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Abstract We consider discretized Hamiltonian PDEs associated with a Hamiltonian
function that can be split into a linear unbounded operator and a regular nonlin-
ear part. We consider splitting methods associated with this decomposition. Using a
finite-dimensional Birkhoff normal form result, we show the almost preservation of
the actions of the numerical solution associated with the splitting method over arbi-
trary long time and for asymptotically large level of space approximation, provided
the Sobolev norm of the initial data is small enough. This result holds under generic
non-resonance conditions on the frequencies of the linear operator and on the step
size. We apply these results to nonlinear Schrödinger equations as well as the nonlin-
ear wave equation.
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1 Introduction

In this work, we consider a class of Hamiltonian partial differential equations whose
Hamiltonian functionals H = H0 + P can be divided into a linear unbounded oper-
ator H0 with discrete spectrum and a nonlinear function P having a zero of order at
least 3 at the origin of the phase space. Typical examples are given by the nonlin-
ear wave equation on a segment with Dirichlet boundary conditions or the nonlinear
Schrödinger equation on the torus. We consider discretizations of these PDEs and
denote by H (K ) = H (K )

0 + P(K ) the corresponding discrete Hamiltonian, where K is
a discretization parameter. Typically, K denotes a spectral parameter in a collocation
method.

Amongst all the numerical schemes that can be applied to these Hamiltonian PDEs,
splitting methods entail many advantages, as they provide symplectic and explicit
schemes, and can be easily implemented using fast Fourier transform if the spectrum
of H0 simply expresses in Fourier basis. Generally speaking, a splitting scheme is
based on the approximation

ϕh
H (K ) � ϕh

H (K )
0

◦ ϕh
P(K ) (1.1)

for small time h, and where ϕt
Q denotes the exact flow of the Hamiltonian system

associated with the Hamiltonian function Q. For a given time t = nh, n ∈ N, the
solution starting at some initial value z0 is then approximated by

ϕt
H (K ) (z

0) � zn =
(
ϕh

H (K )
0

◦ ϕh
P(K )

)n

(z0). (1.2)

The understanding of the long-time behavior of splitting methods for Hamiltonian
PDEs is a fundamental ongoing challenge in the field of geometric integration, as the
classical arguments of backward error analysis (see for instance [20]) do not apply in
this situation, where the frequencies of the system are arbitrary large, and where reso-
nances phenomena are known to occur for some values of the step size. For example,
considering the case of the Schrödinger equation on the one-dimensional torus, the
eigenvalues of H (K )

0 range from 1 to K 2 and the assumption hK 2 << 1 used in the
finite-dimensional situation becomes drastically restrictive in practice.

Recently, many progresses have been made in the understanding of the long time
behaviour of numerical methods applied to Hamiltonian PDEs. A first result using
normal form techniques was given by Dujardin and Faou in [11] for the case of
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Birkhoff normal form for splitting methods applied to semilinear Hamiltonian PDEs 431

splitting methods applied to the linear Schrödinger equation with small potential.
More recently Debussche and Faou showed in [9] the existence of a modified energy
for implicit–explicit split-step methods applied to the linear Schrödinger equation.
Concerning the nonlinear case, results exist by Cohen, Hairer and Lubich, see
[7,8,19], for the wave equation and Gauckler and Lubich, see [14,15], for the nonlinear
Schrödinger equation using the technique of modulated Fourier expansion.

Typically time discretizations of Hamiltonian PDE introduce numerical resonances.
Such effects are not physical and do not come from the structure of the spectrum of
the linear operator H0. They are induced by interactions between the time stepsize
h and the frequencies of H0. In the case where a CFL condition is satisfied, such
phenomenon will not be observed. We refer to Faou and Grébert [12] for results in
this direction. In Sect. 4.2.1 we give a numerical example of resonances effects due
to a resonant step size outside the CFL regime. To go beyond this CFL condition, one
has to rely on a non resonance assumption mixing the frequencies of H0 and the time
step size h, and being satisfied for a large set of h and frequencies.

Normal form techniques have proven to be one of the most important tools for
the understanding of the long time behavior of Hamiltonian PDEs (see [1–4,17,18]).
Roughly speaking, the dynamical consequences of such results are the following: start-
ing with a small initial value of size ε in a Sobolev space Hs , then the solution remains
small in the same norm over long time, namely for time t ≤ Crε

−r for arbitrary r
(with a constant Cr depending on r ). Such results hold under generic non-resonance
conditions on the frequencies of the underlying linear operator H0 associated with the
Hamiltonian PDE, that are valid in a wide number of situations (nonlinear Schrödinger
equation on a torus of dimension d or with Dirichlet boundary conditions, nonlinear
wave equation with periodic or Dirichlet conditions in dimension 1 [4], Klein Gordon
equation on spheres or Zoll manifolds [3] or nonlinear quantum harmonic oscillator
on R

d [18]).
This work is the first of a series of two.
In this paper, we consider full discretizations of the Hamiltonian PDE, with a spec-

tral discretization parameter K and consider the exact splitting method. In this case, we
show that under the hypothesis K ≤ ε−σ for some constant σ then the actions of the
initial value are almost preserved over a very large number of iterations n ≤ Crε

−r ,
provided the initial solution is small (of order ε) in L2 norm. The constant σ depends
on the precision degree r (and of course decreases with r ). These actions can be
interpreted as the oscillatory energies corresponding to an eigenvalue of H (K )

0 . More-
over, the L2 norm of this numerical solution remains small for this large number of
iterations.

The method used in this situation is by essence (for fixed K ) a finite-dimensional
Birkhoff normal form result (explaining why we work here essentially with the L2

norm). Using a generic non-resonance condition on the step size that turns out to
be valid for many equations and that is independent of K , we mainly show that we
can take K asymptotically large (i.e. of order ε−σ ) without altering the nature of the
classical result. Our main result is given by Theorem 4.1.

Roughly speaking, the method consists in applying techniques that are now standard
in normal form theory, by tracking the dependence in K of the constants appearing
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in the estimates. The use of a non-resonance condition that is independent of K is
however crucial, and reflects the infinite-dimensional nature of the initial continuous
problem without space approximation.

For each fixed K our normal form result could be deduced from existing nor-
mal form results for a close to linear symplectic map (see for instance [5,6,21]).
Nevertheless, in these works, it is not clear how to track the dependence in the dimen-
sion K and in the step size h (in particular in the non-resonance condition) which
is crucial for the dynamical consequences on the numerical scheme. That is the rea-
son why we prefer to present a new proof using the underlying infinite-dimensional
structure given by the PDE that we are discretizing.

In some sense, the second paper [13] studies the case where K > ε−σ by consid-
ering the splitting method where no discretization in space is made (i.e. K = +∞).
The techniques used involve the abstract framework developed in [2,4,17]. However,
instead of being valid for the (exact) abstract splitting (1.1), we have to consider
rounded splitting methods (see [13] for definition and comments on this concept).
On the contrary, in the present article we deal with the true splitting algorithm, in the
regime K ≤ ε−σ .

Finally we notice that, in this present form, our results apply only to non resonant
Hamiltonian PDEs (see Sect. 4.2). However they could be extended to the finitely
resonant case, i.e. when the frequencies are finitely degenerated. This could be done
for the periodic nonlinear wave equation in the the spirit of [4], for the Klein Gordon
equation on the sphere in the spirit of [3] or for the nonlinear quantum harmonic
oscillator on R

d (see [18]).

2 Description of the method

Before going on into the precise statements and proofs of this work, we would like to
give tentative explanations of the restrictions observed in comparison with the contin-
uous case.

In [4], in order to prove the long-time conservation of Sobolev norms for small
initial data, the authors consider a Hamiltonian H = H0 + P depending on an infinite
number of complex variable (ξ j , ηk), j, k ∈ N endowed with the symplectic form∑

j dξ j ∧ dη j , where H0 is the infinite dimensional harmonic oscillator:

H0 =
∑
j∈N

ω jξ jη j ,

and P is a nonlinearity of order at least 3. Typically, ξ j and η j represent the conjugate
components of the solution of the PDE in an orthonormal eigenbasis of the operator
H0 and the Hamiltonian is assumed to be real which means that H(ξ, η) ∈ R when
ξ j = η̄ j .

Then for a fixed number r , they construct a hamiltonian transformation τ close to
the identity and such that, in the new variables, the Hamiltonian can be written

H0 + Z + R (2.1)
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where Z is a real Hamiltonian depending only on the actions I j = ξ jη j and R a real
Hamiltonian having a zero of order r .

The key for this construction is an induction process with, at each step, the resolution
of an homological equation of the form

{H0, χ} + Z = G (2.2)

where G is a given homogeneous polynomial of order n, and where Z , depending only
on the actions, and χ are unknown. Assume that the polynomial G has the form

G = G j k ξ j1 · · · ξ jpηk1 · · · ηkq

where G j k is a coefficient, j = ( j1, . . . , jp) ∈ N
p and k = (k1, . . . , kq) ∈ N

q . Then
it is easy to see that Eq. (2.2) can be written

	( j , k)χ j k + Z j k = G j k (2.3)

where

	( j , k) = ω j1 + · · · + ω jp − ωk1 − · · · − ωkq

and Z j k and χ j k are unknown coefficients.
It is clear that for j = k (up to a permutation), we have	( j , k) = 0 which imposes

Z j k = G j k. When j �= k (taking into account the permutation), the solution of (2.3)
relies on a non-resonance conditions on the small divisors 	( j , k)−1.

In [4], Bambusi and Grébert use a non-resonance condition of the form

∀ j �= k, |	( j, k)| ≥ γµ( j , k)−α (2.4)

whereµ( j , k) denotes the third largest integer amongst | j1|, . . . , |kq |. They moreover
show that such a condition is guaranteed in a large number of situations (see [4,17] or
[2] for precise results).

Considering now the splitting method ϕh
H0

◦ϕh
P , we see that we cannot work directly

at the level of the Hamiltonian. To avoid this difficulty, we embed the splitting into
the family of applications

[0, 1] 
 λ �→ ϕh
H0

◦ ϕλh P

and we take the derivative of this expression with respect to λ, in order to work in the
tangent space, where it is much easier to identify real Hamiltonian than unitary flows.

This explains why in contrast with [4] we deal here with time-dependent
Hamiltonians. Note that we do not expand the operator ϕh

H0
in powers of h, as this

would yields positive powers of the unbounded operator H0 appearing in the series.
Unless a drastic CFL condition is employed, this method does not give the desired
results (and does not explain the resonance effects observed for some specific values
of h, see the numerical example in Sect. 4.2.1).
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Now, instead of (2.2), the homological equation appearing for the splitting methods
is given in a discrete form

χ ◦ ϕh
H0

− χ + Z = G. (2.5)

In terms of coefficients, this equations yields

(
eih	( j ,k) − 1

)
χ j k + Z j k = G j k.

The main difference with (2.3) is that we have to avoid not only the indices ( j , k) so
that 	( j , k) = 0, but all of those for which h	( j , k) = 2mπ for some (unbounded)
integer m.

In the case of a fully discretized system for which ∇z j P ≡ 0 for | j | > K , then
under a CFL-like condition of the form hK m ≤ C where m depends on the growth of
the eigenvalues of H0 and C depends on r , then we have |h	( j , k)| ≤ π , and hence

∣∣∣eih	( j ,k) − 1
∣∣∣ ≥ hγµ( j , k)−α (2.6)

is then a consequence of (2.4). Under this assumption, we can apply the same tech-
niques used in [4] and draw the same conclusions.

The problem with (2.6) is that it is non generic in h outside the CFL regime. For
example, in the case of the Schrödinger equation, the frequencies of the operator H0
are such that ω j � j2. Hence, for large N , if ( j1, . . . , jp, k1, . . . , kq) is such that
j1 = N + 1, k1 = N and all the other ones are of order 1 (N is large here), we have
	( j , k) � (N + 1)2 − N 2 � 2N . Hence,

∣∣∣eih	( j ,k) − 1
∣∣∣ �

∣∣∣e2ihN − 1
∣∣∣

cannot be assumed to be greater than hγµ( j , k)−α � h for all (large) N . Note that a
generic hypothesis on h would be here that this small divisor is greater than hγ N−α
for some constants γ and α: see Hypothesis 3.4 and Lemma 3.6 below. This example
shows that we cannot control the small divisors |eih	( j ,k) − 1| associated with the
splitting scheme by the third largest integer in the multi index (which is actually of
order 1 in this case), but only by the largest.

A numerical example of resonances effect due to a resonant step size outside CFL
regime is given in Sect. 4.2.1. Actually h is chosen such that h(ω7 −ω1) = 2π which
implies an exact resonance |eih(ω7−ω1) − 1| = 0 in the numerical scheme while this
resonance does not exist for the continuous model since ω7 − ω1 �= 0.

The fact that the control of the small denominators involves the largest index makes
impossible a direct application of the method used for instance in [4]. In our case, for
a given frequency cut-off N , the homological equation can only be solved for muti-
indices with all indices smaller than N . As usual in such procedure (see [1,4]), it turns
out that this frequency cut-off N can be taken of order ε−σ . Now two situations can
be distinguished:
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• In the case of a full discretization of the Hamiltonian PDE with a spectral discret-
ization parameter K ≤ N � ε−σ , then no frequencies higher than N are present
in the problem and the homological equation can be solved for all frequencies (up
to the actions terms). As a consequence the normal form term Z actually depends
only on the actions and long time preservation consequences can be drawn as in
the continuous case. This is essentially the result of the first part of this paper.

• In the case where K > ε−σ , the normal form term Z is now made of terms depend-
ing only of the actions and additional terms containing frequencies greater than
N � ε−σ . As a consequence, we do not obtain preservation results for the exact
splitting but only for rounded splitting methods (see [13] for precise statements).
Moreover, we use a zero momentum condition to ensure the presence of at least
two large indices in the normal form. This is the result given in the second part
[13] of this work.

3 Setting of the problem

3.1 Hamiltonian formalism

We set N = Z
d or N

d . For a = (a1, . . . , ad) ∈ N , we set

|a| = max
i=1,...,d

|ai |.

Let K ∈ N, and let NK a finite subset of N , included in the ball {a ∈ N | |a| ≤ K }.
Typically, we can take NK of the form [−K , . . . , K ]d ⊂ Z

d or [0, . . . , K ]d ⊂ N
d or

a sparse set of the form (see for instance [16,22])

NK =
{

a = (a1, . . . , ad) ∈ Z
d | (1 + |a1|) · · · (1 + |ad |) ≤ K

}
⊂ Z

d .

We consider the set of variables (ξa, ηb) ∈ C
NK × C

NK equipped with the sym-
plectic structure

i
∑

a∈NK

dξa ∧ dηa . (3.1)

We define the set ZK = NK × {±1}. For j = (a, δ) ∈ ZK , we define | j | = |a| and
we denote by j the index (a,−δ).

We then define the variables (z j ) j∈ZK ∈ C
ZK by the formula

j = (a, δ) ∈ ZK �⇒
{

z j = ξa if δ = 1,
z j = ηa if δ = −1.

By abuse of notation, we often write z = (ξ, η) to denote such an element.
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We set

‖z‖2 :=
∑

j∈ZK

|z j |2

and for any ρ > 0,

BK (ρ) =
{

z ∈ C
ZK | ‖z‖ ≤ ρ

}
.

Note that in the case where K = +∞, we set by convention ZK = Z = N × {±1}
and the previous norm defines a Hilbert structure on �2

Z . We denote by

�K : �2
Z →

(
C

ZK , ‖ · ‖
)

the natural projection.
Let UK be a an open set of C

ZK . For a function F in C1(UK ,C), we define its
gradient as

∇F(z) =
(
∂F

∂z j

)
j∈ZK

where by definition, we set for j = (a, δ) ∈ NK × {±1},

∂F

∂z j
=

{ ∂F
∂ξa

if δ = 1,

∂F
∂ηa

if δ = −1.

Let H(z) be a function defined on UK . If H is smooth enough, we can associate with
this function the Hamiltonian vector field X H (z) defined as

X H (z) = J∇H(z)

where J is the symplectic operator induced by the symplectic form (3.1).
For two functions F and G, the Poisson Bracket is defined as

{F,G} = ∇FT J∇G = i
∑

a∈NK

∂F

∂η j

∂G

∂ξ j
− ∂F

∂ξ j

∂G

∂η j
.

We say that z ∈ C
ZK is real when z j = z j for any j ∈ ZK . In this case, z = (ξ, ξ̄ )

for some ξ ∈ C
NK . Further we say that a Hamiltonian function H is real if H(z) is

real for all real z.
With a given function H ∈ C∞(UK ,C), we associate the Hamiltonian system

ż = J∇H(z)
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which can be written

{
ξ̇a = −i ∂H

∂ηa
(ξ, η) a ∈ NK

η̇a = i ∂H
∂ξa
(ξ, η) a ∈ NK .

(3.2)

In this situation, we define the flow ϕt
H (z) associated with the previous system (for

times t ≥ 0 depending on z ∈ UK ). Note that if z = (ξ, ξ̄ ) and H is real, the flow
(ξ t , ηt ) = ϕt

H (z), for all time where it is defined, satisfies the relation ξ t = η̄t , where
ξ t is solution of the equation

ξ̇a = −i
∂H

∂ηa
(ξ, ξ̄ ), a ∈ NK . (3.3)

In this situation, introducing the real variables pa and qa such that

ξa = 1√
2
(pa + iqa) and ξ̄a = 1√

2
(pa − iqa),

the system (3.3) is equivalent to the system

{
ṗa = − ∂ H̃

∂qa
(q, p), a ∈ NK

q̇a = ∂ H̃
∂pa
(q, p), a ∈ NK .

where H̃(q, p) = H(ξ, ξ̄ ).
Note that the flow τ t = ϕt

χ of a real Hamiltonian χ defines a symplectic map, i.e.
satisfies for all time t and all point z where it is defined

(
Dzτ

t)T
z J

(
Dzτ

t)
z = J (3.4)

where Dz denotes the derivative with respect to the initial conditions.
The following result is classical:

Lemma 3.1 Let UK and WK be two domains of C
ZK , and let τ = ϕ1

χ ∈C∞(UK ,WK )

be the flow of the real smooth Hamiltonian χ . Then for H ∈ C∞(WK ,C), we have

∀z ∈ U X H◦τ (z) = (Dzτ(z))
−1 X H (τ (z)).

Moreover, if H is a real Hamiltonian, H ◦ τ is a real Hamiltonian.
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3.2 Hypothesis

We describe now the hypothesis needed on the Hamiltonian H .
In the following, we consider an infinite set of frequencies (ωa)a∈N satisfying

∀a ∈ N , |ωa | ≤ C |a|m (3.5)

for some constants C > 0 and m > 0.
Let U be an open domain of �2(CZ ) containing the origin, and let UK = �K U its

projection onto C
ZK .

We consider the collection of Hamiltonian functions

H (K ) = H (K )
0 + P(K ), K ≥ 0, (3.6)

with

H (K )
0 =

∑
a∈NK

ωa Ia(z)

where for all a ∈ NK ,

Ia(z) = ξaηa (3.7)

are the actions associated with a ∈ NK . Note that if z = (ξ, ξ̄ ), then Ia(z) = |ξa |2.
We moreover assume that the functions P(K ) ∈ C∞(UK ,C) are real, of order at

least 3, and satisfy the following: For all � > 1, there exists constants C(�) ≥ 0 and
β(�) ≥ 0 such that for all K ≥ 1, ( j1, . . . , j�) ∈ Z�

K and z ∈ UK , the following
estimate holds:

∣∣∣∣∣
∂P(K )

∂z j1 · · · ∂z j�
(z)

∣∣∣∣∣ ≤ C(�)K β(�). (3.8)

The Hamiltonian system (3.2) can hence be written

{
ξ̇a = −iωaξa − i ∂P(K )

∂ηa
(ξ, η) a ∈ NK

η̇a = iωaηa + i ∂P(K )
∂ξa

(ξ, η) a ∈ NK .
(3.9)

Denoting by ϕt
Q the exact flow of a Hamiltonian flow, splitting methods are based on

the approximation

ϕh
H (K ) � ϕh

H (K )
0

◦ ϕh
P(K )
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for a small time step h > 0. Note that in this case, the exact flow of H (K )
0 is explicit

and given by

ϕh
H (K )

0
(ξ, η) =

(
e−iωahξa, eiωahηa

)
a∈NK

while the calculation ofϕh
P(K )

requires the solution of an ordinary differential equation,
whose solution is often given explicitly (see the examples below).

The goal of this paper is the study of the long-time behavior of the numerical
solution zn given by (1.2) for large number n of iterations.

Remark 3.2 Note that no hypothesis is made here concerning the preservation of the
L2 norm by the flow of (3.9).

3.3 Non-resonance condition

In the following, for j = ( j1, . . . , jr ) ∈ Zr
K with r ≥ 1, we use the notation

z j = z j1 · · · z jr .

Moreover, for j = ( j1, . . . , jr ) ∈ Zr
K with ji = (ai , δi ) ∈ NK × {±1} for i =

1, . . . , r , we set

j = ( j1, . . . , jr ) with j i = (ai ,−δi ), i = 1, . . . , r,

and we define

	( j) = δ1ωa1 + · · · + δrωar .

We say that j ∈ Zr
K is resonant and we write j ∈ Ar

K if r is even and if we can write
(up to a permutation of the indices)

∀i = 1, . . . r/2, ji = (ai , 1) and ji+r/2 = (ai ,−1)

for some ai ∈ NK . For odd r , Ar is the empty set.
Associated with this resonant set we define the notion of polynomial in normal

form:

Definition 3.3 A polynomial Z on C
ZK is said to be in normal form if we can write

it

Z =
r∑
�=3

∑
j∈A�

K

Z j z j .
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Note that if j ∈ Ar
K then

z j = z j1 · · · z jr = ξa1ηa1 · · · ξar/2ηar/2

= Ia1(z) · · · Iar/2(z)

where for all a ∈ NK , Ia(z) denote the actions associated with a (see (3.7)). Thus a
polynomial in normal form is a polynomial that depends only of the actions.
As a consequence, the actions are invariant by the hamiltonian flow of a polynomial
in normal form.

We will assume now that the step size h satisfies the following property:

Hypothesis 3.4 For all r ∈ N, there exist constants γ ∗ and α∗ such that for all
K ∈ N

∗,

( j1, . . . , jr ) ∈ Zr
K \Ar

K �⇒
∣∣∣1 − eih	( j)

∣∣∣ ≥ hγ ∗

K α∗ . (3.10)

The following Lemma 3.6 (see [20,23] for similar statements) shows that condition
(3.10) is generic in the sense that it is satisfied for a large set of h ≤ h0 (and in par-
ticular independently of K ), provided that the frequencies ωa satisfy a non-resonance
condition that we state now:

Hypothesis 3.5 For all r ∈ N, there exist constants γ (r) andα(r) such that ∀ K ∈ N
∗,

( j1, . . . , jr ) ∈ Zr
K \Ar

K �⇒ |	( j)| ≥ γ

K α
. (3.11)

In the next section, we will check this condition in different concrete cases.

Lemma 3.6 Assume that Hypothesis 3.5 holds, and let h0 and r be given numbers.
Let γ and α be such that (3.11) holds and assume that γ ∗ ≤ (2/π)γ , α∗ ≥ α+mτ+r
with τ > 1 and m the constant appearing in (3.5), then we have

meas{ h < h0 | h does not satisfy (3.10) } ≤ C
γ ∗

γ
h1+τ

0

where C depends on τ and r. As a consequence the set

Z(h0) = { h < h0 | h satisfies Hypothesis 3.4 }

is a dense open subset of (0, h0).

Proof Denote

R(h0, γ
∗, α∗) = { h < h0 | h does not satisfy (3.10)}.
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Assume that h ∈ R(h0, γ
∗, α∗). There exist K > 1 and j /∈ Ar

K such that

| j1|, . . . , | jr | ≤ K and
∣∣∣1 − eih	( j)

∣∣∣ < hγ ∗

K α∗ .

For this j , there exists an � ∈ Z such that

∣∣∣1 − eih	( j)
∣∣∣ ≥ 2

π
|2π�− h	( j)|. (3.12)

If � = 0, the previous inequality and (3.11) imply

∣∣∣1 − eih	( j)
∣∣∣ ≥ 2

π
h
γ

K α

which is impossible with the assumptions on γ ∗ and α∗. Hence, we can assume � �= 0.
Equation (3.12) implies

2|	( j)|
π

∣∣∣∣ 2π�

	( j)
− h

∣∣∣∣ < hγ ∗

K α∗

and using (3.11)

∣∣∣∣ 2π�

	( j)
− h

∣∣∣∣ ≤ hπγ ∗

2γ

1

K α∗−α .

Moreover, we have for this �

|2π�− h	( j)| ≤ π

whence using (3.5)

2π |�| ≤ π + Ch0 K m

where C is a constant depending on r . This implies

|�| − 1

2
≤ C

2π
h0 K m .

Hence, R(h0, γ
∗, α∗) is included in the union of balls of center

2π�

	( j)
, with | j1|, . . . , | jr | ≤ K , |�| − 1

2
≤ C

2π
h0 K m, � �= 0

and radius

h0πγ
∗

2γ

1

K α∗−α
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Hence, we have for τ > 1

meas(R(h0, γ
∗, α∗)) ≤

∑
| ji |≤K

∑
|�|− 1

2 ≤ C
2π h0 K m

h0πγ
∗

2γ

1

K α∗−α

≤
∑

| ji |≤K

∑
�∈Z∗

(
1

|�| − 1
2

)τ
h0πγ

∗

2γ

1

K α∗−α−mτ

(
Ch0

2π

)τ
.

≤ C
γ ∗

γ
h1+τ

0
1

K α∗−α−mτ−r
.

Furthermore

meas
(∩γ ∗>0R(h0, γ

∗, α∗)
) = 0

and thus Z(h0) has full measure. ��

4 Statement of the result and applications

4.1 Main results

Theorem 4.1 Assume that P(K ), the frequencies and h < h0 satisfy the previous
hypothesis (cf. (3.8) and (3.10)). Let r ∈ N

∗ be fixed. There exist positive constants
σ , C and ε0 depending only on r, h0 and the constants β(�) and C(�), � = 0, . . . r in
(3.8), such that the following holds: For all ε < ε0 and K ≤ ε−σ , and for all z0 real
such that

‖z0‖ ≤ ε

if we define

zn =
(
ϕh

H (K )
0

◦ ϕh
P(K )

)n

(z0) (4.1)

then for all n, zn is still real, and moreover

‖zn‖ ≤ 2ε for n ≤ 1

εr−1 , (4.2)

and

∀ a ∈ NK ,

∣∣∣Ia(z
n)− Ia(z

0)

∣∣∣ ≤ Cε5/2 for n ≤ 1

εr−2 (4.3)

The proof of this result relies on the following Birkhoff normal form result, whose
proof is postponed to Sect. 5:
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Theorem 4.2 Assume that P(K ), the frequencies and h < h0 satisfy hypothesis (3.8)
and (3.10). Let r ∈ N

∗ be fixed. Then there exist constants β and C depending on
r, h0, β(�) and C(�), � = 0, . . . r in (3.8) and a canonical transformation τK from
BK (ρ) into BK (2ρ) with ρ = (C K )−β satisfying for all z ∈ BK (ρ),

‖τK (z)− z‖ ≤ (C K )β‖z‖2
and ‖τ−1

K (z)− z‖ ≤ (C K )β‖z‖2
, (4.4)

satisfying the following result: For all z ∈ BK (ρ),

τ−1
K ◦ ϕh

H (k)
0

◦ ϕh
P(K ) ◦ τK (z) = ϕh

H (K )
0

◦ ψK (z)

where ψK satisfies:

• ψK (z) is real if z is real,
• For all z ∈ BK (ρ),

‖ψK (z)− z‖ ≤ (C K )β‖z‖2
, (4.5)

• For all z ∈ BK (ρ),

|Ia(ψK (z))− Ia(z)| ≤ (C K )β‖z‖r+1
. (4.6)

Proof of Theorem 4.1 First, let us note that as the Hamiltonian functions H (K )
0 and

P(K ) are real Hamiltonians, it is clear that there exist ξn ∈ C
N such that for all n, we

have zn = (ξn, ξ̄n), that is zn is real.
Let β given by Theorem 4.2 and let σ = 1/(2β). We have for K ≤ ε−σ ,

(C K )β ≤ Cβε−1/2.

Let τK be defined by Theorem 4.2, and let yn = τ−1
K (zn). Using the property of

τK , we see that yn is real, i.e. we have yn = (ζ n, ζ̄ n) for all n. By definition, we have

∀ n ≥ 0, yn+1 =
(
ϕh

H (K )
0

◦ ψK

)
(yn). (4.7)

Using the fact that K ≤ ε−σ and (4.4), the transformation τK in the previous Theorem
satisfies the following: for all z such that ‖z‖ ≤ 2ε,

‖τ−1
K (z)− z‖ ≤ Cβε−1/2‖z‖2 ≤ 4Cβε3/2 ≤ 1

4ε (4.8)

provided ε0 is sufficiently small. Hence we have ‖y0‖ = ‖τ−1
K (z0)‖ ≤ 5

4ε.

Note that we have ρ = (C K )−β ≥ C−βε1/2 ≥ 2ε provided that ε0 is small enough.
Using (4.5) we get that as long as ‖yn‖ ≤ 2ε, we have

‖yn+1‖ ≤ ‖yn‖ + (C K )β‖yn‖r ≤ ‖yn‖ + 2r Cβεr−1/2
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By induction, we thus see that for

n ≤ 2−r−1C−βε3/2−r

we have ‖yn‖ ≤ 7
4ε ≤ 2ε. Assuming that ε0 is such that 2−r−1C−βε1/2

0 ≤ 1, this

shows that for n ≤ ε1−r we have ‖yn‖ ≤ 7
4ε. Using (4.4) and an inequality similar to

(4.8), we conclude that

‖zn‖ ≤ 2ε, for n ≤ 1

εr−1

which yields to (4.2).
Now using (4.6) and the fact that ‖yn‖ ≤ 2ε we see that for n ≤ ε1−r we have

∀a ∈ NK ,

∣∣∣Ia(y
n+1)− Ia(y

n)

∣∣∣ ≤ 2r+1Cβεr+1/2

whence

∀a ∈ NK ,

∣∣∣Ia(y
n)− Ia(y

0)

∣∣∣ ≤ 2r+1Cβnεr+1/2

Now we have for all a ∈ NK

∣∣Ia(y
n)− Ia(z

n)
∣∣ =

∣∣∣|ζ n
a |2 − |ξn

a |2
∣∣∣ = ∣∣|ζ n

a | − |ξn
a |∣∣ × ∣∣|ζ n

a | + |ξn
a |∣∣ ,

whence

∣∣Ia(y
n)− Ia(z

n)
∣∣ ≤ |ζ n

a − ξn
a |(‖yn‖ + ‖zn‖ ) ≤ ‖τK (y

n)− yn‖ (‖yn‖ + ‖zn‖ ).

Using (4.4) we see that for all n ≤ ε1−r and all a ∈ NK ,

‖τK (y
n)− yn‖ ≤ 4Cβε3/2.

and hence, as ‖zn‖ ≤ 2ε,

∣∣Ia(y
n)− Ia(z

n)
∣∣ ≤ 8Cβε5/2.

Using (4.8), we thus see that

∀ n ≤ ε1−r ∀ a ∈ NK ,

∣∣∣Ia(z
n)− Ia(z

0)

∣∣∣ ≤ 2r+4Cβ
(
ε5/2 + nεr+1/2

)

and this easily gives the result. ��
Remark 4.3 As usual in such procedure, the previous constructive proof yields a very
small constant σ for large parameter r . The estimation of the optimal σ is a very
difficult problem and may depend on the particular case considered.
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4.2 Examples

In this section we present two examples, other examples like the Klein Gordon equation
on the sphere (in the spirit of [3]) or the nonlinear Schrödinger operator with harmonic
potential (in the spirit of [18]) could also be considered with these techniques.

4.2.1 Nonlinear Schrödinger equation

We first consider nonlinear Schrödinger equations of the form

i∂tψ = −�ψ + V � ψ + ∂2g(ψ, ψ̄), x ∈ T
d (4.9)

where V ∈ C∞(Td ,R), g ∈ C∞(U ,C) where U is a neighborhood of the origin in
C

2. We assume that g(u, ū) ∈ R, and that g(u, ū) = O(|u|3). The corresponding
Hamiltonian functional is given by

H(ψ, ψ̄) =
∫

Td

|∇ψ |2 + ψ̄(V � ψ)+ g(ψ, ψ̄) dx .

Let φa(x) = eia·x , a ∈ Z
d be the Fourier basis on L2(Td). With the notation

ψ =
(

1

2π

)d/2 ∑
a∈Zd

ξaφa(x) and ψ̄ =
(

1

2π

)d/2 ∑
a∈Zd

ηaφ̄a(x)

the (abstract) Hamiltonian associated with the equation (4.9) can be formally written

H(ξ, η) =
∑

a∈Zd

ωaξaηa + P(ξ, η). (4.10)

Here ωa = |a|2 + V̂a are the eigenvalues of the operator

ψ �→ −�ψ + V � ψ,

and we see that ωa satisfy (3.5) with m = 2. Moreover, the nonlinearity function
P(ξ, η) possesses a zero of order 3 at the origin. In this situation, it can be shown that
the Hypothesis 3.4 is fulfilled for a large set of potential V (see for instance theorem
5.7 in [17] ).

Following [14], a space discretization of this equation using spectral collocation
methods yields a problem of the form (3.6) with

NK = [−K , . . . , K − 1]d
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and, with

uK =
(

1

2π

)d/2 ∑
a∈NK

ξaφa(x) and vK =
(

1

2π

)d/2 ∑
a∈NK

ηa φ̄a(x)

(4.11)

the nonlinearity reads

P(K )(ξ, η) =
∫

Td

Q(g(uK , vK ))dx

where, for a function ψ = ( 1
2π )

d/2 ∑
a∈Zd ψaφa(x)

Q(ψ) =
∑

a∈NK

⎛
⎝ ∑

b∈Zd

ψa+2K b

⎞
⎠φa(x)

is the collocation operator associated with the points xa = a πK ∈ T
d , a ∈ NK . It is

easy to verify that P(K ) satisfies (3.8) for some constants C(�) depending on g and
β(�) depending on g and the dimension d.

Note that starting from a real initial value u0
K (x) (see (4.11)) this system reduces

to solving the system of ordinary differential equation

∀ a ∈ Na i
d

dt
uK (xa, t) = F2K	F−1

2K uK (xa, t)+ ∂2g(uK (xa, t), uK (xa, t))

where 	 is the matrix (ωa)a∈NK and F2K the Fourier transform associated with NK .
In this case, the numerical solution (1.2) is easily implemented: The linear part is
diagonal and can be solved explicitly in the Fourier space, while the non-linear part
is an ordinary differential equation with fixed parameter xa at each step. If moreover
g(u, ū) = G(|u|2) for some real function G then the solution of the nonlinear part is
given explicitly by ϕh

P(K )
(u) = exp(−2ihG ′(|u|2))u using the fact that |u|2 is constant

for a fixed point xa .
For high dimension d, the previous discretization is usually replaced by a discreti-

zation on sparse grid, i.e. with

NK =
{

a = (a1, . . . , ad) ∈ Z
d |(1 + |a1|) · · · (1 + |ad |) ≤ K

}
⊂ Z

d .

As explained in [22, Chap III.1], methods exist to write the corresponding system
under the symplectic form (3.6), upon a possible loss in the approximation properties
of the exact solution of (4.9) by the solution of the discretized Hamiltonian H (K ).
Note that this does not influence the long time results proven here: In some sense we
do not impose the nonlinearity P(K )(z) to approximate an exact nonlinearity P(z).
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Fig. 1 Plot of the actions for non-resonant and resonant step size

We first give a numerical illustration of resonance effects. We consider the equation

i∂tψ = −�ψ + V � ψ + ε2|ψ |2ψ

in the one-dimensional torus T
1, with initial value

ψ0(x) = 2

2 − cos(x)
.

Note that this problem is equivalent to solving (4.9) with a small initial value of order ε.
We take ε = 0.1, V with Fourier coefficients V̂a = 2/(10 + 2a2) and K = 200
(i.e. 400 collocation points). In Fig. 1, we plot the actions of the numerical solution
given by the Lie splitting algorithm (1.2) in logarithmic scale. In the right we use the
resonant stepsize h = 2π/(ω7 −ω1) � 0.17459 . . .. In the left we plot the same result
but with the non resonant stepsize h = 0.174.

In Fig. 2, we show the long time almost conservation of the action in the case where
h = 0.1 (non-resonant), and ε = 0.1 and ε = 0.01 after 105 iterations.

4.2.2 Nonlinear wave equation

As a second concrete example we consider a 1-d nonlinear wave equation

utt − uxx + mu = g(u), x ∈ S1, t ∈ R, (4.12)

with Dirichlet boundary condition: u(0, t) = u(π, t) = 0 for any t . Here m > 0 is a
constant and g is a C∞ function in a neighbourhood of the origin in R. We assume that
g has a zero of order two at u = 0 in such a way that g(u) appears, in the neighborhood
of u = 0, as a perturbation term.
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Fig. 2 Conservation of the actions for ε = 0.1 (left) and ε = 0.01 (right)

Defining v = ut , (4.12) reads

∂t

(
u
v

)
=

(
v

uxx − mu + g(x, u)

)
.

Furthermore, let H : H1(S1)× L2(S1) �→ R defined by

H(u, v) =
∫

S1

(
1

2
v2 + 1

2
u2

x + 1

2
mu2 + G(x, u)

)
dx (4.13)

where G is such that ∂uG = −g, then (4.12) reads as an Hamiltonian system

∂t

(
u
v

)
=

(
0 1

−1 0

)(−uxx + mu + ∂uG
v

)

= J∇u,vH(u, v) (4.14)

where J =
(

0 1
−1 0

)
represents the symplectic structure and where ∇u,v =

(∇u

∇v
)

with ∇u and ∇v denoting the L2 gradient with respect to u and v respectively.
Define the operator A := (−∂xx + m)1/2, and introduce the variables (p, q) given by

q := A1/2u , p := A−1/2v.

Then, on Hs(S1) × Hs(S1) with s ≥ 1/2, the Hamiltonian (4.13) takes the form
H0 + P with

H0(q, p) = 1

2

(〈Ap, p〉L2 + 〈Aq, q〉L2
)
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and

P(q, p) =
∫

S1

G(x, A−1/2q)dx

Now denote by (ωa)a∈N the eigenvalues of A with Dirichlet boundary conditions
and φa , a ∈ N

∗ =: N , the associated eigenfunctions. We have φa(x) = sin ax and
ωa = √

a2 + m.
Plugging the decompositions

q(x) =
∑

a∈N∗
qaφa(x) and p(x) =

∑
a∈N∗

paφa(x)

into the Hamiltonian functional, we see that it takes the form

H =
∑

a∈N∗
ωa

p2
a + q2

a

2
+ P

where P is a function of the variables pa and qa . Using the complex coordinates

ξa = 1√
2
(qa + i pa) and ηa = 1√

2
(qa − i pa)

the Hamiltonian function can be written under the form (4.10) with a nonlinearity
depending on G. As in the previous case, it can be shown that the condition (3.11) is
fulfilled for a set of constant m of full measure (see for instance Theorem 4.18 in [2]).
A collocation discretization on equidistant points of [0, 2π ] yields the same kind of
discretization as before (with d = 1).

In this situation, the symmetric Strang splitting scheme

ϕ
h/2
P(K )

◦ ϕh
H (K )

0
◦ ϕh/2

P(K )

corresponds to the Deuflhard’s method [10]. If moreover we consider the Hamiltonian

H (K )(z) = H (K )
0 (z)+ P(K )(�(h	)z)

where 	 is the matrix with elements ωa , a ∈ NK , and �(x) a smooth function that
is real, bounded and such that �(0) = 1, then the splitting schemes associated with
this decomposition coincide with the symplectic mollified impulse methods (see [20,
Chap. XIII] and [8]).
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5 Proof of the normal form result

The rest of the paper consists in proving Theorem 4.2.
In the following, we denote by Tr the set of polynomial of order r on C

ZK (for sake
of simplicity, we do note write the dependance in K in the notation Tr ). If

Q =
r∑
�=0

∑
j∈Z�

K

Q j z j

is an element of Tr , we set

|Q|Tr
= max
�=0,...,r

max
j∈Z�

K

|Q j |.

If moreover Q ∈ C([0, 1], Tr ) we set

‖Q‖Tr
= max
λ∈[0,1] |Q(λ)|Tr

.

Using the assumptions on P(K ), we can write a Taylor expansion of P around 0,

P(K )(z) = Pr + Qr =
r∑
�=3

∑
j∈Z�

K

P j z j + Qr (z)

where

|P j | ≤ C K β0

where C and β0 depend on β(�) and C(�), � = 0, . . . , r in (3.8).
Notice that Qr (z) ∈ C∞(CZK ,C) admits a zero of order r + 1 and satisfies

‖X Qr (z)‖ ≤ C K β0‖z‖r

for z ∈ UK , provided β0 = β0(r, d) is large enough.
Before giving the proof of Theorem 4.2, we give easy results on non autonomous

polynomial Hamiltonians.1

Lemma 5.1 Let k ≥ 1 and let P(λ) ∈ C([0, 1], Tk+1) be a homogeneous polynomial
of degree k + 1 depending on λ ∈ [0, 1]. Then

(i) There exists a constant C depending on k such that for all z ∈ C
ZK and all

λ ∈ [0, 1], we have

|P(λ, z)| ≤ C K d(k+1)‖P‖Tk+1
‖z‖k+1

.

1 In [13] we study the case K = +∞ which requires much more elaborate tools about class of polynomials
with infinite number of variables.
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(ii) There exists a constant C depending on k such that for any z ∈ C
ZK and all

λ ∈ [0, 1],

‖X P(λ)(z)‖ ≤ C K d(k+1)‖P‖Tk+1
‖z‖k

.

Moreover, let k1 and k2 two fixed integers. Let P and Q two homogeneous polynomials
of degree k1 + 1 and k2 + 1 such that P ∈ C([0, 1], Tk1+1) and Q ∈ C([0, 1], Tk2+1).
Then {P, Q} ∈ C([0, 1], Tk1+k2) and we have

‖{P, Q}‖Tk1+k2
≤ C‖P‖Tk1+1

‖Q‖Tk2+1

for some constant C depending on k1 and k2.

Proof We have

|P(λ, z)| ≤ ‖P‖Tk+1

∑
j∈Zk+1

K

|z j |

where we have set for j = ( j1, . . . , j�) ∈ Z�
K ,

|z j | = |z j1 | · · · |z j� |.

Using |z j | ≤ ‖z‖ we easily obtain (i) using �ZK ≤ (2K + 1)d . The second statement
is proven similarly. The estimate on the Poisson brackets is trivial. ��
Lemma 5.2 Let r ≥ 3,

Q(λ, z) =
r∑
�=3

∑
j∈Z�

K

Q j (λ)z j

be an element of C([0, 1], Tr ). Let ϕλQ(λ) be the flow associated with the non auton-
omous real Hamiltonian Q(λ). Then there exists a constant Cr depending on r such
that

ρ < inf
(

1/2,Cr K −dr‖Q‖−1

Tr

)
�⇒ ∀ λ ∈ [0, 1], ϕλQ(λ)(BK (ρ)) ⊂ BK (2ρ).

(5.1)

Moreover, if F(λ) ∈ C([0, 1], C∞(BK (ρ),C)) has a zero of order r at the origin, then
F(λ) ◦ ϕλQ(λ) has a zero of order r at the origin in BK (ρ).

Proof Let zλ = ϕλQ(λ)(z
0). Using the estimates of the previous lemma, we have

d

dλ
‖zλ‖2 = 2

〈
zλ, X Q(λ)(z

λ)
〉

≤ cr K dr‖Q‖Tr
‖zλ‖

(
‖zλ‖2 + ‖zλ‖r−1

)
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for some constant cr depending on r . Hence, as long as ‖zλ‖ ≤ 1, we have

d

dλ
‖zλ‖2 ≤ 2cr K dr‖Q‖Tr

‖zλ‖3
.

By a standard comparison argument, we easily get that for z0 ∈ BK (ρ) we have

∀ λ ∈ [0, 1], ‖zλ‖ ≤ 2‖z0‖ .

This shows (5.1) and the rest follows. ��
We now give the general strategy to prove the normal form Theorem 4.2, showing in

particular the need of working with non autonomous Hamiltonians and of considering
the non-resonance condition (3.10).

We consider a fixed step size h satisfying (3.10). As in this section K will be con-
sidered as fixed, we denote shortly P(K ) by P and H (K )

0 by H0. We consider the
propagator

ϕh
H0

◦ ϕh
P = ϕh

H0
◦ ϕ1

h P .

We embed this application into the family of applications

ϕh
H0

◦ ϕλh P , λ ∈ [0, 1].

Formally, we would like to find a canonical change of variable, ϕλχ(λ), constructed as
a time λ flow of a real Hamiltonian χ = χ(λ) and a real Hamiltonian under normal
form Z = Z(λ) and such that

∀λ ∈ [0, 1] ϕh
H0

◦ ϕλh P ◦ ϕλχ(λ) = ϕλχ(λ) ◦ ϕh
H0

◦ ϕλh Z(λ). (5.2)

Let z0 ∈ C
ZK and zλ = ϕh

H0
◦ ϕλh P ◦ ϕλχ(λ)(z0). Deriving the previous equation with

respect to λ yields

dzλ

dλ
=

(
Dzϕ

h
H0

)
ϕ−h

H0
(zλ)

Xh P

(
ϕ−h

H0
(zλ)

)

+
(

Dz(ϕ
h
H0

◦ ϕλh P )
)
ϕ−λ

h P ◦ϕ−h
H0
(zλ)

Xχ(λ)
(
ϕ−λ

h P ◦ ϕ−h
H0
(zλ)

)
.

Using Lemma 3.1 that remains obviously valid for non autonomous Hamiltonian, we
thus have

dzλ

dλ
= X A(λ)(z

λ)

where A(λ) is the time dependent real Hamiltonian given by

A(λ) = h P ◦ ϕ−h
H0

+ χ(λ) ◦ ϕ−λ
h P ◦ ϕ−h

H0
.
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Using the same calculations for the right-hand side, (5.2) is formally equivalent to the
following equation (up to an integration constant)

∀λ ∈ [0, 1] h P ◦ ϕ−h
H0

+ χ(λ) ◦ ϕ−λ
h P ◦ ϕ−h

H0
= χ(λ)+ h Z(λ) ◦ ϕ−λ

χ(λ) ◦ ϕ−h
H0
.

(5.3)

which is equivalent to

∀λ ∈ [0, 1] χ(λ) ◦ ϕh
H0

− χ(λ) ◦ ϕ−λ
h P = h P − h Z(λ) ◦ ϕ−λ

χ(λ). (5.4)

In the following, we will solve this equation in χ(λ) and Z(λ) with a remainder term
of order r + 1 in z. So instead of (5.4), we will solve the equation

∀λ ∈ [0, 1] χ(λ) ◦ ϕh
H0

− χ(λ) ◦ ϕ−λ
h P = h P − (h Z(λ)+ R(λ)) ◦ ϕ−λ

χ(λ).

(5.5)

where the unknown are χ(λ), and Z(λ) are polynomials of order r , with Z under
normal form, and where R(λ) possesses a zero of order r + 1 at the origin.

We formally write

χ(λ) =
r∑
�=3

χ[�](λ) :=
r∑
�=3

∑
j∈Z�

K

χ j (λ)z j

and

Z(λ) =
r∑
�=3

Z[�](λ) :=
r∑
�=3

∑
j∈Z�

K

Z j (λ)z j

where here the coefficients Z j (λ) are unknown and where we denote by χ[�](λ) and
Z[�](λ) the homogeneous part of degree � in the polynomials χ(λ) and Z(λ).

Identifying the coefficients of degree � ≤ r in equation (5.5), we obtain

χ[�](λ) ◦ ϕh
H0

− χ[�](λ) = h P[�] − h Z[�](λ)+ hG[�](λ;χ∗, P∗, Z∗).

where G is a real Hamiltonian homogeneous of degree � depending on the polynomi-
als χ[k], P[k] and Z[k] for k < �. In particular, its coefficients are polynomials of order
≤ � of the coefficients χ j , Pj and Z j for j ∈ Zk

K , k < �.
Writing down the coefficients, this equation is equivalent to

∀ j ∈ Zr
K

(
eih	( j) − 1

)
χ j = h P j − h Z j + hG j

and hence we see that the key is to control the small divisors eih	( j) − 1 in order to
solve these equations recursively.
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We first give two results on the change of variables generated by the flow of a non
autonomous real Hamiltonian.

Lemma 5.3 Let χ(λ) be an element of C([0, 1], Tr ). Let τ(λ) := ϕλχ(λ) be the flow
associated with the non autonomous real Hamiltonian χ(λ). Let g ∈ C([0, 1], Tr ),
then we can write for all σ0 ∈ [0, 1],

g(σ0) ◦ τ(σ0)

= g(σ0)+
r−1∑
k=0

σ0∫
0

· · ·
σk∫

0

(
Adχ(σk ) ◦ · · · ◦ Adχ(σ1)g(σ0)

)
dσ1 · · · dσk + R(σ0)

(5.6)

where by definition AdP (Q) = {Q, P}

R(σ0) =
σ0∫

0

· · ·
σr∫

0

(
Adχ(σr ) ◦ · · · ◦ Adχ(σ1)g(σ0)

) ◦ τ(σr ) dσ1 · · · dσr . (5.7)

Each term in the sum in Eq. (5.6) belongs (at least) to the space C([0, 1], Tkr ). The
term R(σ0) defines an element of C([0, 1], C∞(CZK ,C)) and has a zero of order at
least r + 1 at the origin.

The classical proof of this lemma is for instance given in [13].
As mentioned previously, for a given polynomial χ ∈ C([0, 1], Tr ) with r ≥ 3, we

use the following notation

χ(λ, z) =
r∑
�=3

χ[�](λ) =
r∑
�=3

∑
j∈Z�

K

χ j (λ)z j (5.8)

where χ[�](λ) ∈ C([0, 1], Tr ) is a homogeneous polynomial of degree �. We now
precise the result of Lemma 5.3:

Proposition 5.4 Let χ(λ) be an element of C([0, 1], Tr ) having a zero of order at
least 3 at the origin. Let ϕλχ(λ) be the flow associated with the non autonomous real
Hamiltonian χ(λ). Let g ∈ C([0, 1], Tr ), then we can write for all λ ∈ [0, 1],

g(λ) ◦ ϕλχ(λ) = S(r)(λ)+ T (r)(λ)

where

• S(r)(λ) ∈ C([0, 1], Tr ). Moreover, if we write

S(z) =
r∑
�=3

S[�](λ)
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where S[�](λ) is a homogeneous polynomial of degree �, then we have for all
� = 3, . . . , r ,

S[�](λ) = g[�](λ)+ G[�](λ;χ∗, g∗)

where G[�](λ;χ∗, g∗) is a homogeneous polynomial depending on λ and the coef-
ficients S j are polynomials of order< � of the coefficients appearing in the decom-
position of g and χ . Moreover, we have

‖G[�](λ;χ∗, g∗)‖ ≤
(

1 +
�−1∑
m=3

‖g[m]‖�
)(

1 +
�−1∑
m=3

‖χ[m]‖�
)
. (5.9)

• T (r)(λ) ∈ C([0, 1], C∞(CZK ,C)) has a zero of order at least r + 1 at the origin
and satisfies for all z ∈ BK (1/2),

‖XT (r)(λ)(z)‖ ≤ Cr K 2rdCr (χ∗, g∗)‖z‖r

where

Cr (χ∗, g∗) ≤ C

(
1 +

r∑
m=3

‖g[m]‖r

Tr

)(
1 +

r∑
m=3

‖χ[m]‖r

Tr

)
(5.10)

with C depending on r.

Proof Using the previous lemma, we define S(r) as the polynomial part of degree less
or equal to r in the expression (5.6): this polynomial part may be computed iteratively,
from the homogeneity degree 3 to r . Actually, every Poisson bracket appearing in (5.6)
is taken with a polynomial χ(σk), which decomposes into homogeneous polynomials
with degree 3 at least. The terms appearing in the sum in (5.6) hence have an increas-
ing valuation, and this allows the iterative computation. The remainder terms, together
with the term R(λ) in (5.7), define the term T (r) (which is an element of C([0, 1], T2r )).
The properties of S(r)(λ) and T (r)(λ) are then easily shown using Lemma 5.1. ��

The next result (Proposition 5.5 below) yields the construction of the normal form
term ψK of Theorem 4.2.

Proposition 5.5 Assume that H := H (K ) satisfies (3.6) with P := P(K ) fulfilling
(3.8) and assume that h ≤ h0 satisfies the hypothesis (3.10). Then there exist

• a polynomial χ ∈ C([0, 1], Tr )

χ(λ) =
r∑
�=3

χ[�](λ) :=
r∑
�=3

∑
j∈Z�

K

χ j (λ)z j
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• a polynomial Z ∈ C([0, 1], Tr )

Z(λ) =
r∑
�=3

Z[�](λ) :=
r∑
�=3

∑
j∈A�

K

Z j (λ)z j

in normal form,
• a function R(λ) ∈ C([0, 1], C∞(BK (ρ),C)) with ρ < c0 K −β for some constant

c0 > 0 and β > 1 depending on r and d, and having a zero of order at least r + 1
at the origin

such that the following equation holds:

∀ λ ∈ [0, 1] χ(λ) ◦ ϕh
H0

− χ(λ) ◦ ϕ−λ
h P = h P − (h Z(λ)+ R(λ)) ◦ ϕ−λ

χ(λ).

(5.11)

Furthermore there exists a constant C0 depending on r and d such that

‖χ‖Tr
+ ‖Z‖Tr

≤ C0 K β

and such that for all ρ < c0 K −β and all z ∈ BK (ρ), we have

∀λ ∈ [0, 1], ‖X R(λ)(z)‖ ≤ C0 K β‖z‖r
.

Proof Identifying the coefficients of degree � ≤ r in Eq. (5.11), we get

χ[�] ◦ ϕh
H0

− χ[�] = h P[�] − h Z[�] + hG[�](χ∗, P∗, Z∗).

where G is a real Hamiltonian homogeneous of degree � depending on the polyno-
mials χ[k], P[k] and Z[k] for k < �. In particular, its coefficients are polynomials of
order ≤ � of the coefficients χ j , P j and Z j for j ∈ Zk

K , k < � and satisfy bounds
like (5.9). Writing down the coefficients, this equation is equivalent to

∀ j ∈ Ir

(
eih	( j) − 1

)
χ j = h P j − h Z j + hG j .

We solve this equation by setting

Z j = P j + G j and χ j = 0 for j ∈ A�
K

and

Z j = 0 and χ j = h

eih	( j) − 1
(P j + G j ) for j /∈ A�

K .

Using (3.10) and the result of Proposition 5.4 we get the claimed bound for some β
depending on r .
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To define R, we simply define it by Eq. (5.11). By construction and the assumption
on P = P(K ), and using bounds of the form (5.10), it is easy to show that it satisfies
the hypothesis. ��
Proof of Theorem 4.2 Integrating the equation (5.11) in λ, it is clear that the following
equation holds:

∀ λ ∈ [0, 1] ϕh
H0

◦ ϕλh P ◦ ϕλχ(λ) = ϕλχ(λ) ◦ ϕh
H0

◦ ϕλh Z(λ)+R(λ).

Note that using Proposition 5.4 and (5.1) we show that for z ∈ BK (ρ)with ρ = cK −β
we have

‖ϕλχ(λ)(z)− z‖ ≤ C K β‖z‖2
.

This implies in particular that

‖z‖ ≤ ‖ϕλχ(λ)(z)‖ + C K −β‖z‖

For K sufficiently large, this shows thatϕλχ(λ) is invertible and maps BK (ρ) to BK (2ρ).
Moreover, we have the estimate, for all λ ∈ [0, 1],

∥∥∥∥
(
ϕλχ(λ)

)−1
(z)− z

∥∥∥∥ ≤ C K β‖z‖2
.

We then define τK = ϕ1
χ(λ) and ψK = ϕ1

h Z(λ)+R(λ) and verify that these applications
satisfy the condition of the theorem for suitable constants C and β. ��

References

1. Bambusi, D.: Birkhoff normal form for some nonlinear PDEs. Comm. Math. Phys. 234, 253–283 (2003)
2. Bambusi, D.: A Birkhoff normal form theorem for some semilinear PDEs. Hamiltonian Dynamical

Systems and Applications, pp. 213–247. Springer, Berlin (2007)
3. Bambusi, D., Delort, J.-M., Grébert, B., Szeftel, J.: Almost global existence for Hamiltonian semi-

linear Klein-Gordon equations with small Cauchy data on Zoll manifolds. Comm. Pure Appl.
Math. 60(11), 1665–1690 (2007)

4. Bambusi, D., Grébert, B.: Birkhoff normal form for PDE’s with tame modulus. Duke Math. J.
135(3), 507–567 (2006)

5. Bazzani, A.: Normal forms for symplectic maps of R2n . Celestial Mech. 42(1–4), 107–128 (1987)
6. Bazzani, A., Marmi, S., Turchetti, G.: Nekhoroshev estimate for isochronous nonresonant symplectic

maps. Celestial Mech. Dynam. Astronom. 47(4), 333–359 (1989)
7. Cohen, D., Hairer, E., Lubich, C.: Long-time analysis of nonlinearly perturbed wave equations via

modulated Fourier expansions. Arch. Ration. Mech. Anal. 187, 341–368 (2008)
8. Cohen, D., Hairer, E., Lubich, C.: Conservation of energy, momentum and actions in numerical dis-

cretizations of nonlinear wave equations. Numer. Math. 110, 113–143 (2008)
9. Debussche, A., Faou, E.: Modified energy for split-step methods applied to the linear Schrödinger

equation (2009, preprint). http://hal.archives-ouvertes.fr/hal-00348221/fr/
10. Deuflhard, P.: A study of extrapolation methods based on multistep schemes without parasitic solu-

tions. Z. Angew. Math. Phys. 30, 177–189 (1979)
11. Dujardin, G., Faou, E.: Normal form and long time analysis of splitting schemes for the linear

Schrödinger equation with small potential. Numer. Math. 106(2), 223–262 (2007)

123

http://hal.archives-ouvertes.fr/hal-00348221/fr/


458 E. Faou et al.

12. Faou, E., Grébert, B.: Resonances in long time integration of semi linear Hamiltonian PDEs. http://
arxiv.org/abs/0904.1459

13. Faou, E., Grébert, B., Paturel, E.: Birkhoff normal form for splitting methods applied to semi
linear Hamiltonian PDEs. Part II. Abstract splitting Numerische Mathematik (2008). doi:10.1007/
s00211-009-0257-z

14. Gauckler, L., Lubich, C.: Nonlinear Schrödinger equations and their spectral discretizations over long
times. Found. Comput. Math. (2009, to appear)

15. Gauckler, L., Lubich, C.: Splitting integrators for nonlinear Schrödinger equations over long times.
Found. Comput. Math. (2009, to appear)

16. Gradinaru, V.: Strang splitting for the time-dependent Schrödinger equation on sparse grids. SIAM J.
Numer. Anal. 46, 103–123 (2007)

17. Grébert, B.: Birkhoff normal form and Hamiltonian PDEs, Partial differential equations and applica-
tions, Sémin. Congr., vol. 15, pp. 1–46. Soc. Math. France, Paris (2007)

18. Grébert, B., Imekraz, R., Paturel, E.: Normal forms for semi linear quantum harmonic oscillators.
Comm. Math. Phys. (2009, to appear)

19. Hairer, E., Lubich, C.: Spectral semi-discretisations of weakly nonlinear wave equations over long
times. Found. Comput. Math. 8, 319–334 (2008)

20. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Structure-Preserving Algorithms
for Ordinary Differential Equations, 2nd edn. Springer, Berlin (2006)

21. Kuksin, S., Pöschel, J.: On the inclusion of analytic symplectic maps in analytic Hamiltonian flows and
its applications. Seminar on Dynamical Systems (St. Petersburg, 1991), pp. 96–116. Progr. Nonlinear
Differential Equations Appl., vol. 12. Birkhauser, Basel (1994)

22. Lubich, C.: From quantum to classical molecular dynamics: reduced models and numerical analysis.
Zürich Lectures in Advanced Mathematics. European Mathematical Society, 153p (2008)

23. Shang, Z.: Resonant and Diophantine step sizes in computing invariant tori of Hamiltonian sys-
tems. Nonlinearity 13, 299–308 (2000)

123

http://arxiv.org/abs/0904.1459
http://arxiv.org/abs/0904.1459
http://dx.doi.org/10.1007/s00211-009-0257-z
http://dx.doi.org/10.1007/s00211-009-0257-z

	Birkhoff normal form for splitting methods appliedto semilinear Hamiltonian PDEs. Part I. Finite-dimensional discretization
	Abstract
	1 Introduction
	2 Description of the method
	3 Setting of the problem
	3.1 Hamiltonian formalism
	3.2 Hypothesis
	3.3 Non-resonance condition

	4 Statement of the result and applications
	4.1 Main results
	4.2 Examples

	5 Proof of the normal form result


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


