[

(αk I + Ak)
−1 − (αk I + A)−1

] (

xδ
k − xk

)

+αk

[(

αk I + Aδ
k

)−1 − (αk I + Ak)
−1

]

eδ
k .

We therefore obtain

xδ
k+1 − xk+1 = αk (αk I + A)−1 (

xδ
k − xk

) + s(1)
k + s(2)

k + s(3)
k + s(4)

k + s(5)
k ,

(5.1)
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where

s(1)
k := αk

[(

αk I + Aδ
k

)−1 − (αk I + Ak)
−1

]

eδ
k,

s(2)
k := αk

[

(αk I + Ak)
−1 − (αk I + A)−1

] (

xδ
k − xk

)

,

s(3)
k :=

[

(αk I + Ak)
−1 F ′(xk)

∗ − (

αk I + Aδ
k

)−1
F ′(xδ

k )∗
]

uk,

s(4)
k := (

αk I + Aδ
k

)−1
F ′(xδ

k )∗
(

uk − uδ
k

)

,

s(5)
k := (

αk I + Aδ
k

)−1
F ′(xδ

k )∗
(

yδ − y
)

.

Lemma 7 Under the conditions in Lemma 4, for all integers 0 ≤ k ≤ k̃δ there hold

s(i)
k = (αk I + A)−1 F ′(x†)∗w(i)

k , i = 1, . . . , 5, (5.2)

where

‖w(i)
k ‖ � K0‖e0‖‖xδ

k − xk‖α1/2
k , i = 1, . . . , 4 (5.3)

and

w
(5)
k = yδ − y + w̃

(5)
k , ‖w̃(5)

k ‖ � K0‖e0‖δ. (5.4)

Proof This result follows essentially from Lemma 1. We first consider s(1)
k . With the

help of Lemma 1 we have

s(1)
k = αk(αk I + Ak)

−1 F ′(xk)
∗ Rαk (xδ

k , xk)e
δ
k

= αk(αk I + A)−1 F ′(x†)∗
[

I + Sαk (xk, x†)
]

Rαk (xδ
k , xk)e

δ
k .

Thus s(1)
k has the representation (5.2) with

w
(1)
k = αk

[

I + Sαk (xk, x†)
]

Rαk (xδ
k , xk)e

δ
k .

By using (3.5) and Lemma 4 we can see

‖w(1)
k ‖ ≤ (1 + 3K0‖ek‖)K0‖eδ

k‖‖xδ
k − xk‖α1/2

k � K0‖e0‖‖xδ
k − xk‖α1/2

k .

We thus obtain the conclusion on s(1)
k . With an application of Lemma 1 we also see that

s(2)
k has the representation (5.2) with w

(2)
k = αk Rαk (xk, x†)(xδ

k − xk) which clearly

satisfies (5.3). In order to show the conclusion on s(3)
k , we use Lemma 1 to write

s(3)
k = −(αk I + Ak)

−1 F ′(xk)
∗Sαk (xδ

k , xk)uk

= −(αk I + A)−1 F ′(x†)∗
[

I + Sαk (xk, x†)
]

Sαk (xδ
k , xk)uk .
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Thus s(3)
k is of the form (5.2) with

w
(3)
k = −

[

I + Sαk (xk, x†)
]

Sαk (xδ
k , xk)uk .

It is clear from (3.2) and Lemma 5 that

‖w(3)
k ‖ ≤ 3 (1 + 3K0‖ek‖) K0‖xδ

k − xk‖‖uk‖
≤ 9

2
(1 + 3K0‖ek‖) K 2

0 ‖xδ
k − xk‖‖ek‖‖F ′(x†)ek‖

� K 2
0 ‖e0‖2‖xδ

k − xk‖α1/2
k .

For s(4)
k we easily see from Lemma 1 that it has the form (5.2) with

w
(4)
k =

[

I + Sαk (xδ
k , x†)

]

(uk − uδ
k).

Note that (2.5), Lemma 4 and Lemma 5 imply

‖uk − uδ
k‖ ≤ ‖F(xδ

k ) − F(xk) − F ′(xk)(xδ
k − xk)‖ + ‖(F ′(xk) − F ′(xδ

k )eδ
k‖

� K0‖xδ
k − xk‖‖F ′(xk)(xδ

k − xk)‖ + K0‖xδ
k − xk‖‖F ′(xk)e

δ
k‖

� K0‖xδ
k − xk‖‖F ′(x†)(xδ

k − xk)‖ + K0‖xδ
k − xk‖‖F ′(x†)eδ

k‖
� K0‖e0‖‖xδ

k − xk‖α1/2
k .

Therefore

‖w(4)
k ‖ � K0‖e0‖‖xδ

k − xk‖α1/2
k .

Finally, applying Lemma 1 to s(5)
k we can conclude that s(5)

k has the representation

(5.2) with w
(5)
k = yδ − y + w̃

(5)
k and w̃

(5)
k = Sαk (xδ

k , x†)(yδ − y). It is clear that

‖w̃(5)
k ‖ ≤ 3K0‖eδ

k‖δ � K0‖e0‖δ. 
�

Proposition 1 Under the conditions in Lemma 4, for all 0 ≤ k ≤ k̃δ there hold

‖xδ
k − xk‖ � δ√

αk
(5.5)

and

‖F(xδ
k ) − F(xk) − yδ + y‖ ≤ (1 + C K0‖e0‖)δ (5.6)

provided that K0‖e0‖ is suitably small.
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Proof We first prove (5.5) by showing that

‖xδ
k − xk‖ ≤ 2c3

δ√
αk

(5.7)

for all 0 ≤ k ≤ k̃δ , where c3 > 0 is a constant such that

k
∑

m=0

α−1
m

⎛

⎝

k
∑

j=m

α−1
j

⎞

⎠

−1/2

≤ c3α
−1/2
k+1 (5.8)

for all k ≥ 0. The existence of such c3 is guaranteed by (2.2).
It is clear that (5.7) is trivial for k = 0. Now for any fixed 0 ≤ l < k̃δ we assume

that (5.7) is true for all 0 ≤ k ≤ l and we will show that it is also true for k = l + 1.
By telescoping (5.1) and using Lemma 7 we have

xδ
l+1 − xl+1 =

l
∑

m=0

α−1
m

l
∏

j=m

α j
(

α j I + A)−1
F ′(x†)∗

(
5

∑

i=1

w(i)
m

)

. (5.9)

With the help of (3.6), (5.3) and (5.4) we obtain

‖xδ
l+1 − xl+1‖ ≤

l
∑

m=0

α−1
m

⎛

⎝

l
∑

j=m

α−1
j

⎞

⎠

−1/2
5

∑

i=1

‖w(i)
m ‖

≤ C K0‖e0‖
l

∑

m=0

α
−1/2
m

⎛

⎝

l
∑

j=m

α−1
j

⎞

⎠

−1/2

‖xδ
m − xm‖

+ (1 + C K0‖e0‖) δ

l
∑

m=0

α−1
m

⎛

⎝

l
∑

j=m

α−1
j

⎞

⎠

−1/2

.

By using (5.8) and the induction hypothesis ‖xδ
m − xm‖ ≤ 2c3δα

−1/2
m for 0 ≤ m ≤ l,

we have

‖xδ
l+1 − xl+1‖ ≤ C K0‖e0‖δ

l
∑

m=0

α−1
m

⎛

⎝

l
∑

j=m

α−1
j

⎞

⎠

−1/2

+ (c3 + C K0‖e0‖) δα
−1/2
l+1

≤ (c3 + C K0‖e0‖)δα−1/2
l+1

≤ 2c3δα
−1/2
l+1

if K0‖e0‖ is suitably small. This completes the proof of (5.7).
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Next we prove (5.6). We first claim that for all 0 ≤ k ≤ k̃δ

‖F ′(x†)(xδ
k − xk) − yδ + y‖ ≤ (1 + C K0‖e0‖) δ. (5.10)

This is trivial when k = 0. So we may assume 0 < k ≤ k̃δ . Then it follows from (5.9)
and (5.4) that

F ′(x†)(xδ
k − xk) − yδ + y =

⎡

⎣I −
k−1
∑

m=0

α−1
m

k−1
∏

j=m

α j (α j I + B)−1B
⎤

⎦ (y − yδ)

+
k−1
∑

m=0

α−1
m

k−1
∏

j=m

α j (α j I + B)−1B
4

∑

i=1

w(i)
m

+
k−1
∑

m=0

α−1
m

k−1
∏

j=m

α j (α j I + B)−1Bw̃(5)
m .

Therefore, we may use (4.10), (3.6), the estimates in Lemma 7, (5.5) and (2.2) to
conclude that

‖F ′(x†)(xδ
k − xk) − yδ + y‖ ≤ δ +

k−1
∑

m=0

α−1
m

⎛

⎝

k−1
∑

j=m

α−1
j

⎞

⎠

−1
4

∑

i=1

‖w(i)
m ‖

+
k−1
∑

m=0

α−1
m

⎛

⎝

k−1
∑

j=m

α−1
j

⎞

⎠

−1

‖w̃(5)
m ‖

≤ δ + C K0‖e0‖δ
k−1
∑

m=0

α−1
m

⎛

⎝

k−1
∑

j=m

α−1
j

⎞

⎠

−1

≤ (1 + C K0‖e0‖)δ.

We thus obtain (5.10). From (5.10) and (2.5) it follows that

‖F ′(x†)(xδ
k − xk)‖ � δ and ‖F ′(xk)(xδ

k − xk)‖ � δ.

Therefore

‖F(xδ
k ) − F(xk) − yδ + y‖ ≤ ‖F(xδ

k ) − F(xk) − F ′(xk)(xδ
k − xk)‖

+‖(F ′(xk) − F ′(x†))(xδ
k − xk)‖

+‖F ′(x†)(xδ
k − xk) − yδ + y‖
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≤ 1

2
K0‖xδ

k − xk‖‖F ′(xk)(xδ
k − xk)‖

+ K0‖ek‖‖F ′(x†)(xδ
k − xk)‖

+ (1 + C K0‖e0‖)δ
≤ (1 + C K0‖e0‖)δ.

Thus we complete the proof of (5.6). 
�

6 Convergence of the noise free iterations

In this section we will prove the following result which in particular gives the conver-
gence of the sequence {xk} defined by (2.12) to x† if e0 ∈ N (F ′(x†))⊥ and K0‖e0‖
is suitably small.

Proposition 2 Assume that the conditions in Lemma 5 hold and e0 ∈ N (F ′(x†))⊥.
If K0‖e0‖ is suitably small, then

lim
k→∞ ‖ek‖ = 0 and lim

k→∞
‖F ′(x†)ek‖√

αk
= 0. (6.1)

The proof of this result is a little involved. We first show that if e0 ∈ R(F ′(x†)∗)
then xk → x† as k → ∞. We then perturb the initial guess x0 to be x̂0 such that
x̂0 − x† ∈ R(F ′(x†)∗) and define {x̂k} by

x̂k+1 = x̂k − (

αk I + F ′(x̂k)
∗F ′(x̂k)

)−1
F ′(x̂k)

∗ (

F(x̂k) − y
)

. (6.2)

Since N (F ′(x†))⊥ = R(F ′(x†)∗), such x̂0 can be chosen as close to x0 as we want.
By comparing {xk} with {x̂k} we then get the convergence of {xk}.
Lemma 8 Assume that the conditions in Lemma 5 hold and that K0‖e0‖ is suitably
small. If e0 = Aνω for some 0 < ν ≤ 1/2 and ω ∈ X, and if K0‖ω‖ ≤ η1 for some
η1 > 0 depending only on α0 and r, then

‖ek‖ ≤ 2c0α
ν
k ‖ω‖ and ‖F ′(x†)ek‖ ≤ 2c2

0α
ν+1/2
k ‖ω‖ (6.3)

for all k ≥ 0.

Proof We will use induction for the proof. From (2.6) it follows easily that (6.3) is
true for k = 0. Now we assume that (6.3) is true for every 0 ≤ k ≤ l, and we will
show that it is also true for k = l + 1.

We may use (2.12) and follow the similar derivation of (4.5) and (4.6) to obtain

el+1 =
l

∏

j=0

α j
(

α j I + A)−1
e0 +

l
∑

m=0

α−1
m

l
∏

j=m

α j
(

α j I + A)−1
F ′(x†)∗wm

(6.4)
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and

F ′(x†)el+1 =
l

∏

j=0

α j
(

α j I + B)−1
F ′(x†)e0 +

l
∑

m=0

α−1
m

l
∏

j=m

α j
(

α j I + B)−1 Bwm

(6.5)

where

wm = αm Rαm (xm, x†)em − um − Sαm (xm, x†)um .

By using (3.1), (3.5) and Lemma 5 it is easy to see

‖wm‖ � K0‖em‖2α
1/2
m + K0‖em‖‖F ′(x†)em‖. (6.6)

We then use the induction hypothesis to obtain

‖wm‖ � K0‖ω‖2α
2ν+1/2
m .

Thus, by using e0 = Aνω with 0 < ν ≤ 1/2, (3.6), (2.7) and Lemma 3, we obtain
from (6.4) and (6.5) that

‖el+1‖ ≤
⎛

⎝

l
∑

j=0

α−1
j

⎞

⎠

−ν

‖ω‖ + C K0‖ω‖2
l

∑

m=0

α
2ν−1/2
m

⎛

⎝

l
∑

j=m

α−1
j

⎞

⎠

−1/2

≤ (c0 + C K0‖ω‖)αν
l+1‖ω‖

and

‖F ′(x†)el+1‖ ≤
⎛

⎝

l
∑

j=0

α−1
j

⎞

⎠

−ν−1/2

‖ω‖ + C K0‖ω‖2
l

∑

m=0

α
2ν−1/2
m

⎛

⎝

l
∑

j=m

α−1
j

⎞

⎠

−1

≤
(

c2
0 + C K0‖ω‖

)

α
ν+1/2
l+1 ‖ω‖,

where C > 0 is a constant depending only on α0 and r . Thus if K0‖ω‖ ≤ η1 for some
η1 > 0 depending only on α0 and r then ‖el+1‖ ≤ 2c0α

ν
l+1‖ω‖ and ‖F ′(x†)el+1‖ ≤

2c2
0α

ν+1/2
l+1 ‖ω‖. We thus obtain (6.3). 
�

Remark 2 Since the results in Lemma 8 require K0‖ω‖ to be small, they cannot be
used to prove Proposition 2 directly. However, by modifying the argument we can
show that if K0‖e0‖ is suitably small and if e0 ∈ R(F ′(x†)∗) then

‖ek‖ → 0 and
‖F ′(x†)ek‖√

αk
→ 0 (6.7)
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as k → ∞. To see this, by noting that R(F ′(x†)∗) = R(A1/2) ⊂ R(A1/4), we have
e0 = A1/4ω for some ω ∈ X . We will establish (6.7) by showing that if K0‖e0‖ is
suitably small then

‖ek‖ ≤ 2c1/2
0 α

1/4
k ‖ω‖ and ‖F ′(x†)ek‖ ≤ 2c3/2

0 α
3/4
k ‖ω‖ (6.8)

for all k ≥ 0. In fact, it is obvious for k = 0. Suppose that it is true for all 0 ≤ k ≤ l.
Then from (6.6) and Lemma 5 we have

‖wm‖ � K0‖e0‖‖ω‖α3/4
m , 0 ≤ m ≤ l.

Thus, using e0 = A1/4ω, it follows from (6.4), (6.5), (3.6), (2.7) and (2.2) that

‖el+1‖ ≤
⎛

⎝

l
∑

j=0

α−1
j

⎞

⎠

−1/4

‖ω‖ + C K0‖e0‖‖ω‖
l

∑

m=0

α
−1/4
m

⎛

⎝

l
∑

j=m

α−1
j

⎞

⎠

−1/2

≤
(

c1/2
0 + C K0‖e0‖

)

α
1/4
l+1‖ω‖ ≤ 2c1/2

0 α
1/4
l+1‖ω‖

and

‖F ′(x†)el+1‖ ≤
⎛

⎝

l
∑

j=0

α−1
j

⎞

⎠

−3/4

‖ω‖ + C K0‖e0‖‖ω‖
l

∑

m=0

α
−1/4
m

⎛

⎝

l
∑

j=m

α−1
j

⎞

⎠

−1

≤
(

c3/2
0 + C K0‖e0‖

)

α
3/4
l+1‖ω‖ ≤ 2c3/2

0 α
3/4
l+1‖ω‖

if K0‖e0‖ is suitably small.

In the next result, we take x̂0 to be a perturbation of x0 and let {x̂k} be defined by
(6.2). We set

êk := x̂k − x† and Âk := F ′(x̂k)
∗F ′(x̂k).

According to Lemma 5, it follows that

‖êk‖ � ‖ê0‖ and ‖F ′(x†)êk‖ � α
1/2
k ‖ê0‖

for all k ≥ 0 provided K0‖ê0‖ is suitably small.

Lemma 9 Assume that the conditions in Lemma 5 hold. If both K0‖e0‖ and K0‖ê0‖
are suitably small, then

‖xk − x̂k‖ ≤ 2‖x0 − x̂0‖ (6.9)
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and

‖F ′(x†)(xk − x̂k)‖ ≤ 2c0α
1/2
k ‖x0 − x̂0‖ (6.10)

for all k ≥ 0.

Proof We will use the essential idea in the proof of Proposition 1. Let

uk := F(xk) − y − F ′(xk)ek, ûk := F(x̂k) − y − F ′(x̂k)êk .

Similar to the derivation of (5.1), we can obtain from (2.12) and (6.2) that

xk+1 − x̂k+1 = αk (αk I + A)−1 (

xk − x̂k
) + t (1)

k + t (2)
k + t (3)

k + t (4)
k , (6.11)

where

t (1)
k := αk

[

(αk I + Ak)
−1 −

(

αk I + Âk

)−1
]

êk,

t (2)
k := αk

[

(αk I + Ak)
−1 − (αk I + A)−1

] (

xk − x̂k
)

,

t (3)
k :=

[(

αk I + Âk

)−1
F ′(x̂k)

∗ − (αk I + Ak)
−1 F ′(xk)

∗
]

ûk,

t (4)
k := (αk I + Ak)

−1 F ′(xk)
∗ (

ûk − uk
)

.

The analogous argument in Lemma 7 gives

t (i)k = (αk I + A)−1 F ′(x†)∗h(i)
k , i = 1, . . . , 4

with

‖h(i)
k ‖ � K0

(‖e0‖ + ‖ê0‖
) ‖xk − x̂k‖α1/2

k , i = 1, . . . , 4.

Consequently

xk+1 − x̂k+1 = αk (αk I + A)−1 (

xk − x̂k
) + (αk I + A)−1 F ′(x†)∗ξk, (6.12)

where ξk := h(1)
k + h(2)

k + h(3)
k + h(4)

k satisfies

‖ξk‖ � K0
(‖e0‖ + ‖ê0‖

) ‖xk − x̂k‖α1/2
k . (6.13)
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Now we prove (6.9) by induction. It is obvious for k = 0. Suppose it is true for all
0 ≤ k ≤ l. By telescoping (6.12) we have

xl+1 − x̂l+1 =
l

∏

j=0

α j
(

α j I + A)−1 (

x0 − x̂0
)

+
l

∑

m=0

α−1
m

l
∏

j=m

α j
(

α j I + A)−1
F ′(x†)∗ξm . (6.14)

Thus, by using (6.13), the induction hypothesis, and (2.8), we have

‖xl+1 − x̂l+1‖

≤ ‖x0 − x̂0‖ + C K0
(‖e0‖ + ‖ê0‖

) ‖x0 − x̂0‖
l

∑

m=0

α
−1/2
m

⎛

⎝

l
∑

j=m

α−1
j

⎞

⎠

−1/2

≤ (

1 + C K0
(‖e0‖ + ‖ê0‖

)) ‖x0 − x̂0‖
≤ 2‖x0 − x̂0‖

if both K0‖e0‖ and K0‖ê0‖ are suitably small. This shows (6.9).
Next we prove (6.10). By (2.6) it is obvious for k = 0. In the following we will

consider the case k > 0. It follows from (6.14) that

F ′(x†)(xk − x̂k) =
k−1
∏

j=0

α j (α j I + B)−1 F ′(x†)(x0 − x̂0)

+
k−1
∑

m=0

α−1
m

k−1
∏

j=m

α j (α j I + B)−1Bξm .

Thus, by using (3.6), (2.7), (4.3), (6.13) and (6.9), we have

‖F ′(x†)(xk − x̂k)‖ ≤
⎛

⎝

k−1
∑

j=0

α−1
j

⎞

⎠

−1/2

‖x0 − x̂0‖

+ C K0
(‖e0‖ + ‖ê0‖

) ‖x0 − x̂0‖
k−1
∑

m=0

α
−1/2
m

⎛

⎝

k−1
∑

j=m

α−1
j

⎞

⎠

−1

≤ (

c0 + C K0
(‖e0‖ + ‖ê0‖

)) ‖x0 − x̂0‖α1/2
k

≤ 2c0‖x0 − x̂0‖α1/2
k

if both K0‖e0‖ and K0‖ê0‖ are suitably small. We therefore obtain (6.10). 
�
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Proof of Proposition 2 Let 0 < ε < ‖e0‖ be an arbitrarily small number. Since x0 −
x† ∈ N (F ′(x†))⊥ = R(F ′(x†)∗), there is an x̂0 ∈ X such that x̂0 − x† ∈ R(F ′(x†)∗)
and ‖x0 − x̂0‖ < ε. Note that x̂0 ∈ Bρ(x†) and K0‖ê0‖ ≤ 2K0‖e0‖. Thus, if K0‖e0‖
is suitably small, then for the sequence {x̂k} defined by (6.2), it follows from Lemma
9 that

‖xk − x̂k‖ ≤ 2‖x0 − x̂0‖ < 2ε

and

α
−1/2
k ‖F ′(x†)(xk − x̂k)‖ ≤ 2c0‖x0 − x̂0‖ < 2c0ε

for all k ≥ 0, while by Remark 2 we have ‖êk‖ → 0 and α
−1/2
k ‖F ′(x†)êk‖ → 0 as

k → ∞. Thus, there is a k0 such that ‖êk‖ < ε and α
−1/2
k ‖F ′(x†)êk‖ < c0ε for all

k ≥ k0. Consequently

‖ek‖ ≤ ‖xk − x̂k‖ + ‖êk‖ < 3ε

and

α
−1/2
k ‖F ′(x†)ek‖ ≤ α

−1/2
k ‖F ′(x†)(xk − x̂k)‖ + α

−1/2
k ‖F ′(x†)êk‖ < 3c0ε

for all k ≥ k0. Since ε > 0 is arbitrarily small, we therefore obtain (6.1). 
�

7 A crucial inequality

In this section we will establish the following important inequality.

Proposition 3 Let the conditions in Lemma 5 be fulfilled. If K0‖e0‖ is suitably small,
then

‖xk − xl‖ � 1√
αl

‖F(xk) − y‖

for all integers 0 ≤ k ≤ l < ∞.

The proof is based on the following result which shows that {‖F(xk) − y‖} is
monotonically decreasing with respect to k.

Lemma 10 Let the conditions in Lemma 5 be fulfilled. If K0‖e0‖ is suitably small,
then

‖F(xk+1) − y‖ ≤ ‖F(xk) − y‖

for all k ≥ 0.
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Proof We first have

‖F(xk+1) − y‖2 − ‖F(xk) − y‖2

= ‖F(xk+1) − F(xk)‖2 + 2 (F(xk+1) − F(xk), F(xk) − y)

= ‖F(xk+1) − F(xk)‖2 + 2
(

xk+1 − xk, F ′(xk)
∗(F(xk) − y)

)

+ 2
(

F(xk+1) − F(xk) − F ′(xk)(xk+1 − xk), F(xk) − y
)

. (7.1)

By using (2.12) we have for s := 2
(

xk+1 − xk, F ′(xk)
∗(F(xk) − y)

)

that

s = −2
(

xk+1 − xk, (αk I + F ′(xk)
∗F ′(xk))(xk+1 − xk)

)

= −2αk‖xk+1 − xk‖2 − 2‖F ′(xk)(xk+1 − xk)‖2.

Note that the elementary inequality a2 ≥ 1
1+µ

(a + b)2 − 1
µ

b2 for any µ > 0, we
obtain

s ≤ −2αk‖xk+1 − xk‖2 − 2

1 + µ
‖F(xk+1) − F(xk)‖2

+ 2

µ
‖F(xk+1) − F(xk) − F ′(xk)(xk+1 − xk)‖2.

Combining this estimate with (7.1) yields

‖F(xk+1) − y‖2 − ‖F(xk) − y‖2

≤ −2αk‖xk+1 − xk‖2 −
(

2

1 + µ
− 1

)

‖F(xk+1) − F(xk)‖2

+ 2

µ
‖F(xk+1) − F(xk) − F ′(xk)(xk+1 − xk)‖2

+ 2
(

F(xk+1) − F(xk) − F ′(xk)(xk+1 − xk), F(xk) − y
)

. (7.2)

Note that (3.1) implies

‖F(xk+1) − F(xk) − F ′(xk)(xk+1 − xk)‖
≤ 1

2
K0‖xk+1 − xk‖‖F ′(xk)(xk+1 − xk)‖. (7.3)

With the help of Lemma 5 we then obtain

‖F(xk+1) − F(xk) − F ′(xk)(xk+1 − xk)‖ � K0‖e0‖‖F ′(xk)(xk+1 − xk)‖

which implies that if K0‖e0‖ is suitably small then

‖F ′(xk)(xk+1 − xk)‖ ≤ 2‖F(xk+1) − F(xk)‖.
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Consequently, it follows from (7.3) that

‖F(xk+1) − F(xk) − F ′(xk)(xk+1 − xk)‖ ≤ K0‖xk+1 − xk‖‖F(xk+1) − F(xk)‖.

Applying this inequality to (7.2) yields

‖F(xk+1) − y‖2 − ‖F(xk) − y‖2

≤ −2αk‖xk+1 − xk‖2 −
(

2

1 + µ
− 1

)

‖F(xk+1) − F(xk)‖2

+ 2

µ
K 2

0 ‖xk+1 − xk‖2‖F(xk+1) − F(xk)‖2

+ 2K0‖F(xk) − y‖‖xk+1 − xk‖‖F(xk+1) − F(xk)‖.

Using the inequality

2K0‖F(xk) − y‖‖xk+1 − xk‖‖F(xk+1) − F(xk)‖
≤ ε‖F(xk+1) − F(xk)‖2 + 1

ε
K 2

0 ‖F(xk) − y‖2‖xk+1 − xk‖2,

where ε > 0 is an arbitrary number, we then derive that

‖F(xk+1) − y‖2 − ‖F(xk) − y‖2

≤ −
(

2

1 + µ
− 1 − ε − 2

µ
K 2

0 ‖xk+1 − xk‖2
)

‖F(xk+1) − F(xk)‖2

−
(

2αk − 1

ε
K 2

0 ‖F(xk) − y‖2
)

‖xk+1 − xk‖2.

With the help of Lemma 5 we have ‖xk+1 − xk‖ ≤ C‖e0‖ and ‖F(xk) − y‖ ≤
C‖F ′(x†)ek‖ ≤ Cα

1/2
k ‖e0‖. Thus

‖F(xk+1) − y‖2 − ‖F(xk) − y‖2

≤ −
(

2

1 + µ
− 1 − ε − 2

µ
C2 K 2

0 ‖e0‖2
)

‖F(xk+1) − F(xk)‖2

−αk

(

2 − 1

ε
C2 K 2

0 ‖e0‖2
)

‖xk+1 − xk‖2.

This inequality suggests that if we take µ > 0 and ε > 0 so small that 2
1+µ

−1−ε > 0
and if K0‖e0‖ is small enough, then there holds

‖F(xk+1) − y‖2 − ‖F(xk) − y‖2 ≤ 0.

This is exactly what we want to prove. 
�
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Proof of Proposition 3 From (2.12) it follows that for any j = 0, 1, . . .

‖x j+1 − x j‖ = ‖(α j I + A j )
−1 F ′(x j )

∗(F(x j ) − y)‖ ≤ 1

2
√

α j
‖F(x j ) − y‖.

Therefore

‖xl − xk‖ ≤
l−1
∑

j=k

‖x j+1 − x j‖ ≤
l−1
∑

j=k

1

2
√

α j
‖F(x j ) − y‖.

By using the monotonicity of {‖F(x j ) − y‖} proved in Lemma 10 we then have

‖xl − xk‖ ≤
⎛

⎝

l−1
∑

j=k

1

2
√

α j

⎞

⎠ ‖F(xk) − y‖.

Since {α j } is given by (2.2), it is easy to see that
∑l−1

j=k α
−1/2
j � α

−1/2
l . We thus

complete the proof. 
�

8 Proof of Theorem 1

The conclusion (2.9) is proved in Lemma 6, where we also obtain kδ ≤ k̃δ . In the
following we will prove (2.10) and (2.11). From the definition of kδ and Proposition 1
we have

‖F(xkδ ) − y‖ ≤ ‖F(xδ
kδ

) − yδ‖ + ‖F(xδ
kδ

) − F(xkδ ) − yδ + y‖ � δ (8.1)

and for 0 ≤ k < kδ

τδ ≤ ‖F(xδ
k ) − yδ‖

≤ ‖F(xδ
k ) − F(xk) − yδ + y‖ + ‖F(xk) − y‖

≤ (1 + C K0‖e0‖) δ + ‖F(xk) − y‖.

Since τ > 1, if K0‖e0‖ is suitably small, then

δ � ‖F(xk) − y‖ � ‖F ′(x†)ek‖, 0 ≤ k < k̃δ. (8.2)

We now prove (2.10). Assume first that there is a sequence δn ↘ 0 such that
kn := kδn → k as n → ∞ for some finite integer k. Without loss of generality, we
can assume that kn = k for all n. It then follows from (8.1) that F(xk) = y. Thus,
from (2.12) we can conclude that x j = xk for all j ≥ k. Since Proposition 2 implies
x j → x† as j → ∞, we must have xk = x†, which together with Proposition 1

implies xδn
kn

→ x† as n → ∞.
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Assume next that there is a sequence δn ↘ 0 such that kn := kδn → ∞ as n → ∞.
Then Proposition 2 and (8.2) imply that ‖ekn ‖ → 0 and δn/

√
αkn → 0 as n → ∞.

Consequently, by Proposition 1 we again obtain xδn
kn

→ x† as n → ∞.
We next prove (2.11). By using Lemma 8 and (8.2) there is a positive constant

C0 > 0 such that

δ < C0α
ν+1/2
k ‖ω‖, 0 ≤ k < kδ.

Therefore

αk >

(
δ

C0‖ω‖
)2/(1+2ν)

, 0 ≤ k < kδ.

Now we define the integer k̄δ by

αk̄δ
≤

(
δ

C0‖ω‖
)2/(1+2ν)

< αk, 0 ≤ k < k̄δ.

Then it is clear that kδ ≤ k̄δ . Thus we may use Proposition 1, Proposition 3, (8.1) and
Lemma 8 to obtain

‖eδ
kδ

‖ � ‖ekδ‖ + δ√
αkδ

� ‖ek̄δ
‖ + ‖F(xkδ ) − yδ‖√

αk̄δ

+ δ√
αk̄δ

� αν

k̄δ
‖ω‖ + δ√

αk̄δ

.

With the help of the definition of k̄δ and (2.2), it is now easy to obtain the desired
estimate (2.11).

9 Numerical examples

In this section we present some numerical examples to test the convergence result in
Theorem 1 on the method (2.1)–(2.3) by considering the estimation of the coefficient
a in the two-point boundary value problem

{−u′′ + au = f, t ∈ (0, 1)

u(0) = g0, u(1) = g1
(9.1)

from the L2 measurement uδ of the state variable u, where g0, g1 and f ∈ L2[0, 1]
are given. This inverse problem reduces to solving Eq. (1.1) with the nonlinear oper-
ator F : D(F) ⊂ L2[0, 1] �→ L2[0, 1] defined as the parameter-to-solution mapping
F(a) := u(a), where u(a) denotes the unique solution of (9.1). It is well known that
F is well-defined on

D(F) :=
{

a ∈ L2[0, 1] : ‖a − â‖L2 ≤ γ for some â ≥ 0 a.e.
}
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Table 1 Numerical results for Example 1 with αk = 1.0 × (1.5)−k and three different values of τ , where
kδ denotes the integer determined by (2.3), error := ‖aδ

kδ
− a†‖L2 , and ratio := error/δ1/2

δ τ = 1.1 τ = 2.5 τ = 5.0

kδ Error Ratio kδ Error Ratio kδ Error Ratio

10−1 10 1.69e − 1 0.53 1 7.20e − 1 2.28 1 7.20e − 1 2.28

10−2 13 7.16e − 2 0.72 11 1.11e − 1 1.11 9 2.56e − 1 2.56

10−3 19 1.79e − 2 0.57 15 4.77e − 2 1.51 13 7.16e − 2 2.26

10−4 24 5.40e − 3 0.54 21 1.09e − 2 1.09 19 1.79e − 2 1.79

10−5 29 1.60e − 3 0.50 26 3.30e − 3 1.04 24 5.40e − 3 1.70

10−6 34 4.53e − 4 0.45 31 9.60e − 4 0.96 29 1.60e − 3 1.58

with some γ > 0. Moreover, F is Fréchet differentiable, the Fréchet derivative and
its adjoint are given by

F ′(a)h = −A(a)−1(hu(a)),

F ′(a)∗w = −u(a)A(a)−1w,

where A(a) : H2 ∩ H1
0 �→ L2 is defined by A(a)u = −u′′ + au. It has been shown

in [6] that if, for the sought solution a†, |u(a†)(t)| ≥ κ > 0 for all t ∈ [0, 1], then
(2.5) is satisfied in a neighborhood of a†. In the following we report some numerical
results on the method (2.1)–(2.3). During the computation, all differential equations
are solved approximately by finite difference method by dividing the interval [0, 1]
into n + 1 subintervals with equal length h = 1/(n + 1); we take n = 200 in our
actual computation.

Example 1 We estimate a in (9.1) by assuming f (t) = 1 + t , g0 = 1 and g1 = 2.
If u(a†) = 1 + t , then a† = 1 is the sought solution. In our computation, instead of
u(a†), we use the special perturbation

uδ = 1 + t + δ
√

2 sin(π t/δ)

with high frequency. Clearly ‖uδ − u(a†)‖L2[0,1] ≤ δ. As a first guess we choose
a0 = 1 + 4t (1 − t). One can show that a0 − a† ∈ R(F ′(a†)∗). Thus, according to
Theorem 1, the expected rate of convergence should be O(δ1/2).

In Table 1 we summarized the numerical results obtained by the method (2.1)–(2.3)
with αk = 1.0 × (1.5)−k . In order to see the effect of τ in the discrepancy principle
(2.3), we consider the three values τ = 1.1, 2.5 and 5. In order to indicate the depen-
dence of the convergence rates on the noise level, different values of δ are selected.
The rates in Table 1 coincides with Theorem 1 very well. Table 1 indicates also that
the absolute error increases with respect to τ . Thus, in numerical computation, one
should use smaller τ if possible.
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Table 2 Numerical results for Example 2, where error := ‖aδ
kδ

− a†‖L2

δ a0 = 1 + t2 − 2t (1 − t)(1 + t − t2) a0 = 1.2

kδ Error Error/δ1/2 kδ Error

10−2 12 6.98e − 2 0.70 1 3.24e − 1

10−3 16 4.50e − 3 0.14 20 1.86e − 1

10−4 17 3.80e − 3 0.38 30 1.04e − 1

10−5 23 6.68e − 4 0.21 38 6.71e − 2

10−6 27 1.84e − 4 0.18 47 3.15e − 2

10−7 31 6.04e − 5 0.19 55 7.50e − 3

Table 3 Numerical results on the effect of {αk }, where error := ‖aδ
kδ

− a†‖L2

δ αk = 1.0 × 2−k αk = 1.0 × 4−k αk = 1.0 × 8−k

kδ Error kδ Error kδ Error

10−2 9 2.77e − 2 6 1.70e − 2 5 4.77e − 2

10−3 11 4.50e − 3 7 6.30e − 3 6 3.68e − 2

10−4 12 3.10e − 3 8 2.40e − 3 7 2.38e − 2

10−5 15 5.80e − 4 9 8.66e − 4 7 2.40e − 3

10−6 17 1.92e − 4 11 6.45e − 4 8 7.50e − 4

Example 2 In this example we consider the estimation of a in (9.1) with f = 1 + t2

and g0 = g1 = 1. If u(a†) = 1, then a† = 1 + t2 is the sought solution. When apply-
ing the method (2.1)–(2.3), we use the special noise data uδ = 1 + √

2δ sin(10π t),
αk = 1.0 × (1.5)−k and τ = 1.5. In Table 2 we summarize the numerical results
corresponding to two different choices of the initial guess

a0 = 1 + t2 − 2t (1 − t)(1 + t − t2) (9.2)

and

a0 = 1.2. (9.3)

For the a0 given by (9.2) one can check a0 − a† ∈ R(F ′(a†)∗F ′(a†)). However,
Table 2 indicates that the convergence rate is only O(δ1/2). This perhaps suggests
that the best possible rate that the method (2.1)–(2.3) can provide is O(δ1/2) even if
a0 − a† has higher regularity, which sharply contrasts to the linear situation. On the
other hand, for the a0 given by (9.3), a0 − a† �∈ R(F ′(a†)∗), and in fact a0 − a† has
no source-wise representation a0 − a† ∈ R((F ′(a†)∗F ′(a†))ν) with a good ν > 0.
However, Table 2 clearly indicates the convergence of the method although it could
be slow.
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Example 3 In this example we give numerical results to indicate the effect of {αk}.
We consider the estimation of a in (9.1) with the same data as in Example 2, i.e.,
f = 1 + t2, g0 = g1 = 1, u(a†) = 1, a† = 1 + t2 and uδ = 1 + √

2δ sin(10π t).
Table 3 summarizes the numerical results obtained by the method (2.1)–(2.3) with
τ = 2.0 and the first guess a0 given by (9.2) but with several different choices of
{αk}. It can be seen that the choices of {αk} affects the convergence speed. A faster
decreasing sequence {αk} could give the final results using fewer iterations, but the
risk of worse convergence could arise. In general it is hard to tell how to choose the
sequence {αk} to achieve the best efficiency; an ideal approximation, however, should
be able to obtain if {αk} does not decrease too fast.
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