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Abstract We derive a posteriori error estimates, which exhibit optimal global order,
for a class of time stepping methods of any order that include Runge–Kutta Collocation
(RK-C) methods and the continuous Galerkin (cG) method for linear and nonlinear
stiff ODEs and parabolic PDEs. The key ingredients in deriving these bounds are
appropriate one-degree higher continuous reconstructions of the approximate solu-
tions and pointwise error representations. The reconstructions are based on rather
general orthogonality properties and lead to upper and lower bounds for the error
regardless of the time-step; they do not hinge on asymptotics.
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134 G. Akrivis et al.

1 Introduction

We consider Runge–Kutta collocation type time–stepping schemes of any order q ≥ 1,
along with associated Galerkin methods, for parabolic partial differential equations
(PDEs) and stiff ordinary differential equations (ODEs) of the form

{
u′(t) + Au(t) = B (t, u(t)) , 0 < t < T,

u(0) = u0.
(1.1)

Hereafter A is a positive definite, selfadjoint, linear operator on a Hilbert space
(H, 〈·, ·〉, | · |) with domain D(A) dense in H, that dominates a (possibly) non-
linear operator B(t, ·) : D(A) → H, t ∈ [0, T ], and u0 ∈ H , V := D(A1/2).
We extensively study the linear case corresponding to B(t, u) = f (t) with a given
f : [0, T ] → H . We present a general framework for a posteriori error analysis
based on the novel idea of time reconstruction of the approximate solution and of
appropriate error representation equations that are derived with its aid. The resulting
error estimates, valid for any q ≥ 1, can be obtained by employing PDE stability
techniques.

Error control for ODEs and evolution PDEs is a fundamental topic in scientific
and engineering computing. The former has been developed since the 60s whereas
the latter is much more recent. Runge–Kutta–Fehlberg methods are now standard
high order methods for ODEs that estimate local truncation errors. For PDEs, instead,
most of the available results are limited to low order time–stepping methods and to
discontinuous Galerkin–type time discrete schemes. A primary tool to develop a pos-
teriori error estimates for PDEs has been duality, either by estimating stability factors
analytically [9,10,27], or computationally upon solving a backward linear problem
[5,11,13,14,17]. The latter is mostly heuristic, even for linear equations of the form
(1.1), and difficult to implement efficiently for large problems in several space dimen-
sions. It provides however a general procedure to deal with possible error accumulation
and long time behavior. Recently, we have developed a completely rigorous alternative
to duality, mainly for general dissipative problems of the form (1.1). Optimal order
error estimates have been derived for (1.1) by means of the energy method and the var-
iation of constants (Duhamel) formula for both dG [23] and Crank–Nicolson schemes
[2]. These are higher order extensions of the optimal a posteriori error analysis by
Nochetto, Savaré and Verdi for the backward Euler method for a class of nonlinear
gradient flows much more general than (1.1) and for which duality does not apply in
general [24].

A posteriori error analysis for higher order Runge–Kutta methods seems to be lack-
ing. We are only aware of rather interesting heuristic techniques based on asymptotic
expansions and estimation of local truncation errors in the context of ODEs, see, e.g.,
[7,16,25,26] and their references. In this paper we fill in this gap upon developing
a posteriori error estimates for Runge–Kutta Collocation methods (RK-C), the most
important class of implicit RK schemes (IRK), as well as related continuous Galerkin
methods (cG). The analysis is in the spirit of, and indeed extends, our previous work
[2] for Crank–Nicolson methods. The main contributions of this paper are as follows:
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A posteriori estimates for parabolic equations 135

• We present a unified approach based on the orthogonality property

1∫
0

q∏
i=1

(τ − τi ) dτ = 0 (1.2)

for the collocation nodes {τi }q
i=1, which applies to cG (see Sect. 3) and RK-C (see

Sect. 4).
• We introduce the time reconstruction Û of the discrete solution U , which is one-

degree higher than U , is globally continuous but constructed locally (in one or
two consecutive intervals), and extracts information about the local error without
resorting to asymptotics (and thus to small time-steps); see Sects. 2.1, 3.1, and 4.4.

• We derive upper and lower a posteriori error estimates, which exhibit no gaps and
possess explicit stability constants for the linear case; see Sect. 2.2. We apply the
energy method, but any technique for error analysis such as the duality method
could be used instead once Û has been constructed.

We emphasize that the main purpose of this paper is to introduce a new methodology
for performing a posteriori error analysis for Runge–Kutta schemes of any order q. We
insist on linear equations, for which our results are optimal, but not on the derivation
of sharp estimates for nonlinear problems, a very delicate task that is heavily problem
dependent. Similarly, we do not insist on conditional estimates in the present work;
see Remark 3.4 regarding our assumptions.

Our unified approach hinges on suitable projection operators Πq−1 and Π̂q onto
spaces of piecewise polynomials of degree q − 1 and q, respectively, determined by
the collocation nodes {τi }q

i=1 in (2.7). In this vein, both RK-C and cG can be written
in the following form provided B(t, u) = f (t)

U ′(t) + Πq−1 AU (t) = Πq−1 f (t).

This is our abstract point of departure in Sect. 2, where we define the time reconstruc-
tion Û of U with the help of Π̂q . We observe now, but elaborate further in Sect. 2, that
a naive use of the linear error-residual equation

e′(t) + Ae(t) = −R(t),

for the error e = u−U and residual R of the approximate solution U , would be subop-
timal. This is because R(t) = O(kq) while the expected order for e is O(kq+1), where
k denotes the time step. It is thus desirable to have an error equation with optimal order
residual. To achieve this crucial goal, we choose to compare u with the reconstruction
Û of U rather than with U itself. The proper choice of Û is highly nontrivial and is
the main contribution of this paper. In fact we require that Û satisfies the following
crucial but competing properties:

• Û should be easily computable from U , and the operators and data in (1.1), within
one or two consecutive time intervals and so locally for any time steps;

• Û should be globally continuous and one-degree higher than U ;
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136 G. Akrivis et al.

• Û should extract relevant information from U that dictates the local error;
• The residual R̂ associated with Û should be easy to evaluate in terms of Û − U .

The concept of reconstruction might appear, at first sight, to be related to the technique
of Zadunaisky [28] for error control of ODEs. The idea in [28] is to consider a per-
turbed ODE satisfied by a polynomial constructed by interpolating the approximate
values on several time intervals in order to derive a heuristic estimate of the error. On
the other hand, Runge–Kutta–Fehlberg methods also increase the order by one and
find a computational estimate of the local truncation error. In both cases, the ensuing
estimates are based on asymptotics and thus can only be rendered rigorous for small
time steps. We stress that our reconstruction Û is not a higher order approximation of
u than U , which is another important difference with these two rather popular tech-
niques. We also mention the related technique of elliptic reconstruction, introduced
for a posteriori error analysis of space discrete finite element approximations in [22].

It turns out that the error ê = u − Û satisfies the equation

ê′(t) + Aê(t) = −R̂(t)

involving the residual R̂, which is dominated by the optimal a posteriori quantity
U − Û . We stress that once such an equation for ê is at our disposal, any stability
technique available for the PDE under study can be used to derive estimates of the
error. We derive, for simplicity, energy based upper and lower error estimates, with
emphasis on the norms L∞([0, T ]; H) and L2([0, T ]; V ) rather than nodal values. We
report these results for linear equations in Theorem 2.1 and for nonlinear equations in
Theorems 3.1 and 4.1. We also give explicit expressions for U − Û in Corollary 2.1.
Under restrictive compatibility conditions it is known that the order of convergence
at the nodes (superorder) might be higher. For a posteriori error estimates related to
superorder we refer to the forthcoming work [3]; see also Sect. 4.2 below.

The paper is organized as follows. In Sect. 2 we present an abstract framework for
time discretization and time reconstruction, with emphasis on the simpler linear case.
In Sect. 3 we apply these results to cG and extend them to nonlinear equations. In
Sect. 4 we deal with RK-C, and discuss the relation between classical order and stage
order. In fact, viewing RK-C methods as collocation or Galerkin–type methods clari-
fies the connection between stage order and order of convergence in L∞([0, T ]; H).
The latter is O(kq+1) because the approximate solution is a piecewise polynomial of
degree q; note that a similar a priori bound for the error at the intermediate stages is
obtained in [20,21]. Even though the emphasis is on RK-C methods, we discuss cG
first because it is simpler to describe and study than RK-C.

2 Time–stepping Schemes and time reconstruction

Let 0 = t0 < t1 < · · · < t N = T be a partition of [0, T ], Jn := (tn−1, tn], and
kn := tn − tn−1. Now, let Vq , q ∈ N, be the space of continuous functions that are
piecewise polynomials of degree q in time, i.e., Vq consists of continuous functions
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A posteriori estimates for parabolic equations 137

g : [0, T ] → D(A) of the form

g|Jn (t) =
q∑

j=0

t jw j , w j ∈ D(A).

We denote by Vq(Jn) the space of restrictions to Jn of elements of Vq . The spaces Hq

and Hq(Jn) are defined analogously by requiring w j ∈ H. In the sequel we are mainly
interested in the continuous Galerkin (cG) and Runge–Kutta collocation (RK-C) time–
stepping schemes. We cast these methods in a wider class of schemes formulated in a
unified form with the aid of a projection operator

Π� : C0([0, T ]; H) → ⊕N
n=1H�(Jn), (2.1)

which does not enforce continuity at {tn}N
n=1. The time discrete approximation U to

the solution u of (1.1) is then defined as follows: We seek U ∈ Vq satisfying the initial
condition U (0) = u0 as well as

U ′(t) + Πq−1 AU (t) = Πq−1 f (t) ∀t ∈ Jn, (2.2)

for n = 1, . . . , N . Since all terms in this equation belong to Hq−1(Jn), (2.2) admits
the Galerkin formulation

∫
Jn

[〈U ′, v〉+〈Πq−1 AU, v〉] dt =
∫
Jn

〈Πq−1 f, v〉 dt ∀v ∈ Hq−1(Jn), (2.3)

for n = 1, . . . , N . We use mainly (2.2), but (2.3) is also of interest because it provides a
connection of this class of methods to the Galerkin schemes. In fact, we show later that
the continuous Galerkin method corresponds to the choice Πq−1 := Pq−1, with P�

denoting the (local) L2 orthogonal projection operator onto H�(Jn) for each n; in this
case Πq−1 in (2.3) can be replaced by the identity. The Runge–Kutta collocation meth-
ods constitute the most important class of time–stepping schemes described by this for-
mulation. We will see later that all RK-C methods with pairwise distinct nodes in [0, 1]
can be obtained by choosing Πq−1 := Iq−1, with Iq−1 denoting the interpolation oper-
ator by elements of Vq−1(Jn) at the nodes tn−1 + τi kn, i = 1, . . . , q, n = 1, . . . , N ,

with appropriate 0 ≤ τ1 < · · · < τq ≤ 1. It is well known that RK Gauss–Legendre
schemes are related to continuous Galerkin methods. A first conclusion, perhaps not
observed before, is that all RK-C methods with pairwise distinct nodes in [0, 1] can be
obtained by applying appropriate numerical quadrature to continuous Galerkin meth-
ods. This will be instrumental throughout. It is well known that some RK-C schemes,
for instance the RK–Radau IIA methods, exhibit more advantageous stability proper-
ties, such as dissipativity, for parabolic equations than the cG methods. Our association
of RK-C methods to cG methods is for convenience and does not affect the stability
properties of RK-C (see Example 4.2).
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138 G. Akrivis et al.

2.1 Reconstruction

Let R be the residual of the approximate solution U,

R(t) := U ′(t) + AU (t) − f (t), (2.4)

i.e., the amount by which U misses being an exact solution of the differential equation
in (1.1) in the linear case, with B (t, u(t)) = f (t). Then, the error e := u −U satisfies
the equation

e′(t) + Ae(t) = −R(t). (2.5)

Energy methods applied to (2.5) yield bounds for the error in the norm of L∞([0, T ];H)

in terms of norms of R(t). However, R(t) is of suboptimal order. In fact, in view of
(2.2), the residual can also be written in the form

R(t) = A
[
U (t) − Πq−1U (t)

] − [
f (t) − Πq−1 f (t)

]
, t ∈ Jn . (2.6)

This residual is not appropriate for our purposes, since even in the case of a scalar
ODE u′(t) = f (t) we have R(t) = −[ f (t) − Πq−1 f (t)], and thus R(t) can only be
of order O(kq

n ), although our approximations are piecewise polynomials of degree q.

In both cases, cG as well as RK-C methods (with nodes satisfying (1.2)), the optimal
order of approximation in L∞([0, T ]; H) is O(kq+1). It would thus be desirable to
have an error equation with optimal right-hand side. To this end, we introduce a suit-
able higher order reconstruction Û ∈ Hq+1 of the approximation U. The function Û ,

however, does not provide a better approximation to u than U and its construction and
analysis does not require small time steps. We further assume the regularity condition
(2.11) on Û throughout, and discuss its validity in Sect. 5.

The definition of Û ∈ Hq+1 is based on appropriate projection operators Π̂q onto
Hq(Jn), n = 1, . . . , N . To be more precise, we assume that Πq−1 in (2.2) is associated
to q pairwise distinct points τ1, . . . , τq ∈ [0, 1] with the orthogonality property

1∫
0

q∏
i=1

(τ − τi ) dτ = 0. (2.7)

These points are transformed to the interval Jn as tn,i := tn−1 + τi kn, i = 1, . . . , q.

Specifically, they are the collocation points for RK-C or the Gauss points for cG.
A fundamental property we require for Π̂q is that it agrees with Πq−1 at tn,i :

(Π̂q − Πq−1)w(tn,i ) = 0, i = 1, . . . , q, ∀w ∈ C(Jn; H). (2.8)

If relation (2.7) is satisfied, then interpolatory quadrature with abscissae tn,i , i =
1, . . . , q, integrates polynomials of degree at most q exactly. Therefore, (2.8) leads to
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A posteriori estimates for parabolic equations 139

the key property of Π̂q that (Π̂q − Πq−1)w is orthogonal to constants in Jn,

∫
Jn

(Π̂q − Πq−1)w(s) ds = 0 ∀w ∈ C(Jn; H), (2.9)

for n = 1, . . . , N , which will play a central role in the analysis. For each n = 1, . . . , N ,
we define the reconstruction Û ∈ Hq+1(Jn) of U by

Û (t) := U (tn−1) −
t∫

tn−1

Π̂q [AU (s) − f (s)] ds ∀t ∈ Jn . (2.10)

Obviously, Û (tn−1) = U (tn−1). Furthermore, in view of (2.9),

Û (tn) = U (tn−1) −
tn∫

tn−1

Π̂q [AU (s) − f (s)] ds

= U (tn−1) −
tn∫

tn−1

Πq−1 [AU (s) − f (s)] ds;

taking here relation (2.2) into account, we obtain

Û (tn) = U (tn−1) +
tn∫

tn−1

U ′(s) ds = U (tn),

and conclude that Û is continuous in [0, T ] and coincides with U at the nodes tn .

Moreover, we assume throughout that Û satisfies the following regularity condition:

Û (t) ∈ V ∀t ∈ [0, T ]. (2.11)

This property is crucial for the error analysis and entails some minimal regularity of
U 0 and compatibility with f (0), depending on the time-discrete method; see Sect. 4.4.
However, (2.11) is always satisfied by fully discrete schemes for evolution PDEs which
constitute the most important application of the present framework.

It easily follows from (2.10) that Û satisfies the following pointwise equation

Û ′(t) + AU (t) = Π̂q f (t) ∀t ∈ Jn; (2.12)

compare with (2.2). In view of (2.12), the residual R̂,

R̂(t) := Û ′(t) + AÛ (t) − f (t), (2.13)
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140 G. Akrivis et al.

of Û can also be written as

R̂(t) = A
[
Û (t) − U (t)

] − [
f (t) − Π̂q f (t)

]
. (2.14)

We show in the sequel that R̂(t) is an a posteriori quantity of the desired order for
appropriate choices of Π̂q , provided (2.11) is valid.

2.2 Energy estimates and representation of Û − U

We let V := D(A1/2) and denote the norms in H and in V by | · | and ‖ · ‖, with
‖v‖ := |A1/2v| = 〈Av, v〉1/2, respectively. We identify H with its dual, and let V � be
the topological dual of V ( V ⊂ H ⊂ V � ). We still denote by 〈·, ·〉 the duality pairing
between V � and V, and by ‖ · ‖� the dual norm on V �, namely ‖v‖� := |A−1/2v| =
〈v, A−1v〉1/2.

We consider, as in [2,23,24], the error functions

e := u − U and ê := u − Û . (2.15)

Once a suitable reconstruction Û of U is in place, the rest of the analysis is rather
elementary as the following simple results illustrate; see also [2] for further details.
When working with energy estimates the starting point of the analysis is the error
equation,

ê′(t) + Aê(t) = −R̂, (2.16)

(R̂ is defined in (2.13), (2.14)) written in its equivalent form

ê′(t) + Ae(t) = f − Π̂q f. (2.17)

The main reason is that working with (2.17) allows the derivation of lower bounds
of the error in addition to upper bounds.

Theorem 2.1 (Error Estimates) Let the assumptions (2.7) on {τi }q
i=1, (2.8) on Π̂q ,

and (2.11) on Û be satisfied. Then the following global upper estimate is valid, for
t ∈ [0, T ],

max
0≤τ≤t

⎡
⎣|ê(τ )|2 +

τ∫
0

(
‖e(s)‖2 + 1

2
‖ê(s)‖2

)
ds

⎤
⎦

≤
t∫

0

‖(Û − U )(s)‖2ds + 2

t∫
0

‖( f − Π̂q f )(s)‖2
� ds.
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The following local lower estimate is also valid

1

3
‖Û (t) − U (t)‖2 ≤ ‖e(t)‖2 + 1

2
‖ê(t)‖2 ∀t ∈ [0, T ].

Proof Multiplying the error equation (2.17) by ê(t) and using the identity 2〈Ae, ê〉 =
‖e‖2 + ‖ê‖2 − ‖Û − U‖2, we arrive at

d

dt
|ê(t)|2 + ‖e‖2 + ‖ê‖2 = ‖Û − U‖2 + 2〈 f − Π̂q f, ê〉.

This easily leads to the asserted upper bound. Note that we gain control of both ‖e‖
and ‖ê‖, which is crucial for the lower bound. In fact, the latter follows immediately
from the triangle inequality. 
�
Remark 2.1 (Optimal Error Estimator) Integrating the local lower bound yields

1

3

t∫
0

‖(Û − U )(s)‖2ds ≤
t∫

0

(
‖e(s)‖2 + 1

2
‖ê(s)‖2

)
ds

≤
t∫

0

‖(Û − U )(s)‖2ds + 2

t∫
0

‖( f − Π̂q f )(s)‖2
�ds. (2.18)

The estimator
∫ t

0 ‖(Û − U )(s)‖2ds is of optimal order because it is dominated by the
integral error

∫ t
0

(‖e(s)‖2 + 1
2‖ê(s)‖2

)
ds, which is of order q +1. Moreover, the max

error max0≤τ≤t |ê(τ )|2 is dominated by the integral error plus data oscillation.

Remark 2.2 (Error Estimate Revised) In case Π̂qU �= U (cf. Sect. 5 for cases that this
might happen), (2.12) is replaced by

Û ′(t) + AΠ̂qU (t) = Π̂q f (t) ∀t ∈ Jn, (2.19)

and (2.17) by

ê′(t) + Ae(t) = f − Π̂q f − A(U − Π̂qU )(t). (2.20)

In such a case the estimate of Theorem 2.1 remains valid, provided that a term
2
∫ t

0 ‖(U − Π̂qU )(s)‖2ds is added on the right-hand side.

Even though Û − U is computable, we prefer to give a precise characterization.

Theorem 2.2 (Explicit Representation of Û − U ) Let

ϕq+1(x) := (q + 1)

x∫
0

q∏
i=1

(s − τi ) ds.

If {τi }q
i=1 and Π̂q satisfy (2.7) and (2.8), then
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Û (t) − U (t) = 1

(q + 1)!kq+1
n Û (q+1)ϕq+1

(
t − tn−1

kn

)
. (2.21)

In addition, if Û satisfies (2.11) and

αq := 1

[(q + 1)!]2

1∫
0

[
ϕq+1(x)

]2
dx and βq := 1

(q + 1)! max
0≤x≤1

|ϕq+1(x)|,

then

∫
Jn

‖(Û − U )(t)‖2ds = αqk2q+3
n ‖Û (q+1)‖2, (2.22)

max
i∈Jn

|(Û − U )(t)| = βqkq+1
n |Û (q+1)|. (2.23)

Proof Subtracting (2.2) from (2.12), we obtain

Û ′ − U ′ = (Π̂q − Πq−1)( f − AU ), (2.24)

whence, in view of (2.8),

(Û ′ − U ′)(tn,i ) = 0, i = 1, . . . , q.

Therefore, we deduce

(Û ′ − U ′)(t) = 1

q!Û
(q+1)kq

n

q∏
i=1

(
t − tn−1

kn
− τi

)
. (2.25)

Relation (2.21) follows immediately upon integration of (2.25). The asserted estimates
follow from the change of variables x = (t − tn−1)/kn to [0, 1]. 
�

Remark 2.3 (Computable Error Estimator) Regardless of the norm, the (properly
scaled) quantity Û (q+1) = AU (q) + (Π̂q f )(q) is what dictates the local size of the
estimator. Note that Û (q+1) is easily computable.
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Corollary 2.1 (Explicit Error Estimates) If (2.7), (2.8), and (2.11) are valid, then the
following lower and upper bounds hold

αq

3

m∑
n=1

k2q+3
n ‖Û (q+1)‖2

≤ max
0≤τ≤tm

⎡
⎣|ê(τ )|2 +

τ∫
0

(
‖e(s)‖2 + 1

2
‖ê(s)‖2

)
ds

⎤
⎦

≤ αq

m∑
n=1

k2q+3
n ‖Û (q+1)‖2 + 2

tm∫
0

‖( f − Π̂q f )(s)‖2
�ds. (2.26)

Proof Combine Theorems 2.1 and 2.2 with (2.18). 
�
Remark 2.4 (A Priori Estimates) We stress that if f is a piecewise polynomial of degree
at most q, then the data oscillation term above vanishes. Otherwise, we observe that
all terms above appear to be of the same order, namely O(k2q+3

n ) locally, which is
consistent with the global order q + 1 of the methods considered in this paper, as we
will see later. If f = 0, and Û (q+1) converges to u(q+1), then we could formally write

m∑
n=1

k2q+3
n ‖Û (q+1)‖2 ≈

tm∫
0

k(t)2q+2‖u(q+1)(t)‖2dt,

where k(t) stands for the piecewise constant time-step function. This is consistent
with the a priori error representation formula.

3 The continuous Galerkin method

In this section we first recall the continuous Galerkin method (cG). In Sect. 3.1 we
cast cG within the abstract framework of Sect. 1, and so that both Theorems 2.1 and
2.2 apply to cG. We then extend the theory to nonlinear equations of the form (1.1) in
Sect. 3.2. A posteriori estimates for cG for ODEs are established in [12].

The cG approximation U to the solution u of (1.1) is defined as follows: We seek
U ∈ Vq such that U (0) = u0 and

∫
Jn

[〈U ′, v〉 + 〈AU, v〉] dt =
∫
Jn

〈 f, v〉 dt ∀v ∈ Vq−1(Jn), (3.1)

for n = 1, . . . , N . For local uniqueness and existence results for cG as well as for
a priori error estimates, including nonlinear parabolic equations, we refer to [1,4].
It follows from (3.1) that U ∈ Vq satisfies also the following pointwise equation

U ′(t) + Pq−1 AU (t) = Pq−1 f (t) ∀t ∈ Jn, (3.2)
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with P� denoting the (local) L2 orthogonal projection operator onto H�(Jn):

∫
Jn

〈P�w, v〉 ds =
∫
Jn

〈w, v〉 ds ∀v ∈ H�(Jn).

We thus conclude that cG is indeed a particular case, with Πq−1 = Pq−1, of the
general class of methods described by (2.2).

3.1 Continuous Galerkin reconstruction

We let Π̂q := Pq and define the cG reconstruction Û ∈ Hq+1(Jn) via (2.10). This
expression reads pointwise

Û ′(t) + AU (t) = Pq f (t) ∀t ∈ Jn . (3.3)

We need now to identify the nodes {τi }q
i=1 in (2.7). Let p0, p1, . . . be the Legendre

polynomials shifted to Jn and normalized. Since

(Pq − Pq−1)w =
∫
Jn

w(s)pq(s) ds · pq ∀w ∈ L2(Jn),

we infer from (2.8) that {tn,i }q
i=1 are the zeros of pq and thus {τi }q

i=1 are the Gauss
points in (0, 1).

A consequence of (2.24) is that (Û ′ − U ′)(tn,i ) = 0 for tn,i = tn−1 + τi kn . In this
case we can also identify the zeros of Û − U. In fact, since

(Û ′ − U ′)(t) = 1

q!kq
n Û (q+1)

q∏
i=1

(
t − tn−1

kn
− τi

)

by virtue of (2.25), and Û − U vanishes at tn−1 and tn, the zeros of Û − U are the
q + 1 Lobatto points in Jn, namely the roots of ϕq+1 in (2.21); see [8, p. 104].

Remark 3.1 (Variational Conditions for Û ) Upon subtracting (3.2) from (3.3) we get
the following characterization of the cG reconstruction Û ∈ Hq+1:

⎧⎪⎪⎨
⎪⎪⎩

Û (tn−1) = U (tn−1), Û (tn) = U (tn),∫
Jn

(Û ′ − U ′, v)dt = 0 ∀v ∈ Vq−1(Jn). (3.4)
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Remark 3.2 (A Priori Projection and Elliptic Reconstruction) In the derivation of opti-
mal order a priori error estimates the function W ∈ Vq(Jn) defined by

⎧⎪⎪⎨
⎪⎪⎩

W (tn−1) = u(tn−1), W (tn) = u(tn),∫
Jn

(u′ − W ′, v)dt = 0 ∀v ∈ Vq−1(Jn) (3.5)

plays a fundamental role [1,4,27], analogous to the role of the elliptic projection of
the exact solution in the derivation of optimal order a priori error estimates for space
discrete finite element methods for parabolic equations [27]. The continuous Galerkin
reconstruction Û ∈ Hq+1 ‘solves’ problem (3.4) that is in a sense ‘dual’ to (3.5). Note
the similarity to the relation between the elliptic projection and the elliptic reconstruc-
tion of [22] in the a posteriori error analysis of space discrete finite element methods
for parabolic equations.

We recall that Theorem 2.2 provides a simple representation for Û − U for cG.
We may wonder about the lower order case q = 1 and consistency with [2]; this is
discussed next.

Remark 3.3 (Case q = 1: The Crank–Nicolson–Galerkin Method) Since τ1 = 1
2 and

the Lobatto points in Jn are just tn−1 and tn , (2.24) and (2.25) yield for all t ∈ Jn

Û (t) − U (t) =
t∫

tn−1

(P1 − P0)( f − AU )(s) ds = 1

2
Û ′′(t − tn−1)(t − tn).

We now derive a different, but equivalent, representation of Û ′′. We note that U being
linear implies

(P1 − P0)AU (t) = p1(t)
∫
Jn

AU (s)p1(s)ds,

where p1(t) =
√

12
k3

n
(t − tn− 1

2 ) is the second orthonormal Legendre polynomial in Jn .

Since p1 is orthogonal to constants, we see that

∫
Jn

AU (s)p1(s) ds = AU ′
∫
Jn

sp1(s) ds =
√

k3
n

12
AU ′.

On the other hand, we have

(P1 − P0) f (t) = p1(t)
∫
Jn

f (s)p1(s) ds.
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Integrating in time from tn−1 to t, we end up with the expression

Û (t) − U (t) = (t − tn−1)(t − tn)

⎛
⎜⎝−1

2
AU ′ + 6

k3
n

∫
Jn

f (s)(s − tn− 1
2 ) ds

⎞
⎟⎠ ,

which turns out to be the relation (3.4) in [2]. This shows that Theorem 2.2 extends
[2] for any q > 1.

3.2 Continuous Galerkin method for nonlinear equations

In this subsection we consider the discretization of (1.1). We assume that B(t, ·) can
be extended to an operator from V into V �. A natural condition for (1.1) to be locally
of parabolic type is the following local one-sided Lipschitz condition

〈B(t, v) − B(t, w), v − w〉 ≤ λ‖v − w‖2 + µ|v − w|2 ∀v,w ∈ Tu (3.6)

in a tube Tu := {v ∈ V : mint ‖u(t) − v‖ ≤ 1}, around the solution u, uniformly in
t, with constants λ < 1 and µ ≥ 0. If F(t, v) := Av − B(t, v), then it turns out that
(3.6) can be written in the form of a Gårding–type inequality,

〈F(t, v) − F(t, w), v − w〉 ≥ (1 − λ)‖v − w‖2 − µ|v − w|2 (3.7)

for v,w ∈ Tu . Furthermore, in order to ensure that an appropriate residual is of the
correct order, we make use of the following local Lipschitz condition for B(t, ·)

‖B(t, v) − B(t, w)‖� ≤ L‖v − w‖ ∀v,w ∈ Tu (3.8)

with a constant L , not necessarily less than one.
The tube Tu is here defined in terms of the norm of V for concreteness. The analysis

may be modified to yield a posteriori error estimates under conditions analogous to
(3.6) and (3.8) for v and w belonging to tubes defined in terms of other norms, not
necessarily the same for both arguments.

We recall that cG for (1.1) consists of seeking a function U : [0, T ] → V, contin-
uous and piecewise polynomial of degree at most q, such that U (0) = u(0) and∫

Jn

[〈U ′, v〉 + 〈AU, v〉] dt =
∫
Jn

〈B(t, U ), v〉 dt ∀v ∈ Vq−1(Jn) (3.9)

for n = 1, . . . , N . The cG approximation U satisfies the pointwise equation

U ′(t) + Pq−1 AU (t) = Pq−1 B (t, U (t)) ∀t ∈ Jn . (3.10)

For existence and local uniqueness results for the continuous Galerkin approximations
as well as for a priori error estimates we refer to [1].
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The continuous Galerkin reconstruction Û ∈ Hq+1(Jn) is now defined by

Û (t) := U (tn−1) −
t∫

tn−1

[
AU (s) − Pq B (s, U (s))

]
ds ∀t ∈ Jn; (3.11)

this extends (2.10) with Π̂q = Pq . Obviously, Û satisfies the pointwise equation

Û ′(t) + AU (t) = Pq B (t, U (t)) ∀t ∈ Jn . (3.12)

Remark 3.4 (Conditional Estimates) The following estimates are valid under the
assumption that U (t), Û (t) ∈ Tu, for all t ∈ [0, T ]. This restrictive assumption
can sometimes be verified a posteriori. In such cases, the final estimate holds subject
to a condition that U or Û may or may not satisfy but can be computationally veri-
fied. The derivation of these bounds requires the use of fine properties of the specific
underlying PDE, as was done in [18,23], and therefore goes beyond the scope of the
present paper.

Theorem 3.1 (Error Estimates for Nonlinear Equations) Assume that U (t), Û (t)
∈ Tu, for all t ∈ [0, T ]. Then, the following upper bound is valid, for any ε ∈
(0, 1

2 (1 − λ)),

max
0≤τ≤t

⎡
⎣|ê(τ )|2 + (1 − λ − 2ε)

τ∫
0

e3µ(τ−s)
(
‖ê(s)‖2 + ‖e(s)‖2

)
ds

⎤
⎦

≤
t∫

0

e3µ(t−s)
[

2µ|(Û − U )(s)|2 +
(

L2

2ε
+ 1

)
‖(Û − U )(s)‖2

+1

ε
‖RU (s)‖2

�

]
ds.

Proof Subtracting (3.12) from the differential equation in (1.1), we obtain

ê′(t) + Ae(t) = B (t, u(t)) − B (t, U (t)) + RU (t) (3.13)

with

RU (t) = B (t, U (t)) − Pq B (t, U (t)) ; (3.14)

compare with (6.19) and (6.20) in [2]. Proceeding as in [2], namely taking the inner
product with ê(t), from (3.13) we can establish the desired upper bound. 
�

Let us note that the lower bound in Theorem 2.1 is obviously also valid in the non-
linear case.
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4 Runge–Kutta collocation methods

Let q ∈ N and τ1, . . . , τq ∈ [0, 1] be pairwise different, 0 ≤ τ1 < · · · < τq ≤ 1.

We recall that 0 = t0 < t1 < · · · < t N = T is a partition of [0, T ], Jn = (tn−1, tn]
and kn = tn − tn−1, and set tn,i := tn−1 + τi kn . The collocation method with nodes
τ1, . . . , τq , applied to (1.1), reads: We seek U ∈ Vq such that

U ′(tn,i ) + F
(

tn,i , U (tn,i )
)

= 0, i = 1, . . . , q, (4.1)

for n = 1, . . . , N ; here U (0) = u(0). We do not consider linear equations separately.

4.1 Runge–Kutta and collocation methods

For q ∈ N, a q−stage Runge–Kutta (RK) method is described by the constants
ai j , bi , τi , i, j = 1, . . . , q, arranged in a Butcher tableau,

a11 . . . a1q τ1
...

...
...

aq1 . . . aqq τq

b1 . . . bq

.

Given an approximation U n−1 to u(tn−1), the n-th step of the Runge–Kutta method
applied to (1.1) that yields the approximation U n to u(tn) is

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

U n,i = U n−1 − kn

q∑
j=1

ai j F(tn, j , U n, j ), i = 1, . . . , q,

U n = U n−1 − kn

q∑
i=1

bi F(tn,i , U n,i ) ;
(4.2)

here U n,i are the intermediate stages, which are approximations to u(tn,i ).

Let r and s be the largest integers such that

q∑
i=1

biτ
�
i = 1

� + 1
, � = 0, . . . , s − 1,

q∑
j=1

ai jτ
�
j = τ �+1

i

� + 1
, � = 0, . . . , r − 1, i = 1, . . . , q.

The stage order of the Runge–Kutta method is p′ := min(s, r). The classical (nonstiff)
order of the method is the largest integer p such that after one step of the RK method,
with yn−1 := y(tn−1), there holds y(tn) − yn = O(k p+1

n ) for smooth solutions y of
ODEs with bounded derivatives; p is the superorder of RK.
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The collocation method (4.1) is equivalent to the Runge–Kutta method with

ai j :=
τi∫

0

L j (τ )dτ, bi :=
1∫

0

Li (τ )dτ, i, j = 1, . . . , q,

with L1, . . . , Lq the Lagrange polynomials of degree q − 1 associated with the nodes
τ1, . . . , τq , in the sense that U (tn,i ) = U n,i , i = 1, . . . , q, and U (tn) = U n; see
[15, Theorem 7.6]. This is the Runge–Kutta Collocation (RK-C) class and satisfies
(2.2) with Πq−1 = Iq−1. Conversely, a q-stage Runge–Kutta method with pairwise
different τ1, . . . , τq is equivalent to the collocation method with the same nodes, if
and only if its stage order is at least q; see [15, Theorem 7.7]. Given the stages U n,i ,

i = 1, . . . , q, of the Runge–Kutta method, the collocation approximation U ∈ Vq(Jn)

is recovered by interpolating (tn,i , U n,i ), i = 1, . . . , q, and either (tn−1, U n−1), if
τ1 > 0, or (tn, U n), if τq < 1. In case τ1 = 0 and τq = 1, the collocation approx-
imation is continuously differentiable; therefore, for instance, if τ1 = 0, U can be
recovered by interpolating (tn−1, U n−1) and (tn,i , U n,i ), i = 1, . . . , q, and requiring
U ′(tn−1) = −F(tn−1, U n−1). Most of the important RK methods belong to the RK-C
class.

4.2 Order in L∞([0, T ]; H) and superorder.

In this work we focus on estimators for the L∞([0, T ]; H) norm of the error. If U is
piecewise polynomial of degree q, then the highest possible order of convergence in
L∞([0, T ]; H) is q + 1, namely

max
0≤t≤T

|u(t) − U (t)| = O(kq+1) (4.3)

with k := maxn kn . This fact follows from basic approximation theory results and
is valid even in the case of initial value problems for ODEs with smooth solutions.
For the optimal order of convergence q + 1 in (4.3) to be attained, a condition on
the RK-C method is required, as the case q = 1, τ1 = 1 shows, which reduces to
the backward Euler method, a scheme yielding first order approximations even at the
nodes t1, . . . , t N . This is related to the convergence order at the nodes {tn}N

n=1. Indeed,
it is well known that the classical order of the RK-C method is p > q, if and only if
the nodes τ1, . . . , τq satisfy the orthogonality condition

1∫
0

q∏
i=1

(τ − τi )v(τ ) dτ = 0 ∀v ∈ Pr (4.4)

for r ≥ 1, where r = p − q − 1, [15, Theorem 7.8]. We recall that condition (4.4) is
obviously satisfied if and only if every element of Pq+r and its Lagrange interpolant at
τ1, . . . , τq have the same integral in [0, 1], i.e., if the interpolatory quadrature formula
with abscissae τ1, . . . , τq integrates the elements of Pq+r = Pp−1 exactly.
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A necessary and sufficient condition for (4.3) to hold for problems with smooth
solutions is that p ≥ q + 1, that is (2.7) is satisfied. In the sequel we assume therefore
that (2.7) (and hence (4.3)) holds and we will establish a posteriori estimates of this
order in L∞([0, T ]; H).

It is worth noting though, that there exist interesting methods where (2.7) fails to
be valid, and thus the order in L∞([0, T ]; H) is q. For such methods, in general, the
residual (2.6) is not suboptimal any longer and thus estimates based on the original
formulation of the method and its error equation (2.5) are possible. Examples of
such methods are the Backward Euler Method (see Example 4.2), and the Trapezoidal
Method (see Example 4.3). For these methods however it might be preferable to con-
sider alternative formulations involving lower polynomial degrees for U than those
corresponding to their RK-C formulation. Such approaches are discussed in [24] for
the Backward Euler Method and in Example 4.7 for the Trapezoidal Method.

Next, we briefly examine the case p > q + 1. Although the order of the method in
L∞([0, T ]; H) is provided by (4.3), the classical order p of the RK-C method cor-
responds to the superconvergence order at the nodes {tn}N

n=1 (superorder for short)
of the discrete solution U of initial value problems for ODEs with smooth solutions;
this is the standard terminology of RK methods [15,16]. Since the seminal work of
Crouzeix [6] it is known that the superorder is limited for linear problems unless
nontrivial compatibility conditions of the form

f ∈ D(Aρ), U 0 ∈ D(Aρ+1) (4.5)

are valid for 1 ≤ ρ ≤ q − 1. A requirement such as (4.5) may fail to be fulfilled
in practice [20,21,27]. This lack of nodal superconvergence is usually called or-
der reduction [27]. In [3] we derive a posteriori error bounds that account for nodal
superconvergence by implicitly assuming compatibility conditions of the type (4.5).

We now recall three important classes of collocation methods.

Example 4.1 (RK Gauss–Legendre) Let τ1, . . . , τq be the zeros of the Legendre poly-
nomial of degree q, shifted to (0, 1). Then the superorder p of the collocation method
is p = 2q. The collocation method is equivalent to the q-stage RK Gauss–Legendre
method; the latter has stage order q and is B−stable. The first member of the family
of RK Gauss–Legendre methods, i.e., q = 1, is the Crank–Nicolson scheme.

Example 4.2 (RK Radau IIA) Let τ1, . . . , τq ∈ (0, 1] be the abscissae of the Radau
quadrature formula, with τq = 1. Then the superorder p of the collocation method
is p = 2q − 1. The collocation method is equivalent to the q-stage RK Radau IIA
method; the latter has stage order q and is B−stable and strongly A−stable. The first
member of the family of RK Radau IIA methods is the backward Euler scheme (q = 1)
which, however, does not satisfy (1.2) but is examined in [24].

Example 4.3 (RK Lobatto IIIA) Let 0 = τ1 < τ2 < · · · < τq = 1 be the abscissae of
the Lobatto quadrature formula. The collocation method has a superorder p = 2q − 2
and is equivalent to the q-stage Runge–Kutta–Lobatto IIIA method; the latter has stage
order q, is A−stable but it is not B−stable. The first member of the family of RK
Lobatto IIIA methods is the trapezoidal scheme (q = 2) which, however, does not
satisfy (1.2) (see Example 4.7).
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4.3 Pointwise equation and residual

To establish a posteriori error estimates we first derive a pointwise equation for the
RK-C approximation U. To this end we introduce an interpolation operator Iq−1, for
continuous functions v defined on Jn,

Iq−1v ∈ Hq−1(Jn) : (Iq−1v)(tn,i ) = v(tn,i ), i = 1, . . . , q. (4.6)

It turns out that (4.1) can be equivalently written in the form

U ′(t) = −Iq−1 F (t, U (t)) = −AIq−1U (t) + Iq−1 B(t, U (t)), (4.7)

t ∈ Jn .Note that, in the linear case, (4.7) is a particular case of (2.2) withΠq−1 = Iq−1.

Let now R denote the residual of the RK-C approximation, R(t) := U ′(t) +
F (t, U (t)) . In view of (4.7), R(t) can be rewritten in the form

R(t) = F (t, U (t)) − Iq−1 F (t, U (t)) ∀t ∈ Jn . (4.8)

This residual is in general of order O(kq), since it is the error of the interpolation by
piecewise polynomials of degree at most q − 1. This order suffices only if the order
of the method is also q, i.e., if (2.7) is not satisfied. This is the case of the backward
Euler method (see [24]) and the trapezoidal method (see Example 4.7).

Since we assume that (2.7) is satisfied, and so U (t) is an approximation of order
q + 1 to u(t), for all t , then R(t) is of suboptimal order; this is consistent with (2.6).
To recover the optimal order q + 1, we will next introduce a RK-C reconstruction Û
of the approximation U.

4.4 RK-C reconstruction

Let tn,0 �= tn,i , for i = 1, . . . , q, be an extra point, which may or may not belong to
Jn . We define the extended interpolation operator Îq by

Îqv ∈ Hq(Jn) : ( Îqv)(tn,i ) = v(tn,i ), i = 0, 1, . . . , q, (4.9)

for all continuous functions v on [0, T ]. Since Îq satisfies (2.8) by definition, it also
satisfies the orthogonality property (2.9).

We now define a RK-C reconstruction Û ∈ Hq+1(Jn) of the approximation U by

Û (t) := U (tn−1) −
t∫

tn−1

Îq F (s, U (s)) ds ∀t ∈ Jn . (4.10)
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As a consequence of (2.9), and the discussion following (2.10), Û is continuous on
[0, T ]. Moreover, by differentiation of Û (t) and definition of F(t, U ), we deduce

Û ′(t) = − Îq F(t, U (t)) = − Îq AU (t) + Îq B (t, U (t)) ∀t ∈ Jn . (4.11)

If tn,0 ∈ Jn , then ÎqU = U and (4.11) becomes the following counterpart of (3.12)

Û ′(t) + AU (t) = Îq B (t, U (t)) ∀t ∈ Jn . (4.12)

Example 4.4 (RK Radau IIA) According to Example 4.2, let q > 1, τq = 1 and
τ1 > 0. A natural choice for τ0 is τ0 = 0, i.e., tn,0 = tn−1, for which the resulting
reconstruction Û is continuously differentiable. Indeed, (4.12) yields

Û ′(tn−) = −AU n + B(tn, U n).

Using again (4.12), this time in the interval Jn+1, and choosing tn+1,0 = tn, we get

Û ′(tn+) = −AU n + B(tn, U n);

consequently, Û is differentiable at the node tn . On the other hand, the time recon-
struction introduced by Makridakis and Nochetto for RK Radau IIA methods in the
context of dG is just continuous [23, Lemma 2.1]. This is due to the fact that the
present time reconstruction is one-degree higher than that in [23] for the same q. In
[3] we further investigate the relation between dG and cG formulations and their cor-
responding reconstructions and present a unified formulation that covers all schemes,
namely, cG, dG, RK-C and perturbed collocation methods.

Example 4.5 (The Crank–Nicolson Method: Two-Point Estimator.) Let q = 1,

τ = 1/2 and set tn− 1
2 := (tn−1 + tn)/2 = tn−1 + kn/2. The RK-C method (4.1)

reads: seek U ∈ V1 such that

U ′(tn− 1
2 ) + AU (tn− 1

2 ) = B
(

tn− 1
2 , U (tn− 1

2 )
)

, n = 1, . . . , N , (4.13)

with U (0) = u(0). Now, since

U ′(tn− 1
2 ) = ∂̄U n := U n − U n−1

kn
, U (tn− 1

2 ) = U n− 1
2 := U n−1 + U n

2
,

the scheme (4.13) can also be written in the standard Crank–Nicolson form

∂̄U n + AU n− 1
2 = B

(
tn− 1

2 , U n− 1
2

)
, n = 1, . . . , N , (4.14)

with U 0 = u(0). Conversely, if the Crank–Nicolson approximations {U n}N
n=1 are

given by (4.14), then the RK-C approximation U ∈ V1 is recovered by linearly inter-
polating between these nodal values. Now let τ0 ∈ [0, 1], τ0 �= 1/2, and tn,0 :=
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tn−1 + τ0kn . Then, the interpolation operator Î1 is given on Jn by Î1v ∈ H1(Jn) such

that ( Î1v)(tn− 1
2 ) = v(tn− 1

2 ) and ( Î1v)(tn,0) = v(tn,0). In particular, for τ0 = 0,

(
Î1 B(·, U )

)
(t) = B(tn− 1

2 , U n− 1
2 )

+ 2(t − tn− 1
2 )

kn

[
B(tn− 1

2 , U n− 1
2 ) − B(tn−1, U n−1)

]
.

Therefore

Û (t) = U n−1 −
t∫

tn−1

AU (s) ds +
t∫

tn−1

(
Î1 B(·, U )

)
(s) ds;

this coincides with (6.14) in [2]. Moreover, the estimator Û − U is controlled by

Û ′′ = −A
U n − U n−1

kn
+ 2

kn

[
B(tn− 1

2 , U n− 1
2 ) − B(tn−1, U n−1)

]
, (4.15)

according to Theorem 2.2.

Example 4.6 (The Crank–Nicolson Method: Three-Point Estimator.) Consider the
Crank–Nicolson method, but now choose tn,0 to be the collocation point in the previ-

ous interval for n > 1, i.e., tn,0 = tn−1,1 = tn− 3
2 , and in the next interval for n = 1.

Then key properties F(tn,0, U (tn,0)) ∈ V and (4.9) of the reconstruction remain valid.
Furthermore, according to Theorem 2.2, the estimator hinges on Û ′′, namely

Û ′′ = − 2

kn + kn−1

(
F
(

tn− 1
2 , U n− 1

2

)
− F

(
tn− 3

2 , U n− 3
2

))
.

Invoking (4.2), namely U n − U n−1 = −kn F(tn− 1
2 , U n− 1

2 ), yields the estimator

Û ′′ = 2

kn + kn−1

(
U n − U n−1

kn
− U n−1 − U n−2

kn−1

)
, (4.16)

regardless of whether F(t, U ) is linear in U or not.

Example 4.7 (The Trapezoidal Method.) This is a variant of the Crank–Nicolson
Method, where middle point function evaluations F(tn− 1

2 , U n− 1
2 ) are replaced by

averages 1
2

[
F(tn, U n) + F(tn−1, U n−1)

]
. The standard form of the method is

∂̄U n = −1

2

[
F(tn, U n) + F(tn−1, U n−1)

]
, n = 1, . . . , N , (4.17)

with U 0 = u(0). This is a very popular second order method which can be seen as
a two-point RK-C method, namely the lowest order Lobatto IIIA method. However,
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as a collocation method, q = 2 and (1.2) is not satisfied, as expected since the order
of the method is two. We can still cast the method within the framework of Sect. 2
provided we regard it as a piecewise linear approximation (q = 1), in agreement with
the Crank–Nicolson method, instead of quadratic (q = 2); this is choice made in [19].
To this end, let U ∈ V1 be the continuous piecewise linear function that coincides
with U n at the nodes. Then (4.17) can be written as

U ′(t) = −1

2

[
F(tn, U (tn)) + F(tn−1, U (tn−1))

]
, n = 1, . . . , N . (4.18)

It is a simple matter now to verify, by using the properties of the trapezoidal quad-
rature rule, that (4.18) is equivalent to

∫
Jn

〈U ′, v〉dt = −
∫
Jn

〈Π0 F(t, U ), v〉 dt ∀v ∈ H0(Jn), (4.19)

where Π0 := P0 I1, I1 is the interpolation operator at tn, tn−1 by piecewise linear
functions and P0 is the L2 projection onto H0(Jn). This is of the form (2.2).

According to Sect. 2.1 the definition of Û ∈ H1 should be based on appropri-
ate projection operators Π̂1 which satisfy the key property (2.9). The obvious choice
Π̂1 = I1 satisfies (2.9), the reconstruction Û defined by (4.10) coincides with U at
tn−1 and tn , Theorem 2.2 is applicable and thus the estimator Û − U is given by

Û ′′ = − 1

kn

[
F(tn, U n) − F(tn−1, U n−1)

]
.

This is similar to the two-point estimator (4.15). We also observe that the recon-
struction Û coincides with the RK-C interpretation of Trapezoidal method. Indeed,

Û ′(t) = −I1 F(·, U )(t) = −I1 F(·, Û )(t)

because U − Û vanishes at tn−1 and tn . We explore this connection further in [3].
An alternative reconstruction Û leading to a three-point estimator consists of taking

Π̂1 the linear interpolant joining the values Π̂0 F(·, U )(t) at the midpoints tn− 3
2 and

tn− 1
2 . This operator also satisfies (2.9), Û coincides with U at tn−1 and tn , and Û ′′

reads

Û ′′ = 1

kn + kn−1

[(
F(tn, U n) + F(tn−1, U n−1)

)
−
(

F(tn−1, U n−1) + F(tn−2, U n−2)
)]

whence

Û ′′ = 2

kn + kn−1

(
U n − U n−1

kn
− U n−1 − U n−2

kn−1

)
.
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This is similar to the three-point estimator (4.16), and is the time estimator proposed
recently by Lozinski et al. [19] for the heat equation.

4.5 A posteriori error estimates

Subtracting (4.12) from the differential equation in (1.1), we obtain

ê′(t) + Ae(t) = B (t, u(t)) − B (t, U (t)) + RU (t) (4.20)

with

RU (t) = B (t, U (t)) − Îq B (t, U (t)); (4.21)

compare with (3.13) and (3.14). This leads to the following optimal result, the proof
of which is similar to that of Theorem 3.1 and thus omitted.

Theorem 4.1 (Error Estimates for Nonlinear Equations) Let the assumptions of sect. 3
about A, B, f and u0 be valid. In addition, if (2.7) holds, then so does the global
upper bound of Theorem 3.1 for q-stage RK-C methods. The local lower bound in
Theorem 2.1 as well as the expressions in Theorem 2.2 for Û − U are also valid.

5 Explicit conditions for U, ̂U ∈ V

In this section we discuss whether Û satisfies the regularity condition (2.11) assumed
throughout the paper. We provide conditions on the data and the reconstruction which
guarantee its validity for the time discrete case, although, (2.11) is always satisfied
by fully discrete schemes for evolution PDEs. To be precise, we examine sufficient
conditions on U 0 and F(0, U 0) for

U (t) ∈ V ∀t ∈ [0, T ], (5.1)

Π̂q F(·, U )(t) ∈ V ∀t ∈ [0, T ], (5.2)

for the class of methods of Sect. 2 for which the reconstruction reads

Û ′(t) = U n−1 −
t∫

tn−1

Π̂q F(·, U )(s)ds

for an interpolation operator satisfying (2.8). This implies Û (t) ∈ V and thereby
gives (2.11). We first study (5.2), and next we establish sufficient conditions for (5.1)
depending on the class and nodes {tn,i }q

i=0. To avoid confusion, note that tn,0 is not
necessarily assumed to belong to the interval [tn−1, tn], to which {tn,i }q

i=1 belong.
Correspondingly, we set U n,0 = U (tn,0) where U by its definition is a function
defined on [0, T ] which is polynomial of degree q in each interval Jn .
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Lemma 5.1 (Regularity) If (5.1) holds and

F(tn,0, U n,0) ∈ V (5.3)

for all n ≥ 1, then

Π̂q F(t, U (t)) ∈ V ∀t ∈ [0, T ].

Proof Let t ∈ Jn . From the assumption U (t) ∈ V it immediately follows that U (t)
can be expressed in terms of the Lagrange polynomials with coefficients belonging
to V . Thus, by differentiation, it follows that U ′(t) ∈ V , for all t ∈ Jn . Consequently,

F(tn,i , U n,i ) = −U ′(tn,i ) ∈ V, i = 1, . . . , q.

Since F(tn,0, U n,0) ∈ V by hypothesis, with tn,0 �= tn,i for i > 0, we conclude that
the interpolant Π̂q F(t, U (t)) belongs to V , for all t ∈ Jn , as asserted, because it is a
linear combination of Lagrange polynomials with coefficients {F(tn,i , U n,i )}q

i=0. 
�
We now turn our attention to (5.1), (5.2) and split the analysis according to the

method. It is an interesting open question whether the following conditions can be
weakened, thereby extending the applicability of our results herein.

5.1 Runge-Kutta collocation method (revisited)

We examine two cases in accordance with the location of node τ1.
Case 1: τ1 > 0. We prove (5.1) provided

U 0 ∈ V . (5.4)

We argue that U n−1 ∈ V implies U (t) ∈ V for all t ∈ Jn by induction on n. For n = 0
the statement is void. Let n ≥ 1 and observe that Iq−1U (t) ∈ D(A) for t ∈ Jn , in
view of (4.7), whence U n,i ∈ D(A) ⊂ V for i = 1, . . . , q. Obviously, U (t) is a linear
combination of the nodal values {U n,i }q

i=1 and U n−1; since by induction U n−1 ∈ V,

we deduce that U (t) ∈ V for all t ∈ Jn .
To apply Lemma 5.1 it remains to choose tn,0 judiciously and to verify (5.3). We

consider two cases, depending on whether τq < 1 or τq = 1.
If τq < 1, then we choose tn,0 to be a collocation point in a consecutive internal to

Jn . If n = 1 we take t1,0 = t2,1 to be the first collocation point of the next interval. If
n > 1, instead, we select tn,0 = tn−1,q to be the last collocation point of the previous
interval. In both cases, the choice tn,0 is acceptable for a posteriori error estimation
because F(tn,0, U n,0) ∈ V is at our disposal. The RK Gauss-Legendre family is a key
example (Example 4.1). An explicit formula of a reconstruction Û provided by the
above procedure is given in the case of the Crank-Nicolson method with three-point
estimator (Example 4.6).

If τq = 1, then U n ∈ D(A) ⊂ V whence, invoking (4.7) again, F(tn, U n) ∈ V for
all n ≥ 1. Therefore, we can now choose tn,0 = tn−1 for n ≥ 2 and obtain (5.2) for
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t ≥ t1. For the first interval we could take t1,0 = 0 provided F(0, U 0) ∈ V or the first
collocation point of the second interval, t1,0 = t2,1, otherwise. The RK Radau IIA is
a key example for q > 1 and U 0 ∈ V (Example 4.2).
Case 2: τ1 = 0. We prove (5.1) provided

F(0, U 0) ∈ V (5.5)

and F is continuous. Condition (5.5) is necessary for Û (t) ∈ V for 0 ≤ t ≤ t1

according to (4.10), but implies (5.1) only when τq = 1. In fact, in this case U (t) is
continuously differentiable because

U ′(tn+) = −F
(
tn+, U (tn+)

) = −F
(
tn−, U (tn−)

) = U ′(tn−)

due to the continuity of U and F . We can argue by induction on n ≥ 0 that U ′(tn) ∈ V .
For n = 0 the statement is (5.5). For n > 0 we see that U n,i ∈ V for i = 1, . . . , q
and U ′(tn−1) ∈ V by induction. This implies that U (t) ∈ V for all t ∈ Jn because it
is a polynomial of degree ≤ q, whence U ′(tn) ∈ V . RK Lobatto IIIA methods are a
key example for q > 2 (Example 4.3).

On the other hand, if τq < 1, there is no smoothing property and neither U (t) nor
Û (t) are well defined for t ≥ t1. A relevant example is the explicit Euler method
U n = U n−1 − kn AU n−1 + kn f (tn−1), for which U 0 ∈ D(A) gives U 1 ∈ H .

As a final remark note that in the case of Trapezoidal Method (Example 4.7) with
U considered as piecewise linear function, the method is not a pure RK-C method.
Thus it is not covered by the previous cases. On the other hand it is a simple matter to
check that U and Π̂q do satisfy (5.1), (5.2), provided F(0, U 0) ∈ V .

5.2 Continuous Galerkin method (revisited)

We finally modify the L2-projection operator Pq of cG and so construct an interpola-
tion operator Π̂q satisfying the key property (2.8) as well as the requisite properties
for (5.1) and (5.2).

Let v be a smooth function and ṽ = Pq−1v. We define Π̂qv ∈ Vq(Jn) to be the
interpolant of ṽ at the q Gauss points of Jn plus the last Gauss point of Jn−1 if n > 1
or the first Gauss point of J2 if n = 1; hence the fundamental property (2.8) holds. In
view of Remark 2.2 we need to show that the terms appearing on the right-hand side
of (2.20) are of optimal order. This property is trivially verified when Π̂q is a simple
interpolation operator as in the case of RK-C methods above. In our case, however,
we will show in the sequel that

v(t) − Π̂qv(t) = O(kq+1) ∀t ∈ Jn,

with k = max(kn−1, kn, kn+1).
Let Ĩqv be the interpolant of v at the q Gauss points of Jn plus the last Gauss point of

Jn−1. Since v− Ĩqv = O(kq+1) on Jn , it remains to show that Ĩqv− Π̂qv = O(kq+1)
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on Jn . This will follow upon showing the nodal superconvergence

ṽ(tn,i ) − v(tn,i ) = O(kq+1), (5.6)

where tn,i , i = 1, . . . , q, are the Gauss points of Jn . This result being local applies as
well to the two consecutive intervals to Jn , and so the additional Gauss point employed
in defining both Π̂q and Ĩq . Since (5.6) is valid at q + 1 distinct points, the asserted
estimate Ĩqv − Π̂qv = O(kq+1) follows.

Let �n,i be the Lagrange polynomial of degree q − 1 so that �n,i (tn, j ) = δi j . Then

∫
Jn

�n,i v dt =
∫
Jn

�n,i Pq−1v dt =
q∑

j=1

wn, j
(
�n,i Pq−1v

)
(tn, j )

= wn,i Pq−1v(tn,i ),

whence

Pq−1v(tn,i ) = 1

wn,i

∫
Jn

�n,i v dt.

Note also that ∫
Jn

�n,i dt = wn,i ⇒ 1

wn,i

∫
Jn

�n,i dt = 1.

By Taylor expansion we have

v(t) − v(tn,i ) = Q(t − tn,i ) + (t − tn,i )q+1

(q + 1)! v(q+1)(ξ(t)),

where Q(t − tn,i ) is a polynomial of degree at most q which contains only factors of
(t − tn,i ). Combining the aforementioned ingredients, and using the fact that Gauss
quadrature integrates polynomials of degree 2q − 1 exactly, we obtain

ṽ(tn,i ) − v(tn,i ) = Pq−1v(tn,i ) − v(tn,i ) = 1

wn,i

∫
Jn

�n,i

(
v(t) − v(tn,i )

)
dt

= 1

wn,i

∫
Jn

�n,i

(
Q(t − tn,i ) + (t − tn,i )q+1

(q + 1)! v(q+1)(ξ(t))

)
dt

Since Q(t − tn,i ) vanishes at tn,i , we deduce

∫
Jn

�n,i (Q(t − tn,i ) dt =
q∑

j=1

wn, j�n,i (t
n, j )Q(t − tn,i )(tn, j ) = 0,
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whence (5.6) follows easily

ṽ(tn,i ) − v(tn,i ) = 1

wn,i

∫
Jn

�n,i
(t − tn,i )q+1

(q + 1)! v(q+1)(ξ(t))dt = O(kq+1).

We finally recall that the interpolation operator Π̂q verifies (2.8), and observe that
U satisfies (5.1) provided U 0 ∈ V . To prove this, note that Pq−1 AU (t) = AU (t) at q
distinct points in Jn because Pq−1 is the L2-projection onto polynomials of degree at
most q − 1. Even though these points are not a priori known, we can argue as in Case
1 (0 < τ1 < τq < 1) above to infer that U (t), Û (t) ∈ V for all t ∈ [0, T ].
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