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Abstract We develop a general convergence analysis for a class of inexact Newton-
type regularizations for stably solving nonlinear ill-posed problems. Each of the meth-
ods under consideration consists of two components: the outer Newton iteration and
an inner regularization scheme which, applied to the linearized system, provides the
update. In this paper we give a novel and unified convergence analysis which is not
confined to a specific inner regularization scheme but applies to a multitude of schemes
including Landweber and steepest decent iterations, iterated Tikhonov method, and
method of conjugate gradients.

Mathematics Subject Classification (2000) 65J20 · 65J22

1 Introduction

During the last two decades a broad variety of Newton-like methods for regularizing
nonlinear ill-posed problems have been suggested and analyzed, see, e.g. [2,13,20] for
an overview and original references. So similar some of the methods are so different
are their analyses, even when the same structural assumptions on the nonlinearity are
required.
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522 A. Lechleiter, A. Rieder

This situation is in contrast to the linear setting. Here, a general theory is known
when the (linear) regularization scheme is generated by a regularizing filter function,
see, e.g. [6,14,17,20]. Properties of the scheme can be directly read off from properties
of the generating filter function.

The present paper was driven by the wish to develop a similar general theory for a
class of regularization schemes of inexact Newton-type for nonlinear ill-posed prob-
lems. This class has been introduced and named REGINN (REGularization based on
INexact Newton iteration) by the second author [18,19,21]. Each of the REGINN-
methods consists of two components, the outer Newton iteration and the inner scheme
providing the increment by regularizing the local linearization. Although the methods
differ in their inner regularization schemes we are able to present a common con-
vergence analysis. To this end we compile five features which not only guarantee
convergence but are also shared by various inner regularization schemes which are
so different as, for instance, Landweber iteration, steepest decent iteration, implicit
iteration, and method of conjugate gradients.

Let us now set the stage for REGINN. We like to solve the nonlinear ill-posed
problem

F(x) = yδ (1.1)

where F : D(F) ⊂ X → Y operates between the real Hilbert spaces X and Y . Here,
D(F) denotes the domain of definition of F . The right hand side yδ is a noisy version
of the exact but unknown data y = F(x+) satisfying

‖y − yδ‖Y ≤ δ. (1.2)

The nonnegative noise level δ is assumed to be known. Algorithm REGINN for solv-
ing (1.1) is a Newton-type algorithm which updates the actual iterate xn by adding a
correction step sN

n obtained from solving a linearization of (1.1):

xn+1 = xn + sN
n , n ∈ N0, (1.3)

with an initial guess x0. For obvious reasons we like to have sN
n as close as possible

to the exact Newton step

se
n = x+ − xn .

Assuming F to be continuously Fréchet differentiable with derivative F ′ : D(F) →
L(X, Y ) the exact Newton step satisfies the linear equation

F ′(xn)se
n = y − F(xn) − E(x+, xn) =: bn (1.4)

where

E(v,w) := F(v) − F(w) − F ′(w)(v − w)
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General convergence theory for Newton regularizations 523

is the linearization error. In the sequel we will use the notation

An = F ′(xn).

Unfortunately, the above right hand side bn is not available, however, we know a
perturbed version

bε
n := yδ − F(xn) with ‖bn − bε

n‖Y ≤ δ + ‖E(x+, xn)‖Y . (1.5)

Therefore, we determine the correction step sN
n as a stable approximate solution of

Ans = bε
n (1.6)

by applying a regularization scheme, for instance, Landweber iteration, Showalter
method, (iterated) Tikhonov regularization, method of conjugate gradients, etc. There-
fore, let {sn,m}m ⊂ X be the sequence of regularized approximations generated by a
chosen regularization scheme applied to (1.6).

We now explain how we pick the Newton step sN
n out of {sn,m}: For an adequately

chosen tolerance µn ∈ ]0, 1[ (see Lemma 2.3 below) define

mn = min
{
m ∈ N : ‖Ansn,m − bε

n‖Y < µn‖bε
n‖Y

}
, (1.7)

and set

sN
n := sn,mn . (1.8)

In other words: the Newton step is the first element of {sn,m} for which the residual
‖Ansn,m − bε

n‖Y is less than µn‖bε
n‖Y .

Finally, we stop the Newton iteration (1.3) by a discrepancy principle: choose R > 0
and accept the iterate xN (δ) as approximation to x+ if

‖yδ − F(xN (δ))‖Y ≤ Rδ < ‖yδ − F(xn)‖Y , n = 0, 1, . . . , N (δ) − 1, (1.9)

see Fig. 1.
The remainder of the paper is organized as follows. In the next section we present a

residual and level set based analysis ofREGINN requiring only three rather elementary
properties of the regularizing sequence {sn,m} together with a structural restriction on
the nonlinearity F . In a certain sense, this restriction is equivalent to the meanwhile
well-established tangential cone condition, see, e.g. [13,20]. Under our assumptions
REGINN is well defined and terminates. Moreover, all iterates stay in the level set
L = {x ∈ D(F) : ‖F(x) − yδ‖Y ≤ ‖F(x0) − yδ‖Y }. Unfortunately, L cannot be
assumed bounded, thus prohibiting the use of a weak-compactness argument to verify
weak convergence at least.

Local convergence, however, is our topic in Sect. 3. Provided the regularizing
sequence {sn,m} exhibits a specific monotone error decrease (up to a stopping index)
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Fig. 1 REGINN: REGularization based on INexact Newton iteration

all REGINN-iterates will stay in a ball about x+. Finally, we prove strong convergence
of {xN (δ)}δ as δ → 0.

Several regularization methods applied to (1.6) generate sequences {sn,m} meeting
our assumptions. Some of the respective proofs, which do not fit comfortably in the
body of the text, are given in two appendices.

We did not include a section on numerical experiments as we do not present new
methods but a new and unified convergence analysis for these methods. The interested
reader should consult our paper [15] where we solved the inverse problem of imped-
ance tomography using REGINN furnished with the conjugate gradients iteration for
computing the Newton update (1.8).

2 Residual and level set based analysis

For the analysis of REGINN we require three properties of the regularizing sequence
{sn,m}, namely

〈Ansn,m, bε
n〉Y > 0 ∀m ≥ 1 whenever A∗

nbε
n �= 0, (2.1)

and

lim
m→∞ Ansn,m = PR(An)

bε
n . (2.2)
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General convergence theory for Newton regularizations 525

The latter convergence guarantees existence of a number ϑn ≥1 such that ‖Ansn,m‖Y ≤
ϑn‖bε

n‖Y for all m. We, however, require also uniformity in n: There is a � ≥ 1 with

‖Ansn,m‖Y ≤ �‖bε
n‖Y ∀m, n. (2.3)

Typically, {sn,m} is generated by

sn,m = gm(A∗
n An)A∗

nbε
n

where gm : [0, ‖An‖2] → R is a so-called filter function. If

0 < λgm(λ) ≤ Cg, λ > 0, and lim
m→∞ gm(λ) = 1/λ, λ > 0,

then all requirements (2.1), (2.2), and (2.3) are fulfilled where � ≤ Cg . Here are some
concrete examples:

• Landweber iteration: gm(λ) = λ−1 (1 − (1 − ωλ)m) where ω ∈ ]0, ‖An‖−2[ and
Cg = 1.

• Tikhonov regularization: gm(λ) = 1/(λ+αm) where {αm}m is a positive sequence
converging strongly monotone to zero. Thus, Cg = 1.

• Iterated Tikhonov regularization (implicit iteration): gm(λ) = λ−1
(
1 − ∏m

k=1
(1 + αkλ)−1

)
where the positive sequence {αk}k is bounded away from zero, typ-

ically {αk} ⊂ [αmin, αmax] where 0 < αmin < αmax. Here, Cg = 1.
• Showalter regularization:

gm(λ) =
⎧
⎨

⎩

λ−1(1 − exp
(−α−1

m λ)
) : λ > 0,

α−1
m : λ = 0,

where the positive sequence {αm}m converges strongly monotone to zero. Again,
Cg = 1.

• Semi-iterative ν-methods (ν > 0) due to Brakhage [3]: Let An be scaled, that is,

‖An‖ ≤ 1. Then, gm(λ) =
(

1 − P̃(ν)
m (λ)

)
/λ where P̃(ν)

m (λ) = P(2ν−1/2,−1/2)
m (1−

2λ)/P(2ν−1/2,−1/2)
m (1) with P(α,β)

m denoting the Jacobi-polynomials. As P̃(ν)
m

attains negative values in ]0, 1[ (all roots are within this interval) we have Cg > 1.
Sharp estimates for Cg or � are hard to obtain.

Also nonlinear regularization schemes, which cannot be represented by filter functions,
satisfy (2.1), (2.2), and (2.3):

• steepest decent method where � ≤ 2,1 and
• method of conjugate gradients (cg-method) where � = 1,

provided the staring iterate is 0, see Appendix A for the respective proofs.

1 We strongly conjecture that � = 1 for the steepest decent method, see Remark A.1 below.
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Remark 2.1 Recently, Jin and Tautenhahn [12] presented a subtle convergence anal-
ysis of (generalized) iteratively regularized Gauß–Newton methods,

xn+1 = xn + gmn

(
A∗

n An
)

A∗
nbε

n + (
I − gmn

(
A∗

n An
)

A∗
n An

)
(x0 − xn), (2.4)

stopped by the discrepancy principle (1.9). The iteratively regularized Gauß–Newton
method (with Tikhonov regularization) has been introduced by Bakushinsky in his pio-
neering work [1]. The differences of (2.4) to REGINN consist in the rightmost term
and in the a priori choice of the sequence {mn}n which is assumed to be monotonically
increasing by a certain rate.

For a large class of filter functions (including Landweber and Showalter filters)
Jin and Tautenhahn proved deep and far-reaching convergence results. Under weaker
assumptions, not covered by Theorems 1, 2 or 3 in [12], we obtain weaker convergence
results. However, the technique of Jin and Tautenhahn does not apply to REGINN [12,
Remark 3] and cannot be extended to other nonlinear regularization schemes in a
straightforward way.

Now we present first results. By (2.1) any direction sn,m is a descent direction for
the functional ϕ(·) = 1

2‖yδ − F(·)‖2
Y .

Lemma 2.2 We have that

〈∇ϕ(xn), sn,m〉X < 0 for m ≥ 1 whenever A∗
nbε

n �= 0.

Proof By ∇ϕ(·) = −F ′(·)∗ (yδ − F(·)) we find that

〈∇ϕ(xn), sn,m〉X = −〈bε
n, Ansn,m〉Y

(2.1)
< 0

and the lemma is verified. ��
If µn is not too small then the Newton step sN

n = sn,mn is well defined indeed.

Lemma 2.3 Assume (2.2) and ‖PR(An)⊥bε
n‖Y < ‖bε

n‖Y . Then, for any tolerance

µn ∈
]‖PR(An)⊥bε

n‖Y

‖bε
n‖Y

, 1
]

the stopping index mn (1.7) is well defined.

Proof By (2.2)

lim
m→∞

‖Ansn,m − bε
n‖Y

‖bε
n‖Y

= ‖PR(An)⊥bε
n‖Y

‖bε
n‖Y

< µn

which completes the proof. ��
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General convergence theory for Newton regularizations 527

Remark 2.4 If the assumption in above lemma is violated then REGINN fails (as well
as other Newton schemes): under ‖PR(An)⊥bε

n‖Y = ‖bε
n‖Y we have that sn,m = 0 for

all m.

Now we provide a framework that guarantees termination of REGINN (Fig. 1), that
is, we prove existence of xN (δ).

For x0 ∈ D(F) such that ‖F(x0) − yδ‖Y > δ define the level set

L(x0) := {
x ∈ D(F) : ‖F(x) − yδ‖Y ≤ ‖F(x0) − yδ‖Y

}
.

Note that x+ ∈ L(x0).
Further, we restrict the structure of nonlinearity. Throughout we work with the

following bound for the linearization error:

‖E(v,w)‖Y ≤ L ‖F ′(w)(v − w)‖Y for one L < 1

and for all v,w ∈ L(x0) with v − w ∈ N
(
F ′(w)

)⊥. (2.5)

From (2.5) we derive that

‖E(v,w)‖Y ≤ ω ‖F(w) − F(v)‖Y where ω = L

1 − L
> L (2.6)

which is the tangential cone condition introduced by Scherzer [22]. In the convergence
analysis of Newton methods for ill-posed problems, both (2.5) and (2.6) are adequate
to replace the Lipschitz continuity of the Fréchet derivative which is typically used to
bound the linearization error in the framework of well-posed problems, see, e.g. [13,
Sect. 2.1] for a detailed explanation.

Remark 2.5 Actually, (2.5) and (2.6) are equivalent in the following sense: (2.6) for
one ω < 1 implies (2.5) with L = ω

1−ω
.

Moreover, we assume the existence of a � ∈ [0, 1[ such that

∥
∥PR(F ′(u))⊥

(
F(x+) − F(u)

)∥∥
Y

≤ �‖F(x+) − F(u)‖Y

for all u ∈ L(x0). (2.7)

Assumption (2.7) is quite natural as it characterizes those nonlinear problems which
can be tackled by local linearization (compare Remark 2.4): As (2.7) is equivalent to

√
1 − �2 ‖F(x+) − F(u)‖Y ≤

∥
∥
∥PR(F ′(u))

(
F(x+) − F(u)

)∥∥
∥

Y
,

the right hand side of the linearized system (1.6) has a component in the closure of the
range of An and the magnitude of this component is uniformly bounded from below
by

√
1 − �2.

We give an example of a nonlinear operator where both (2.5) and (2.7) are satisfied
globally in the domain of definition.
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528 A. Lechleiter, A. Rieder

Example 2.6 Let f : R → R be a continuously differentiable function with a deriv-
ative bounded from below: f ′(t) ≥ f ′

min > 0. We define the operator F : X → Y
by

F(x) =
∞∑

n=1

1

n
f (〈x, vn〉X ) un

where {vn} and {un} are orthonormal bases in the separable Hilbert spaces X and Y ,
respectively. The Fréchet derivative of F is the compact operator

F ′(x)h =
∞∑

n=1

1

n
f ′ (〈x, vn〉X ) 〈h, vn〉X un

with range R(F ′(x)) = {
y ∈ Y : {n〈y, un〉Y }n ∈ �2

}
. Clearly, R(F ′(x)) = Y . Hence,

(2.7) holds true with � = 0.
Now we further restrict the nonlinearity by imposing a bound from above on

the derivative of f : f ′(t) ≤ f ′
max with f ′

max < 2 f ′
min. For instance, f (t) = t +

0.25 arctan(t) + 1 or f (t) = 6t + cos(t). By the mean value theorem there is a
ξ ∈ ]s, t[ such that f (t) − f (s) = f ′(ξ)(t − s). Therefore, for all s, t ∈ R

| f (t) − f (s) − f ′(s)(t − s)| = | f ′(ξ) − f ′(s)|
f ′(s)

| f ′(s)(t − s)|

≤ f ′
max − f ′

min

f ′
min︸ ︷︷ ︸

=: L < 1

| f ′(s)(t − s)|

implying

‖E(v,w)‖Y ≤ L ‖F ′(w)(v − w)‖Y for all v,w ∈ X.

For L small enough, (2.5) implies (2.7).

Lemma 2.7 Assume (2.5) to hold with L < 1/2. Then, (2.7) holds for

� = L

1 − L
< 1.

Proof We have that

∥
∥PR(F ′(u))⊥

(
F(x+) − F(u)

)∥∥
Y

= ∥
∥PR(F ′(u))⊥

(
F(x+) − F(u) − F ′(u)(x+ − u)

)∥∥
Y

≤ L ‖F ′(u)(x+ − u)‖Y .
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General convergence theory for Newton regularizations 529

Further,

‖F ′(u)(x+ − u)‖Y ≤ ‖E(x+, u)‖Y + ‖F(x+) − F(u)‖Y

≤ L ‖F ′(u)(x+ − u)‖Y + ‖F(x+) − F(u)‖Y

yielding first

‖F ′(u)(x+ − u)‖Y ≤ 1

1 − L
‖F(x+) − F(u)‖Y

and then the assertion. ��
Theorem 2.8 Let D(F) be open and choose x0 ∈ D(F) such that L(x0) ⊂ D(F).
Assume (2.1), (2.2), (2.3), (2.5), and (2.7) to hold true with �, L, and � satisfying

�L + � < � for one � < 1. (2.8)

Further, choose

R >
1 + �

� − �L − �
. (2.9)

Finally, select all tolerances {µn} such that

µn ∈ ]
µmin,n, � − �L

]
, with µmin,n := (1 + �)δ

‖bε
n‖Y

+ �.

Then, there exists an N (δ) such that all iterates {x1, . . . , xN (δ)} of REGINN are well
defined and stay in L(x0). Moreover, only the final iterate satisfies the discrepancy
principle, that is,

‖yδ − F(xN (δ))‖Y ≤ Rδ, (2.10)

and the nonlinear residuals decrease linearly at an estimated rate

‖yδ − F(xn+1)‖Y

‖yδ − F(xn)‖Y
< µn + θn L ≤ �, n = 0, . . . , N (δ) − 1, (2.11)

where θn = ‖AnsN
n ‖Y /‖bε

n‖Y ≤ �.

Proof Before we start with the proof let us discuss our assumptions on L , �, �, and R.
Condition (2.8) guarantees that the denominator of the lower bound on R is positive.
The lower bound on R is needed to have a well-defined nonempty interval for selecting
µn . Indeed, as long as ‖bε

n‖Y > Rδ we get

µmin,n = (1 + �)δ

‖bε
n‖Y

+ � <
1 + �

R
+ �

(2.9)
< � − �L . (2.12)
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We will argue inductively and therefore assume the iterates {x1, . . . , xn} to be well
defined in L(x0). If ‖bε

n‖Y ≤ Rδ then REGINN will terminate with N (δ) = n.
Otherwise, ‖bε

n‖Y > Rδ and µn ∈ ]µmin,n,� − �L] will provide Newton step sN
n :

‖PR(An)⊥bε
n‖Y

‖bε
n‖Y

≤ δ + ‖PR(An)⊥(F(x+) − F(xn))‖Y

‖bε
n‖Y

(2.7)≤ δ + �‖F(x+) − F(xn)‖Y

‖bε
n‖Y

≤ (1 + �)δ + �‖bε
n‖Y

‖bε
n‖Y

= µmin,n < µn . (2.13)

By Lemma 2.3 the Newton step sN
n and hence xn+1 = xn + sN

n ∈ X are well defined.
We next show that xn+1 is in L(x0). First, sN

n is a decent direction: Indeed A∗
nbε

n = 0
gives bε

n ∈ R(An)⊥ contradicting (2.13). Hence, A∗
nbε

n �= 0 and Lemma 2.2 applies.
As D(F) is assumed to be open there exists a λ > 0 such that xn,λ := xn + λ sN

n is in
D(F) and

‖yδ − F(xn,λ)‖Y < ‖yδ − F(xn)‖Y ≤ ‖yδ − F(x0)‖Y .

Thus, xn,λ ∈ L(x0). Further, xn,λ − xn = λ sN
n ∈ R(A∗

n) ⊂ N(An)⊥. Accordingly we
may proceed by estimating

‖yδ − F(xn,λ)‖Y = ‖yδ − F(xn) − λAnsN
n − (F(xn,λ) − F(xn) − λAnsN

n )‖Y

(2.5)≤ ‖yδ − F(xn) − λAnsN
n ‖Y + L λ ‖AnsN

n ‖Y

≤ ‖(1 − λ)bε
n + λ(bε

n − AnsN
n )‖Y + L λ θn ‖bε

n‖Y

< (1 − λ)‖bε
n‖Y + µn λ ‖bε

n‖Y + L λ θn ‖bε
n‖Y

≤ (1 − λ(1 − �)) ‖bε
n‖Y . (2.14)

Define

λmax := sup
{
λ ∈ [0, 1] : xn,λ ∈ L(x0)

}
.

Assume λmax < 1, that is, xn,λmax ∈ ∂L(x0) ⊂ D(F). By continuity we obtain from
(2.14) that

‖yδ − F(xn,λmax)‖Y ≤ (1 − λmax(1 − �)) ‖bε
n‖Y < ‖bε

n‖Y ≤ ‖bε
0‖Y

contradicting xn,λmax ∈ ∂L(x0). Hence, λmax = 1 and xn+1 = xn,λmax ∈ L(x0).
Finally, ‖bε

n+1‖Y < (µn + θn L)‖bε
n‖Y by plugging λ = 1 into (2.14). ��

A few comments are in order.
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Remark 2.9 Deuflhard et al. [5, formula (2.11)] have basically introduced the follow-
ing Newton–Mysovskikh-like condition

∥
∥(F ′(v) − F ′(w)

)
F ′(w)+

∥
∥ ≤ L for all v,w ∈ L(x0) (2.15)

where F ′(w)+ denotes the Moore–Penrose inverse of F ′(w). They discovered
interesting relations to other structural assumptions used in the convergence analysis
of iterative methods for the solution of nonlinear ill-posed problems [5, Lemma 2.3].

If L(x0) is convex then (2.15) implies (2.5). Indeed, for v,w ∈ L(x0) with v−w ∈
N(F ′(w))⊥ we have

F ′(w)+F ′(w)(v − w) = PN(F ′(w))⊥(v − w) = v − w

resulting in

‖E(v,w)‖Y ≤
1∫

0

∥
∥(F ′(w + t (v − w)) − F ′(w)

)
(v − w)

∥
∥

Y dt

=
1∫

0

∥
∥(F ′(w + t (v − w)) − F ′(w)

)
F ′(w)+F ′(w)(v − w)

∥
∥

Y dt

≤ L
∥
∥F ′(w)(v − w)

∥
∥

Y .

Remark 2.10 An assumption similar to (2.7) is

∥
∥PR(F ′(u))⊥ (η − F(u))

∥
∥

Y
≤ �̃‖η − F(u)‖Y for one �̃ < 1

and for all u ∈ L(x0) and all η ∈ Y with ‖η − F(x+)‖Y ≤ δmax. (2.16)

Under above property the hypotheses of Theorem 2.8 can be relaxed: Let δ ≤ δmax.
Since

‖PR(An)⊥bε
n‖Y

‖bε
n‖Y

≤ �̃

the assertion of Theorem 2.8 remains true whenever �̃+�L < �, {µn} ⊂ ]̃�,�−�L]
and R > 0 (no other restriction on R, compare (2.9)).

The mapping from Example 2.6 satisfies (2.16) with �̃ = 0 for any δmax ≥ 0. Nev-
ertheless, (2.16) is quite restrictive. While (2.7) holds trivially for any linear mapping
(with � = 0), (2.16) can only hold for a linear mapping with a dense range. Indeed,
let F : X → Y be a linear and bounded mapping with a non-closed range. Assume
(2.16) as well as R(F) �= Y . Let yδ �∈ R(F) (a natural assumption for noisy data).
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532 A. Lechleiter, A. Rieder

There is a sequence {un} ⊂ X such that limn→∞ ‖Fun − PR(F)
yδ‖Y = 0. Since

lim
n→∞ ‖Fun − yδ‖Y = ‖PR(F)⊥ yδ‖Y = ‖PR(F)⊥(Fx+ − yδ)‖Y ≤ δ

< ‖Fx0 − yδ‖Y

we may assume the whole sequence {un} is in L(x0). Now,

∥
∥PR(F)⊥

(
yδ − Fun

)∥∥
Y

‖yδ − Fun‖Y
=

∥
∥PR(F)⊥ yδ

∥
∥

Y

‖yδ − Fun‖Y

n→∞−−−→ 1

contradicts (2.16).

3 Local convergence

After establishing termination ofREGINN the next question to answer is: Does the fam-
ily {xN (δ)}0<δ≤δmax converge to a solution of F(·) = y as the noise level δ approaches
0 ?

Since

‖y − F(xN (δ))‖Y
(2.10)
< (R + 1)δ (3.1)

the images of {xN (δ)} under F converge to y. This, however, implies by no means con-
vergence of {xN (δ)}. Indeed, {xN (δ)} might explode as δ → 0. There is no reason to
suppose compactness or boundedness of the level set L(x0). Contrary, for an ill-posed
problem L(x0) is expected to be unbounded.

In this section we will show boundedness and then convergence of {xN (δ)} provided
the regularizing sequence {sn,m}0≤m≤mn exhibits a fourth property in addition to those
from (2.1), (2.2), and (2.3). We require the following:

For any n ∈ {1, . . . , mn} there is a vn,m−1 ∈ Y such that

sn,m = sn,m−1 + A∗
nvn,m−1.

Further, let there be a continuous and monotonically increasing function

� : R → R with t ≤ �(t) for t ∈ [0, 1] such that if γn =
‖bε

n − Anse
n‖Y /‖bε

n‖Y < 1 then

‖sn,m − se
n‖2

X − ‖sn,m−1 − se
n‖2

X

< CM‖bε
n‖Y ‖vn,m−1‖Y

(
�(γn) − ‖bε

n − Ansn,m−1‖Y
‖bε

n‖Y

)

for m = 1, . . . , mn where CM > 0 is a constant.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.2)
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A direct consequence of (3.2) is monotonicity, i.e.,

‖bε
n − Ansn,m−1‖Y

‖bε
n‖Y

≥ �(γn) �⇒ ‖sn,m − se
n‖X < ‖sn,m−1 − se

n‖X . (3.3)

Examples of methods with property (3.2) are

• Landweber iteration and steepest decent: �(t) = 2t ,

• Implicit iteration: �(t) = 2
αmax + s

αmin
t where s = supn ‖An‖2 and {αk}k ⊂

[αmin, αmax],
• cg-method: �(t) = √

2t ,

the respective proofs are given in Appendix B.

3.1 Monotone error decay

Under (3.2) we formulate a version of Theorem 2.8 where all assumptions are related
to a ball about x+, that is, the implicitly defined, generally unbounded level set L(x0)

is replaced by Br (x+). Especially, (2.5) is replaced by

‖E(v,w)‖Y ≤ L ‖F ′(w)(v − w)‖Y for one L < 1

and for all v,w ∈ Br (x+) ⊂ D(F). (3.4)

Theorem 3.1 Assume (2.1), (2.2), (2.3), (3.2). Additionally, let (2.7) hold true in
Br (x+) and assume (3.4) with L satisfying

�

(
L

1 − L

)
+ �L < � for one � < 1.2 (3.5)

Further, define

µmin := �

((
1

R
+ L

)
1

1 − L

)

and choose R so large that

µmin + �L < �. (3.6)

Restrict all tolerances {µn} to [µmin, � − �L] and start with x0 ∈ Br (x+).
Then, there exists an N (δ) such that all iterates {x1, . . . , xN (δ)} of REGINN are

well defined and stay in Br (x+). We even have a strictly monotone error reduction:

‖x+ − xn‖X < ‖x+ − xn−1‖X , n = 1, . . . , N (δ). (3.7)

2 As L
1−L + L ≤ L

1−L +�L ≤ �
(

L
1−L

)
+�L < 1 we have the necessary condition L < (3−√

5)/2 ≈
0.38.
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Moreover, only the final iterate satisfies the discrepancy principle (2.10) and the non-
linear residuals decrease linearly at the estimated rate (2.11).

Proof Let us first discuss our assumptions. If (3.5) applies then, by continuity of �,
there exists a R such that µmin satisfies (3.6) and the interval for selecting the tolerances
is nonempty.

As before we use an inductive argument: Assume the iterates x1, . . . , xn to be well
defined in Bρ(x+). If ‖bε

n‖Y < Rδ REGINN will be stopped with N (δ) = n.
Otherwise, ‖bε

n‖Y ≥ Rδ and µn ∈ [µmin,� − �L] will provide a new Newton
step. Indeed, in view of (2.13) and (2.12) we have that

‖PR(An)⊥bε
n‖Y

‖bε
n‖Y

<
1 + �

R
+ �

(3.2)≤ �

(
1 + �

R
+ �

)
≤ µmin

where the latter estimate holds true due to � ≤ L/(1− L) (Lemma 2.7) and the mono-
tonicity of �. By Lemma 2.3 the Newton step sN

n and hence xn+1 = xn + sN
n ∈ X are

well defined.
It remains to verify the strictly monotone error reduction (3.7). We will rely on

(3.3). By (1.5) and (3.4), we have

‖bn − bε
n‖Y ≤ δ + L‖bn‖Y ≤ 1

R
‖bε

n‖Y + L(‖bn − bε
n‖Y + ‖bε

n‖Y )

yielding first

γn = ‖bn − bε
n‖Y

‖bε
n‖Y

≤
(

1

R
+ L

)
1

1 − L

and then

�(γn) ≤ µmin ≤ µn .

Accordingly, ‖bε
n − Ansn,m−1‖Y ≥ µmin‖bε

n‖Y , m = 1, . . . , mn , and we have by
repeatedly applying the monotonicity (3.3)

‖x+ − xn+1‖X = ‖se
n − sn,mn ‖X

< ‖se
n − sn,mn−1‖X < ‖se

n − sn,mn−2‖X

< · · · < ‖se
n − sn,0‖X = ‖se

n‖X = ‖x+ − xn‖X (3.8)

which is (3.7). ��
Remark 3.2 Some nonlinear ill-posed problems (such as a model in electrical imped-
ance tomography, see [16]) satisfy a slightly stronger version of (3.4) where L is
replaced by C‖v −w‖X . In view of (3.7) we expect in this situation the reduction rate
(2.11) to approach µn as the Newton iteration progresses.
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Remark 3.3 A stronger assumption than (3.4) is

‖E(v,w)‖Y ≤ L̃ ‖F ′(w)(v − w)‖1+κ
Y for one κ > 0

and for all v,w ∈ Br (x+). (3.9)

Here, L̃ is allowed to be arbitrarily large. If r is sufficiently small we have (3.4) with

L := 2κrκ L̃ max
u∈Br (x+)

‖F ′(u)‖κ < 1.

Now, let r be so small that all assumptions of Theorem 3.1 apply with L as above.
Additionally, choose x0 ∈ Br (x+) satisfying ‖yδ − F(x0)‖κ

Y ≤ L/L̃ .3 Then, all
assertions of Theorem 3.1 remain valid with the stronger rate

‖yδ − F(xn+1)‖Y

‖yδ − F(xn)‖Y
≤ µn + θ1+κ

n �κn L ≤ �, n = 0, . . . , N (δ) − 1. (3.10)

We only need to verify the rate. We have

∥
∥bε

n+1

∥
∥

Y =
∥
∥
∥bε

n − AnsN
n + E(xn+1, xn)

∥
∥
∥

Y

(3.9)≤ µn
∥
∥bε

n

∥
∥

Y + L̃
∥
∥
∥AnsN

n

∥
∥
∥

1+κ

Y

≤
(
µn + L̃θ1+κ

n

∥
∥bε

n

∥
∥κ

Y

) ∥
∥bε

n

∥
∥

Y

which inductively implies (3.10).

Remark 3.4 Both bounds (3.4) and (3.9) for the linearization error may be derived
from the following affine contravariant Lipschitz condition:

∥
∥(F ′(v) − F ′(w)

)
(v − w)

∥
∥

Y ≤ Lκ ‖F ′(w)(v − w)‖1+κ
Y

for one κ ∈ [0, 1] and for all v,w ∈ Br (x+) (3.11)

where Lκ > 0 and in case κ = 0 we require L0 < 1. Indeed,

‖E(v,w)‖Y =
∥
∥
∥
∥
∥
∥

1∫

0

(
F ′ (w + t (v − w)) − F ′(w)

)
(v − w) dt

∥
∥
∥
∥
∥
∥

Y

≤ Lκ

1 + κ
‖F ′(w)(v − w)‖1+κ

Y .

For a general discussion of the importance of affine contravariance for Newton-like
algorithms we refer to Sect. 1.2.2 of Deuflhard’s book [4]. In particular, Sect. 4.2 of
the same book treats Gauß–Newton methods for (well-posed) finite dimensional least
squares problems under (3.11) globally in D(F) and with κ = 1.

3 This bound implicitly forces ‖y − yδ‖κ
Y < L/L̃ .
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3.2 Convergence

We now turn to the convergence of {xN (δ)}0<δ≤δmax as δ → 0.

Corollary 3.5 Adopt all assumptions and notations of Theorem 3.1. Additionally let
F be weakly sequentially closed and let {δ j } j∈N be a positive zero sequence.

Then, any subsequence of {xN (δ j )} j∈N contains a subsequence which converges
weakly to a solution of F(x) = y.

Proof Any subsequence of the bounded family {xN (δ j )} j∈N ⊂ Br (x+) is bounded
and, therefore, has a weakly convergent subsequence. Let ξ be its weak limit. By (3.1)
the images under F of this weakly convergent subsequence converge (weakly) to y.
Due to the weak closedness of F we have that y = F(ξ). ��

The whole family {xN (δ j )} j∈N converges weakly to x+ if x+ is the unique solution
of F(x) = y in Br (x+). This follows, for instance, from Proposition 10.13 (2) in [24].
However, under the assumptions of Theorem 3.1, the latter can only happen if N(A),
the null space of A = F ′(x+), is trivial. In fact, if 0 �= v ∈ N(A) then

‖F(x+ + tv) − y‖Y = ‖F(x+ + tv) − F(x+)‖Y
(3.4)≤ (L + 1) |t | ‖Av‖Y = 0

for any t ∈ [0, r/‖v‖X ].
On the other hand, if N(A) is trivial we even have semi-norm convergence.

Corollary 3.6 Under the assumptions of Theorem 3.1 we have that

‖x+ − xN (δ)‖A <
1 + R

1 − L
δ

where ‖ · ‖A = ‖A · ‖Y is a semi-norm in general.

Proof From (3.4) we obtain that

‖x+ − xN (δ)‖A ≤ 1

1 − L
‖y − F(xN (δ))‖Y

which, in view of (3.1), implies the assertion. ��
The above corollary yields norm convergence whenever N(A) = {0}. In general,

this norm is weaker than the standard norm in X .
However, strong convergence in X can be verified under an additional stability

assumption on the regularization scheme applied to the locally linearized system (1.6).
To formulate this assumption we introduce new notation: We subsequently need to
differ clearly between the noisy (δ > 0) and the noiseless situation (δ = 0). From now
on in this section, quantities referring to the noisy setting (i.e., yδ �= y) will be marked
by a superscript δ. Quantities without superscript indicate exact data (i.e., y = y0).
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We require the following stability of the regularizing sequence {sn,m}0≤m≤mn :

lim
δ→0

sδ
n,m = sn,m for any fixed m ≤ mn . (3.12)

All four examples satisfying (3.2) share also stability:

• Landweber and implicit iteration are linear iterative schemes. Thus, stability (3.12)
can be shown straightforwardly by an inductive argument which we shortly pres-
ent for the implicit iteration: Let T , Tγ ∈ L(X, Y ) with limγ→0 ‖T − Tγ ‖ = 0.
Further, let g, gγ ∈ Y with limγ→0 ‖g − gγ ‖Y = 0. Define implicit iteration with
respect to (T, g) and (Tγ , gγ ) by

fm+1 = (αm I + T ∗T )−1(αm fm + T ∗g)

and

f γ
m+1 = (αm I + T ∗

γ Tγ )−1(αm f γ
m + T ∗

γ gγ ),

respectively, where f0 = f γ
0 . Since

lim
γ→0

‖(αm I + T ∗
γ Tγ )−1 − (αm I + T ∗T )−1‖ = 0

convergence of f γ
m to fm as γ → 0 follows inductively for any m.

• Proof of stability is more complicated for the nonlinear steepest decent and cg itera-
tions. Fortunately, we only need to refer to previous work of Scherzer
[23, Lemma 3.2] and Hanke [10, Lemma 3.4] for steepest decent and cg, respec-
tively. Both lemmas apply to our setting because early termination of both iterations
does not occur before reaching the stopping index mn .

Theorem 3.7 Assume (3.12) and adopt all assumptions and notations of Theorem 3.1,
however, restrict all tolerances {µn} to [µ,� − �L] for a µ > µmin. Additionally let
x+ be the only solution of F(x) = y in Br (x+). Then,

lim
δ→0

‖x+ − xδ
N (δ)‖X = 0.

For the proof of above theorem we basically generalize results of Hanke [10, Sects. 4
and 5] and [9] who, in turn, generalized ideas of Hanke et al. [11].

We start with some preparatory lemmas and validate first convergence of REG-
INN in the noiseless setting. In the remainder of this section we tacitly presume the
assumptions of Theorem 3.7.

Lemma 3.8 In the noiseless situation, that is, δ = 0, we have that

lim
n→∞ ‖x+ − xn‖X = 0.
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Proof Please note that REGINN is well-defined for δ = 0 under the hypotheses of
Theorem 3.1, that is, if xn−1 ∈ Br (x+) does not solve F(x) = y then xn ∈ Br (x+)

exists and satisfies (3.7) as well as (2.11). Therefore, if REGINN terminates early with
xN then F(xN ) = y implying xN = x+ due to the uniqueness of x+ in Br (x+).
Otherwise, {xn}n∈N0 is a Cauchy sequence which we will show now.

Let l, p ∈ N with l > p. We observe that

‖xl − x p‖2
X = ‖se

l − se
p‖2

X = 2〈se
l − se

p, se
l 〉X + ‖se

p‖2
X − ‖se

l ‖2
X (3.13)

and

se
l − se

p = −
l−1∑

i=p

si,mi

(3.2)=
l−1∑

i=p

A∗
i ṽi where ṽi := −

mi∑

k=1

vi,k−1.

Hence,

〈se
l − se

p, se
l 〉X =

l−1∑

i=p

〈̃vi , Ai s
e
l 〉Y ≤

l−1∑

i=p

‖̃vi‖Y ‖Ai s
e
l ‖Y .

We proceed with

‖Ai s
e
l ‖Y = ‖F ′(xi )(x+ − xl)‖Y ≤ ‖F ′(xi )(x+ − xi )‖Y + ‖F ′(xi )(xl − xi )‖Y

(3.4)≤ 1

1 − L
(‖y − F(xi )‖Y + ‖F(xi ) − F(xl)‖Y )

≤ 1

1 − L
(2‖y − F(xi )‖Y + ‖y − F(xl)‖Y )

≤ 3

1 − L
‖y − F(xi )‖Y

where the last estimate holds true due to the monotonicity of the residuals (2.11) and
yields that

〈se
l − se

p, se
l 〉X ≤ 3

1 − L

l−1∑

i=p

‖̃vi‖Y ‖y − F(xi )‖Y .

For bounding ‖̃vi‖Y ‖y − F(xi )‖Y we will apply (3.2). Setting n = i in the inequality
in (3.2) and summing up both sides from m = 1 to mi results in

‖si,mi − se
i ‖2

X − ‖se
i ‖2

X < CM‖bε
i ‖Y

mi∑

m=1

‖vi,m−1‖Y (�(γi ) − µi )
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where we have taken into account that ‖bε
i − Ai si,m−1‖Y ≥ µi‖bε

i ‖Y . Recall that
bε

i = y − F(xi ), se
i+1 = se

i − si,mi , and µi ≥ µ > µmin ≥ �(γi ). Thus,

‖̃vi‖Y ‖y − F(xi )‖Y ≤
mi∑

m=1

‖vi,m−1‖Y ‖y − F(xi )‖Y ≤ ‖se
i ‖2

X − ‖se
i+1‖2

X

CM(µ − µmin)

and

〈se
l − se

p, se
l 〉X ≤ 3

(1 − L)CM(µ − µmin)

(
‖se

p‖2
X − ‖se

l ‖2
X

)
.

We plug the latter bound into (3.13) to obtain

‖xl − x p‖2
X ≤

(
6

(1 − L)CM(µ − µmin)
+ 1

)
(
‖se

p‖2
X − ‖se

l ‖2
X

)
.

The monotonicity ‖se
n+1‖X < ‖se

n‖X forces the convergence of ‖se
n‖X as n → ∞.

So, ‖xl − x p‖X can be made arbitrarily small by increasing p. Due to the uniqueness
of x+ in Br (x+) the limit of {xn}n , which is in Br (x+), has to be x+. ��
Below we will prove kind of stability of xδ

n , n ≤ N (δ), as δ → 0. To this end we
introduce sets {Xn}n∈N0 defined recursively from REGINN-iterates for exact data y.

Definition 3.9 Set X0 := {x0} and determine Xn+1 from Xn in the following way:
for any ξn ∈ Xn compute the Newton step sN

n = sn,mn as explained in (1.8) and (1.7)
where, however, An is replaced by F ′(ξn) and bε

n by y − F(ξn). Then, ξn + sN
n belongs

to Xn+1. If

∥
∥F ′(ξn)sn,mn−i − (y − F(ξn))

∥
∥

Y = µn‖y − F(ξn)‖Y

for i = 1, . . . , kn < mn, (3.14)

then ξn + sn,mn−i , i = 1, . . . , kn , are also elements of Xn+1.
We call ξn the predecessor of ξn +sn,mn−i , i = 0, . . . , kn , and, in turn, call the latter

successors of ξn .

Obviously, xn ∈ Xn and, generically, Xn contains only this element. Assume that
X j = {x j } for j = 0, . . . , n and that sn,mn−1 as well as sn,mn−2 satisfy (3.14) where
ξn = xn of course. Then, Xn+1 = {xn+1, xn + sn,mn−1, xn + sn,mn−2} and from now
on all sets X j with j ≥ n + 1 will have three elements at least. By monotonicity (3.3),
see also (3.8), we have that

‖x+ − ξn+1‖X < ‖x+ − ξn‖X

whenever ξn+1 ∈ Xn+1 is a successor of ξn ∈ Xn . (3.15)
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Remark 3.10 For the four iterative methods Landweber, implicit iteration, steepest
decent, and cg the number kn in (3.14) cannot exceed 1 for the following reason: the
residuals of these methods decrease strictly monotonically up to the iteration index
mn .

The need for introducing the sets {Xn}n∈N0 becomes clear in the proof of the next
lemma.

Lemma 3.11 Algorithm REGINN is stable in the following sense: for fixed n ∈ N0
with n ≤ N (δ) for all δ sufficiently small, the iterate xδ

n converges to Xn as δ → 0,

that is, for any zero sequence {δ j } j∈N the sequence {x
δ j
n } j∈N splits into convergent

subsequences, all of which converge to elements of Xn.

Proof Before we start let us emphasize the difference of mn and mδ
n . Both are defined

by (1.7), however, the former with respect to exact data and the latter with respect to
noisy data.

We employ an inductive argument. For n = 0 the only element in X0 is x0 indepen-
dent of δ ≥ 0. Hence, the statement is true for n = 0. Assume now that xδ

n converges to
Xn as δ → 0 and that n +1 ≤ N (δ) for δ sufficiently small. Let {δi } be a subsequence
with limi→∞ xδi

n = ξn for one ξn ∈ Xn . By (3.12) and continuity the following limit
holds true:

lim
i→∞

∥
∥
∥Aδi

n sδi
n,k − bεi

n

∥
∥
∥

Y
= ∥
∥F ′(ξn)sn,k − b̃n

∥
∥

Y , k ∈ {0, . . . , mn},

where bεi
n = yδi −F(xδi

n ) and b̃n = y−F(ξn). Since ‖F ′(ξn)sn,mn −b̃n‖Y < µn‖b̃n‖Y

we conclude for i sufficiently large that

∥
∥Aδi

n sδi
n,mn

− bεi
n

∥
∥

Y
< µn

∥
∥bεi

n

∥
∥

Y

yielding mδi
n ≤ mn for large enough i . In case µn‖b̃n‖Y < ‖F ′(ξn)sn,mn−1 − b̃n‖Y

we also have

µn
∥
∥bεi

n

∥
∥

Y <

∥
∥
∥Aδi

n sδi
n,mn−1 − bεi

n

∥
∥
∥

Y

provided large enough i . Thus, mn − 1 < mδi
n and mδi

n = mn for sufficiently large i ,
i.e., limi→∞ sδi

n,m
δi
n

= sn,mn which gives xδi
n +sδi

n,m
δi
n

→ ξn +sn,mn ∈ Xn+1 as i → ∞.

In case (3.14) applies, we have µn‖b̃n‖Y < ‖F ′(ξn)sn,mn−(kn+1) − b̃n‖Y . Arguing
as above we obtain mn − (kn + 1) < mδi

n implying the inclusion mn − kn ≤ mδi
n ≤

mn for i sufficiently large. Accordingly, {mδi
n } might have the kn + 1 limit points

mn − kn, . . . , mn . In any case, all possible limit points of xδi
n + sδi

n,m
δi
n

are in Xn+1 by

construction of this set. ��

The sets Xn converge uniformly to x+.
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Lemma 3.12 For any η > 0 there is an M(η) ∈ N0 such that

‖x+ − ξn‖X < η for all n ≥ M(η) and all ξn ∈ Xn .

Proof Assume the contrary. Then, there exists an η > 0 and a strictly increasing
sequence { jn}n∈N ⊂ N0 such that for any jn there is a ζ jn ∈ X jn with ‖x+−ζ jn ‖X ≥ η.
Without loss of generality we may assume that jn = n. Indeed, if this not true then
there is one jn such that jn−1 �= jn − 1. However, the predecessor ζ jn−1 ∈ X jn−1 of
ζ jn satisfies also ‖x+ − ζ jn−1‖X > ‖x+ − ζ jn ‖X ≥ η, see (3.15), and we can add
jn − 1 to { jn}n∈N.

So, for any n ∈ N0 we can assume existence of ζn ∈ Xn with ‖x+ − ζn‖X ≥ η.
Without loss of generality we may moreover assume, for any n, that ζn+1 is a pre-
decessor of ζn . Otherwise consider ζ̃n , the actual predecessor of ζn+1. By (3.15),
‖x+ − ζ̃n‖Y > ‖x+ − ζn+1‖Y ≥ η and we can replace ζn by ζ̃n and even ζ0, . . . , ζn−1
by the respective predecessors of ζ̃n .

Thus, the sequence {ζn}n originates from a run of REGINNwith a modified rule for
picking mn : in (1.7) replace the less-than sign by the less-than-or-equal sign. Since
this modification of REGINN does not alter its convergence, Lemma 3.8 applies and
{ζn}n converges to x+ contradicting ‖x+ − ζn‖X ≥ η for all n. ��

Now we are able to verify strong convergence.

Proof of Theorem 3.7 Let {δ j } j∈N be a zero sequence. Assume first that N (δ j ) = n

as j → ∞. By Lemma 3.11 we may, without loss of generality, assume that x
δ j
n con-

verges to an element ξn of Xn as j → ∞. In view of (3.1) we conclude that F(ξn) = y.
Since Xn ⊂ Br (x+) we have ξn = x+ due to the uniqueness of x+ in Br (x+).

Next, let N (δ j ) be bounded as j → ∞. Then, {N (δ j )} j splits into convergent
subsequences and we can argue as in the case of constant N (δ j ).

Finally, we consider N (δ j ) → ∞ as j → ∞. For any η > 0 there is an n = n(η)

such that for every ξn ∈ Xn we have ‖x+ − ξn‖X ≤ η/2 (Lemma 3.12). Further,
according to Lemma 3.11 and due to the finiteness of Xn there is a J (η) ∈ N such that

for any j ≥ J (η) we can find a ξn( j) ∈ Xn satisfying ‖ξn( j) − x
δ j
n ‖X < η/2. Thus,

for j ≥ J (η) so large that N (δ j ) > n(η) we obtain from monotonicity the bound

‖x+ − x
δ j

N (δ j )
‖X < ‖x+ − x

δ j
n ‖X ≤ ‖x+ − ξn( j)‖X + ‖ξn( j) − x

δ j
n ‖X < η

for a suitably chosen ξn( j) ∈ Xn . ��
Remark 3.13 Without uniqueness of x+ one can prove that {xδ

N (δ)} splits into conver-
gent subsequences as δ → 0, each of which converges to a solution of F(x) = y.
However, the arguments are more involved, compare [10].

Remark 3.14 Convergence of {xδ
N (δ)} with (sub-optimal) rates has been shown under

the usual abstract smoothness (source) conditions and under restrictions on the non-
linearity being stronger than (3.4), see [19] for some linear inner regularizations and
[21] for the cg-method as inner regularization. The next challenge, of course, is to
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explore how far convergence rates results can be obtained in our general setting of
this paper. To master this challenge fresh ideas are needed.

Appendix A: Proof of (2.1) and (2.2) for cg and steepest decent

Let T ∈ L(X, Y ) and 0 �= g ∈ Y . The cg-method is an iteration for solving the normal
equation T ∗T f = T ∗g. Starting with f0 ∈ X the cg-method produces a sequence
{ fm}m∈N0 with the following minimization property

‖g − T fm‖Y = min
{‖g − T f ‖Y

∣
∣ f ∈ X, f − f0 ∈ Um

}
, m ≥ 1,

where Um is the mth Krylov space,

Um := span
{

T ∗r0, (T ∗T )T ∗r0, (T ∗T )2T ∗r0, . . . , (T ∗T )m−1T ∗r0
}

⊂ N(T )⊥

with r0 := g − T f0. Here, N(T )⊥ denotes the orthogonal complement of the null
space N(T ) of T . Since

〈g − T fm, T u〉Y = 0 for all u ∈ Um, (A.1)

see formula (5.19) in [20], we have that

〈g − T fm, T fm〉Y = 0 for all m ∈ N0 provided f0 = 0. (A.2)

Therefore,

0 ≤ ‖g − T fm‖2
Y = ‖g‖2

Y − ‖T fm‖2
Y

which is (2.3) with � = 1. Further,

〈g, T fm〉Y
(A.2)= ‖T fm‖2

Y .

To establish (2.1) we validate that T fm �= 0 under T ∗g �= 0. Assume T fm = 0 then
‖g‖Y = ‖rm‖Y ≤ ‖rk‖Y ≤ ‖g‖ for any k = 0, . . . , m. So, fk = 0, k = 0, . . . , m, but
f1 is a non-zero multiple of T ∗g and cannot be zero. Thus, (2.1) holds true for cg.

It is a well-known property of cg-iteration that

lim
m→∞ T fm = PR(T )

g

whenever f0 ∈ N(T )⊥, see, e.g., page 135 ff. in [20]. Hence, (2.2) holds for cg-
iteration.
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Let us now consider steepest decent. Starting with f0 ∈ X steepest decent produces
the sequence { fm}m∈N0 by

fm+1 = fm + λm T ∗rm where rm = g − T fm and

λm =
⎧
⎨

⎩

‖T ∗rm‖2
X

‖T T ∗rm‖2
Y

: T ∗rm �= 0,

‖T ‖−2 : otherwise.

We first validate monotonicity of the residuals:

‖rm+1‖Y ≤ ‖rm‖Y . (A.3)

Define f L
m+1 := fm + ωT ∗rm with 0 < ω < 2/‖T ‖2 and observe

g − T f L
m+1 = (I − ωT T ∗)rm .

Due to the optimality of the step size λm we have

‖rm+1‖Y ≤ ‖g − T f L
m+1‖Y = ‖(I − ωT T ∗)rm‖Y ≤ ‖rm‖Y .

Whence (A.3) holds true.
Let f0 = 0. Then,

‖T fm‖2
Y − 2〈T fm, g〉Y + ‖g‖2

Y = ‖rm‖2
Y

(A.3)≤ ‖r0‖2
Y = ‖g‖2

Y

leading to

‖T fm‖2
Y ≤ 2〈T fm, g〉Y . (A.4)

By Cauchy–Schwarz inequality we deduce that

‖T fm‖Y ≤ 2‖g‖Y

which yields (2.3) with � ≤ 2.

Remark A.1 We strongly suspect that � = 1. Indeed,

‖T f1‖Y = ‖T ∗g‖2
X

‖T T ∗g‖2
Y

‖T T ∗g‖Y = ‖T ∗g‖2
X

‖T T ∗g‖Y
= 〈T T ∗g, g〉Y

‖T T ∗g‖Y
≤ ‖g‖Y .

Further, from (A.3) we obtain

‖T f2‖2
Y < 2〈T ∗g, λ1T ∗r1〉Y + ‖T f1‖2

Y = ‖T f1‖2
Y .
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Thus,

‖T f2‖ < ‖T f1‖ ≤ ‖g‖.

However, we are not able to give a complete proof of our conjecture.

As we do not know an adequate reference for the convergence

lim
m→∞ T fm = PR(T )

g (A.5)

we give a short proof. First we replace g ∈ Y by PR(T )
g which does not change the

steepest decent method. The monotonicity (A.3) now reads

‖PR(T )
g − T fm+1‖Y ≤ ‖PR(T )

g − T fm‖Y .

Thus,

lim
m→∞ ‖PR(T )

g − T fm‖Y = ε.

It remains to confirm that ε = 0. Assume the contrary: ε > 0. Then, there exists an
f ε ∈ X with

‖PR(T )
g − T f ε‖Y <

ε

4
.

Straightforward calculations yield

‖ fm+1− f ε‖2
X −‖ fm − f ε‖2

X =2λm

〈
rm, PR(T )

g−T f ε
〉

Y
−2λm‖rm‖2

Y +λ2
m‖T ∗rm‖2

X .

Let T ∗rm �= 0. Then,

λm‖T ∗rm‖2
X = λm

〈
T T ∗rm, rm

〉
Y

≤ λm‖T T ∗rm‖Y ‖rm‖Y = 〈T T ∗rm, rm〉Y

‖T T ∗rm‖Y
‖rm‖Y ≤ ‖rm‖2

Y .

The latter inequality remains true for T ∗rm = 0 and, hence, implies

‖ fm+1 − f ε‖2
X − ‖ fm − f ε‖2

X < 2 λm‖rm‖Y
ε

4
− λm‖rm‖2

Y

= λm‖rm‖Y

(ε

2
− ‖rm‖Y

)
.

As ‖rm‖Y > ε for all m we have

‖ fm+1 − f ε‖2
X − ‖ fm − f ε‖2

X < −ε

2
λm‖rm‖Y .
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Adding both sides of the above inequality from m = 0 to m = k − 1 gives

‖ fk − f ε‖2
X − ‖ f ε‖2

X < −ε

2

k−1∑

m=0

λm‖rm‖Y .

Since λm ≥ ‖T ‖−2 we end up with

k−1∑

m=0

‖rm‖Y <
2‖T ‖2

ε

(
‖ f ε‖2

X − ‖ fk − f ε‖2
X

)
≤ 2‖T ‖2

ε
‖ f ε‖2

X .

The upper bound does not depend on k contradicting ‖rm‖Y > ε > 0.
Property (2.1) follows from (A.4) as soon as we have verified that T fm �= 0, m ≥ 1.

Assume T fm = 0. Then, T fm = 0 and T fm+1 = T f1 which yields T fm+i = T fi ,
i ∈N0. Especially, T fkm =0, k ∈N, contradicting (A.5) under the requirement T ∗g �=0.

Appendix B: Proof of (3.2) for Landweber, steepest decent, implicit iteration
and cg

We profit from results of Hämarik and Tautenhahn [7].
Applied to the normal equation T ∗T f = T ∗g (notation as in Appendix A) the four

methods under consideration produce iterates { fm}m∈N by

fm+1 = fm + T ∗zm, f0 = 0, (B.1)

where

• Landweber: zm = ωrm , ω ∈ ]0, ‖T ‖−2[,
• steepest decent: zm = λmrm ,
• implicit iteration: zm = (αm I + T T ∗)−1rm , and
• cg: zm = wm+1(T T ∗)g for a polynomial wm+1 of degree m + 1, see Hanke [8,

formula (2.7)].

Observe that (B.1) proves the first part of assumption (3.2).
For any f̃ ∈ X we have that

‖ fm − f̃ ‖2
X −‖ fm−1− f̃ ‖2

X =2〈g−T f̃ , zm−1〉Y −〈rm−1+rm, zm−1〉Y , (B.2)

see [7, formula (3.2)].
Let γ = ‖g − T f̃ ‖Y /‖g‖Y denote the relative residual of f̃ .

B.1. Landweber and steepest decent

Plugging in zm = βmrm with βm ∈ {ω, λm} we obtain from (B.2)

‖ fm − f̃ ‖2
X −‖ fm−1− f̃ ‖2

X =βm−1

(
2〈g−T f̃ , rm−1〉Y −‖rm−1‖2

Y −〈rm, rm−1〉Y

)
.
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By

〈rm, rm−1〉Y = 〈(I − βm−1T T ∗)rm−1, rm−1〉Y > 0

we end up with

‖ fm − f̃ ‖2
X − ‖ fm−1 − f̃ ‖2

X < βm−1‖rm−1‖Y
(
2‖g − T f̃ ‖Y − ‖rm−1‖Y

)

= ‖zm−1‖Y ‖g‖Y

(
�(γ ) − ‖rm−1‖Y

‖g‖Y

)

where �(t) = 2t . Thus, we have established (3.2) with CM = 1 for Landweber as
well as steepest decent.

B.2. Implicit iteration

Next we address implicit iteration. Since zm−1 = α−1
m−1rm we deduce 〈rm, zm−1〉Y >0.

Further, 〈rm−1, zm−1〉Y ≥ αmin‖zm−1‖2
Y . By (B.2),

‖ fm − f̃ ‖2
X − ‖ fm−1 − f̃ ‖2

X < ‖zm−1‖Y
(
2‖g − T f̃ ‖Y − αmin‖zm−1‖Y

)
.

The lower bound ‖zm−1‖Y ≥ (αmax + ‖T ‖2)−1‖rm−1‖Y yields

‖ fm − f̃ ‖2
X −‖ fm−1− f̃ ‖2

X < ‖zm−1‖Y ‖g‖Y
αmin

αmax+‖T ‖2

(
�(γ )− ‖rm−1‖Y

‖g‖Y

)

with �(t) = 2 αmax+‖T ‖2

αmin
t and (3.2) with CM ≤ αmin

αmax
follows for implicit iteration.

B.3. cg-Method

We follow arguments by Hanke [10, Theorem 3.1]. Here (B.2) reads

‖ fm − f̃ ‖2
X −‖ fm−1− f̃ ‖2

X =2〈g−T f̃ , wm(T T ∗)g〉Y −〈rm−1+rm, wm(T T ∗)g〉Y.

To proceed we rewrite wm as wm(t)=wm(0)+ tq(t) where q ∈�m−1 and wm(0)>0.
Hence, wm(T T ∗)g = wm(0)g + T u with u = T ∗q(T T ∗)g ∈ Um−1. Applying (A.1)
and (A.2) we obtain

〈rm−1, wm(T T ∗)g〉Y = wm(0)〈g − T fm−1, g〉Y + 〈g − T fm−1, T u〉Y

= wm(0)‖rm−1‖2
Y .

Analogously,

〈rm, wm(T T ∗)g〉Y = wm(0)‖rm‖2
Y .
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Thus,4

‖ fm − f̃ ‖2
X − ‖ fm−1 − f̃ ‖2

X

≤ ‖wm(T T ∗)g‖Y

(
2‖g − T f̃ ‖Y − wm(0)

‖wm(T T ∗)g‖Y
‖rm−1‖2

Y

)
.

The normalized polynomial wm/wm(0) is denoted p[2]
m by Hanke [8]. By his Theo-

rem 3.2 we have

‖wm(T T ∗)g‖Y

wm(0)
<

‖w0(T T ∗)g‖Y

w0(0)
= ‖g‖Y ,

so that

‖ fm − f̃ ‖2
X − ‖ fm−1 − f̃ ‖2

X < ‖wm(T T ∗)g‖Y

(

2‖g − T f̃ ‖Y − ‖rm−1‖2
Y

‖g‖Y

)

= ‖zm−1‖Y ‖g‖Y

(

�(γ )2 − ‖rm−1‖2
Y

‖g‖2
Y

)

with �(t) = √
2t and we have established (3.2) for the cg-method where

CM = �(γ ) + ‖rm−1‖Y

‖g‖Y
≤ �(1) + 1.
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