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Abstract In this paper we discuss the problem of verifying and computing optimal
controls of systems whose dynamics is governed by differential systems with a dis-
continuous right-hand side. In our work, we are motivated by optimal control of
mechanical systems with Coulomb friction, which exhibit such a right-hand side.
Notwithstanding the impressive development of nonsmooth and set-valued analysis,
these systems have not been closely studied either computationally or analytically.
We show that even when the solution crosses and does not stay on the discontinuity,
differentiating the results of a simulation gives gradients that have errors of a size
independent of the stepsize. This means that the strategy of “optimize the discretiza-
tion” will usually fail for problems of this kind. We approximate the discontinuous
right-hand side for the differential equations or inclusions by a smooth right-hand side.
For these smoothed approximations, we show that the resulting gradients approach
the true gradients provided that the start and end points of the trajectory do not lie on
the discontinuity and that Euler’s method is used where the step size is “sufficiently
small” in comparison with the smoothing parameter. Numerical results are presented
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for a crude model of car racing that involves Coulomb friction and slip showing that
this approach is practical and can handle problems of moderate complexity.

Mathematics Subject Classification (2000) Primary: 49Q12; Secondary:
34A36 · 49J24

1 Introduction

Consider a block on a table subject to Coulomb friction on the contacting surface,
pulled by a force g(t) [11,28,33] (Fig. 1): The differential equation for this system is

m
dv

dt
∈ −µN Sgn(v)+ g(t), (1)

where Sgn is a set-valued function given by

Sgn(z) =

⎧
⎪⎨

⎪⎩

{+1}, z > 0,

[−1,+1], z = 0,

{−1}, z < 0.

(2)

The quantity N is the normal contact force (= mg for a block of mass m) and µ the
coefficient of Coulomb friction.

A differential inclusion

dx

dt
∈ F(x), x(0) = x0 (3)

with F and x0 given has unique solutions if F satisfies a one-sided Lipschitz condition:
there is a constant L ≥ 0 where

yi ∈ F(xi ) for i = 1, 2 implies (y2 − y1)
T (x2 − x1) ≤ L ‖x2 − x1‖2. (4)

Note that −Sgn satisfies this one-sided Lipschitz condition with L = 0. We write the
solution as x(t; x0). The solution operator x0 �→ x(t; x0) is Lipschitz with Lipschitz
constant eL t [4].

Prior work has been done on theoretical aspects of nonsmooth optimal control
problems, including [6,7,14–16]. However, none of this work deals with discontinu-
ous dynamics. The work of Clarke [6,7] deals with nonsmooth but Lipschitz dynamics

Fig. 1 Block sliding on a table
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Optimal control of systems with discontinuous differential equations 655

and objective functions, while that of Frankowska [14–16] deals with set-valued but
Lipschitz dynamics. Both approaches develop a maximum principle generalizing the
well-known Pontryagin maximum principle [27] for optimal control.

Thus, this previous work of Clarke, Frankowska, and others cannot be directly
applied to systems that have Coulomb friction. One approach which could be applied
is that of Sussmann [31]. This approach requires computation of Jacobian matrix of
the flow map Φs,t : x(s) �→ x(t). Since Φs,t is smooth provided neither x(s) nor
x(t) is on the discontinuity, a modification of this approach could provide a suitable
analog of the Pontryagin conditions. However, the Jacobian matrix of the flow map
for problems with Coulomb friction is not easy to compute, and standard numerical
approaches fail, as we show below. The examples below also show that the strategy
of “optimizing the discretization” is unlikely to work for such problems.

Numerical work on optimizing systems with dynamics like (1) includes [9,20,36,
38]. Of these, Glowinski and Kearsley [20] used pattern search to carry out the opti-
mization. Driessen and Sadegh [9] set up the entire dynamics as a mixed integer–
linear program after using a standard time-discretization. The integer variables were
used to represent the values of the “Sgn” function at each time-step. Ventura and
Martinez [38] used a hybrid neural network/evolutionary computation approach to
computing optimal controls. Van Willigenburg and Loop [36] used adjoint equations
to compute gradients so that a conventional constrained optimization routine could be
applied (BCPOL from IMSL in this paper). However, there is reason to believe that
the adjoint functions computed by Van Willigenburg and Loop are not, in fact, correct,
as the authors did not take into account that the discontinuity in the right-hand side
(1) causes a discontinuity in the adjoint functions. This phenomenon of discontinuous
adjoint functions has been noticed by Driessen and Sadegh [9] and is discussed in
depth below.

We mention two examples of analytical investigation of optimal control problems
with Coulomb friction. The first is the work of Lipp on the brachistochrone prob-
lem with Coulomb friction [24], although the slip is assumed to always be in a fixed
direction so that the dynamics is continuous, although not smooth. The second is the
work of Kim and Ha [23], who investigate a specific two-dimensional problem with
Coulomb friction and find, for their simple system, that the adjoint variables have a
jump; they compute the size of that jump.

There has been some success with optimizing static systems with Coulomb friction.
In particular, Outrata et al. [26, Ch. 11] discuss using a bundle method of Lemarechal
to optimize the friction coefficients for a contact problem.

As can be noticed in all of the above examples for optimal control of (1), gradient
information either is not used or is probably incorrect.

Some authors have considered the problem of computing correct parametric sen-
sitivities. The work of Barton et al. [18,35], for example, develops a “jump formula”
for the sensitivities as the trajectory crosses a discontinuity. However, our work is
different in the three important ways from that work.

1. The models considered by Barton et al. implicitly assume that the trajectory does
not stay on the discontinuity for a positive length of time. This is commonly not
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true for discontinuous systems arising Coulomb friction. We analyze such systems
in depth in Sect. 6.

2. The same references contain the observation, which we also emphasize here, that
in the case of numerical simulation, the derivatives are not computed correctly
if the switching time is not accurately identified. However, we take this obser-
vation further in the context of optimal control, by showing that systems of the
type described here whose derivative is computed by a fixed-step time-stepping
procedure may exhibit local minima that accumulate to arbitrary points in a neigh-
borhood of the actual minimum.

3. The models considered by Barton et al. also refer to differential algebraic equa-
tion that are index one on the smooth portions, whereas the differential algebraic
equations that are equivalent to our model are index two.

Furthermore, in this paper we show that adjoints computed by smoothing the right-
hand side of the differential equation will converge to the true adjoints, satisfying the
relevant “jump conditions”.

1.1 Organization of the paper

In Sect. 2 we look at the “optimize the discretization” strategy and show that it fails
for problems of the same kind as (1) whether explicit, implicit, or partly implicit
time-discretizations are used. In Sect. 3 we present the model differential inclusion
and we discuss the implications of the one-sided Lipschitz Assumption. In Sect. 4 a
smoothing approach is introduced, and some general properties of this approach are
developed. This class of systems contains systems of type (1). As a result we develop
a rule for computing the jumps in the adjoint functions for systems of this type. In
Sects. 5 and 6 we show that provided the step-size goes to zero faster than the smooth-
ing parameter, then the gradients and adjoints computed for Euler’s method converge
to the exact gradients for the discontinuous system. In Sect. 7 a crude model of a
racing car is developed involving Coulomb friction, which is used as a test model.
Numerical results are obtained via a smoothing approach that shows the practicality
of the approach for a problem of moderate complexity.

1.2 Notation

Regarding the notation for gradients and Jacobians, most vectors are considered to be
column vectors unless otherwise specified. For a function f : R

m → R
n , ∇ f (x) is an

n×m matrix so (∇ f (x))i j = ∂ fi/∂x j (x). This means that for scalar functions (n = 1),
∇ f (x) is a row vector. However, if f is a function of one variable (m = 1), ∇ f (x) =
f ′(x) is a column vector. This means that f (x +∆x) = f (x)+∇ f (x)∆x +o(‖∆x‖)
for any differentiable f , regardless of whether f is scalar- or vector-valued. Where
there are several inputs, we use a subscript on “∇” to indicate with respect to which
variable the gradient is taken.

We use ẋ to denote the derivative dx/dt , although sometimes the latter notation is
used where it is clearer.
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Optimal control of systems with discontinuous differential equations 657

Note that we use C to denote a quantity that depends only on the data of the problem
(that is, it does not depend on the other parameters introduced, such as the smoothing
parameter σ , the step size h, the time t , or the step number k). These quantities can
differ on each appearance. Since we use asymptotic notation, we remind the reader that
f (s) = O(g(s)) (as s ↓ 0) means that there are constants C > 0 and s0 > 0 where for
0 < s < s0, | f (s)| ≤ C g(s). Also f (s) = o(g(s))means that lims↓0 f (s)/g(s) = 0.
Furthermore, f (s) = Ω(g(s)) means that there are C > 0 and s0 > 0 where for
0 < s < s0, f (s) ≥ C |g(s)|, and f (s) = ω(g(s)) means that lims↓0 g(s)/ f (s) = 0.

Finally, we introduce the notation for the tangent cone of a set K at u ∈ K to be

T K (u) =
{

lim
j→∞

u j − u

t j
| u j ∈ K , t j ↓ 0 as j → ∞

}

.

2 “Optimize the discretization” strategy

Consider first the simple differential inclusion

dx

dt
∈ −Sgn(x), x(0) = 1. (5)

The exact solution is unique and is easily checked to be x(t) = (1 − t)+ where
z+ = max(z, 0) is the positive part of z. We can discretize this equation using the
explicit Euler method or a partially explicit Euler method. If we set tk = t0 + k h
where h > 0 is the time step and xk is our approximation to x(tk), the discrete-time
trajectories for dx/dt ∈ F(x) will satisfy

xk+1 ∈ xk + h F(xk + χ(xk+1 − xk)). (6)

The parameter χ ∈ [0, 1] indicates how implicit the method is: χ = 0 corresponds to
the explicit Euler method, χ = 1

2 corresponds to the mid-point rule, and χ = 1 corre-
sponds to the fully implicit Euler method [1]. Solutions of the discretized problem are
known to converge to solutions of the continuous time differential inclusion (5) (see
[32–34]). However, we will shortly see that even though the numerical trajectories
converge (xh(t; x0) → x(t; x0) as h ↓ 0 where xh is the numerical trajectory), the
gradients do not (∇x0 xh(t; x0) �→ ∇x0 x(t; x0)) even where x(t; ·) is smooth.

Note that if L h < 1, then there is only one solution to (6).
Consider the differential inclusion

dx

dt
∈ (1 + α)− Sgn(x), x(0) = −1, (7)

with α > 0. The exact solution is x(t) = −1 + (2 + α)t for 0 ≤ t ≤ 1/(2 + α),
and x(t) = α(t − 1/(2 + α)) for t ≥ 1/(2 +/α). For x(0) = x0 with x0 ≈ −1, the
solution is nearly as simple: x(t) = x0 + (2 + α)t for 0 ≤ −x0/(2 + α), and x(t) =
α(t + x0/(2 + α)) for t ≥ −x0/(2 + α). This means that ∇x0 x(2; x0) = α/(2 + α)

at x0 = −1.
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0
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h = 5e−3

Fig. 2 Computed value of (x(2)− 5/3)2 + ∫ 2
0 x(t)2 dt against x0 for various step-sizes

This differential inclusion should be easy to handle because it crosses the discon-
tinuity, rather than staying on it as occurs in (5).

The discretization (6) for (7) is

xk+1 ∈ xk + h (1 + α)− h Sgn(xk + χ(xk+1 − xk)). (8)

If xk + χ(xk+1 − xk) < 0, then xk+1 = xk + (2 + α)h; if xk + χ(xk+1 − xk) > 0,
then xk+1 = xk + α h; if xk + χ(xk+1 − xk) = 0, then xk+1 = −((1 − χ)/χ)xk .
Inserting these formulas for xk+1 into the first two conditions gives the following:
If xk + χ(2 + α)h < 0, then xk+1 = xk + (2 + α)h; if xk + χ α h > 0, then
xk+1 = xk + α h. Neither of these occurs if xk ∈ −χ h [α, 2 + α], where xk+1 =
−((1 − χ)/χ)xk . Note that ∇xk xk+1 is either −(1 − χ)/χ or one. If χ = 1 (for
fully implicit Euler), then ∇xk xk+1 is either zero or one. If xh(t) is the piecewise
linear interpolant of xh(k h) = xk , then ∇x0 xh(2; x0) computed from differentiating
the numerical solutions of either zero or one for h > 0 sufficiently small.

Now consider 1
2 < χ < 1. If xk ∈ −hχ [α, 2+α], then xk+1 = −(1−χ) xk/χ >

0, and so xk+1 +χ α h > 0 and xk+2 = xk+1 +α h ≥ xk+1 > 0, and so on. Thus there
can be at most one k where xk ∈ −hχ [α, 2+α]. This means that the approximation to
∇x0 x(2; x0) obtained by differentiating the numerical solutions is either −(1 − χ)/χ

or one. Both of these answers is clearly far from the correct answer of α/(2 + α).
As a more explicit example, consider the following results, which involve the above

differential inclusion with α = 1 and numerical solutions computed by using χ = 1
(i.e., the fully implicit Euler method). In Fig. 2 the objective function is (x(2)−5/3)2+
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Fig. 3 Computed value of (x(2) − 5/3)2 + ∫ 2
0 x(t)2 dt against x0 for various smoothing parameters

(h = 10−2)

∫ 2
0 x(t)2 dt is plotted against x(0) = x0 with the integral computed by using the

trapezoidal rule. The trapezoidal method should contribute only O(h2) error com-
pared with the O(h) bound for the errors from the implicit Euler method. As can be
clearly seen in Fig. 2, the values of the computed objective function converge, but the
gradients do not. Smoothing the right-hand side of the differential equation (in this
case replacing Sgn(x)with Sgnσ (x) := tanh(x/σ)) improves things greatly regarding
the value of gradients, as can be seen in Fig. 3.

The results in Fig. 3 also point out the following fact about systems whose dynam-
ics are not necessarily nonsmooth but are stiff enough to behave like an almost non-
smooth system, with σ �= 0 but σ ≈ 0. Since such systems are stiff, it is likely that
the favorite way of simulating them is to use an implicit time-stepping scheme with a
relatively large time step. If the derivative is computed on the same grid, the resulting
optimization problem will have many local minima, not necessarily close to the target
minimum. These disappear only when the time step is o(1/L), where the right-hand
side has a local Lipschitz constant of L .

Readers with a background in numerical analysis might wonder if higher-order
schemes can reduce the requirement that h = o(σ ) for obtaining accurate gradients.
Unfortunately, this does not appear to be the case as larger step-sizes result in O(h)
errors in the trajectory and O(1) errors in the derivatives. This is related to the issue
of finding numerical methods to solve a differential inclusion to an accuracy of o(h).
Methods of this kind can be found (see, e.g., [21,22]), but these will only give o(h)
accuracy if the trajectory does not leave or join the manifold on which the discontinuity
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lies. In either of these cases, using higher-order schemes does not obviate the condition
that h = o(σ ).

3 The model differential inclusion

Consider the differential inclusion

dx

dt
∈

⎧
⎪⎨

⎪⎩

{ f1(x)}, ψ(x) < 0,

{ f2(x)}, ψ(x) > 0,

co { f1(x), f2(x)}, ψ(x) = 0,

(9)

where “co (X)” is the convex hull of a set X .
We assume that this right-hand side satisfies a one-sided Lipschitz condition (4).

We assume that f1, f2 : R
n → R

n and ψ : R
n → R are C2, and that ∇ψ(x) �= 0

whenever ψ(x) = 0.
We note that (9) can be in one of the following nondegenerate switching cases.

1. We have ∇ψ(x) · f1(x), ∇ψ(x) · f2(x) > 0, whenever ψ(x) = 0. In this case
dψ(x(t))/dt is strictly positive before and after the switching time. So the dynam-
ical system described by (9) will switch from the setψ(x) < 0 to the setψ(x) > 0.

2. We have that ∇ψ(x) · f1(x) > 0, ∇ψ(x) · f2(x) < 0, whenever ψ(x) = 0. In
this case once the dynamical system reaches the manifold ψ(x) = 0, it is trapped
there.

Either of these cases will result in jumps in the sensitivities and the adjoint variables,
as we show in the following sections. In addition we have the situation where the
system “exits” a singularity, which may occur starting from the second case when
∇ψ(x) f2(x) changes sign. In that case, however, there is no discontinuous transition,
and the case does not need to be studied separately.

We address the properties of both cases below.

3.1 Consequences of the one-sided Lipschitz condition

In this subsection we show that the one-sided Lipschitz condition, which is satisfied
by Coulomb-friction force laws, enforces certain constraints on the functions f1 and
f2, which will be used later.

Lemma 1 Suppose that the right-hand side of (9) satisfies the one-sided Lipschitz
condition (4). Suppose also that ψ is differentiable and ∇ψ(x) �= 0 for any x where
ψ(x) = 0. Then on the discontinuity Σ={ x | ψ(x) = 0 } we must have ( f2 − f1)‖
∇ψT and ∇ψ · ( f2 − f1) ≤ 0.

Proof Pick η > 0, ε > 0, and x ∈ Σ . Consider any 0 �= ζ ⊥ ∇ψ(x)T . Now put x1 =
x −ε∇ψ(x)T and x2 = x +ε∇ψ(x)T +ηζ . We want to choose ε, η > 0 small enough
so that ψ(x1) < 0 and ψ(x2) > 0. Now ψ(x1) = ψ(x)− ε‖∇ψ(x)‖2 + o(ε), so for
any ε > 0 sufficiently small,ψ(x1) < 0. Alsoψ(x2) = ψ(x)+ε‖∇ψ(x)‖2+o(ε+η).
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Optimal control of systems with discontinuous differential equations 661

So for any θ > 0 there is an η0 > 0 so that ε + η < η0 implies that the remainder
term o(ε + η) is less than θ(ε + η). For such ε and η,

ψ(x2) ≥ ε‖∇ψ(x)‖2 − θ(ε + η).

Provided 0 < η < (‖∇ψ(x)‖2 − θ)ε/θ and ε and η are sufficiently small, we have
ψ(x2) > 0. If we set η = 1

2 (‖∇ψ(x)‖2 − θ)ε/θ , then for sufficiently small ε > 0,
ψ(x2) > 0. Turning this around, if we set ε = 2θη/(‖∇ψ(x)‖2 − θ), then for suf-
ficiently small η > 0 and 0 < θ ≤ 1, ψ(x1) < 0 and ψ(x2) > 0. Choose θ > 0
sufficiently small so that ε ≤ η.

Now by the one-sided Lipschitz condition, for sufficiently small ε > 0 and η > 0
given as above,

L‖x2 − x1‖2 ≥ (x2 − x1)
T ( f2(x2)− f1(x1))

= (2ε∇ψ(x)+ ηζ T )[ f2(x)− f1(x)+ O(ε + η)]. (10)

Since ‖x2 − x1‖ = O(η), after dividing both sides of (10) by η and taking η ↓ 0, we
have

0 ≥ (2(ε/η)∇ψ(x)+ ζ T )[ f2(x)− f1(x)]. (11)

But ε/η = 2θ/(‖∇ψ(x)‖2 − θ). So

0 ≥ (2θ/(‖∇ψ(x)‖2 − θ)∇ψ(x)+ ζ T )[ f2(x)− f1(x)],

for all θ > 0 sufficiently small. Taking θ ↓ 0 gives the result that for any x ∈ Σ ,
ζ T [ f2(x) − f1(x)] ≤ 0. Since −ζ is also perpendicular to ∇ψ(x)T , it follows that
f2(x)− f1(x) is perpendicular to ζ . Noting that ζ is an arbitrary vector perpendicular
to ∇ψ(x)T , we see that f2(x)− f1(x) ‖ ∇ψ(x)T .

To prove the final assertion, set ζ = 0. Then for sufficiently small ε > 0, 2ε∇ψ(x)
[ f2(x)− f1(x)+ O(ε)] ≤ 0. Taking ε ↓ 0 gives ∇ψ(x)[ f2(x)− f1(x)] ≤ 0. ��

3.2 The equivalent equation in the trapped case

We now work under the assumption that ∇ψ(x) f1(x) > 0 and ∇ψ(x) f2(x) < 0, that
is, when the problem is “trapped” in the manifold ψ(x) = 0, where we must follow
the trajectory.

From the third branch in (9), the problem of following the trajectory in the discon-
tinuity should be expressed as

dx

dt
= f ∗(x) = (1 − θ(x)) f1(x)+ θ(x) f2(x).

The unknown weighting function θ(x) is computable from the condition that the
mapping ψ(x) is an invariant of the dynamical system defined by f ∗(x), that is,
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662 D. E. Stewart, M. Anitescu

∇ψ(x) f ∗(x) = 0. In turn, the last equation leads to

∇ψ(x) ((1 − θ(x)) f1(x)+ θ(x) f2(x)) = 0.

Solving for the unknown weighting function from the last equation, we obtain

θ(x) = ∇ψ(x) f1(x)

∇ψ(x) f1(x)− ∇ψ(x) f2(x)
. (12)

Note that, under the assumption that ∇ψ(x) f1(x) > 0 and ∇ψ(x) f2(x) < 0 we must
have that

0 < θ(x) < 1,

at least in a neighborhood of the switching point.
This also shows that the dynamical system will exit the discontinuity manifold

only when the weighing function θ(x) switches to either 0 or 1. From the expression
of θ(x), it follows that such a switch can happen only when either ∇ψ(x) f1(x) or
∇ψ(x) f2(x) will switch signs.

With this identification, the dynamical system can, in effect, be represented by the
following piecewise differential equation:

ẋ =
{

f1(x), ψ(x) < 0,

f ∗(x), ψ(x) ≥ 0,
x(0) = x0.

3.3 Exact sensitivities with respect to parameters

We are interested in evaluating the sensitivities with respect parameters. However, by
making the parameter an extra dependent variable with zero derivative, we can make
the sensitivity with respect to a parameter into sensitivity with respect to initial condi-
tions. Thus we restrict ourselves to sensitivities with respect to the initial conditions.
Let x(t; x0) be the value of x(t) where x is the solution of the discontinuous ODE
with initial value x0.

3.3.1 The trapped case

We first compute these sensitivities in the case where the trajectory is trapped in the
manifold ψ(x) = 0, that is, ∇ψ(x) f1(x) > 0 and ∇ψ(x) f2(x) < 0.

An important component in computing this sensitivities is the switching time ts =
ts(x0), which can be defined implicitly by the equations

x(0; x0) = x0, ẋ(t; x0) = f1(x), ψ(x(ts; x0)) = 0.
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Optimal control of systems with discontinuous differential equations 663

The sensitivity s(t, x0) satisfies the following equation, before switching.

ṡ = ∇ f1(x(t; x0))s, s(0) = I.

Using the implicit function theorem, we obtain that

∇x0 ts(x0) = − ∇ψ(x(ts, x0))s(ts, x0)

∇ψ(x(ts, x0)) f1 (x(ts, x0))
.

From our assumptions, it is immediate that ∇ψ(x) f1(x) �= 0.
To determine the equation satisfied by the sensitivity after switching, we proceed

in two steps. First we consider the equation satisfied by the system once it enters the
discontinuity,

ẏ(t, y0) = f ∗(y(t, y0)), y(0, y0) = y0,

and we analyze its sensitivity s2(t, y0) = ∇y0 y(t; y0) with respect to the parameter
y0. Here we have used the identification that is valid when t > ts ,

y(t; y0) = x(t + ts; x0).

We obtain the following linear differential equation:

ṡ2 = ∇ f ∗(y(t; y0))s2, s2(0) = I.

To compute s2(t, y0) = ∇x0 x(t; x0), we glue the solutions before and after reaching
to discontinuity by using that

y0 = x(ts(x0); x0).

We see that

∇x0 y0 = ∇x0 [x(ts(x0), x0)] = f1 (x(ts; x0))∇ts(x0)+ s(ts, x0)

= − f1 (x(ts; x0))
∇ψ(x(ts; x0))s(ts, x0)

∇ψ(x(ts; x0))T f1 (x(ts; x0))
+ s(ts, x0)

=
[

I − f1 (x(ts; x0))∇ψ(x(ts; x0))

∇ψ(x(ts; x0)) f1 (x(ts, x0))

]

s(ts; x0).

The following computation also shows that x(t; x0) is a differentiable function of x0
and that its derivative s(t) obeys the following differential equation

ṡ(t) =
{ ∇ f1(x(t; x0))s(t), t < ts,

∇ f ∗(x(t; x0))s(t), t > ts .
(13)

To figure out the jump rule at the switching, we use that x(t; x0) = y(t − ts; y0).
We obtain that, whenever t > ts , the following holds.
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∇x0 x(t; x0) = ∇x0 y(t − ts; y0) = − f ∗(y(t − ts; y0))∇x0 ts + s2(t − ts, y0)∇x0 y0.

As t ↓ ts , we have that s2(t − ts, y0) approaches the identity. Using our computation
for ∇x0 ts and ∇x0 y0, we obtain that, at the switching point, the sensitivity will jump
according to the rule

s(t+s ) =
[

I + ( f ∗ (x(ts; x0))− f1 (x(ts; x0)))∇ψ(x(ts; x0))

∇ψ(x(ts; x0)) f1 (x(ts; x0))

]

s(t−s ).

If we replace the expression for f ∗ in the above equation, we obtain that

s(t+s ) =
[

I + ( f2 (x(ts; x0))− f1 (x(ts; x0)))∇ψ(x(ts; x0))

∇ψ(x(ts; x0)) ( f1 (x(ts; x0))− f2 (x(ts; x0)))

]

s(t−s ). (14)

From Lemma 1 we have that ( f2 − f1) ‖ ∇ψT , which implies that the matrix in
the above relation is an orthogonal projection.

3.3.2 The case where ∇ψ(x) f1(x) > 0 and ∇ψ(x) f2(x) > 0

Using the arguments of the previous section, we note that (13) should be replaced by

ṡ(t) =
{∇ f1(x(t; x0))s(t), t < ts,

∇ f2(x(t; x0))s(t), t > ts .
(15)

Repeating the preceding analysis for (15) we obtain

s(t+s ) =
[

I + ( f2 (x(ts; x0))− f1 (x(ts; x0)))∇ψ(x(ts; x0))

∇ψ(x(ts; x0)) f1 (x(ts; x0))

]

s(t−s ). (16)

4 A smoothing approach

We now investigate the approximation of (9) by the smoothed system

dxσ
dt

= ϕσ (ψ(xσ )) f2(xσ )+ (1 − ϕσ (ψ(xσ ))) f1(xσ ). (17)

Here

ϕσ (w) =
w∫

−∞
ρσ (r

′) dr ′, (18)

where ρσ (r) = (1/σ)ρ(r/σ) and ρ ≥ 0, supp ρ = [−1,+1], and
∫ +∞
−∞ ρ(r) dr = 1.

We could, for example, take ρ(r) = c exp(−1/(1+r)−1/(1−r)) for −1 < r < +1
and ρ(r) = 0 otherwise, with c chosen to give

∫ +1
−1 ρ(r) dr = 1. The smoothing
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Optimal control of systems with discontinuous differential equations 665

function is then given by ϕσ (w) = (1/σ)
∫ w
−∞ ρ(r/σ) dr . Note that there is no finite

closed-form representation of ϕσ . The resulting smoothing function ϕσ (w) is rather
Thus, ϕσ (w) = 0 for w ≤ −σ and ϕσ (w) = 1 for w ≥ +σ .

In practice it is not necessary that ϕσ (w) is exactly zero forw ≤ −σ or that ϕσ (w)
is exactly one for w ≥ +σ . However, it is important that ϕσ (w) approaches 1 rapidly
and smoothly as w/σ increases past one, and approaches 0 rapidly and smoothly as
w/σ decreases below zero. Thus, we could use ϕσ (w) = (1/2)[1 + tanh(w/σ)] in
practice. The assumption that ϕσ (w) = 0 for w ≤ −σ and ϕσ (w) = 1 for w ≥ +σ
simplifies the analysis.

Readers may note that the results of the previous section can be understood as say-
ing that gradients of the objective function with respect to parameters or changes in
the initial conditions can be computed for this problem by identifying “break points”
where the solution meets and leaves the discontinuity. This could be done using meth-
ods such as those in [29]. There are two reasons for dealing with the smoothing system.
One is to show that using the smoothed system numerically can give accurate gradient
information (provided at least that h = o(σ )). The other is so that the solution method
for the (smoothed) differential equations can be incorporated into the constraints for
using general purpose optimization software.

4.1 One-sided Lipschitz condition for the smoothed system

Lemma 1 is useful for showing that the smoothed right-hand side fσ in (17) also satis-
fies a one-sided Lipschitz condition, although the Lipschitz constant might not be the
same as for (9). To show this, we do need to assume that f1 and f2 satisfy an ordinary
(“two-sided”) Lipschitz condition with constant L f and that ∇ψ is also Lipschitz with
constant L∇ψ . As usual, L is the one-sided Lipschitz constant for (9). That means that
both f1 and f2 satisfy the one-sided Lipschitz condition (4) with constant L . Since
Σ = { x | ψ(x) = 0 } is a C1 manifold, there is a map π(x) := the nearest point inΣ
to x , well-defined and continuous in a neighborhood of Σ . We can choose a σ0 > 0
so that if 0 < σ < σ0, this map is well defined on the transition region.

We will show that for anyw ∈ R
n ,wT ∇ fσ (x)w ≤ L‖w‖2. Note thatwT ∇ f1(x)w,

wT ∇ f2(x)w ≤ L‖w‖2 for all w. Outside the transition region we have ∇ fσ (x) =
∇ f1(x) or ∇ fσ (x) = ∇ f2(x), and the desired property of ∇ fσ follows immediately.
Inside the transition region, we have

∇ fσ = (1 − ϕσ )∇ f1 + ϕσ∇ f2 + ( f2 − f1)ϕ
′
σ (ψ)∇ψ.

Thus

wT ∇ fσ (x)w = (1 − ϕσ (ψ(x))w
T ∇ f1(x)w + ϕσ (ψ(x))w

T ∇ f2(x)w

+ϕ′
σ (ψ(x))w

T ( f2(x)− f1(x))∇ψ(x)w
≤ L‖w‖2 + ϕ′

σ (ψ(x))w
T ( f2(π(x))− f1(π(x)))∇ψ(π(x))w

+O(1/σ) O(‖π(x)− x‖) ‖w‖2.
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Now from Lemma 1, ( f2(π(x)) − f1(π(x)))∇ψ(π(x)) is a negative semi-definite
matrix, so wT ( f2(π(x))− f1(π(x)))∇ψ(π(x))w ≤ 0. Also, the transition region is
only O(σ ) wide, so ‖π(x) − x‖ = O(σ ). Thus, using Lemma 1, and the fact that
ϕ′
σ (·) ≥ 0, we obtain that

wT ∇ fσ (x)w ≤ O(1) ‖w‖2.

Thus fσ satisfies a one-sided Lipschitz condition, although its one-sided Lipschitz
constant may be considerably larger than for f .

5 Convergence of the gradients for the case ∇ψ(x) f1(x) > 0 and
∇ψ(x) f2(x) > 0

We now analyze the asymptotic properties, as σ → 0 for the case where ∇ψ(x)
f1(x) > 0 and ∇ψ(x) f2(x) > 0, that is, the case where the trajectory switches from
ψ(x) < 0 to ψ(x) > 0.

5.1 The variational equation of the smoothed differential equation

The variational equation for the smoothed system can be easily written down:

dsσ
dt

= {(1 − ϕσ )∇ f1 + ϕσ∇ f2 + ( f2 − f1)ϕ
′
σ (ψ)∇ψ

}
sσ . (19)

For smooth f1, f2, the first two terms ϕσ ∇ f2 and (1 − ϕσ )∇ f1 in the braces of
Eq. (19) are bounded, but the last term ( f1 − f2)ϕ

′
σ (ψ)∇ψ might not be bounded.

Thus the limiting equation as σ ↓ 0 for ψ(x(t)) �= 0 becomes

ds

dt
=
{∇ f1, ψ(x) < 0

∇ f2, ψ(x) > 0

}

s, (20)

which is uniform on compact sets bounded away from the discontinuity Σ = { x |
ψ(x) = 0 }. However, this ignores what happens near ψ(x(t∗)) = 0. From (16) we
have determined what happens for the original system (9); but to complete a proof of
convergence of sσ to s, we must also prove that the jumps match.

Suppose that the limiting solution (which is unique by the one-sided Lipschitz
assumption) reaches the surface ψ(x(t)) = 0 at time t = t∗. By our assumptions that
ψ(x) = 0 implies ∇ψ(x) · f1(x) > 0 and ∇ψ(x) · f2(x) > 0, there can be only
one time t = t∗ where ψ(x(t)) = 0. Put x∗ = x(t∗), f ∗

1 = f1(x∗), f ∗
2 = f2(x∗),

∇ψ∗ = ∇ψ(x∗). Note that if t ≈ t∗ and σ ≈ 0, then xσ (t) ≈ x∗.
Of particular interest to us is the fact that the term ( f1− f2)ϕ

′
σ (ψ)∇ψ is unbounded.

Although we expect that ϕ′
σ (ψ) �= 0 only for a time interval of length O(σ ), ϕ′

σ (ψ)

has a magnitude of O(1/σ). In the limit as σ ↓ 0, this could correspond to a
Dirac-δ function. This can be interpreted in the sense of [25]. Since the matrix
( f2(xσ (t)) − f1(xσ (t)))∇ψ(xσ (t))) → ( f ∗

2 − f ∗
1 )∇ψ∗ as σ ↓ 0 in the relevant
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time interval(s) (ϕ′
σ (xσ (t)) �= 0), in the limit the effect of this term is to include a

factor of the form

exp
(
α ( f ∗

2 − f ∗
1 )∇ψ∗), (21)

where α is the limit of
∫
ϕ′
σ (ψ(xσ (t))) dt . We will show that this limit exists and will

give a simple formula for it and the matrix exponential (21).
Now for −σ ≤ ψ(xσ (t)) ≤ +σ we have ‖xσ (t) − x∗‖ = O(σ ). Then we can

write

d

dt
ψ(xσ (t)) = ∇ψ(xσ (t)) · ẋσ (t)

= ϕσ (ψ(xσ (t)))∇ψ(xσ (t)) · f2(xσ (t))

+(1 − ϕσ (ψ(xσ (t))))∇ψ(xσ (t)) · f1(xσ (t))

= ϕσ (ψ(xσ (t)))∇ψ∗ · f ∗
2 + (1 − ϕσ (ψ(xσ (t)))∇ψ∗ · f ∗

1 + O(σ ).

Put γi = ∇ψ∗ · f ∗
i , i = 1, 2. Then we can write

dψ

dt
= ϕσ (xσ (t))γ2 + (1 − ϕσ (xσ (t)))γ1 + O(σ ).

For sufficiently small σ > 0, we have dψ/dt > 0, so we can use a change of variables.
Returning to the value of α in (21), we consider the integrals

+∞∫

−∞
ϕ′
σ (ψ(xσ (t))) dt =

+σ∫

−σ

ϕ′
σ (ψ)

γ1 + ϕσ (ψ)(γ2 − γ1)+ O(σ )
dψ

= 1

γ2 − γ1

γ2∫

γ1

dw

w
+ O(σ ) (using w = γ1 + ϕσ (ψ)(γ2 − γ1) )

= ln(γ2/γ1)

γ2 − γ1
+ O(σ ).

Thus we obtain the value for the limit of α = ln(γ2/γ1)/(γ2 − γ1). To compute the
matrix exponential (21), we resort to the series definition of the matrix exponential.
To simplify notation, put u = f ∗

2 − f ∗
1 and vT = ∇ψ∗. Then

exp(αuvT ) = I +
∞∑

k=1

1

k!α
k(uvT )k = I +

∞∑

k=1

1

k!α
k(vT u)k−1uvT

= I + 1

vT u

∞∑

k=1

1

k! (α v
T u)k uvT = I + uvT

vT u

[
eα v

T u − 1
]
.
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Substituting for u and v, we see that the limiting matrix exponential is

exp(α( f ∗
2 − f ∗

1 )∇ψ∗)

= I + ( f ∗
2 − f ∗

1 )∇ψ∗

γ2 − γ1

[
exp((γ2 − γ1) ln(γ2/γ1)/(γ2 − γ1))− 1

]

= I + ( f ∗
2 − f ∗

1 )∇ψ∗

γ2 − γ1

[
γ2

γ1
− 1

]

= I + ( f ∗
2 − f ∗

1 )∇ψ∗

γ2 − γ1

γ2 − γ1

γ1

= I + ( f ∗
2 − f ∗

1 )∇ψ∗

γ1
.

Thus taking σ ↓ 0 we obtain the limiting result:

s(t∗+) =
[

I + ( f ∗
2 − f ∗

1 )∇ψ∗

γ1

]

s(t∗−). (22)

We have thus proved the following result.

Theorem 1 For the case where ψ(x) = 0 implies that ∇ψ(x) f1(x) > 0, and ∇ψ(x)
f2(x)>0, the sensitivity of the solution of the smoothed problem, sσ , approaches the
sensitivity of the solution of the original problem, s, as σ → 0.

Proof Follows by comparing the right-hand side of the last displayed equality with
(16), as well as our conclusion that the right-hand side of (19) converges to (20) away
from the switching time t∗. ��

5.2 Lagrange multipliers and the jump rule

There is another way to obtain this result via the adjoint equation from the Pontryagin
conditions. Since this is a problem without control functions, we consider the problem
of minimizing some objective function g(x(T )) by varying the initial value x0. Again
we consider using a smoothed right-hand side fσ (17).

From the conventional Pontryagin conditions [5,19,27] we have the adjoint equa-
tions

dλσ
dt

= −∇ fσ (xσ (t))
T λσ , λσ (T ) = ∇g(xσ (T )). (23)

As above, we note that

∇ fσ (x) = ϕ′(ψ(x)/σ )
σ

[ f2(x)− f1(x)]∇ψ(x)
+{ϕ(ψ(x)/σ )∇ f1(x)+ (1 − ϕ(ψ(x)/σ ))∇ f2(x)}

and that the terms enclosed in {· · · } are bounded as σ ↓ 0. Integrating (23) backwards
in time and using the matrix exponential, we get the approximation around t = t∗,
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where ψ(x(t∗)) = 0:

λσ (t
∗ − ε) =

[

I + eα(γ2−γ1) − 1

γ2 − γ1
( f ∗

2 − f ∗
1 )∇ψ∗

]

λσ (t
∗ + ε)+ O(ε), (24)

where σ = o(ε) as ε ↓ 0, and α is some nonnegative quantity. Setting β := (eα(γ2−γ1)

− 1)/(γ2 − γ1), we get

λσ (t
∗ − ε) = [I + β( f ∗

2 − f ∗
1 )∇ψ∗] λσ (t∗ + ε)+ O(ε). (25)

The only quantity that is not determined by this approach is β. But it can be com-
puted from the property that the Hamiltonian Hσ (xσ (t), λσ (t)) := λσ (t)T fσ (xσ (t))
is a constant function of t . Applying this property at times t∗ ± ε we find that

β = 1

∇ψ∗ f ∗
1

+ O(ε). (26)

Taking ε ↓ 0 and σ = o(ε) gives a simple “jump rule” for the adjoint variables:

λ(t∗−) =
[

I + ( f ∗
2 − f ∗

1 )∇ψ∗

∇ψ∗ f ∗
1

]

λ(t∗+). (27)

That the adjoint functions have discontinuities in problems with discontinuous
right-hand sides was noted by, for example, Driessen and Sadegh [10] and Kim and
Ha [23].

5.3 Convergence results

We now prove the main convergence result for this case.

Theorem 2 Assume that ∇ψ(x) f1(x) > 0, ∇ψ(x) f2(x) > 0, whenever ψ(x) = 0.
Assume that we integrate the smoothed model equation (17) and the corresponding
sensitivity equation (19) for ∇x0 x(t; x0) using Euler’s method (χ = 0) with a time
step h = o(σ ). Then, the numerical sensitivities and the numerical adjoints converge
to the sensitivities of the original problem as σ → 0.

The assumption that h = o(σ ) is more restrictive than necessary away from the
transition region, where larger values for h could be used. In this case, where the
trajectory crosses the discontinuity without remaining on it, an adaptive ODE solver
could be successfully used. However, if the trajectory is “trapped” in the transition
region (as discussed in Sect. 6), this will not give much benefit in terms of efficiency.

We separate the proof in the following parts:

1. In Sect. 5.3.1 we prove that the sequence of state variables produced by Euler’s
method applied to the smoothed equation converge to the one of the model prob-
lem (9).
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2. In Sect. 5.3.2 we prove that the sequence of adjoint variables is convergent. Proof
of convergence of the sensitivities can be shown by essentially the same arguments
as are used for the adjoint equations.

5.3.1 Errors in the computed trajectory

We first note that solutions to the smoothed ODE dxσ /dt = fσ (xσ ) (17) converge to
solution of the differential inclusion (9) as σ → 0, since the graph of fσ approaches
the graph of the right-hand side of (9) [2]. We therefore concentrate on the errors
involved in the numerical solution of (17).

Consider using the explicit Euler method for the numerical solution of dxσ /dt =
fσ (xσ ). Let tk = t0 + k h, where h > 0 is the step size:

xk+1
σ = xk

σ + h fσ (x
k
σ ),

xσ (tk+1) = xσ (tk)+ h fσ (xσ (tk))+ ξk,

where ‖ξk‖ ≤ 1
2 h2 maxtk≤t≤tk+1 ‖ẍσ (t)‖ by Taylor’s theorem to second order. We

suppose that h L < 1. Subtracting the equations for xk+1
σ and xσ (tk+1) gives

xσ (tk+1)− xk+1
σ = (xσ (tk)− xk

σ )+ h [ fσ (xσ (tk))− fσ (x
k
σ )] + 1

2
h2ξk . (28)

For all k, put eσ,k = xσ (tk)− xk
σ . Then

eσ,k+1 = eσ,k + h [ fσ (x
k
σ + eσ,k)− fσ (x

k
σ )] + 1

2
h2ξk . (29)

Lemma 2 Under our standing assumptions, the map z �→ z + h[ fσ (x + z)− fσ (x)]
is Lipschitz with constant 1 + hL + Ch2/σ 2 for some constant C independent of h
and σ .

Proof Let Φh,σ,x (z) = z + h[ fσ (x + z)− fσ (x)]. Then for any z1, z2,

∥
∥Φh,σ,x (z1)−Φh,σ,x (z2)

∥
∥2

= ‖z1 − z2 + h[ fσ (x + z1)− fσ (x + z2)]‖2

= ‖z1 − z2‖2 + 2h(z1 − z2)
T [ fσ (x + z1)− fσ (x + z2)]

+h2 ‖ fσ (x + z1)− fσ (x + z2)‖2

≤ ‖z1 − z2‖2 + 2hL‖z1 − z2‖2 + h2 ‖ fσ (x + z1)− fσ (x + z2)‖2 (using (4))

≤ (1 + 2hL + Ch2/σ 2)‖z1 − z2‖2,

since fσ is Lipschitz with constant C1/2/σ for some C independent of h or σ . There-
fore,

∥
∥Φh,σ,x (z1)−Φh,σ,x (z2)

∥
∥ ≤ (1 + 2hL + Ch2/σ 2)1/2‖z1 − z2‖.
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Note that for w ≥ 0, (1 + w)1/2 ≤ 1 + 1
2w, so

∥
∥Φh,σ,x (z1)−Φh,σ,x (z2)

∥
∥ ≤ (1 + hL + Ch2/(2σ 2))‖z1 − z2‖,

as desired. ��
Using Lemma 2, we see that

‖ek+1‖ ≤ (1 + hL + Ch2/σ 2)‖ek‖ + 1

2
h2‖ξk‖. (30)

We can also bound ẍσ (t) because

ẍσ (t) = d

dt
fσ (xσ (t))

= ∇ fσ (xσ (t)) fσ (xσ (t)),

which immediately gives the bounds

‖ẍσ (t)‖ ≤ ‖∇ fσ (xσ (t))‖ ‖ fσ (xσ (t))‖. (31)

Using local boundedness of f , we can bound fσ independently of σ over compact
sets. Thus ‖ẍσ (t)‖ = O(∇ fσ (xσ (t))) = O(1/σ).

Thus if h = o(σ 2), we can combine these bounds to show that for L ′ > L and
sufficiently small h > 0

‖ek+1‖ ≤ eL ′h‖ek‖ + C
h2

σ
. (32)

Using a discrete Gronwall lemma and e0 = 0, we can see that

‖ek‖ ≤ eL ′kh − 1

L ′h
C

h2

σ
= (eL ′(tk−t0) − 1)O(h/σ). (33)

This bound does not depend on how long the trajectory stays in the transition region,
and will be used for the case where the trajectory stays in the discontinuity.

Bound (33) can be considerably improved if we know that ∇ψ∗ f ∗
1 , ∇ψ∗ f ∗

2 > 0,
as then the time to cross the transition region is O(σ ). Outside the transition region,
the error is O(h), as is well known [1]. It will take O(σ/h) time steps to cross the tran-
sition region under the assumptions that ∇ψ∗ f ∗

1 , ∇ψ∗ f ∗
2 > 0. Suppose we choose

k∗ = k∗(σ, h) so that xσ (tk∗) is outside the transition region, but xσ (tk∗+1) is inside
the transition region, and after K = K (σ, h) = O(σ/h) steps we find that xσ (tk∗+K )

is outside the transition region, and the discrete time trajectory remains outside the
transition region for a positive time period (a period whose length does not go to zero
as h → 0).
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For now we assume only that h = o(σ ). Then from (30) and (31) we find that

‖ek∗+K ‖ ≤ exp((hL + Ch2/σ 2)K (σ, h))

[

‖ek∗‖ + C
h2

σ
K (σ, h)

]

≤ exp(C ′(Lσ + Ch/σ))
[‖ek∗‖ + C C ′ h

] = O(h),

where K ≤ C ′σ/h, for h, σ small enough. Once outside the transition region, standard
bounds apply for k ≥ k∗ + K . Thus ek → 0 as h, σ → 0 with h = o(σ ).

5.3.2 Errors in the adjoints

Recall that for the Euler method

xk+1
σ = xk

σ + h fσ (x
k
σ ).

Thus a small variation δxk
σ in xk

σ results in a variation

δxk+1
σ = [I + h ∇ fσ (x

k
σ )] δxk

σ + o(‖δxk
σ ‖) (34)

in xk+1
σ . The discrete sensitivity equations are thus

sk+1
σ = [I + h ∇ fσ (x

k
σ )] sk

σ ,

with given s0
σ = s0.

Alternatively, we can consider the discrete adjoint variables. Suppose we have a
function g : R

n → R and we wish to determine the gradient of the g(x N ), where
t f = t0 + Nh with respect to a change in the initial values x0, where x N is com-
puted via Euler’s method. Let Γi (xi ) = g(x N ) where xk+1 = xk + h fσ (xk) for
k = i, i + 1, . . . , N − 1. Set λi = ∇Γi (xi )T . If Jk = I + h ∇ fσ (xk), for all k, then
Jk = ∇xk (xk+1), so

λi = ∇Γi (x
i )T = (∇Γi+1(x

i+1) Ji )
T

= [I + h ∇ fσ (x
i )]T λi+1,

and λN = ∇g(x N )T , which are the discrete adjoint equations.
We can investigate the accuracy of either the direct sensitivity equations, or the

discrete adjoint equations, to determine the accuracy of the computed gradients.
The adjoint equations for the differential equations are

dλσ
dt

= −∇ fσ (xσ (t))
T λσ , λσ (T ) = ∇g(xσ (T ))

T .

Thus

λσ (tk) = [I + h ∇ fσ (xσ (tk))
T ]λσ (tk+1)+ ηk, (35)

λk
σ = [I + h ∇ fσ (x

k
σ )

T ]λk+1
σ , (36)
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where ‖ηk‖ ≤ 1
2 h2 maxtk≤t≤tk+1 ‖λ̈σ (t)‖. We can bound λ̈σ (t) by differentiating the

adjoint equation:

λ̈σ (t) = − d

dt
(∇ fσ (xσ (t))

Tλσ (t))

= −∇x (∇ fσ (x)
T λσ (t))|x=xσ (t)

dxσ
dt
(t)− ∇ fσ (xσ (t))

T dλσ
dt

(t)

= −∇x (∇ fσ (x)
T λσ (t))|x=xσ (t)

dxσ
dt
(t)+ [∇ fσ (xσ (t))

2]T λσ (t).

Now dxσ /dt is bounded on finite intervals independently of σ as fσ is bounded with
a one-sided Lipschitz condition. Also λσ is bounded independently of σ . Noting that
∇ fσ (x) = O(1/σ) and ∇∇ fσ (x) = O(1/σ 2), we see that λ̈σ (t) = O(1/σ 2) in the
transition region. Outside the transition region, λ̈σ (t) = O(1). Note that for t in a
fixed finite interval, the constants implicit in the “O” expressions can be independent
of t .

Thus ηk is O(h2/σ 2) with a constant independent of h, σ , and k, where xσ (t) is in
the transition region for some tk ≤ t ≤ tk+1. Otherwise ηk = O(h2) with a constant
independent of h, σ , and k.

To obtain bounds on the errors in the adjoints, we first subtract (36) from (35). This
gives

λσ (tk)− λk
σ = [I + h fσ (xσ (tk))]T [λσ (tk+1)− λk+1

σ ]
+h[∇ fσ (xσ (tk))− ∇ fσ (x

k
σ )]λk+1

σ + ηk .

Now ‖∇ fσ (xσ (tk)) − ∇ fσ (xk
σ )‖ ≤ (C/σ 2)‖xσ (tk) − xk

σ ‖ as ∇ fσ is Lipschitz on
bounded sets with a Lipschitz constant of O(1/σ 2). Assuming that ∇ψ∗ f ∗

1 ,∇ψ∗
f ∗
2 > 0, so that we have ‖xσ (tk) − xk

σ ‖ = O(h). Furthermore, ‖h[∇ fσ (xσ (tk)) −
∇ fσ (xk

σ )]λk+1
σ + ηk‖ = O(h2/σ 2) if xσ (t) is in the transition region for some

tk ≤ t ≤ tk+1 or xk
σ is in the transition region. Otherwise the more usual bounds

‖h[∇ fσ (xσ (tk)) − ∇ fσ (xk
σ )]λk+1

σ + ηk‖ = O(h2) hold. Again, assuming that the
trajectories xσ (t) or xk

σ are in the transition region for only O(σ/h) many steps, we
can apply a Gronwall lemma to obtain a bound

‖λσ (tk)− λk
σ‖ = O(h2/σ 2) O(σ/h)+ O(h2) O(1/h) = O(h/σ) (37)

with the implicit constants independent of k, h, andσ . Thus if h = o(σ ), and h, σ → 0,
the adjoint variables converge to the gradients of g(x(t f )) with respect to the initial
conditions for the discontinuous limit.

6 Convergence of gradients for time discretizations of the case where
∇ψ(x) f1(x) > 0 and ∇ψ(x) f2(x) < 0

In the case treated here, the solution of the smoothed equation (17) will stay in the
transition region for ω(σ) time. In this case there is also a jump in the limit of the
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674 D. E. Stewart, M. Anitescu

(smoothed) adjoint variables, as well as a “jump formula” for the limiting adjoint equa-
tions. Furthermore, the adjoint variables obtained in the limit are the correct adjoints
for the discontinuous system.

Within the transition region, the adjoint variables change most rapidly in directions
near to ∇ψ∗. By Lemma 1, f ∗

2 − f ∗
1 = −ρ∗∇ψ∗ for some ρ∗ ≥ 0.

If the trajectory stays on the discontinuity for any open interval, then while the
trajectory is on the interval, an equivalent right-hand side can be used for the motion
on the discontinuity [29].

6.1 The convergence result

In this section, we prove the following result concerning the convergence of the sen-
sitivity of the Eq. (17) to the one of (9).

Theorem 3 Assume that ∇ψ(x) f1(x) > 0, ∇ψ(x) f2(x) < 0, whenever ψ(x) = 0.
Assume that we integrate the smoothed model equation (17) and the corresponding
sensitivity equation (19) for ∂x/∂x0 using Euler’s method (χ = 0) with a time step
h = o(σ 2). Then, the numerical sensitivities and the numerical adjoints converge to
the sensitivities of the original problem as σ → 0.

Note that we will need to take h = o(σ 2) in order to resolve the trajectory as it
passes through the transition region so that the gradient information will be accurate.
It will turn out that this is sufficient for the Euler method to compute approximate
gradients that converge to the true gradient as computed in the previous section.

Our initial investigations suggest that the result is true even for the case where
h = o(σ ). Nonetheless, this would require additional complexity to an already very
technical proof so we will use the stronger assumption. However, wherever possible
in the course of the proof, we will invoke only the weaker assumption h = o(σ ).

The proof of this result is split into a number of items that are discussed in the
following subsections. We note that the proof of the convergence of the state vectors
is identical to the one for the preceding case, from Sect. 5.3.1. In addition, we will use
results from Sects. 3 and 4 that apply to this case.

6.1.1 Asymptotic behavior of ϕσ (ψ(xσ (t)))

Consider the differential equation

d

dt
ϕσ (ψ(xσ )))

= ϕ′
σ (ψ(xσ ))∇ψ(xσ )[(1 − ϕσ (ψ(xσ ))) f1(xσ )+ ϕσ (ψ(xσ )) f2(xσ )]

= ϕ′
σ (ψ(xσ ))[(1 − ϕσ (ψ(xσ )))γ1(xσ (t))+ ϕσ (ψ(xσ ))γ2(xσ )],

where γi (x) = ∇ψ(x)T fi (x), i = 1, 2.
We consider this differential equation for a time interval [t∗σ,−, t∗σ,− + ε] where t∗σ,−

is the first time when we reach the transition zone. Let t∗ be the time when the limit
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Optimal control of systems with discontinuous differential equations 675

x(·) of xσ (·) reaches Σ , and x∗ = x(t∗). Let γ ∗
i = γi (x∗). In an interval of this size,

γi (xσ (t)) = γ ∗
i + O(ε+ σ). We will consider ε = ω(σ), so γi (xσ (t)) = γ ∗

i + O(ε).
Setting w(t) = γ ∗

1 − (γ ∗
1 − γ ∗

2 )ϕσ (ψ(xσ (t))), we see that

dw

dt
= −µ(t)[w(t)+ g(t)], (38)

whereµ(t) = (γ ∗
1 −γ ∗

2 )ϕ
′
σ (ψ(xσ (t))) and g(t) = O(ε/σ ). Note that in a time interval

of size O(σ ) the trajectory will reach a point where ϕσ (ψ(xσ (t))) is halfway between
zero and γ ∗

1 /(γ
∗
1 −γ ∗

2 ). Call this time t∗σ,−1/2. We can bound ϕ′(ψ(xσ (t))) away from
zero, at least for a time interval of length bounded away from zero.

On our time interval of length ε, then,µ(t) = Θ(1/σ) and γi (xσ (t)) = γ ∗
i + O(ε).

We can solve the differential equation for w starting from t∗σ,−1/2:

w(t∗σ,−1/2 + t) = exp

⎛

⎝−
t∫

0

µ(t∗σ,−1/2 + τ) dτ

⎞

⎠w(t∗σ,−1/2)

+
t∫

0

exp

⎛

⎝−
t∫

τ

µ(t∗σ,−1/2 + s) ds

⎞

⎠ g(t∗σ,−1/2 + τ) dτ.

Thus for 0 ≤ t ≤ ε we get

w(t∗σ,−1/2 + t) =
t∫

0

e−C(t−τ)/σ O(ε/σ ) dτ = O(e−Ct/σ )+ O(ε). (39)

So in a time ≥ const σ log(1/ε) the difference between ϕσ (ψ(xσ (t))) and γ ∗
1 /(γ

∗
1 −

γ ∗
2 ) is O(ε).

Set θ(x) = γ1(x)/(γ1(x)−γ2(x)). More careful analysis shows that for t large com-
pared with σ log(1/σ), the difference between ϕσ (ψ(xσ (t))) and θ(xσ (t)) is O(σ ).
To see this, construct the solution to the differential equation

d

dt
(w − g) = −µ(t)(w − g)− g′(t) (40)

as

w(t)−g(t)=exp

⎛

⎝−
t∫

0

µ(τ) dτ

⎞

⎠ (w(0)−g(0))−
t∫

0

exp

⎛

⎝−
t∫

τ

µ(s) ds

⎞

⎠ g′(τ ) dτ

and substitute w(t) = ϕσ (ψ(xσ (t∗σ,− + t))) and g(t) = θ(xσ (t∗σ,− + t)).
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6.1.2 Asymptotic behavior of ϕσ (ψ(xk
σ ))

Note that if h = O(εσ 2), then we can use the global error bound in (33). Since
x �→ ϕσ (ψ(x)) is Lipschitz with constant of O(1/σ), for tk ≥ t∗σ,− we have (γ1 −
γ2)ϕ

′
σ (ψ(x

k
σ )) = O(ε). In addition, we have that ϕσ (ψ(xk

σ )) → θ(x(t)) for t above
the switching point.

This can be improved to merely requiring h/σ = O(ε). However, a detailed rig-
orous demonstration would require improved error bounds that take into account the
exponential damping of order O (1/σ) in the direction perpendicular to the manifold
Σ = { x | ψ(x) = 0 }. Since this would result in a substantial additional complexity
to what is already very technical proof, we will not follow it in the context of this
paper.

6.1.3 Sensitivity equations in the transition region, and their discretization

If we apply Euler’s method (with h = o(σ )) to the sensitivity equations in the transition
region, we get

sk+1
σ = [I + h ∇ fσ (x

k
σ )]sk

σ

=
[

I + hϕ′
σ (ψ(x

k
σ ))( f2(x

k
σ ))− f1(x

k
σ ))∇ψ(xk

σ )

+h (1 − ϕk
σ )∇ f1(x

k
σ )+ hϕk

σ∇ f2(x
k
σ )
]

sk
σ ,

whereϕk
σ = ϕ(sk

σ ). Note that away from the boundaries of the transition zone,ϕ′
σ (x) =

Θ(1/σ). Let uk
σ = f1(xk

σ )− f2(xk
σ ), v

k
σ = ∇ψ(xk

σ )
T , and Fk

σ = (1 − ϕk
σ )∇ f1(xk

σ )+
ϕk
σ∇ f2(xk

σ ). Then we can write the discrete sensitivity equation as

sk+1
σ = [I − hϕ′

σ (ψ(x
k
σ ))u

k
σ (v

k
σ )

T + hFk
σ ]sk

σ . (41)

If xk
σ was on Σ = { x | ψ(x) = 0 }, then since f satisfies a one-sided Lipschitz

condition, uk
σ ‖ vk

σ and (vk
σ )

T uk
σ ≥ 0. However, while in the transition zone, the dis-

tance of xk
σ fromΣ is O(σ ). Thus the angle between uk

σ and vk
σ is O(σ ) by Lipschitz

continuity of f1, f2 and ∇ψ , and the assumption that f2 − f1 �= 0 and ∇ψ �= 0
anywhere on Σ .

Let αk
σ = ϕ′

σ (ψ(x
k
σ ))(v

k
σ )

T uk
σ .

For the remainder of this subsection we will drop the σ subscripts.
Then we can write

sk+1 =
[

I − hαk
uk(vk)T

(vk)T uk
+ hFk

]

sk . (42)
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Note that αk = Θ(1/σ) and Fk = O(1). Since the angle between uk and vk is O(σ )
and αk = O(1/σ),

αk
uk(vk)T

(vk)T uk
= αk

uk(uk)T

(uk)T uk
+ O(1). (43)

Thus

sk+1 =
[

I − hαk
uk(uk)T

(uk)T uk
+ h F̂k

]

sk, (44)

where F̂k = O(1).
Let û k = uk/‖uk‖2. Choose a family of orthogonal matrices Qk where Qkû k =

û k+1. Since ‖uk+1 − uk‖ = O(h), and ‖uk‖ is bounded away from zero, we can
choose Qk so that ‖Qk − I‖2 = O(h). Put Rk = Qk−1 Qk−2 · · · Q1 Q0, with Q j = I

if x j
σ is not in the transition zone. With this in mind, the discrete sensitivity equations

can be rewritten as

sk+1 =
[

I − hαk Rkû 0(̂u 0)T R T
k + h F̂k

]
sk,

= Rk[I − hαk û 0(̂u 0)T + h RT
k F̂ k Rk]RT

k sk .

For large k, we can write

sk =
⎡

⎣
k−1∏

j=0

(R j [I − hα j û
0(̂u 0)T + h RT

j F̂ j R j ]RT
j )

⎤

⎦ s0

= Rk

⎡

⎣
k−1∏

j=0

(RT
j+1 R j [I − hα j û

0(̂u 0)T + h RT
j F̂ j R j ])

⎤

⎦ RT
0 s0

= Rk

⎡

⎣
k−1∏

j=0

(Q j [I − hα j û
0(̂u 0)T + h RT

j F̂ j R j ])
⎤

⎦ RT
0 s0, (45)

where
∏k−1

j=0 A j = Ak−1 Ak−2 · · · A1 A0. Noting that Q j = I + O(h), we can absorb
the difference Q j − I in the product into the O(1) term of the above product. This
gives

sk = Rk

⎡

⎣
k−1∏

j=0

(I − hα j û
0(̂u 0)T + hG j )

⎤

⎦ RT
0 s0 (46)

with G j = O(1). Provided 0 ≤ hα j ≤ 1 for all j , one can easily show that this product
is uniformly bounded as h ↓ 0 with kh bounded.
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We want to go further and show that this converges to a matrix of the form R(I −
û 0(̂u 0)T )G(I − û 0(̂u 0)T ) with R orthogonal.

In addition to supposing that h = o(σ ), we choose p, an integer (depending on σ ),
so that σ = o(ph), and ph → ε as σ ↓ 0.

6.1.4 Lower bounds for ϕσ (ψ(xσ (t)))

In the following, we make certain assumptions about the properties of the function
ρ(r) that defines the smoothing function ϕσ (s). Recall that we defined

ϕσ (s) =
s∫

−∞
ρ
( r

σ

)dr

σ
=

x/σ∫

−∞
ρ
(
r ′)dr ′ =

s/σ∫

−1

ρ
(
r ′)dr ′.

Namely, we assume that there exists a positive parameter c such that

s∫

−1

ρ(r ′)dr ′ ≤ cρ(s), s ∈ [−1, 0];

1∫

s

ρ(r ′)dr ′ ≤ cρ(s), s ∈ [0, 1].

An immediate consequence of this assumption is that

min(ϕσ (s), (1 − ϕσ (s)) ≤ cρ
( s

σ

)
= cρσ

( s

σ

)
, s ∈ [−σ, σ ].

Since we aimed to prove certain properties of the solution while in the transition region
and while the solution follows the discontinuity manifold, it is important to define the
transition region for the situation where σ �= 0. In our case, we simply define it as the
point xσ (t) that satisfies ρσ (ψ(xσ (t))) ≥ k1, where k1 > 0 is sufficiently small. In

addition, since we have shown that ϕσ (ψ(xσ (t)))
σ→0−→ ρ(x(t)) (θ(x) given in (12)),

and since our assumption that ∇ψ(x)T f1(x) > 0 and ∇ψ(x)T f2(x) < 0 implies that
θ(x(t)) must be bounded away from 1, it follows that in the transition region and in
the region that follows the discontinuity manifold, we have the following inequality:

k1 ≤ ϕσ (ψ(xσ (t))) ≤ 1 − k2.

In turn, this implies that whenever xσ (t) is in the transition region or follows the
discontinuity, we will have that

min(k1, k2) ≤ min(ϕσ (ψ(xσ (t))), (1 − ϕσ (ψ(xσ (t)))) ≤ cρ

(
ψ(xσ (t))

σ

)

,
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Optimal control of systems with discontinuous differential equations 679

Therefore, in the same regime we have that

ϕ′
σ (ψ(xσ (t)) = 1

σ
ρ

(
ψ(xσ (t)

σ

)

≥ min(k1, k2)

cσ
. (47)

As a result, we have for Iσ = { t | |ψ(xσ (t))| ≤ σ },

h
∑

tk∈Iσ

ϕ′
σ (ψ(xσ (tk)) → ∞

as soon as m(Iσ ) ≥ σ p, p ∈ (0, 1).

6.1.5 Results on products of nearby projections

Consider the product with ‖ûi‖2 = 1 for all i and ûi+1 − ûi = O(h):

P :=
p∏

i=1

(I − hαi ûi û
T
i ).

Let Qi,i+1ûi = ûi+1 be an orthogonal matrix: Qi,i+1 = I +(̂ui+1−ûi )̂uT
i −ûi (̂ui+1−

ûi )
T + O(‖ûi+1 − ûi‖2) Then put Qr,s = Qr,r+1 Qr+1,r+2 · · · Qs−1,s for s > r . Note

that Qr,s ûr = ûs . Also QT
r,s ûs = ûr so we put QT

r,s = Qs,r . Then

P =
p∏

i=1

(I − hαi ûi û
T
i )

=
p∏

i=1

(I − hαi Q0,i û0ûT
0 QT

0,i )

=
p∏

i=1

(Q0,i (I − hαi û0ûT
0 )Q

T
0,i )

= Q0, j+1

[ p∏

i=1

(QT
0,i+1 Q0,i (I − hαi û0ûT

0 ))

]

QT
0,1.

Note that Q0,i+1 = Qi,i+1 Q0,i , so

QT
0,i+1 Q0,i = QT

0,i QT
i,i+1 Q0,i

= QT
0,i

[
I +ûi (̂ui+1 − ûi )

T −(̂ui+1−ûi )̂u
T
i + O(‖ûi+1 − ûi‖2)

]
Q0,i

= I + QT
0,i ûi (̂ui+1 − ûi )

T Q0,i − QT
0,i (̂ui+1 − ûi )̂u

T
i Q0,i

+O(‖ûi+1 − ûi‖2)

= I + û0zT
i − zi û

T
0 + O(‖ûi+1 − ûi‖2),
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where zi = ûi+1 − ûi . Note that zi = O(h), and so O(‖ûi+1 − ûi‖2) = O(h2). If
G̃i := QT

0,i+1 Q0,i − I = û0zT
i − zi ûT

0 + O(h2), then

P = Q0, j+1

[ p∏

i=1

((I + G̃i )(I − hαi û0ûT
0 ))

]

QT
0,1.

Expanding the factors with I + G̃i , we get

P = Q0, j+1

[ p∏

i=1

(I − hαi û0ûT
0 )

]

QT
0,1

+Q0, j+1

⎡

⎣
p∑

i=1

⎧
⎨

⎩

p∏

j=i+1

(I − hαi û0ûT
0 )

⎫
⎬

⎭
G̃i

⎧
⎨

⎩

i−1∏

j=1

(I − hαi û0ûT
0 )

⎫
⎬

⎭

⎤

⎦ QT
0,1

+O(h2 p2).

Assume that all αi = Θ(1/σ) with σ > 0 small (bounds independent of i) and
h = o(σ ). Then

s∏

j=r

(I − hαi û0ûT
0 ) = I −

⎡

⎣1 −
s∏

j=r

(1 − hα j )

⎤

⎦ û0ûT
0

= P0 + O

⎛

⎝
s∏

j=r

(1 − hα j )

⎞

⎠ , P0 = I − û0ûT
0 .

Thus

p∑

i=1

⎧
⎨

⎩

p∏

j=i+1

(I − hαi û0ûT
0 )

⎫
⎬

⎭
G̃i

⎧
⎨

⎩

i−1∏

j=1

(I − hαi û0ûT
0 )

⎫
⎬

⎭

=
p∑

i=1

P0G̃i P0 + O(h (σ/h) log(σ/h)).

But P0G̃i P0 = (I − û0ûT
0 )(̂u0zT

i − zi ûT
0 + O(h2))(I − û0ûT

0 ) = O(h2), so

p∑

i=1

⎧
⎨

⎩

p∏

j=i+1

(I − hαi û0ûT
0 )

⎫
⎬

⎭
G̃i

⎧
⎨

⎩

i−1∏

j=1

(I − hαi û0ûT
0 )

⎫
⎬

⎭
= O(σ log(σ )+ ph2).

Thus P = Q0, j+1 P0 QT
0,1+O(σ+ ph2+ p2h2). In fact, noting that Q0,1 = I +O(h),

we get

P = Q0, j+1(I − û0ûT
0 )+ O(σ + ph2 + p2h2).
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Taking ph → ε, we get

P = I − û0ûT
0 + O(ε). (48)

6.1.6 Jump conditions for the sensitivity

We wish to use the above result to show that if Gi = O(1) for all i , then

p∏

i=1

(I − hαi ûi û
T
i + hGi ) = I − û0ûT

0 + O(ε) (49)

provided ph = O(ε).
Now

p∏

i=1

(I − hαi ûi û
T
i + hGi ) =

p∏

i=1

(I − hαi ûi û
T
i )

+h
p∑

i=1

⎧
⎨

⎩

p∏

j=i+1

(I − hαi ûi û
T
i )

⎫
⎬

⎭
Gi

⎧
⎨

⎩

i−1∏

j=1

(I − hαi ûi û
T
i )

⎫
⎬

⎭

= I − û0ûT
0 + O(ε)+ h

p∑

i=1

(I − û0ûT
0 + O(ε))Gi (I − û0ûT

0 + O(ε))

(from (48))

= I − û0ûT
0 + O(ε).

Taking limits as h, σ → 0 with h = o(σ 2) gives s(t∗ + ε) = (I − û0ûT
0 )s(t

∗ − ε)+
O(ε). That is, s(t∗+) = (I − û0ûT

0 )s(t
∗−), which is the required jump rule for the

sensitivities (14).

6.1.7 Convergence to the differential equation for the sensitivity on the discontinuity

We assume that x(t∗) (the exact solution) lies on Σ . Then s(t∗+) ⊥ ∇ψ(x(t∗)) in
Sect. 6.1.6.

We consider a time interval [t∗, t∗ + ε] with 0 < ε � 1 and take ph → ε,
h = o(σ ), σ = O(ε2). Then the limit of the computed sensitivities can be computed
from

sk∗+p =
p∏

i=1

(

I − hαi
ui (vi )T

(vi )T ui
+ h Fi

)

sk∗
,

where Fi = (1−ϕσ (ψ(xk∗+i ))∇ f1(xk∗+i )+ϕσ (ψ(xk∗+i ))∇ f2(xk∗+i ), and so forth.
Note that ϕσ (ψ(xk∗+i )) − θ(xk∗+i ) = O(σ ) with a constant independent of i , 1 ≤
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i ≤ p. From the above computations,

sk∗+p = Q0,p(I − û 0(̂u 0)T ) sk∗

+h
p∑

i=1

⎧
⎨

⎩

p∏

j=i+1

(I −hα j+k∗ û j (̂u j )T )

⎫
⎬

⎭
Fi

⎧
⎨

⎩

i∏

j=1

(I − hα j+k∗ û j (̂u j )T )

⎫
⎬

⎭
sk∗

+O(h2 p2 + σ).

Note that Q0,p(I − û 0(̂u 0)T ) = (I − û p (̂u p)T )Q0,p. Since the hidden constants in
the “O” are independent of h, p or σ (provided hp bounded), and the Fi are bounded,
it follows that the component of sk∗+p orthogonal to û p is Lipschitz in hp with a
Lipschitz constant independent of h, p or σ provided hp is bounded. The component
in the direction of û p will be shown to go to zero, uniformly in σ , h and p.

Since Fi − [(1 − θ(xk∗+ i )∇ f1(xk∗+ i )+ θ(xk∗+ i )∇ f2(xk∗+ i )] = O(σ ), and the
trajectories converge, we can take the limit as h → 0, ph → ε. This gives the solution
of the smoothed problem. We can also (simultaneously) take σ → 0 with h = o(σ )
to get the limit of the computations with Euler’s method. Without taking the limit as
σ → 0, we get

sk∗+p = Q0,p(I − û 0(̂u 0)T ) sk∗

+h
p∑

i=1

Qi+1,p(I − û i+1(̂u i+1)T )Fi Q1,i−1(I − û 1(̂u 1)T ) sk∗

+O(h2 p2 + σ)

= Q0,p(I − û 0(̂u 0)T ) sk∗

+h
p∑

i=1

Qi+1,p(I − û i+1(̂u i+1)T )Fi (I − û i−1(̂u i−1)T )Q1,i−1 sk∗

+O(h2 p2 + σ).

Now

Q0,p − I =
p∏

i=1

(I + (̂u i+1 − û i )(̂u i )T − û i (̂u i+1 − û i )T )− I + O(ph2)

=
p∑

i=1

[
(̂u i+1 − û i )(̂u i )T − û i (̂u i+1 − û i )T

]
+ O(p2h2)

=
p∑

i=1

[
(̂u i+1 − û i )(̂u 0)T − û 0(̂u i+1 − û i )T

]
+ O(p2h2)

= (̂u p+1 − û 0)(̂u 0)T − û 0(̂u p+1 − û 0)T + O(p2h2).
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Assuming (sk∗)T ∇ψ(x(t∗)) = O(σ ), we get

sk∗+p − sk∗

ph
= [(̂u p+1 − û 0)(̂u 0)T − û 0(̂u p+1 − û 0)T ]sk∗

/(ph)

+ 1

p

p∑

i=1

Qi+1,p(I − û i+1(̂u i+1)T )Fi (I − û i−1(̂u i−1)T )Q1,i−1 sk∗

+O(hp + σ/(hp))

= −û 0(̂u p+1 − û 0)T sk∗
/(ph)

+ 1

p

p∑

i=1

Qi+1,p(I − û i+1(̂u i+1)T )Fi (I − û i−1(̂u i−1)T )Q1,i−1 sk∗

+O(hp + σ/(hp)).

Now û p+1 = u p+1/‖u p+1‖ and u p+1 = f1(xk∗+p+1)− f2(xk∗+p+1). Since f1 and
f2 are C1 and f1 − f2 is nonzero onΣ , then x �→ ( f1(x)− f2(x))/‖ f1(x)− f2(x)‖
is a smooth map in a neighborhood of Σ . Thus (̂u p+1 − û 0)/(ph) → ∇[( f1 −
f2)/‖ f1− f2‖](x(t∗)) f ∗(x(t∗)) =: z as ph → 0. Since Fi = (1−θ(x))∇ f1(x(t∗))+
θ ∇ f2(x(t∗))+ O(ph) and Qi+1,p, Q1,i−1 = I + O(ph), it follows that if P(t) =
I − û(t )̂u(t)T , where û(t) = u(t)/‖u(t)‖ and u(t) = f1(x(t))− f2(x(t)),

sk∗+p − sk∗

ph
=
[
−û 0zT +P(t∗)

{
(1 − θ(x))∇ f1(x(t

∗))+θ ∇ f2(x(t
∗))
}

P(t∗)
]

sk∗

+O(hp + σ/(hp)).

Noting that σ = o(ε) and taking ph = ε → 0, we have

ds

dt
(t∗) =

[

− f1(x(t∗)− f2(x(t∗))
‖ f1(x(t∗)− f2(x(t∗))‖ z(t∗)T

]

s(t∗)

+[P(t∗) {(1 − θ(x(t∗)))∇ f1(x(t
∗))+θ(x(t∗))∇ f2(x(t

∗))
}

P(t∗)
]

s(t∗),

with z(t) = ∇[( f1 − f2)/‖ f1 − f2‖](x(t)) f ∗(x(t)). But s(t∗) ⊥ u(t∗), so

ds

dt
(t∗) =

[

− f1(x(t∗)− f2(x(t∗))
‖ f1(x(t∗)− f2(x(t∗))‖ z(t∗)T

]

s(t∗)

+ [P(t∗) {(1 − θ(x(t∗)))∇ f1(x(t
∗))+ θ(x(t∗))∇ f2(x(t

∗))
}]

s(t∗).

Note that ∇ f ∗(x) = (1 − θ(x))∇ f1(x)+ θ(x)∇ f2(x)+ ( f2(x)− f1(x))∇θ(x).
Since the equation on the discontinuity is

dx

dt
= f ∗(x),
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the associated variational equation

ds

dt
= ∇ f ∗(x(t)) s

must keep the tangent plane of the discontinuity invariant. Note that

P(t∗)ds

dt
(t∗) = P(t∗)

[
(1 − θ(x))∇ f1(x(t

∗))+ θ ∇ f2(x(t
∗))
]

s(t∗)

= P(t∗)∇ f ∗(x(t∗)) s(t∗).

In order to obtain the correct sensitivity in the limit, it suffices that the component of
ds/dt (t∗) in the direction of u(t∗) is correct. But, (̂u p+1)T sk∗+p = O(σ ), so in the
limit as h, σ → 0 with h = o(σ ), u(t) ⊥ s(t) for all t ≈ t∗. Thus the component of
ds/dt (t∗) in the direction of u(t) must also be correct, and so

ds

dt
(t∗) = ∇ f ∗(x(t∗)) s(t∗).

Since this is true for all t∗ in the interior of the set { τ | ψ(x(τ )) = 0 }, and since s is
Lipschitz on this set (provided u(t)T s(t) for some t in any interval in { τ | ψ(x(τ )) =
0 }), the limit of the numerically computed sensitivities with h = o(σ ) satisfy the
correct sensitivity equation on the discontinuity:

ds

dt
= ∇ f ∗(x(t)) s.

6.1.8 The jump rule for λ

We have so far been able to obtain the jump rule for the sensitivities when the discon-
tinuity manifold is reached:

s(t∗+) =
(

I − u(t∗)u(t∗)T

u(t∗)T u(t∗)

)

s(t∗−). (50)

The corresponding jump rule for λ can be found from the following property of the
adjoints and sensitivities, which is true for any s(0):

d

dt
(sσ (t)

Tλσ (t)) = 0.

Thus sσ (t)Tλσ (t) is independent of t . Now s(t∗+) = P(t∗) s(t∗−)where P(t) = I −
u(t)u(t)T /(u(t)T u(t)). So taking σ → 0 we obtain s(t∗+)T λ(t∗+) = s(t∗−)T λ(t∗−).
Thus, s(t∗−)P(t∗)T λ(t∗+) = s(t∗−)T λ(t∗−). Since this is true for all values of s(t∗−),
we get the jump rule for λ:
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λ(t∗−) = P(t∗)T λ(t∗+) = P(t∗)λ(t∗+), (51)

since P(t∗) is symmetric.
Similarly, we find that the adjoint variables will satisfy the following adjoint equa-

tions on the manifold of discontinuity:

λ̇(t) = −
{ ∇ f1(x(t; x0))

T λ(t), t < ts

∇ f ∗(x(t; x0))
T λ(t), t > ts

, λ(T ) = ∇g(x(T )),

which satisfies the following jump rule at the discontinuity

λ(t−s ) =
[

I + ( f ∗ (x(ts; x0))− f1 (x(ts; x0)))∇ψ(x(ts; x0))
T

∇ψ(x(ts; x0))T f1 (x(ts; x0))

]

λ(t+s ).

6.2 Convergence of the controls

An issue that has been side-stepped in the above results, is whether the discrete control
functions uh(t) = uk for tk ≤ t < tk+1 as computed by some optimization technique
converge to the optimal control u∗(t) as h ↓ 0. In general, we do not expect that an
optimization method will be able to find the global minimizer for a finite-dimensional
optimization problem. However, we should expect that suitable first-order conditions
should be satisfied for the time-discretized problem. Then, are the corresponding first-
order optimality conditions satisfied by an appropriate limit of the discrete control
functions uh(·)?

The answer we believe is “yes”, and we give a partial explanation as to why, at least
where the dynamics are affine in the control:

dx

dt
= f (x(t))+ B(x(t)) u(t)

and u(t) ∈ U , U ⊂ R
m a closed, convex, and bounded set, and with f and B smooth.

Since the discrete control functions uh are uniformly bounded in L∞(t0, T ), by
Alaoglu’s theorem there is a weakly* convergent subsequence (also denoted uh , etc.).
Within this subsequence there is a further subsequence of xh (xh being the piecewise
linear interpolation of xh(tk) = xk) of discrete trajectories that converges uniformly on
[t0, T ] by the Arzela–Ascoli theorem. Furthermore, the limits uh ⇀

∗ ũ and xh → x̃
in the subsequence satisfies the above differential equation.

An optimization algorithm for the time-discretized problem should satisfy the first
order conditions:

(λk)T B(xk) δuk ≥ 0, for all δuk ∈ TU (u
k).

That is,

(λk)T B(xk) (zk − uk) ≥ 0, for all zk ∈ U.
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Putting zh(t) = zk for tk ≤ t < tk+1, we can choose the zk so that zh ⇀
∗ z for any

z ∈ L∞(t0, T ) with z(t) ∈ U . Since the xh are uniformly Lipschitz as h ↓ 0, we can
obtain a lower bound

T∫

t0

λh(t)
T B(xh(t)) (zh(t)− uh(t)) dt ≥ −C h.

We now wish to take limits h ↓ 0 in the subsequence. Since B(xh(·)) → B(̃x(·)) uni-
formly, all we need is for λh → λ̃ in L1(t0, T ) as h ↓ 0. Away from the jumps, λh are
uniformly Lipschitz. Supposing that the λh are bounded in, say, the space of functions
of bounded variation, we can see that we would indeed obtain convergence of a further
subsequence in this space. From the arguments above, λ̃(·) is the adjoint function for
the optimal control problem with the discontinuity. So, assuming uniformly bounded
variation for λh , we get

T∫

t0

λ̃(t)T B(̃x(t)) (̃z(t)− u∗(t)) dt ≥ 0, for all measurable z : [t0, T ] → U,

as desired. While this is not a rigorous proof, it indicates that we should expect that
the first order conditions hold for the limiting control function u∗.

7 A model problem and numerical results

We now investigate numerically the benefits of our theoretical results. We use our
smoothing approach to investigate an optimal control problem whose discontinuous
dynamics originates in the Coulomb friction. While the proofs of our theorems do not
include the case with controls, the benefits of our analysis can be extended to that case
as well.

Indeed, consider the problem

minu,x g(x(T ))

subject to ẋ = f (x, u),

x(0) = x0,

u(t) ∈ K ,

where K is a given convex set.
We construct the Lagrangian L(x, u, λ) = g(x(T )) − ∫ T

0 λT (ẋ − f (x, u)). We
compute its first-order variations with respect to feasible δx(t) and δu(t) ∈ TK (u(t)):

δL = ∇g(x(T ))δx(T )−
T∫

0

λT (δ̇x − ∇x f (x, u)δx − ∇u f (x, u)δu
)
.
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Choosing the adjoint variable λ(t) to satisfy

λ̇(t) = −(∇x f (x, u))T λ(t), λ(T ) = ∇x g(x(T ))

as well as using integration by parts and δx(0) = 0, we obtain

δL =
T∫

0

λ(t)T ∇u f (x(t), u(t))δu(t)

for feasible δu(t) ∈ TK (u(t)).
Therefore, λ(t)T ∇u f (x(t), u(t)) is the reduced gradient with respect to u. Using

Theorems 3 and 2, we obtain that, if the problem has discontinuities and we use a
smoothing approach with an explicit Euler time-stepping scheme with h = O(σ 2), the
reduced gradients for the smoothed problem approach the ones of the original problem,
if ∇u f (x, u) is continuous. Therefore, since the gradients converge, the divergence
phenomena described at the beginning of this paper will not occur. Nonetheless, when
solving our example we do not have to use the reduced gradient computed in this
fashion; we have used it only to argue the convergence of the relevant gradients.

We have used the smoothing approach to compute optimal solutions for a crude
approximation of a racing car model. This is a version of the “Michael Schumacher”
problem described on CPNET, the Complementarity Problem Network [30]. The dif-
ferential equations and constraints are different here from those in [30] in that aero-
dynamic drag is ignored here and the track considered here is a more complex S-bend
instead of an ellipse.

The state space consists of a vector x ∈ R
2 denoting the position of the center of the

vehicle, its velocity v ∈ R
2, and the angle in which the vehicle is pointing θ ∈ R. The

controls consist of the throttle a(t), which accelerates or decelerates the vehicle, and
the steering control s(t), which changes the vehicle orientation. The auxiliary func-
tions used are t(θ) = (cos(θ), sin(θ)), the unit vector the vehicle is pointing in, and
n(θ) = (− sin(θ), cos(θ)), a unit normal vector to t(θ). The following differential
equations are used:

ẋ = v, (52)

v̇ = a(t) t(θ)+ F n(θ), (53)

θ̇ = s(t) (t(θ)T v), (54)

F ∈ −µNSgn(n(θ)T v). (55)

As usual, µ is the coefficient of friction and N is the normal contact force (assumed
constant). These equations are clearly not sufficient to realistically describe a Formula 1
racing car. For example, “spin-outs” and “fish-tailing”, where large uncontrolled angu-
lar velocities occur, cannot happen in this model. However, (52)–(55) do provide an
interesting control system where friction appears in an essential way. Furthermore,
slip is an essential characteristic of the solutions found for certain optimal control
problems.
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The initial conditions used were x(0) = 0, v(0) = 0, and θ(0) = 0. These are the
conditions for a vehicle initially at rest at the origin, pointing horizontally to the right.

The vehicle is constrained not to leave the track. This constraint introduces state
constraints of the form x(t) ∈ C , where C ⊂ R

2 is the track. For our particular model
problem, we take C to be

{ (x, y) | |y − ycl(x)| ≤ w/2 }, (56)

where w is the “width” of the track, and { (x, ycl(x)) | x ∈ R } is the curve of the
centerline of the track. For an interesting but easily implementable system, we set

ycl(x) =

⎧
⎪⎨

⎪⎩

sin(x), x ≤ π,

π − x, π ≤ x ≤ 2π,

−π − sin(x), 2π ≤ x .

(57)

This generates a C1, but not C2, curve for the centerline.
The controls are subject to simple bounds constraints:

|a(t)| ≤ amax for all t, (58)

|s(t)| ≤ smax for all t. (59)

The objective function chosen was a combination of a penalty term for missing a
target xtgt , and the time taken to reach the endpoint:

g(T, x(T )) = α‖x(T )− xtgt‖2 + T . (60)

7.1 Specific parameter values

The following default values were used:

– The penalty parameter for the final target was α = 10.
– The target point was xtgt = (3π, −π)T , which is on the center line of the track.
– The maximum acceleration and steering controls were amax = 2 and smax = 2.
– The maximum friction force was µN = 4.

7.2 Numerical results

The discretized optimal control problem was set up with AMPL modeling language
[12] and solved with LOQO [37] under Linux. Note that the AMPL representation
of the problem also included the discretization of the differential equations (explicit
Euler); this meant that adaptive ODE solvers could not be applied. On the other hand,
AMPL is able to provide LOQO with all the necessary gradient information. The
baseline problem used a time step of h = T/N , with T the final time and N fixed at

123



Optimal control of systems with discontinuous differential equations 689

Table 1 Objective, final time
and algorithm performance for
minimum time problem

σ N Objective T No. of iterations CPU time

0.1 250 5.544654 5.53393 303 14.1

500 5.549708 5.53877 531 53.3

1,000 5.552177 5.54111 349 53.3

2,000 5.553451 5.54239 420 227.0

0.05 500 5.590849 5.58285 1,501 153.5

1,000 5.409497 5.39842 977 242.2

2,000 5.409183 5.39813 643 300.8

0.025 1,000 5.353886 5.34289 1,240 184.5

2,000 5.354256 5.34321 1,759 913.2

4,000 5.354451 5.34341 1,368 1,552.8

1,000; the smoothing parameter was σ = 0.1. A number of runs were carried out with
different values of N and σ . The results are shown in Table 1.

For the baseline problem, the value of T computed for this “minimal time” problem
was T = 5.541106358, making h ≈ 5.5×10−3. The final objective function value was
5.552177023, obtained in 349 iterations and taking 53.3 s of CPU time on a Pentium 4
running Linux. LOQO reported a dual objective function value of 5.552176961. While
the objective function and the feasible region are highly nonconvex, this result does
indicate that the objective function value is likely within about 6 × 10−8 of the value
of a local minimum. The objective function value indicates that α‖x(T ) − xtgt‖2 ≈
0.01107; since α = 10, this indicates that ‖x(T ) − xtgt‖ ≈ 0.03327; the target is
approached to high accuracy. Similar results are apparent for the other values of N
and σ (see Table 1).

We note that LOQO, like most software for mathematical programming, can guar-
antee only that the computed solution is close to a local minimum; guaranteeing a
global minimum without convexity is a computationally challenging task and there
is no reason to expect that these optimal control problems do not have many local
minima. However, the objective function values reported are remarkably consistent,
and the controls used to achieve these local minima are also remarkably similar. This
gives us some confidence that the computed objective values and controls are close
to a global minimum for the true unsmoothed continuous time problem (52)–(57).
The computed optimal trajectory for the baseline problem is shown in Fig. 4.

The computed optimal control functions, along with the normal and tangential
velocities, are shown in Fig. 5. A complex maneuver takes place near t = 3; this is
shown in more detail in Fig. 6.

From Fig. 4 we can see that the computed solution is somewhat complex, but has
features similar to those expected from state constrained optimal control problems:
the trajectory touches the boundary of the feasible region at a few points. The control
functions, shown in Fig. 5 give a further indication of the complexity of the controls.
However, the optimal acceleration control a(t) is a pure bang–bang type (with control
values lying on the boundary of the set of admissible control values). On the other
hand, the steering control s(t) is a bang–singular–bang control [3] where the control
values lie in the interior of the set of possible control values for an interval in time.
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Fig. 6 Computed optimal control functions and velocities (zoom)

For the numerical problem, the “singular arc” for s(t)occurs for t roughly in the
intervals (1.7, 3.5) and (4.7, 4.8).

It should also be noted that the discontinuity in the right-hand side, which occurs
when the normal velocity or slip is zero, is met by the optimal trajectory in several
places. Initially (from t = 0 to t ≈ 0.3) the normal slip is zero, while the normal
velocity passes through zero twice (once for t ≈ 1.1 and again for t ≈ 3.2). This
means that the analysis for both the “crossing” and “trapped” cases are relevant for
this problem.

7.3 Comparison with solutions for different N and σ

Different values of N and σ do result in some differences in the control functions and
the velocities. These can be seen in Table 1, and also in Fig. 7. Most of the control and
velocities are indistinguishable except for a few features.

For σ = 0.1 there is the initial reversing maneuver, which is not present for smaller
values of σ . This is presumably because reducing the value of σ keeps the normal
velocity closer to zero and enables the vehicle to make the first counter-clockwise turn
without leaving the track. However, for σ = 0.05 there is a deceleration maneuver
near t = 0.35 that appears to be of a bang-singular-bang type; for σ = 0.025 there is
another deceleration maneuver at about the same time of a bang-bang type.

For σ = 0.05 and N = 500 the computed solution appears to be a local but not
global minimum. Note that the objective function for this case is ≈ 5.59 compared

123



692 D. E. Stewart, M. Anitescu

0 1 2 3 4 5 6
−4

−3

−2

−1

0

1

2

3

time

co
nt

ro
ls

 a
nd

 v
el

oc
iti

es

dy/dt(t)

dx/dt(t)
a(t)

a(t)

s(t)

s(t)

s(t)

Controls and velocities for σ = 0.1 

0 1 2 3 4 5 6
−4

−3

−2

−1

0

1

2

3

time

co
nt

ro
ls

 a
nd

 v
el

oc
iti

es

Controls and velocities for σ = 0.05 

a(t)

a(t)
s(t)

s(t)

dx/dt(t)

dy/dt(t)
N = 500

a(t)

0 1 2 3 4 5 6
−4

−3

−2

−1

0

1

2

3

time

co
nt

ro
ls

 a
nd

 v
el

oc
iti

es

Controls and velocities for σ = 0.025 

a(t)

a(t)

a(t)

s(t)

s(t)

dx/dt(t)

dy/dt(t)

Fig. 7 Controls and velocities for varying N and σ (σ = 0.1, 0.05, 0.025)
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with ≈ 5.41 for N = 1,000 and N = 2,000 with σ = 0.05, a difference of 3%.
This solution (plotted with “dot-dash” lines) does not have the interesting steering
maneuvers near t = 3 and near t = 4.6 and has quite different control functions near
the finish line.

Otherwise the controls are qualitatively and quantitatively similar. Thus, it would
seem that most of the maneuvers observed in the optimal controls are not artifacts but
are truly part of the optimal strategy.

8 Conclusions

Optimal control problems where the dynamics includes discontinuous right-hand sides
or differential inclusions can be handled both analytically and computationally by
smoothing the right-hand side, at least when the right-hand side satisfies a one-sided
Lipschitz condition. Furthermore, not smoothing the right-hand side, and computing
the gradients of the discretized system directly, leads to incorrect gradient informa-
tion with errors comparable to the size of the true gradients even with fully implicit
discretization. For the computed gradients to converge to the true gradients, we need
h = o(σ 2), where h is the step size and σ is the smoothing parameter; this is suf-
ficient under non degeneracy assumptions. Furthermore, we used the computed gra-
dients with modern optimization software to compute optimal controls for moder-
ately complex optimization problems with solutions that could not be easily pre-
dicted a priori. We expect that such results can be replicated for a large class of
problems.

The usual adjoint equation or inclusion must be modified to allow for jumps in the
adjoint variables if the trajectory crosses the discontinuity. This is quite different from
the case of differential inclusions with Lipschitz right-hand sides [8,13,17], where an
adjoint differential inclusion can be constructed and solved.

A “jump formula” for the adjoint variable in the case where the trajectory crosses a
codimension-one discontinuity has been developed that uses only the right-hand side
on opposite sides of the discontinuity and the normal vector of the discontinuity mani-
fold. This jump formula opens up the possibility of accurately computing gradients by
using a detect/locate/restart method of handling discontinuities in the forward ODE
solver.
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