
Numer. Math. (2009) 113:519–553
DOI 10.1007/s00211-009-0240-8

Numerische
Mathematik

Implicit standard Jacobi gives high relative accuracy

Froilán M. Dopico · Plamen Koev ·
Juan M. Molera

Received: 12 May 2008 / Revised: 4 May 2009 / Published online: 11 June 2009
© Springer-Verlag 2009

Abstract We prove that the Jacobi algorithm applied implicitly on a decomposition
A = X DXT of the symmetric matrix A, where D is diagonal, and X is well con-
ditioned, computes all eigenvalues of A to high relative accuracy. The relative error
in every eigenvalue is bounded by O(εκ(X)), where ε is the machine precision and
κ(X) ≡ ‖X‖2 · ‖X−1‖2 is the spectral condition number of X . The eigenvectors are
also computed accurately in the appropriate sense. We believe that this is the first algo-
rithm to compute accurate eigenvalues of symmetric (indefinite) matrices that respects
and preserves the symmetry of the problem and uses only orthogonal transformations.

Mathematics Subject Classification (2000) 65F15 · 65G50 · 15A23

1 Introduction

When conventional algorithms, like Q R or divide-and-conquer, are used to compute
the eigenvalues and eigenvectors of ill-conditioned real symmetric matrices in float-
ing point arithmetic, only the largest in magnitude eigenvalues are computed with

F. M. Dopico (B)
Instituto de Ciencias Matemáticas CSIC-UAM-UC3M-UCM and Departamento de Matemáticas,
Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Spain
e-mail: dopico@math.uc3m.es

P. Koev
Department of Mathematics, San Jose State University,
One Washington Square, San Jose, CA 95192, USA
e-mail: koev@math.sjsu.edu

J. M. Molera
Departamento de Matemáticas, Universidad Carlos III de Madrid,
Avda. Universidad 30, 28911 Leganés, Spain
e-mail: molera@math.uc3m.es

123

520 F. M. Dopico et al.

guaranteed relative accuracy. The tiny eigenvalues may be computed with no relative
accuracy at all—and even with the wrong sign. The only eigenvectors that are com-
puted accurately are the ones corresponding to eigenvalues whose absolute separation
from the rest of the spectrum is large. See [2, Sect. 4.7] for a survey on error bounds
for the symmetric eigenproblem.

In contrast, in the last 20 years an intensive research effort has been made to derive
algorithms for computing eigenvalues and eigenvectors of n × n symmetric matrices
to high relative accuracy, at O(n3) cost, i.e., roughly the same cost as that of conven-
tional algorithms for dense symmetric matrices [3,12,14,16,31,32,35,38,41,42]. The
closely related problem of computing the Singular Value Decomposition (SVD) with
high relative accuracy has received even more attention [5–8,10,11,18,20,21,23,45].

By high relative accuracy we mean that the eigenvalues λi , the eigenvectors vi ,
and their computed counterparts λ̂i and v̂i , respectively, satisfy

|λ̂i − λi | ≤ O(ε)|λi | and θ(vi , v̂i) ≤ O(ε)

min
j �=i

∣
∣
∣
λi −λ j

λi

∣
∣
∣

for i = 1, . . . , n, (1)

where ε is the machine precision, and θ(vi , v̂i) is the acute angle between vi and v̂i .
These conditions guarantee that all eigenvalues, including the tiniest ones, are com-
puted with correct sign and leading digits. The eigenvectors are computed accurately
as long as the relative separations between the eigenvalues are large, regardless of
how small the eigenvalues themselves may be. For multiple or extremely close eigen-
values, the eigenvectors become extremely ill conditioned in which case we develop
error bounds for the corresponding invariant subspaces.

Many classes of structured symmetric matrices whose eigendecompositions and
SVDs can be computed with high relative accuracy have been identified [3,5–12,14,
38,45]. Introduced by Demmel et al. [7], the key unifying idea in these high accuracy
computations is to compute first an accurate rank revealing decomposition (RRD),
i.e., a decomposition A = X DXT, where X is well conditioned and D is diagonal,
and then to recover the eigenvalues and eigenvectors from the factors of the RRD.

At present, accurate computations of RRDs are possible for the following classes of
symmetric matrices: scaled diagonally dominant matrices [3], diagonally scaled well
conditioned positive definite matrices [12], certain diagonally scaled well conditioned
indefinite matrices [40], weakly diagonally dominant M-matrices [10], Cauchy matri-
ces, diagonally scaled Cauchy matrices, Vandermonde matrices, totally nonnegative
matrices [14], total signed compound matrices, diagonally scaled totally unimodular
matrices [38], and properly parameterized diagonally dominant matrices [45].

The fundamental property that makes an RRD very useful in high relative accuracy
computations is that its factors accurately determine the eigenvalues and eigenvectors
of the original matrix. Namely, small componentwise relative perturbations in D and
small normwise relative perturbations in X produce small relative perturbations in
the eigenvalues of A, and small perturbations in the eigenvectors with respect to the
relative eigenvalue gap [7,14].

Several algorithms have been proposed in the past to compute eigendecompositions
of symmetric RRDs to high relative accuracy. These algorithms are very satisfactory

123

Implicit standard Jacobi gives high relative accuracy 521

in the positive definite case and are based on the one-sided Jacobi algorithm [13,
Sect. 5.4.3] with a stringent stopping criterion [12,18,35].

Two algorithms are proposed for the indefinite case. While both algorithms work
well in practice, they both have shortcomings:

• The algorithm proposed by Veselić [44], and carefully analyzed and developed by
Slapničar [41,42] uses hyperbolic transformations, an unfortunate situation, since
symmetric matrices are diagonalizable by an orthogonal similarity. Furthermore,
this hyperbolic procedure does not guarantee small error bounds;1

• In contrast, the algorithm of Dopico, Molera, and Moro [16] does guarantee the
error bounds (1), but does not respect the symmetry of the problem.

Our main result in this paper is a new algorithm which, given an RRD A = X DXT of
a symmetric matrix A (definite or indefinite), computes its eigenvalues and eigenvec-
tors to high relative accuracy by using only orthogonal transformations and respect-
ing the symmetry of the problem. When A is nonsingular this algorithm is simply
the standard Jacobi algorithm applied implicitly on X using the well known cyclic-
by-row strategy [13, Sect. 5.3.5] to create the “implicit” zeros in A. The algorithm
stops when

|ai j | ≤ tol
√|aii a j j |, (2)

for all i < j , where tol is a given tolerance, typically O(ε). Once the stopping cri-
terion has been satisfied, the eigenvalues of A are computed as the diagonal entries
of X f DXT

f , where X f is the last iterate. The eigenvectors are accumulated from the
Jacobi rotations in each step.

In Sect. 5, we prove that the relative error in each eigenvalue is bounded by
O(κ(X)ε), where κ(X) ≡ ‖X‖2‖X−1‖2 is the condition number of X , and ‖ · ‖2
is the spectral norm. Note that since we are using only orthogonal transformations in
the Jacobi iteration, the condition number of X does not change. Therefore, when X is
well conditioned, i.e., when κ(X) � 1

ε
, the eigenvalues are computed to high relative

accuracy. Roughly, each eigenvalue is computed with log10 1/(εκ(X)) correct leading
significant decimal digits. We also prove that the error in each computed eigenvector
is bounded by O(κ(X)ε) divided by the corresponding relative eigenvalue gap.

To establish our relative error bounds, we prove that the computed eigenvalues
and eigenvectors are the exact eigenvalues and eigenvectors of a small multiplicative
perturbation of X DXT, i.e.,

(I + E)X DXT(I + E)T, (3)

with ‖E‖2 = O(ε κ(X)). This backward error result is in stark contrast with the
unstructured additive backward error bounds for conventional symmetric eigensolvers
[2, Sect. 4.7]. This is the key fact which, combined with the multiplicative perturbation

1 See [41, Theorem 4] and do notice that the error bound for the eigenvalues depends on the inverse of the
minimum singular values of all the column scaled matrix iterates generated by the hyperbolic one-sided
Jacobi algorithm. As far as we know, there is no proof that these quantities are bounded, but they have never
been observed to be large in practice.

123

522 F. M. Dopico et al.

theory bounds in [22,33,34], allows us to prove that the implicit Jacobi algorithm
delivers high relative accuracy when X is well conditioned.

In exact arithmetic, the implicit Jacobi algorithm is mathematically equivalent to
applying the standard cyclic-by-row Jacobi algorithm to X DXT, and therefore the con-
vergence properties of the implicit method are the same as those of standard Jacobi, to
be found for instance in [13,25,37]. Thus, we do not address its convergence properties
in this paper.

The paper is organized as follows. We introduce the main result—the implicit Jacobi
algorithm for nonsingular RRDs—in Sect. 2, as well as some of its key properties. It
sets the stage for the rest of the paper, where detailed proofs and tests are developed. In
Sect. 3, we summarize multiplicative perturbation bounds for eigenvalues and eigen-
vectors. Section 4 is concerned with the accuracy of the last step of the implicit Jacobi
algorithm. In Sect. 5 a complete multiplicative backward error analysis for the implicit
Jacobi algorithm is developed. In Sect. 6, we show that our algorithm extends trivially
to singular RRDs. Since the factors X and D of an RRD may be results of previous
computations (and thus carry uncertainties), we discuss how these uncertainties affect
the final output in Sect. 7. In Sect. 8, we present a simple but very effective precon-
ditioning technique to speed up the implicit Jacobi algorithm. We present numerical
tests in Sect. 9 and draw conclusions in Sect. 10.

Notation: In this paper, we consider only real matrices and denote the set of m × n
real matrices by R

m×n . The entries of a matrix A are denoted by ai j and |A| is the matrix
with entries |ai j |. We use MATLAB [36] notation for submatrices, e.g., A(i : j, k : l)
will indicate the submatrix of A consisting of rows i through j and columns k through
l, and A(:, k : l) will indicate the submatrix of A consisting of columns k through l.

2 The implicit Jacobi algorithm

In this section, we present our main result—the implicit Jacobi algorithm. We assume
that an RRD A = X DXT of a symmetric matrix A is given, where X, D ∈ R

n×n

are nonsingular and D = diag(d1, . . . , dn). The case when X is rectangular or D is
singular is considered in Sect. 6. Note that when A is nonsingular its eigenvalues are
different from zero, therefore the Jacobi algorithm stops in a final iterate that is an
almost diagonal matrix with nonzero diagonal entries.

We adopt the standard notation for Jacobi rotations

i j

R(i, j, c, s) =
i

j

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
. . .

c −s
. . .

s c
. . .

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

123

Implicit standard Jacobi gives high relative accuracy 523

where the computation of the cosines, c, and sines, s, is performed in the traditional
way—see the classical texts [13, Sect. 5.3.5], [25, Sect. 8.4.2], and [37, Chapter 9] for
details.

The key idea of our algorithm below is to apply the Jacobi rotations implicitly
and keep the matrix in factored form, i.e., to implement each Jacobi step X DXT →
RT(X DXT)R by updating X → RT X. Since the multiplicative backward errors
introduced by this update are unaffected by right diagonal scaling on X , we refactor
X DXT as G J GT, where G = Xdiag(

√|d1|, . . . ,√|dn|) and J = diag(sign(d1), . . . ,

sign(dn)), and update G instead. We use this second updating procedure because it is
more convenient in the preconditioned version in Algorithm 3.

The entries of A = G J GT needed for the computation of the Jacobi rotation in
Algorithm 1 and for the computation of the eigenvalues in the last step are computed
through the usual formula

ai j =
n
∑

k=1

gik g jk sign(dk). (4)

Algorithm 1, and the rest of algorithms in this paper, guarantees high relative
accuracy in the computed eigenvalues and eigenvectors if X is well conditioned. As
explained in Sect. 1, this means that κ(X) � 1

ε
. We will see that the smaller the

condition number of X , the larger the accuracy.

Algorithm 1 (Implicit cyclic-by-row Jacobi on XDXT) Given a nonsingular well
conditioned matrix X ∈ R

n×n and a diagonal nonsingular matrix D = diag(d1, . . . ,

dn) ∈ R
n×n , this algorithm computes the eigenvalues λ1, . . . , λn of A = X DXT and

an orthogonal matrix U ∈ R
n×n of eigenvectors to high relative accuracy.

κ̂(X) is the computed estimation of κ(X)

U = In

G = X diag(
√|d1|, . . . ,√|dn|)

J = diag(sign(d1), . . . , sign(dn))

repeat
for i = 1 : n − 1

for j = i + 1 : n
compute aii , ai j , a j j of A = G J GT as in (4)

compute T =
[

c −s
s c

]

, c2+s2 =1, such that T T
[

aii ai j

ai j a j j

]

T =
[

µ1 0
0 µ2

]

G = R(i, j, c, s)T G
U = U R(i, j, c, s)

endfor
endfor

until convergence

(

|ai j |√|aii a j j | ≤ ε max{n, κ̂(X)} for all i < j and
∑n

k=1 g2
ik|aii | ≤ 2̂κ(X)

for all i

)

compute λi = aii for i = 1, 2, . . . , n.

123

524 F. M. Dopico et al.

Apart from the implicit nature of Algorithm 1, it differs from the usual Jacobi
algorithm in the last two lines—the stopping criterion and the final computation of the
eigenvalues. Both lines paramount in guaranteeing high relative accuracy of the com-
puted eigenvalues and the associated error analysis is one of the main contributions in
this work. They deserve a brief explanation.

Let us start with the last line of the code, the computation of the eigenvalues as the
diagonal entries of the last iterate A = G J GT from the factors G and J using (4).
To get the eigenvalues with high relative accuracy it is necessary to guarantee that no
severe cancelation is produced in this process. To this purpose, first we will prove in
Theorem 5 in Sect. 4 that, in exact arithmetic, if the implicit Jacobi algorithm stops
according with the usual stopping criterion (2), then the conditions

∑n
k=1 g2

ik

|aii | ≤ 2κ(X), i = 1, . . . , n, (5)

are automatically satisfied for the last iterate. This fact is what induces the use of (5)
as the second part of the stopping criterion in the line before the last in Algorithm 1.
This second part of the criterion, together with standard error analysis [29, Sect. 3.1],
leads to the following satisfactory relative error bounds in the aii computed in the last
line:

∣
∣
∣
∣

f l(aii) − aii

aii

∣
∣
∣
∣
≤ nε

1 − nε
·
∑n

k=1 g2
ik

|aii | ≤ 2nε

1 − nε
κ̂(X), i = 1, . . . , n. (6)

These relative errors are small whenever κ(X) is small. Note that in exact arithmetic
the conditions (5) are satisfied without the need of extra Jacobi steps with respect to
(2). We have always observed the same in thousands of numerical tests, but, in finite
precision, we need to impose (5) explicitly to guarantee the error bounds.

The stopping criterion (2) with tol = ε max{n, κ̂(X)} in Algorithm 1 includes
εκ̂(X) because

|ai j |√|aii a j j | involves the computed entries aii , a j j and ai j , and (6) imply

relative errors of order εκ̂(X) in the computed diagonal entries. A complete explana-
tion of the stopping criterion in Algorithm 1 is presented in Sect. 5.1

The crucial part of the error analysis of Algorithm 1 corresponds to the stopping
criterion because standard error analysis guarantees that the application of the Jacobi
rotations on G is safe. The reason is that G is well conditioned after column scaling
since X is well conditioned, and therefore only small backward multiplicative errors
are introduced by the rotations [13, p. 251] [29, Lemma 19.9]. In fact, we will see in
Lemma 3 in Sect. 5.1 that the errors introduced by the stopping criterion can also be
expressed as small backward multiplicative errors. This is combined with the errors
coming from the rotations in Theorem 6 in Sect. 5.2 to prove that Algorithm 1 com-
putes the eigenvalues and eigenvectors of X DXT with small multiplicative backward
errors (3) with ‖E‖2 = O(εκ(X)). We will recall in Sect. 3 multiplicative pertur-
bation results for eigenvalues and invariant subspaces (eigenvectors) that together
with Theorem 6 show that Algorithm 1 computes the eigenvalues and eigenvectors of

123

Implicit standard Jacobi gives high relative accuracy 525

X DXT with errors

|λ̂i − λi | ≤ O(εκ(X))|λi | and θ(vi , v̂i) ≤ O(ε κ(X))

min
j �=i

∣
∣
∣
λi −λ j

λi

∣
∣
∣

for i = 1, . . . , n.

(7)

In the case of extremely close or equal eigenvalues, the bound for θ(vi , v̂i) explodes,
then one can get bounds for the invariant subspaces using Theorem 2.

Let us consider the computational cost of Algorithm 1. Assume, without loss of
generality, that the p positive entries on the diagonal of D come first, then the entries
ai j are ai j =∑p

k=1 gik g jk −∑n
k=p+1 gik g jk . So the cost of computing a Jacobi rota-

tion is 6n flops, the cost of multiplying G by a Jacobi rotation is 6n flops, and the cost
of multiplying U by a Jacobi rotation is 6n flops. So each Jacobi step costs 12n flops
if the eigenvectors are not desired and 18n if they are. If NR is the total number of
Jacobi rotations performed in Algorithm 1 the total cost is

12n NR flops to compute only eigenvalues

18n NR flops to compute eigenvalues and eigenvectors.

These costs can also be expressed in terms of the number of Jacobi sweeps, denoted by
Nsw. Since one sweep involves n(n − 1)/2 consecutive rotations, the cost is 6n3 Nsw
flops to compute eigenvalues and 9n3 Nsw if the eigenvectors are also desired. It is
accepted that Nsw is proportional to log(n) for the classical Jacobi algorithm [25,
Sect. 8.4]. For information on the number of sweeps performed by Algorithm 1 we
refer to the numerical tests presented in Sect. 9. Several ideas to decrease the compu-
tational cost of Algorithm 1 are discussed in Sect. 8.

In practice, the rotation R(i, j, c, s) is applied on G and/or U only if

|ai j | > ε max{n, κ̂(X)}√|aii a j j |,

or

n
∑

k=1

g2
ik > 2̂κ(X) |aii |, or

n
∑

k=1

g2
jk > 2̂κ(X) |a j j |.

Once ai j , aii , and a j j are computed, the cost of checking the first condition is 3 flops,
negligible with respect to the cost of a rotation. The second condition involves the
unknown quantity

∑n
k=1 g2

ik that can be computed with negligible cost as follows:
assume again that the p positive entries on the diagonal of D come first, then we can
compute aii = ∑p

k=1 g2
ik −∑n

k=p+1 g2
ik and

∑n
k=1 g2

ik = ∑p
k=1 g2

ik +∑n
k=p+1 g2

ik .

As a consequence, to compute
∑n

k=1 g2
ik only costs one additional flop if

∑p
k=1 g2

ik
and

∑n
k=p+1 g2

ik are stored. A similar remark holds for
∑n

k=1 g2
jk . So, the total cost

of checking the second condition of the stopping criterion is four flops.

123

526 F. M. Dopico et al.

Finally, we mention that if the matrix D is extremely ill-conditioned, then underflow
may appear in the computation of the Jacobi rotations. This can cause loss of accuracy
and failure of convergence. In this case, the rotations should be carefully implemented
in the spirit of the procedure presented in [17] for the SVD computation.

3 Basic results on multiplicative perturbation theory

In this section, we recall two bounds for the relative perturbations of eigenvalues and
eigenvectors of symmetric matrices under multiplicative perturbations [22,34].

Theorem 1 [22, Theorem 2.1] Let A = AT ∈ R
n×n and Ã = (I + E)A(I + E)T ∈

R
n×n, where I + E is nonsingular. Let λ1 ≥ · · · ≥ λn and λ̃1 ≥ · · · ≥ λ̃n be,

respectively, the eigenvalues of A and Ã. Then

|̃λi − λi | ≤ (2 ‖E‖2 + ‖E‖2
2

) |λi |, for i = 1, . . . , n.

Lemma 1 is a corollary of Theorem 1.

Lemma 1 Let X ∈ R
n×r be a matrix of full column rank, and D = diag(d1, . . . , dr)

and D̃ = diag(d̃1, . . . , d̃r) ∈ R
r×r be nonsingular diagonal matrices such that

∣
∣d̃i − di

∣
∣ ≤ β |di |, i = 1, . . . r,

where 0 ≤ β < 1. Let λ1 ≥ · · · ≥ λn and λ̃1 ≥ · · · ≥ λ̃n be, respectively, the eigen-
values of X DXT and X D̃XT. Define α = 1 − √

1 − β, and assume that ακ(X) < 1.
Then

∣
∣̃λi − λi

∣
∣ ≤ |λi |(2 + ακ(X))ακ(X), i = 1, . . . , n.

Proof Let d̃i = di (1 + µi), where |µi | ≤ β, for i = 1, . . . r. We define δi from
1+δi ≡ √

1 + µi . Then |δi | ≤ 1−√
1 − β = α. We also define � = diag(δ1, . . . , δr),

obtaining

D̃ = (I + �)D(I + �)T, ‖�‖2 ≤ α.

If X† is the pseudoinverse of X then X† X = I , therefore

X D̃XT = X (I + �)D(I + �)T XT = (I + X�X†)X DXT(I + X�X†)T, (8)

and ‖X�X†‖2 ≤ ακ(X) < 1. Therefore I + X�X† is nonsingular, and Theorem 1
can be applied to (8) to obtain the result.
�

For the eigenvector perturbations, we use the results of Li [34]. The presence of
multiple or extremely close eigenvalues is permitted by bounding the canonical angles
[43] between invariant subspaces. We establish some additional notation to state the

123

Implicit standard Jacobi gives high relative accuracy 527

perturbation bound. Let A and Ã be two real n × n symmetric matrices with eigende-
compositions

A = [U1 U2]
[

	1
	2

][U T
1

U T
2

]

and Ã = [Ũ1 Ũ2]
[

	̃1

	̃2

][Ũ T
1

Ũ T
2

]

, (9)

where U1, Ũ1 ∈ R
n×k , [U1 U2] and [Ũ1 Ũ2] are n × n orthogonal matrices, and

	1,	2, 	̃1, and 	̃2 are diagonal matrices. We denote by
(U1, Ũ1) the canonical
angles between Span(U1) and Span(Ũ1), and by λ(̃1) and λ(̃2) the spectra of 	̃1
and 	̃2, respectively. We assume in (9) that if the eigenvalues of A and Ã are decreas-
ingly ordered, i.e., λ1 ≥ · · · ≥ λn and λ̃1 ≥ · · · ≥ λ̃n , then 	̃1 = {̃λi1, . . . , λ̃ik } if and
only if 	1 = {λi1, . . . , λik }.
Theorem 2 [34, Theorem 2.2, Remark 2.1] Let A = AT ∈ R

n×n and

Ã = (I + E)A(I + E)T ∈ R
n×n,

where ‖E‖2 < 1, have eigendecompositions (9). Let us assume that λ(̃1)∩λ(̃2) =
∅ and define

relgap(̃1) = min

(

min
µ∈λ(̃1),ν∈λ(̃2)

|µ − ν|
|µ| , 1

)

.

Then

1

2
‖ sin 2
(U1, Ũ1)‖F ≤ 2

√
k

relgap(̃1)
· 1 + ‖E‖2

1 − ‖E‖2
(2 ‖E‖2 + ‖E‖2

2),

where ‖ · ‖F denotes the Frobenius matrix norm.

The case for single eigenvectors corresponds to k = 1.

4 Diagonal and scaled diagonally dominant RRDs

In this section, we focus on RRDs A = X DXT such that X and D are nonsingular
square matrices. We will consider the singular and rectangular cases in Sect. 6.

In the last step of Algorithm 1 the eigenvalues are computed as the diagonal entries
of a matrix satisfying the stopping criterion (2). We will call the matrices satisfy-
ing (2) scaled diagonally dominant matrices.2 According to (6) the diagonal entries

2 Note that a matrix A with nonzero diagonal entries and satisfying the stopping criterion (2) can be
expressed as A = DAC DA , where DA = diag(

√|a11|, . . . , √|ann |) and |ci j | ≤ tol if i �= j . Therefore,
according to the definition in [3, pp. 764–765], A is tol-scaled diagonally dominant with respect to the
(non-consistent) max-norm, i.e., ‖B‖M ≡ maxi j |bi j | for any matrix B. This is the reason why we adopt
the name scaled diagonally dominant for matrices satisfying (2). For brevity, we omit the norm and the
parameter tol.

123

528 F. M. Dopico et al.

of such matrices can be safely and accurately computed in floating point arithmetic
from the factors of the RRD A = X DXT = G J GT through the formula aii =
∑n

k=1 g2
iksign(dk), i = 1, . . . , n, if the ratios

∑n
k=1 g2

ik
∣
∣
∑n

k=1 g2
ik sign(dk)

∣
∣

=
∑n

k=1 x2
ik |dk |

∣
∣
∑n

k=1 x2
ikdk

∣
∣

=
∑n

k=1 x2
ik |dk |

|aii | , i = 1, . . . , n, (10)

are much smaller than 1/(nε). The purpose of this section is to prove in exact arithmetic
that the ratios in (10) are essentially bounded by κ(X) when the matrix A fulfils (2).

We first consider diagonal RRDs in Theorem 3, then the final result for scaled
diagonally dominant RRDs is proved in Theorem 5.

Theorem 3 Let X ∈ R
n×n be nonsingular and D = diag(d1, . . . , dn) be diagonal

and nonsingular. If X DXT is diagonal then

∑n
k=1 x2

ik |dk |
∣
∣
∑n

k=1 x2
ikdk

∣
∣

≤ κ(X), i = 1, 2, . . . , n. (11)

Proof We denote 	 = X DXT, where 	 = diag(λ1, . . . , λn). Note that λi =
∑n

k=1 x2
ikdk, i = 1, . . . , n, are the eigenvalues of X DXT and that, for each i , the

left and right eigenvectors of λi are both equal to the i th column of In . We denote this
i th column by ei . We assume without loss of generality that λ1 ≥ · · · ≥ λn .

First, we prove the result when λi is a simple eigenvalue. Let d̃ j ≡ d j (1 +
δ sign(d j)) = d j + δ|d j |, for j = 1, . . . , n, where δ is a small real parameter,
and let D̃ ≡ diag(d̃1, . . . , d̃n). Let λ̃1 ≥ · · · ≥ λ̃n be the eigenvalues of X D̃XT =
	+δ X |D|XT. The classical first order perturbation expansion for simple eigenvalues
[13, Theorem 4.4] implies3 that as δ → 0

λ̃i = λi + δ eT
i X |D|XTei + O(δ2) = λi + δ

n
∑

k=1

x2
ik |dk | + O(δ2).

Then

lim
δ→0

1

δ

λ̃i − λi

λi
=
∑n

k=1 x2
ik |dk |

λi
. (12)

3 According to [13, Theorem 4.4], one gets λ̃i = λi + δ eT
i X |D|XTei + O

(

‖δ X |D|XT‖2
2

)

. The exact

meaning of O
(

‖δ X |D|XT‖2
2

)

is that there exists a constant K depending only on X DXT and not on

the perturbation such that | O
(

‖δ X |D|XT‖2
2

)

| ≤ K‖δX |D|XT‖2
2 ≤ K‖X‖4

2‖D‖2
2δ2. Note that this is

O(δ2) with the constant K‖X‖4
2‖D‖2

2, that depends only on the unperturbed matrix X DXT and not on the

perturbation. Since the value of the constant is not relevant in our argument, we simply use O(δ2).

123

Implicit standard Jacobi gives high relative accuracy 529

On the other side, Lemma 1 can be applied to X DXT and X D̃XT with β = |δ| and
α = 1 − √

1 − β = |δ|/2 + O(δ2) to get

|̃λi − λi |
|λi | ≤ |δ|κ(X) + O(δ2)

and

lim
δ→0

1

|δ|
|̃λi − λi |

|λi | ≤ κ(X).

This is combined with (12) to prove the claim.
Next, let λi be a multiple eigenvalue, e.g., λl−1 > λl = · · · = λi = · · · =

λp > λp+1. Pick δ > 0 and define D′ ≡ diag(d ′
1, . . . , d ′

n), where d ′
k = 1 + δ if

l ≤ k ≤ (i −1) or (i +1) ≤ k ≤ p, and d ′
k = 1 otherwise. Note that d ′

i = 1, therefore
(D′ X)ik = xik for all k, and λi is a simple eigenvalue of the diagonal matrix

D′	D′ = (D′ X)D(D′ X)T.

Thus, we can apply the result for simple eigenvalues to the i th entry of the diagonal
matrix (D′ X)D(D′ X)T to get

n∑

k=1
x2

ik |dk |
|λi | ≤ κ(D′ X),

where the left hand side does not depend on δ. By taking the limit δ → 0 the result
follows.
�

Next, we prove an auxiliary result—that setting the off-diagonal entries of a scaled
diagonally dominant matrix to zero is a small multiplicative perturbation of the matrix.

Theorem 4 Let A = AT ∈ R
n×n be such that aii �= 0 for all i , and

|ai j |
√|aii a j j |

≤ δ for all i �= j, (13)

where δ ≤ 1
5n . Then the following hold.

1. diag(a11, . . . , ann) = (I + F)A(I + F)T with ‖F‖F ≤ nδ
1−2nδ

.
2. Let DA ≡ diag(

√|a11|, . . . ,√|ann|). If |a11| ≥ · · · ≥ |ann|, then

A = (I + E) diag(a11, . . . , ann) (I + E)T,

where E is lower triangular, ‖D−1
A E DA‖F ≤ nδ

1−nδ
, and ‖D−1

A E DA‖∞ ≤ 5
4

nδ
1−nδ

.
Here ‖ · ‖∞ denotes the ∞-matrix norm [29, p. 108].

123

530 F. M. Dopico et al.

Proof The result in the first claim is invariant under permutations P APT of A, thus we
assume that |a11| ≥ · · · ≥ |ann|. Define C ≡ D−1

A AD−1
A and note that C is symmetric,

cii = sign(aii) for all i , and |ci j | ≤ δ for all i �= j . Let J ≡ diag(c11, . . . , cnn) and
write

C = J + G, where ‖G‖F ≤ nδ ≤ 1

5
and ‖G‖∞ ≤ nδ ≤ 1

5
. (14)

Next, we prove that C has a unique LU factorization with the factor L unit lower
triangular by showing that all its leading principal submatrices are nonsingular [29,
Theorem 9.1]. Let Bk denote the kth leading principal submatrix of any matrix B. Then,
since Jk is nonsingular, Ck = Jk + Gk is nonsingular if and only if JkCk = I + Jk Gk

is nonsingular. The matrix I + Jk Gk is nonsingular because ‖Jk Gk‖F = ‖Gk‖F ≤
‖G‖F < 1. Since C is symmetric, it has a unique L DLT factorization:

C = L̄ D̄ L̄T, (15)

again with the factor L̄ unit lower triangular. Equation (14) allows us to consider C
as a perturbation of J , where the unique L DLT factors of J are simply L = I and
D = J . Then Theorem 6.2 in [15] can be used to get4

|L̄ − I | ≤ (|G|(I − |G|)−1)L and (16)

|D̄ − J | ≤ (|G|(I − |G|)−1)D, (17)

where for any matrix B, (B)L denotes its strictly lower triangular part and (B)D

its diagonal part. Note that the matrix |G|(I − |G|)−1 = ∑∞
k=1 |G|k is symmetric,

because |G| is. Therefore the bound (16) implies

‖L̄ − I‖F ≤ ‖(|G|(I − |G|)−1)L‖F ≤ 1√
2
‖|G|(I − |G|)−1‖F ≤ 1√

2
· ‖G‖F

1 − ‖G‖F
,

(18)

for the Frobenius norm, and

‖L̄ − I‖∞ ≤ ‖|G|(I − |G|)−1‖∞ ≤ ‖G‖∞
1 − ‖G‖∞ , (19)

for the ∞-norm.
The next step is to use the bound (17) to prove that

D̄ = (I + D′)J (I + D′)T, where ‖D′‖F ≤ ‖G‖2
F

1 − ‖G‖F
and

‖D′‖∞ ≤ ‖G‖2∞
1 − ‖G‖∞ , (20)

4 Theorem 6.2 in [15] holds for block L DLT factorizations. In our case all blocks are 1 × 1.

123

Implicit standard Jacobi gives high relative accuracy 531

and D′ = diag(d ′
1, . . . , d ′

n) is diagonal. For this purpose, we write D̄ = J + D̄ − J =
J (I + W), where W = diag(w1, . . . , wn) ≡ J (D̄ − J). Thus, from (17),

|W | ≤
∞
∑

k=1

(|G|k)D =
∞
∑

k=2

(|G|k)D,

because (|G|)D = 0 by (14). Therefore every diagonal entry of W satisfies,

|wi | ≤ ‖W‖F ≤
∞
∑

k=2

∥
∥
∥(|G|k)D

∥
∥
∥

F
≤

∞
∑

k=2

∥
∥
∥|G|k

∥
∥
∥

F
≤ ‖G‖2

F

1 − ‖G‖F
< 1.

Analogously,

|wi | ≤ ‖W‖∞ ≤ ‖G‖2∞
1 − ‖G‖∞ < 1.

Thus, we can write 1 + wi = (1 + d ′
i)

2, with |d ′
i | ≤ |wi | for all i . Then

D̄ = J (I + W) = (I + D′)J (I + D′)

and (20) is proved.
We define L ′ ≡ L̄ − I and combine (15), (18), and (20) to get

C = (I + L ′)(I + D′)J (I + D′)T(I + L ′)T.

Therefore,

C = (I + Ẽ)J (I + Ẽ)T, where

‖Ẽ‖F ≤ 1√
2

· ‖G‖F

1 − ‖G‖F
+ ‖G‖2

F

1 − ‖G‖F
+ 1√

2
· ‖G‖3

F

(1 − ‖G‖F)2 .

Note that I + Ẽ = (I + L ′)(I + D′) is lower triangular. Taking into account that
‖G‖F ≤ 1

5 by (14), we can simplify the bound on ‖Ẽ‖F as follows

‖Ẽ‖F ≤ ‖G‖F

1 − ‖G‖F

(

1√
2

+ ‖G‖F + 1√
2

· ‖G‖2
F

1 − ‖G‖F

)

≤ ‖G‖F

1 − ‖G‖F

(
1√
2

+ 1

5
+ 1√

2
· 1/52

1 − (1/5)

)

<
‖G‖F

1 − ‖G‖F
. (21)

123

532 F. M. Dopico et al.

For the ∞-norm, we use (19) instead of (18) to get

‖Ẽ‖∞ ≤ ‖G‖∞
1 − ‖G‖∞

(

1 + ‖G‖∞ + ‖G‖2∞
1 − ‖G‖∞

)

≤ ‖G‖∞
1 − ‖G‖∞

(

1 + 1

5
+ 1/52

1 − (1/5)

)

= 5

4

‖G‖∞
1 − ‖G‖∞ . (22)

We are now in a position to finish the proof of the Theorem. We write

A = DAC DA = DA(I + Ẽ)D−1
A DA J DA D−1

A (I + Ẽ)T DA

= (I + DA Ẽ D−1
A) diag(a11, . . . , ann) (I + DA Ẽ D−1

A)T,

define E ≡ DA Ẽ D−1
A , and use (14) and (21) to prove the second claim for the

Frobenius norm. For the second claim in the ∞-norm, use (14) and (22). In addi-
tion |ei j | ≤ |̃ei j |, since Ẽ is lower triangular, and |a11| ≥ · · · ≥ |ann|. Therefore,
‖E‖F ≤ ‖Ẽ‖F < 1. To prove the first claim, take I +F = (I +E)−1 =∑∞

k=0(−E)k ,
and write

‖F‖F ≤ ‖E‖F

1 − ‖E‖F
≤

nδ
1−nδ

1 − nδ
1−nδ

= nδ

1 − 2nδ
.

�
Finally, we prove the main result in this section—that there is no severe cancella-

tion in computing the diagonal entries of a scaled diagonally dominant matrix from
its RRD.

Theorem 5 Let X ∈ R
n×n be nonsingular and D = diag(d1, . . . , dn) ∈ R

n×n be
diagonal and nonsingular. If the matrix A ≡ X DXT satisfies aii �= 0 for all i , and

|ai j |
√|aii a j j |

≤ δ, for all i �= j,

where δ ≤ 1
5n , then

∑n
k=1 x2

ik |dk |
|aii | ≤ κ(X)

1 − 2nδ

(

1 + 3 n2δ

1 − nδ

)

, i = 1, . . . , n.

Proof The result is invariant under permutations P APT of A, so we assume |a11| ≥
· · · ≥ |ann|. We apply Theorem 4-part 2 to A = X DXT to write

diag(a11, . . . , ann) = (I + E)−1 X DXT (I + E)−T ≡ X̃ DX̃T,

123

Implicit standard Jacobi gives high relative accuracy 533

where X̃ ≡ (I + E)−1 X . We apply Theorem 3 to the diagonal matrix X̃ DX̃T to obtain

∑n
k=1 x̃2

ik |dk |
|aii | ≤ κ(X̃) for i = 1, . . . , n. (23)

For all i, k,

xik = x̃ik +
n
∑

j=1

ei j x̃ jk, and |xik | ≤ |̃xik | +
n
∑

j=1

|ei j ||̃x jk |.

However from (23)

|̃xik | ≤
√

|aii |
|dk |

√

κ(X̃) for all i, k.

Therefore for all i, k

x2
ik ≤ x̃2

ik + 2
n
∑

j=1

|ei j ||̃xik ||̃x jk | +
⎛

⎝

n
∑

j=1

|ei j ||̃x jk |
⎞

⎠

2

≤ x̃2
ik + κ(X̃)

|dk |

⎛

⎜
⎝2

n
∑

j=1

|ei j |
√|aii a j j | +

⎛

⎝

n
∑

j=1

|ei j |
√|a j j |

⎞

⎠

2
⎞

⎟
⎠

= x̃2
ik + κ(X̃)|aii |

|dk |

⎛

⎜
⎝2

n
∑

j=1

|ei j |
√

|a j j |
|aii | +

⎛

⎝

n
∑

j=1

|ei j |
√

|a j j |
|aii |

⎞

⎠

2
⎞

⎟
⎠ .

Observe that with the notation of Theorem 4 we have that
(

D−1
A E DA

)

i j
=

ei j

√ |a j j |
|aii | and that

∥
∥
∥D−1

A E DA

∥
∥
∥∞ ≤ 5

4δn , where δn ≡ nδ
1−nδ

. Therefore for all i, k

x2
ik ≤ x̃2

ik + κ(X̃)|aii |
|dk |

(

2
∥
∥
∥D−1

A E DA

∥
∥
∥∞ +

∥
∥
∥D−1

A E DA

∥
∥
∥

2

∞
)

≤ x̃2
ik + κ(X̃)|aii |

|dk | δn

(
5

2
+ 25

16
δn

)

≤ x̃2
ik + κ(X̃)|aii |

|dk | δn

(
5

2
+ 25

16

1/5

1 − 1/5

)

< x̃2
ik + κ(X̃)|aii |

|dk | 3 δn ,

123

534 F. M. Dopico et al.

which combined with (23) implies

∑n
k=1 x2

ik |dk |
|aii | ≤ κ(X̃)(1 + 3 δn n). (24)

The result now follows by observing that X̃ ≡ (I + E)−1 X and thus

κ(X̃) ≤ κ(X)‖I + E‖2‖(I + E)−1‖2 ≤ κ(X)
1 + ‖E‖2

1 − ‖E‖2
≤ κ(X)

1 − 2nδ
,

where we used ‖E‖2 ≤ ‖E‖F ≤ ‖D−1
A E DA‖F ≤ δn since, from Theorem 4, E is

lower triangular.
�

5 Rounding error analysis of the implicit Jacobi algorithm

In the rounding error analysis of Algorithm 1, we use the conventional error model
for floating point arithmetic [29, Sect. 2.2]:

f l(a � b) = (a � b)(1 + δ),

where a and b are real floating point numbers, � ∈ {+,−,×, /}, and |δ| ≤ ε, with
ε the machine precision. We assume that this holds also for the square root operation
and that neither overflow nor underflow occurs. We also use the following notation
introduced in [29, Chapter 3]: θq is any number such that

|θq | ≤ qε

1 − qε
≡ γq .

The constants appearing in the error bounds are not important unless they become too
large. Thus, we use a big-O notation that shows the dimensional dependence for the
bounds. More precisely, if p(n) is a moderately increasing function in n

h(ε) = O(p(n) ε) means |h(ε)| ≤ α |p(n)| ε,

where α denotes a small integer constant that does not depend on the dimension n of
the problem. We also use sometimes the following notation introduced in [29, p. 68]

γ̃q = αqε

1 − αqε
.

We warn the reader that for making the notation as simple as possible, f l
(expression) will denote the computed value in floating point arithmetic of any
expression, where, in turn, every variable appearing in expression has to be computed
in floating point arithmetic.

123

Implicit standard Jacobi gives high relative accuracy 535

5.1 Rounding errors in the stopping criterion of Algorithm 1

Note that the stopping criterion in Algorithm 1 involves entries of the matrix G J GT

that have to be computed from the factors J and G, where G is the last iterate of the
implicit Jacobi algorithm. Therefore, the errors introduced by the stopping criterion
have to be carefully analyzed. This analysis starts with Lemma 2 that shows that if the
stopping criterion is satisfied in floating point arithmetic then the exact matrix G J GT

is scaled diagonally dominant with a slightly different constant. In Lemma 2, we con-
sider arbitrary thresholds τ1 and τ2, but remember that, according to Theorem 5, τ2
should be, more or less, κ(X). In Algorithm 1, we have used τ2 = 2 κ̂(X). Recall that
the entries of G J GT in Algorithm 1 are computed with formula (4).

Lemma 2 Let G ∈ R
n×n be a matrix of floating point numbers and J = diag(s1, . . . ,

sn) ∈ R
n×n be a diagonal matrix whose entries are si = ±1. Let A = G J GT as in

(4). If

f l

(

|ai j |
√|aii a j j |

)

≤ τ1 for all i �= j, (25)

f l

(∑n
k=1 g2

ik

|aii |

)

≤ τ2 for all i, (26)

and τ2γn+1 < 1
4 (observe that τ2 > 1), then

1. f l(aii) = aii (1 + φi) with |φi | ≤ γnτ2
1−2 τ2γn+1

for all i .
2.

|ai j |
√|aii a j j |

≤ τ1

(

1 + γnτ2

1 − 2 τ2γn+1

)

+ γn+3τ2

1 − 2 τ2γn+1
, for all i �= j. (27)

Proof The proof is standard rounding error analysis. We simply sketch it. Define
B ≡ GGT. Then aii =∑n

k=1 g2
iksk, bii =∑n

k=1 g2
ik and

f l(aii) =
n
∑

k=1

g2
iksk(1 + θ(k)

n) = aii + θnbii . (28)

From (26)

bii + θn+1bii

|aii + θnbii | ≤ τ2, so,
bii

|aii | ≤ τ2

1 − 2 τ2γn+1
, for all i. (29)

The first claim follows by combining (29) with (28). To prove the second claim, write

f l
(√|aii a j j |

)

= √|aii a j j | (1 + φi j)(1 + δ1)(1 + δ2),

123

536 F. M. Dopico et al.

where |φi j | ≤ γnτ2/(1 − 2 τ2γn+1) and |δ1|, |δ2| ≤ ε. Then (25) implies

|ai j + θn+3

n∑

k=1
|gik ||g jk ||

√|aii a j j |(1 + φi j)
≤ τ1,

and

|ai j |
√|aii a j j |

≤ τ1 (1 + φi j) + γn+3

n∑

k=1
|gik ||g jk |
√|aii a j j |

.

Finally, from Cauchy–Schwarz
∑n

k=1 |gik ||g jk | ≤ √bii b j j , and the result follows
from (29).
�

The first important consequence of Lemma 2 is that one should not take τ1 < ετ2 in
the stopping criterion given by (25) and (26), because this stopping criterion implies the
bound (27) on the matrix A, and the right hand side in (27) is larger than τ1+(n+3)ετ2.
Therefore trying to make the matrix A more scaled diagonally dominant by choosing
a very small threshold τ1 in (25) has a marginal effect in the matrix. We have used
in Algorithm 1: τ2 = 2 κ̂(X), where κ̂(X) is the computed estimation of κ(X), and
τ1 = ε max{n, κ̂(X)} with good results.

The second important consequence of Lemma 2 is that it can be combined with
Theorem 4 to prove that the stopping criterion causes a small multiplicative backward
error in the RRD. From now on, we use big-O notation for the error bounds, because
the precise constants may be complicated and are of no interest to us.

Lemma 3 With the same notation and assumptions as in Lemma 2, suppose, in addi-
tion, that τ1 = O(ε). Then

diag(f l(a11), . . . , f l(ann)) = (I + F)G J GT(I + F)T,

where ‖F‖F = O(nτ1 + n2ετ2).

Proof From Lemma 2 and Theorem 4,

diag(a11, . . . , ann) = (I + F̃)G J GT(I + F̃)T with ‖F̃‖F = O(nτ1 + n2ετ2).

Define αi from 1 + αi = √
1 + φi and let E ≡ diag(α1, . . . , αn). Since |αi | ≤ |φi | =

O(nετ2), ‖E‖F = O(n3/2ετ2). Then,

diag(f l(a11), . . . , f l(ann)) = (I + E)diag(a11, . . . , ann)(I + E)T

= (I + E)(I + F̃)G J GT(I + F̃)T(I + E)T

and the result follows by defining F from I + F = (I + E)(I + F̃).
�

123

Implicit standard Jacobi gives high relative accuracy 537

5.2 Multiplicative backward error analysis of Algorithm 1

We present in this section a detailed multiplicative backward error analysis for Algo-
rithm 1. The multiplicative backward error bound in Theorem 6 below can be easily
combined with Theorems 1 and 2 to prove that Algorithm 1 computes the eigenvalues
and eigenvectors of an RRD X DXT with errors (7). We start with the technical Lemma
4 that we use in the proof of the main Theorem 6. This lemma is essentially known
(see [13, p. 251], [29, pp. 367, 360]), our contribution is simply to bound the Frobenius
norm of the backward error in terms of the spectral norm of the matrix without any
dimensional penalty.

Lemma 4 Let A ∈ R
n×n, D̄ ∈ R

n×n be any diagonal matrix with positive entries,
R̂1, . . . , R̂q be computed Jacobi rotations, and R1, . . . , Rq be exact Jacobi rotations.
Assume that for each rotation R̂k the computed cosine, ĉ, and the computed sine, ŝ,
satisfy

ĉ = c(1 + θ5) and ŝ = s
(

1 + θ ′
5

)

, (30)

where c and s are the exact cosine and sine corresponding to Rk. Then

f l
(

R̂q · · · R̂1 A
) = Rq · · · R1 (A + F) where ‖F D̄‖F ≤ αqε

1 − αqε
‖AD̄‖2,

and α denotes a small integer constant.

Remark 1 The constant q, i.e., the number of Jacobi rotations, in the error bound in
Lemma 4 is pessimistic. For instance, if the Jacobi rotations correspond to a whole
sweep then q = n(n − 1)/2, but in the error bound one can put 2n − 3 if the notion
of disjoint Jacobi rotations is used [24] (see also [18, Prop. 3.5]). We will express the
rest of our error bounds in terms of the numbers of Jacobi rotations applied until the
stopping criterion is satisfied, but the right quantity is the number of sets of disjoint
Jacobi rotations that are applied. However, it is difficult to know exactly this number,
specially in the last sweeps where just a few rotations may be applied.

Proof of Lemma 4 This is a standard error analysis. We simply sketch the proof. Let us
study the application of one rotation f l

(

R̂1 A
)

. It is well known (see [13, Lemma 3.1]
or [29, Lemma 19.9]) that f l

(

R̂1 A
) = R1(A + F1) with ‖F1(:, k)‖2 ≤ γ̃1‖A(:, k)‖2

for all k. But if R1 is an R(i, j, c, s) rotation then operations are only performed on
rows i and j of A, so F1(l, :) = 0 for l �= i and l �= j , and we have the stronger bound
‖F1(:, k)‖2 = ‖F1([i, j], k)‖2 ≤ γ̃1‖A([i, j], k)‖2. Therefore

∥
∥d̄kk F1(:, k)

∥
∥

2 ≤ γ̃1
∥
∥d̄kk A([i, j], k)

∥
∥

2 = γ̃1
∥
∥(AD̄) ([i, j], k)

∥
∥

2 ,

and

∥
∥F1 D̄

∥
∥

F ≤ γ̃1
∥
∥(AD̄) ([i, j], :)∥∥F ≤ γ̃1

√
2
∥
∥(AD̄) ([i, j], :)∥∥2 ≤ γ̃1

√
2
∥
∥AD̄

∥
∥

2 .

123

538 F. M. Dopico et al.

Finally, for one rotation

f l(R̂1 A) = R1(A + F1) where
∥
∥F1 D̄

∥
∥

F ≤ γ̃1
∥
∥AD̄

∥
∥

2 , (31)

where the factor
√

2 has been absorbed in the moderate constant used in the def-
inition of γ̃1. Now the proof continues with an inductive argument. Denote Âk =
f l(R̂k · · · R̂1 A) for k = 1, 2, . . . , q, and assume that the result holds for Âq−1. From
(31), we get

Âq = Rq
(

Âq−1 + F̃1
)

where
∥
∥F̃1 D̄

∥
∥

F ≤ γ̃1
∥
∥ Âq−1 D̄

∥
∥

2 . (32)

Then,

Âq = Rq
(

Rq−1 · · · R1(A + Fq−1) + F̃1
)

where
∥
∥Fq−1 D̄

∥
∥

F ≤ γ̃q−1
∥
∥AD̄

∥
∥

2 .

(33)

The result is obtained by combining (32) and (33), using that
∥
∥ Âq−1 D̄

∥
∥

2 =
∥
∥(A + Fq−1)D̄

∥
∥

2 ≤ (1 + γ̃q−1)
∥
∥AD̄

∥
∥

2, and [29, Lemma 3.3].
�
Theorem 6 If NR Jacobi rotations are applied in Algorithm 1 until the stopping cri-
terion is satisfied, κ̂(X)γn+1 < 1

8 , and
√

nκ(X)γ2 < 1
2 , then the computed matrix of

eigenvalues, 	̂ = diag(̂λ1, . . . , λ̂n), and the computed matrix of eigenvectors, Û , are
nearly the exact eigenvalue and eigenvector matrices of a small multiplicative pertur-
bation of X DXT. More precisely, there exists an exact orthogonal matrix U ∈ R

n×n

such that

U	̂U T = (I + E)X DXT(I + E)T, (34)

with ‖E‖F = O(ε (n2κ̂(X) + NRκ(X))) and ‖Û − U‖F = O(NR ε).

Remark 2 Taking into account that the X factor of an RRD is a well-conditioned matrix
any sensible way to estimate κ(X) will produce an estimation such that κ(X) ≈ κ̂(X).

Therefore, the bound above for E usually simplifies to

‖E‖F ≈ O
(

ε (n2 + NR)κ(X)
)

.

Proof of Theorem 6 Let D ≡diag(d1, . . . , dn). Then, |D|1/2=diag(
√|d1|,. . .,√|dn|).

The computed version of X |D|1/2 is

Ĝ = f l(X |D|1/2), and satisfies Ĝ = X̃ |D|1/2 with x̃i j = xi j (1 + θ
(i j)
2). (35)

Let Ĝ f = f l(R̂ T
NR

· · · R̂ T
1 Ĝ) be the computed matrix after the NR Jacobi rotations

are applied. Recall that for each Jacobi rotation the cosine and sine are, respectively,
1/

√
1 + t2 and t/

√
1 + t2, where the quantity t may be found for instance in [13,

123

Implicit standard Jacobi gives high relative accuracy 539

Sect. 5.3.5]. Even in the case that the computed t̂ has a large relative error,5 the com-
puted ĉ and ŝ satisfy (30) with respect to the following exact cosine c = 1/

√

1 + t̂2

and sine s = ct̂ , and we can apply Lemma 4 to get

Ĝ f = RT
NR

· · · RT
1 (Ĝ + F), where

‖F |D|−1/2‖F = O(NRε) ‖Ĝ |D|−1/2‖2 = O(NRε) ‖X̃‖2.

Then

Ĝ f = RT
NR

· · · RT
1 (I + F ′)Ĝ, where ‖F ′‖F = O(NRε)κ(X̃), (36)

because ‖F ′‖F = ‖FĜ−1‖F = ‖F |D|−1/2 X̃−1‖F ≤ ‖F |D|−1/2‖F‖X̃−1‖2.

The matrix Ĝ f J ĜT
f satisfies the stopping criterion in finite arithmetic, and Lemma

3 can be applied with τ1 = ε max{n, κ̂(X)} and τ2 = 2̂κ(X). We get

	̂ = (I + F̃) Ĝ f J ĜT
f (I + F̃)T, where ‖F̃‖F = O(n2εκ̂(X)). (37)

Define the exact orthogonal matrix U T = RT
NR

· · · RT
1 , and combine (36), (37), and

(35) to obtain

	̂ = U T(I + U F̃U T)(I + F ′)Ĝ J ĜT(I + F ′)T(I + U F̃U T)TU

= U T(I + U F̃U T)(I + F ′)X̃ DX̃T(I + F ′)T(I + U F̃U T)TU. (38)

Note that (35) implies that X̃ = X + EX = (I + EX X−1)X , with ‖EX X−1‖F ≤
‖EX‖F‖X−1‖2 ≤ γ2

√
nκ(X). If we define I + E = (I + U F̃U T)(I + F ′)(I +

EX X−1) and use (38), then

U	̂U T = (I + E) X DXT(I + E)T, where

‖E‖F = O(ε(n2κ̂(X) + NRκ(X̃) + √
nκ(X))).

To obtain (34), it remains to relate κ(X̃) and κ(X). From X̃ = (I + EX X−1)X ,

κ(X̃) ≤ κ(X)
1 + ‖EX X−1‖2

1 − ‖EX X−1‖2
≤ κ(X)

1 + γ2
√

nκ(X)

1 − γ2
√

nκ(X)
≤ 3κ(X).

This implies (34) under the mild assumption NR >
√

n.
We still have to prove that ‖Û −U‖F = O(NRε). For this purpose, we use Lemma

4 with D̄ = I and A = I to prove that

Û = f l(R̂1 · · · R̂NR) = (I + EU)U, where ‖EU ‖F = O(NRε)‖I‖2 = O(NRε).

�
5 Large relative errors in t̂ do not affect the error analysis and, so, do not affect the accuracy of the eigen-
values and eigenvectors. However, it should be remarked that they may affect the rate of convergence in
floating point arithmetic and make the algorithm slow, especially at the beginning of the process.

123

540 F. M. Dopico et al.

6 Singular RRDs: RRDs with rectangular factors

So far we have considered RRDs A = X DXT with square and nonsingular X and
D, which excludes singular matrices A. If we only insist on X being nonsingular,
then any zero eigenvalues of A will be explicitly revealed as zero entries on the diag-
onal of D. If d1, . . . , dr , r ≤ n, are the nonzero diagonal entries of D, then for
D̄ = diag(d1, . . . , dr) and X̄ = X (:, 1 : r),

A = X DXT = X̄ D̄ X̄T,

which leads us to consider rectangular RRDs. Computing the QR factorization of X̄
is all that it takes to reduce the computation to Algorithm 1.

Algorithm 2 Given X ∈ R
n×r , n > r , of full column rank and D ∈ R

r×r diagonal
and nonsingular, this algorithm computes the eigenvalues λ1, . . . , λn of A = X DXT

and an orthogonal eigenvector matrix U ∈ R
n×n .

1. Let Q

[

R
0

]

= X be the QR factorization of X (Q ∈ R
n×n, R ∈ R

r×r) computed

with Householder reflections [29, Chapter 19].
2. Let λ1, . . . , λr and UR ∈ R

r×r be the output of Algorithm 1 applied on R and D.
3. Then λ1, . . . , λr , 0, . . . , 0 are the n eigenvalues of A (n − r zeros).
4. U (:, 1 : r) = Q(:, 1 : r)UR .
5. U (:, r + 1 : n) = Q(:, r + 1 : n).

The mathematical explanation for Algorithm 2 follows from the following block
manipulation. If 	R ≡ diag(λ1, . . . , λr), then

A= Q

[

RDRT 0
0 0

]

QT = Q

[

UR	RU T
R 0

0 0

]

QT = Q

[

UR 0
0 I

] [

	R 0
0 0

] [

U T
R 0

0 I

]

QT.

Next, we show that Algorithm 2 introduces small multiplicative backward errors of
order O(ε κ(X)) and thus it computes the eigenvalues and eigenvectors of A to high
relative accuracy.

Theorem 7 Let NR be the number of Jacobi rotations applied in step 2 of Algorithm
2. Let R̂ be the R-factor computed in step 1, and κ̂(R̂) be the computed estimation of
the condition number of R̂ used in the stopping criterion of step 2. If κ̂(R̂)γr+1 < 1

8
and

√
r κ(X) γ̃nr < 1

2 , then Algorithm 2 computes a matrix of eigenvalues, 	̂ =
diag(̂λ1, . . . , λ̂r , 0, . . . , 0) ∈ R

n×n, and a matrix of eigenvectors, Û ∈ R
n×n, that are

nearly the exact eigenvalue and eigenvector matrices of a small multiplicative pertur-
bation of X DXT. More precisely, there exists an exact orthogonal matrix U ∈ R

n×n

such that

U	̂U T = (I + E) X DXT (I + E)T, (39)

with ‖E‖F = O(ε (r2κ̂(R̂) + max{NR, r3/2n} κ(X))) and ‖Û − U‖F =
O(ε max{n3/2 r, NR}).

123

Implicit standard Jacobi gives high relative accuracy 541

Remark 3 As in Remark 2, if the X factor is well-conditioned then κ(X) ≈ κ̂(R̂).

Proof of Theorem 7 According to Theorem 19.4 and equation (19.13) in [29], there
exists an exact orthogonal matrix Q such that the computed factors Q̂ and R̂ in step
1 of Algorithm 2 satisfy

X + �X = Q

[

R̂
0

]

, where ‖�X‖F ≤ γ̃nr ‖X‖F , and ‖Q̂ − Q‖F ≤ √
n γ̃nr .

(40)

Therefore, X +�X = (I +�X X†) X , where X† is the Moore–Penrose pseudoinverse
of X , and

X + �X = (I + FX) X, where ‖FX‖F ≤ √
r γ̃nrκ(X).

Then,

(I + FX)X DXT(I + FX)T = Q

[

R̂
0

]

D
[

R̂T0
]

QT = Q

[

R̂D R̂T 0
0 0

]

QT.

If 	̂R is the computed eigenvalue matrix of R̂D R̂T in step 2 of Algorithm 2, then
Theorem 6 implies that there exists an orthogonal matrix UR ∈ R

r×r such that

(I + FX)X DXT(I + FX)T

= Q

[

(I + ER)−1 0
0 I

] [

UR	̂RU T
R 0

0 0

] [

(I + ER)−T 0
0 I

]

QT, (41)

with ‖ER‖F = O(ε (r2κ̂(R̂) + NR κ(R̂))). In this bound, we can replace κ(R̂) by
κ(X) since6

κ(R̂) = κ((I + FX) X) ≤ κ(X)
1 + ‖FX‖2

1 − ‖FX‖2
≤ κ(X)

1 + √
r γ̃nrκ(X)

1 − √
r γ̃nrκ(X)

≤ 3κ(X).

(42)

Define

I + E = Q

[

I + ER 0
0 I

]

QT(I + FX),

note that ‖E‖F = O(ε (r2 κ̂(R̂) + max{NR, nr3/2}κ(X))), and use (41) to obtain

(I + E)X DXT(I + E)T = Q

[

UR 0
0 I

] [

	̂R 0
0 0

] [

U T
R 0

0 I

]

QT.

This is (39) with U = Q
[UR

0
0
I

]

.

6 Note that X is rectangular, therefore to get (42) we need to use [30, Theorem 3.3.16] which implies
‖(I + FX)−1‖−1

2 σi (X) ≤ σi ((I + FX)X) ≤ ‖I + FX ‖2σi (X), for i = 1, . . . , r , where the σi s denote
singular values.

123

542 F. M. Dopico et al.

Next, we bound ‖Û − U‖F . If ÛR is the eigenvector matrix computed in step 2 of
Algorithm 2, then

Û = [f l(Q̂(:, 1 : r) ÛR) Q̂(:, r + 1 : n)
]

,

and

‖Û −U‖F =
√

‖ f l(Q̂(:, 1 : r) ÛR)−Q(:, 1 : r) UR‖2
F +‖Q̂(:, r + 1 : n)−Q(:, r +1 : n)‖2

F .

From (40), we get ‖Q̂(:, r + 1 : n) − Q(:, r + 1 : n)‖F ≤ √
n γ̃nr . Taking into

account that ‖ÛR −UR‖F = O(NRε), ‖UR‖F = ‖Q(:, 1 : r)‖F = √
r , (40), and the

standard error bound for matrix multiplication [29, eq. (3.13)], we can prove that

‖ f l(Q̂(:, 1 : r) ÛR) − Q(:, 1 : r) UR‖F ≤ ‖ f l(Q̂(:, 1 : r) ÛR) − Q̂(:, 1 : r) ÛR‖F

+‖Q̂(:, 1 : r) ÛR − Q(:, 1 : r) UR‖F

= O(r2ε) + O(NRε) + O(n3/2rε).

Therefore, ‖Û − U‖F = O(ε max{n3/2 r, NR}).
�

7 The effect of errors in X and D

In this section, we consider the situation where the factors X and D in the RRD
A = X DXT carry some errors from previous computations. This is the typical sce-
nario in practice where the RRD is not given, but rather computed in floating point
arithmetic. It turns out that the factors X and D accurately determine the eigendecom-
position of A. In other words it suffices that X be computed with a small relative norm
error and the diagonal of D be computed with a small relative componentwise error.

Lemma 5 Let A ∈ R
n×n be a symmetric matrix and A = X DXT be a factorization

of A, where X ∈ R
n×r has a full column rank and D = diag(d1, . . . , dr) ∈ R

r×r

is diagonal and nonsingular. Let X̂ and D̂ = diag(d̂1, . . . , d̂r) be perturbations of X
and D, respectively, that satisfy

‖X̂ − X‖2

‖X‖2
≤ δ and

|d̂i − di |
|di | ≤ δ for i = 1, . . . , r, (43)

where δ < 1. Then

X̂ D̂ X̂T = (I + F)A(I + F)T,

with ‖F‖2 ≤ (2δ + δ2)κ(X).

Proof Let d̂i = di (1 + µi) where |µi | ≤ δ < 1, i = 1, 2, . . . , r . Then d̂i = (1 +
δi)di (1 + δi), where 1 + δi = √

1 + µi , and |δi | ≤ δ. Define W = diag(δ1, . . . , δr).

123

Implicit standard Jacobi gives high relative accuracy 543

Then

D̂ = (I + W)D(I + W)T,

where ‖W‖2 ≤ δ. We write X̂ = X + E , with ‖E‖2 ≤ δ ‖X‖2, and denote by X† the
pseudoinverse of X . Then

X̂ D̂ X̂T = (I + E X†)X (I + W)D(I + W)T XT(I + E X†)T

= (I + E X†)(I + X W X†)X DXsT(I + X W X†)T(I + E X†)T.

The result follows from defining F from I + F = (I + E X†)(I + X W X†).
�
We now combine Lemma 5 with Theorem 6 or 7 to yield the final multiplicative

backward error result for the computed eigenvalues and eigenvectors of a symmetric
matrix A whose RRD is computed accurately with error bounds as in (43). For sim-
plicity, we assume that the computed condition numbers κ̂(X) and κ̂(R̂) appearing in
Theorems 6 and 7, respectively, are good approximations to κ(X).

Theorem 8 Let A ∈ R
n×n be a symmetric matrix and A = X DXT be a factorization

of A, where X ∈ R
n×r has full column rank and D ∈ R

r×r is diagonal and nonsin-
gular. Let X̂ and D̂ satisfy (43), with δ = O(ε) such that δκ(X) < 1

2 . Let 	̂ and Û
be the eigenvalue and eigenvector matrices of X̂ D̂ X̂T computed by Algorithm 2 (or
Algorithm 1 if n = r). Let NR be the number of Jacobi rotations applied in step 2 of
Algorithm 2. Then there exists an exact orthogonal matrix U ∈ R

n×n such that

U	̂U T = (I + F) A (I + F)T, (44)

where ‖F‖2 = O((ε · max{NR, r3/2n} + δ) · κ(X)) and ‖Û − U‖F = O(ε ·
max{n3/2 r, NR}).
Proof From (39), U	̂U T = (I + E)X̂ D̂ X̂T(I + E)T, and from Lemma 5,

U	̂U T = (I + E)(I + EF)A(I + EF)T(I + E)T.

This is (44) with I + F = (I + E)(I + EF), where we have replaced κ(X̂) in the
bound for ‖E‖F by κ(X), because X̂ = X + EX = (I + EX X†)X implies

κ(X̂) ≤ κ(X)
1 + δκ(X)

1 − δκ(X)
≤ 3 κ(X),

by using [30, Theorem 3.3.16].
�

8 QR factorization as preconditioner and other implementation details

We will see in the numerical tests presented in Sect. 9 that Algorithm 1 can be very
slow for RRDs with certain distributions of eigenvalues. The same is true for Algo-
rithm 2 since it uses Algorithm 1. This poor performance from the point of view of

123

544 F. M. Dopico et al.

speed may compromise the practical use of Algorithms 1 and 2 despite of their high
accuracy. We present in this section a simple modification of Algorithm 1 that has an
extremely positive impact in speeding up this algorithm.7 In addition, we mention at
the end of this section some other ideas on how to decrease the computational cost of
each Jacobi sweep. The implementation and error analysis of these ideas is postponed
to future research, but they show that there are many possible ways of improving the
run-time performance of the implicit Jacobi algorithm.

In [20, Sect. 2], the QR factorization with column pivoting has been used as a very
efficient preconditioner to speed up the one-sided Jacobi algorithm for the SVD. On
the other hand, in the case of positive definite D, Algorithm 1 essentially reduces to the
one-sided Jacobi algorithm for the SVD, so it is natural to try also the QR factorization
as a preconditioner of the new implicit Jacobi algorithm. The specific procedure is the
following: let G = X

√|D|, where
√|D| = diag(

√|d1|, . . . ,√|dn|), be the matrix
defined in Algorithm 1, and G = Q R� be the QR factorization of G computed with
the Businger-Golub column pivoting strategy [4], where � is a permutation matrix.
Then, with the notation of Algorithm 1,

A = X DXT = G J GT = Q R�J�T RT QT = Q(R J ′ RT)QT,

where J ′ = �J�T is the permuted diagonal signature matrix. This means that the
QR factorization with pivoting of G can be seen as an implicit preconditioning of A by
orthogonal similarity via Q. Now, one uses the implicit Jacobi algorithm on R J ′ RT

by applying the Jacobi rotations on the left side of R. The formal algorithm for this
process is Algorithm 3.

Algorithm 3 (QR-Preconditioned Implicit cyclic-by-row Jacobi on XDXT) Given
X ∈ R

n×n well conditioned and nonsingular, and D = diag(d1, . . . , dn) ∈ R
n×n

diagonal and nonsingular, this algorithm computes the eigenvalues λ1, . . . , λn of A =
X DXT and an orthogonal matrix U ∈ R

n×n of eigenvectors to high relative accuracy.

κ̂(X) is the computed estimation of κ(X)

G = X diag(
√|d1|, . . . ,√|dn|)

J = diag(sign(d1), . . . , sign(dn))

Q R� = G is the QR factorization of G with column pivoting
U = Q
J ′ = �J�T

repeat
for i = 1 : n − 1

for j = i + 1 : n
compute bii , bi j , b j j of B = R J ′ RT and T = [c

s
−s

c

]

, c2 + s2 = 1,
such that

T T
[

bii bi j

bi j b j j

]

T =
[

µ1
µ2

]

7 The preconditioning technique presented in this section was suggested by Z. Drmač for which we are
very grateful.

123

Implicit standard Jacobi gives high relative accuracy 545

R = R(i, j, c, s)T R
U = U R(i, j, c, s)

endfor
endfor

until convergence

(

|bi j |√|bii b j j | ≤ ε max{n, κ̂(X)} for all i < j and
∑n

k=1 r2
ik|bii | ≤ 2̂κ(X)

for all i

)

compute λk = bkk for k = 1, 2, . . . , n.

The numerical experiments in Sect. 9 will show that the number of sweeps per-
formed by Algorithm 3 may be much smaller than the number of sweeps of the
unpreconditioned Algorithm 1. The reduction in the number of sweeps depends heav-
ily on the distribution of the eigenvalues, and in some situations only a few sweeps are
saved. A complete explanation of the behaviour of this preconditioner is not known,
even in the positive definite case, but some insights may be found in [20]. Taking
into account that the computational cost of one Jacobi sweep is comparable to the
cost of the QR factorization,8 the overhead cost of the QR factorization is paid off
with just one saved sweep. This preconditioner extends trivially to the rectangular
case considered in Algorithm 2 without any additional cost, since in Algorithm 2 a
QR factorization is already computed. The only needed modification is to first com-
pute G = X diag(

√|d1|, . . . ,√|dr |), and then to compute the QR factorization with
column pivoting of G.

A final consideration with respect to the QR preconditioner is that it preserves the
high relative accuracy of the implicit Jacobi algorithm on RRDs. The reason is simply
that the rounding error analysis presented in Theorem 6 remains valid except by some
minor changes in the constants of the error bounds of ‖E‖F and ‖Û − U‖F . To see
this, note first that pivoting does not affect the analysis because we can assume that X
and D are ordered in advance in such a way that permutations are not needed. Second,
that the QR factorization of G consists of applying orthogonal transformations on the
left of G, so producing a columnwise backward error that is independent of the column
scaling (see [29, Lemma 19.3, Theorem 19.4], for Householder versions of this fact).
This implies that a backward error relation similar to (36) can be proved, and the rest
of the proof remains the same.

Apart from reducing the number of sweeps, it is essential to decrease the computa-
tional cost per step to get an efficient implementation of the implicit Jacobi algorithm.
The first issue is to pick the side on which the transformations are performed. For
instance, in Fortran, the updating step R(i, j, c, s)T R → R in Algorithm 3 is much
slower than RT R(i, j, c, s) → RT because the arrays are stored by columns. This can
be addressed simply by rewriting the algorithm in terms of RT. Another idea is to use
the Rutishauser’s formulas to update the diagonal entries [39] combined with keeping
the diagonal entries in a separate vector (see [42, Sect. 3.3.1] for details on how this
can be implemented in a one-sided Jacobi algorithm). This may save the computation
of the diagonal entries bii and b j j in each step. However Rutishauser’s formulas may

8 In fact a BLAS 3 implementation of the QR factorization is faster than one Jacobi sweep.

123

546 F. M. Dopico et al.

introduce large errors that can spoil the accuracy of the algorithm, so their use must
be accompanied by safety tests to decide when they can be applied and by explicit
updating of the diagonal entries at the end of each sweep. Finally, self-scaled Jacobi
rotations [1] may be used to save 2n flops each time a Jacobi rotation is applied [42,
Sect. 3.4.1].

Other interesting (and more complicated) ideas that can reduce the cost of the
implicit Jacobi algorithm are the following. First, to compute the eigenvector matrix
a posteriori by solving a linear system in the spirit of [19] instead of accumulat-
ing the Jacobi rotations. This is motivated by the fact that we know the original
matrix G and the final G f obtained when the stopping criterion is satisfied, and
then one can solve for U in the system U TG = G f . The numerical orthogonal-
ity in floating point arithmetic of the matrix U so computed should be carefully
analyzed, and U should be reorthogonalized if it is necessary. Second, it may be
possible to use a triangular form of the factor G after the preconditioning by the
QR factorization with column pivoting to design better pivoting strategies, as it was
done in [21] for a Jacobi SVD algorithm. Finally, the use of block versions of the
implicit Jacobi algorithm apparently would inherit the same accuracy properties and
may make the algorithm much faster. See [26,27] for references on block Jacobi
procedures.

9 Numerical tests

We have proved rigorously in Theorems 6 and 7 that the implicit standard Jacobi
algorithm computes the eigenvalues and eigenvectors of an RRD X DXT with small
multiplicative backward errors. This is combined with Theorems 1 and 2 to show that
the forward errors in the computed eigenvalues and eigenvectors are given by (7). In
addition, Algorithm 3 i.e., the QR-preconditioned version, has the same error bounds.
Therefore, it is not surprising that extensive numerical tests performed on different
types of RRDs have confirmed the high relative accuracy of Algorithms 1, 2 and 3. We
present in this section some selected numerical tests on RRDs with extremely ill-con-
ditioned diagonal factors, and compare the performance in number of Jacobi sweeps
of the new implicit standard Jacobi algorithm, with and without preconditioning, with
other algorithms existing in the literature that compute with high relative accuracy
eigenvalues and eigenvectors of RRDs.

All of the numerical tests in this section have been performed in MATLAB 7.0
(R14) with ε = 2−53. We will assume that the eigenvalues are decreasingly ordered,
i.e., λ1 ≥ · · · ≥ λn , and we define

relgapi = min

(

min
j �=i

|λ j − λi |
|λi | , 1

)

.

Test 1 We consider a 100 × 100 symmetric Cauchy matrix A with entries

ai j = 1

xi + x j
, (45)

123

Implicit standard Jacobi gives high relative accuracy 547

with xi = (−1)i−1 + (i − 1)2−40 for i = 1, 2, . . . , 100. For this matrix κ(A) =
7.8 × 1073. A symmetric RRD A = X DXT is computed using Algorithm 1 in [14]
with errors as in (43) with δ = O(n3/2ε), and then Algorithm 1 or 3 can be applied
on the factors to obtain the eigenvalues and eigenvectors. The computed eigenvalues,
λ̂i , and eigenvectors, v̂i , are compared with the eigenvalues, λi , and the eigenvectors,
vi , computed by the MATLAB eig function with 100-decimal digit arithmetic. The
maximum relative errors in the eigenvalues and eigenvectors computed by Algorithm
1 are

max
i

|λ̂i − λi |
|λi | = 3.3 × 10−14, and max

i
‖v̂i − vi‖2 = 1.9 × 10−14,

while the maximum relative errors in the eigenvalues and eigenvectors computed by
Algorithm 3 are

max
i

|λ̂i − λi |
|λi | = 4.7 × 10−15, and max

i
‖v̂i − vi‖2 = 4.7 × 10−15.

The errors are very satisfactory in both cases. The number of Jacobi sweeps performed
by Algorithm 1 is 35, and by Algorithm 3 is 4. This is the first example that we show to
illustrate how beneficial the QR-preconditioner may be. Other interesting data in this
test are: κ(X) = 30.5, and mini relgapi = 0.62. The relative error in the eigenvalues
computed by the MATLAB eig function in standard IEEE double precision arithme-

tic was maxi
|λ̂i −λi ||λi | = 3.25 × 1055. Note that the eigenvalues of A = G J GT, where

G = X diag
(√|d1|, . . . ,√|dn|), are equal to the eigenvalues of the matrix pencil

GTG − λJ . We have also used the MATLAB eig(GTG, J) function to compute the

eigenvalues of this pencil, and the error was maxi
|λ̂i −λi ||λi | = 5.18 × 1032.

Test 2 In this test, we consider again a 100 × 100 symmetric Cauchy matrix A with
entries given by (45), and with xi = i − 0.5 for i = 1, 2, . . . , 99 and x100 = −99.5,
and proceed as in Test 1. Note that A is the Hilbert matrix except for the last row
and last column which are modified to make the matrix indefinite. For this matrix
κ(A) = 3.5 × 10147. The computed eigenvalues, λ̂i , and eigenvectors, v̂i , are com-
pared with the eigenvalues, λi , and the eigenvectors, vi , computed by the MATLAB
eig function with 200-decimal digit arithmetic. The maximum relative errors in the
eigenvalues and eigenvectors computed by Algorithm 1 are

max
i

|λ̂i − λi |
|λi | = 1.2 × 10−13, and max

i
‖v̂i − vi‖2 = 5.7 × 10−14,

while the maximum relative errors in the eigenvalues and eigenvectors computed by
Algorithm 3 are

max
i

|λ̂i − λi |
|λi | = 4.9 × 10−15, and max

i
‖v̂i − vi‖2 = 3.9 × 10−14.

123

548 F. M. Dopico et al.

The errors in Algorithm 3 are considerably smaller than the errors in Algorithm 1.
This may be related to the fact that the number of Jacobi sweeps performed by Algo-
rithm 3 is just 5, while the number of sweeps performed by Algorithm 1 is 55. Other
interesting data in this test are: κ(X) = 45.22 and mini relgapi = 0.4. The relative
error in the eigenvalues computed by the MATLAB eig function in standard IEEE

double precision arithmetic was maxi
|λ̂i −λi ||λi | = 1.84 × 10132.

The results in Tests 1 and 2 are very satisfactory from the point of view of accuracy,
both for Algorithm 1 and 3. In addition, the number of Jacobi sweeps performed by
Algorithm 3 is low, while Algorithm 1 performs too many sweeps. We will see in
the next numerical experiments that this sweep comparison varies widely for different
types of RRDs, although Algorithm 3 is always faster than Algorithm 1, and, there-
fore, QR-preconditioning is highly recommended. Moreover, we will compare in the
next tests the number of sweeps of Algorithms 1 and 3 with the number of sweeps
of other algorithms of Jacobi type for computing the eigenvalues and eigenvectors of
symmetric indefinite RRDs with high relative accuracy. The algorithms we use are
the following ones.

1. The implicit one sided J -orthogonal Jacobi algorithm (see [42, Algorithm 3.3.1]
or [41, Algorithm 1]). This algorithm uses hyperbolic transformations applied on
the right side of the matrix G defined in Algorithm 1. This fact implies that the
error bounds for the computed eigenvalues and eigenvectors are not guaranteed to
be small, but, in practice, it has never been observed a significant loss of accuracy.

2. The SSVD algorithm presented in [16, Algorithm 1]. The SSVD algorithm does
not preserve the symmetry of the problem because it uses Algorithm 3.1 in [7]
to compute the SVD of the RRD X DXT. Step 3 of that algorithm applies the
one sided Jacobi algorithm for the SVD [12] to a certain matrix W applying the
rotations from the right. In our tests, we have computed first the QR factoriza-
tion with the Businger-Golub column pivoting strategy of W T [20]. In this way
the algorithm is faster and, simultaneously, the error bounds are guaranteed to be
small.

In the tests below, we have checked the accuracy of the eigenvalues computed by
Algorithms 1 and 3 through the relative errors with respect to those computed by the
J -orthogonal and the SSVD algorithm. For the eigenvectors, we also compare with
the J -orthogonal and the SSVD algorithm, and multiply the norm of the difference of
the i th eigenvectors by relgapi . This has to be O(εκ(X)).

Test 3 In this test, we study the behavior of the number of Jacobi sweeps performed
by Algorithms 1 and 3 as the condition number of the diagonal factor D of an RRD
increases. We consider random RRDs X DXT, where X ∈ R

100×100 and D ∈ R
100×100

are generated by the MATLAB commandgallery(’randsvd’,...) developed
by N. Higham [28]. For all tested RRDs κ(X) = 30, and the matrices X are generated
with geometrically distributed singular values (MODE = 3 in gallery(’rands-
vd’,...)). In a first type of RRDs the diagonal factors D are also generated with
geometrically distributed singular values, and, in addition, the signs of the diagonal
entries are randomly selected. We consider the following values of κ(D) = 1010:20:110,
and for each value of κ(D) five RRDs are generated. The average numbers of sweeps

123

Implicit standard Jacobi gives high relative accuracy 549

Table 1 Average numbers of
Jacobi sweeps for random
100 × 100 RRDs with
geometrically distributed
singular values for D
(MODE = 3) and κ(X) = 30.

κ(D) Algorithm 1 Algorithm 3 J -orthogonal algorithm SSVD

1010 16.2 6 9 5.2

1030 25 5 9 4

1050 31.2 4 9.2 4.2

1070 34.2 4 9 3.2

1090 39.6 4 9.2 3

10110 42.6 3.8 9.2 3

Table 2 Average numbers of
Jacobi sweeps for random
100 × 100 RRDs with the
singular values of D generated
with MODE = 1 and κ(X) = 30

κ(D) Algorithm 1 Algorithm 3 J -orthogonal algorithm SSVD

1010 10.2 9 10.8 8

1030 9.6 8.8 10.6 8

1050 10.6 9 10.4 8.2

1070 10.8 9 10.8 8

1090 11 8.8 10.8 8

10110 11 8.6 11 8

are presented in Table 1. We have observed in the matrices of this test a maximum
relative difference between the eigenvalues computed by Algorithm 1 and those com-
puted by the other algorithms equal to 4.8 × 10−14. The maximum norm of the dif-
ference between eigenvectors multiplied by the corresponding relative gap has been
2.8 × 10−14. In a second type of RRDs, we repeat the same experiment with the only
modification that the option MODE = 1 in gallery(’randsvd’,...) is used to
generate the absolute values of the diagonal factors D, i.e., D has one large singular
value equal to one and the other singular values equal to 1/κ(D). Note that this does not
imply that there are 99 eigenvalues of X DXT with the same absolute value, because
we are multiplying by X . The average numbers of sweeps for these RRDs are presented
in Table 2. We have observed in the matrices of Table 2 a maximum relative differ-
ence between the eigenvalues computed by Algorithm 1 and those computed by the
other algorithms equal to 2.8 × 10−14. The maximum norm of the difference between
eigenvectors multiplied by the corresponding relative gap has been 3.3 × 10−14.

The first conclusion to be drawn from this test is that the performance of Algorithm 1
depends heavily on the distribution of the eigenvalues, while this dependence is milder
for the other three algorithms. The second conclusion is that Algorithm 3 is always
faster than Algorithm 1 and, that it can be much faster if the absolute values of the
eigenvalues are geometrically distributed.9 The third conclusion is that Algorithm 3 is
also considerably faster than the J -Orthogonal algorithm, specially again if the abso-
lute values of the eigenvalues are geometrically distributed. Therefore, we consider
that the QR-preconditioning in Algorithm 3 must be used in the new Implicit Jacobi
algorithm. The last conclusion is that the number of sweeps of the nonsymmetric SSVD

9 The order of magnitude of the eigenvalues of X DXT and D is similar because X is well-conditioned.

123

550 F. M. Dopico et al.

Table 3 Average numbers of
Jacobi sweeps for random n × n
RRDs with geometrically
distributed singular values for D
(MODE = 3), κ(D) = 1040, and
κ(X) = 100

n Algorithm 1 Algorithm 3 J -orthogonal algorithm SSVD

100 28.8 4.6 10 4

500 46 6 11 5.6

1,000 58.3 6 11 6

2,000 69 7 11 7

Table 4 Average numbers of
Jacobi sweeps for random n × n
RRDs with the singular values
of D generated with MODE = 1,
κ(D) = 1040, and κ(X) = 100

n Algorithm 1 Algorithm 3 J -orthogonal algorithm SSVD

100 10.8 8.8 11.6 7.8

500 12.8 12 13.2 9.6

1,000 13 13 14 10.7

2,000 14.5 13.5 15 11

algorithm is slightly smaller than the number of sweeps of Algorithm 3, although the
lack of symmetry of SSVD makes difficult a real comparison of the computational
cost of both algorithms. In addition, SSVD can use, at present, the fast algorithm in
[20,21] to compute the SVD of X DXT, and then to be faster than Algorithm 3.

Test 4 In this test, we study the behavior of the number of Jacobi sweeps performed by
Algorithms 1 and 3 as the dimension of an RRD X DXT increases for fixed condition
numbers of the factors D and X . We have chosen κ(D) = 1040 and κ(X) = 100. For
all tested RRDs, the matrices X are randomly generated with geometrically distrib-
uted singular values. In a first type of RRDs the diagonal factors D are also randomly
generated with geometrically distributed singular values, and, in addition, the signs
of the diagonal entries are randomly selected. We consider n × n factors X and D
for n = 100, 500, 1,000, 2,000. Five RRDs were generated for n = 100, five for
n = 500, three for n = 1,000, and two for n = 2,000. The average numbers of
sweeps are presented in Table 3. We have observed in the matrices of this test a maxi-
mum relative difference between the eigenvalues computed by Algorithm 1 and those
computed by the other algorithms equal to 1.63 × 10−12, and the maximum norm of
the difference between eigenvectors multiplied by the corresponding relative gap has
been 1.04 × 10−12. Both of them occurred for n = 2,000. In a second type of RRDs,
we repeat the same experiment with the only modification that the option MODE = 1 in
gallery(’randsvd’,...) is used to generate the absolute values of the diago-
nal factors D. The average numbers of sweeps for these RRDs are presented in Table 4.
We have observed in the matrices in Table 4 a maximum relative difference between
the eigenvalues computed by Algorithm 1 and those computed by the other algorithms
equal to 6.39×10−13, and the maximum norm of the difference between eigenvectors
multiplied by the corresponding relative gap has been 5.83 × 10−13. Both of them
occurred again for n = 2,000.

One can obtain from Test 4 similar conclusions to those obtained from Test 3 on
the comparison of the different algorithms.

123

Implicit standard Jacobi gives high relative accuracy 551

10 Conclusions

We have introduced the first algorithm that computes with guaranteed high relative
accuracy the eigenvalues and eigenvectors of any symmetric indefinite (or definite)
matrix in RRD form, A = X DXT, by using only orthogonal transformations and
respecting the symmetry of the problem. This algorithm simply applies the rotations
of the standard cyclic-by-row Jacobi algorithm implicitly on the factor X . A rigorous
error analysis proving the high relative accuracy obtained by this algorithm has been
developed. This error analysis is based on new theoretical results on properties of
diagonal and scaled diagonally dominant symmetric RRDs that show that disastrous
cancellations do not appear in the computation of the eigenvalues. Numerical tests
have been performed to confirm the high relative accuracy of the new implicit Jacobi
algorithm. The new algorithm can be easily preconditioned through the QR decom-
position with column pivoting. This preconditioned version preserves all the good
properties of the implicit Jacobi algorithm and runs much faster, as it has been shown
in Sect. 9. The computational cost of the preconditioned implicit Jacobi algorithm is
similar to the nonsymmetric SSVD algorithm, which is at present the fastest existing
algorithm for computing eigenvalues and eigenvectors of symmetric indefinite RRDs
with guaranteed high relative accuracy. In future work, we will consider how to speed
up the new algorithm preserving its three fundamental properties: guaranteed error
bounds, preservation of the symmetry, and using only orthogonal transformations.
This may require much more sophisticated ideas in the spirit of the ones presented in
[20,21,26,27] for the accurate computation of the Singular Value Decomposition.

Acknowledgements The authors thank J. Demmel, Z. Drmač, and J. Moro for many useful discussions
on accurate eigensolvers for symmetric indefinite problems. The authors also thank the Editor of this manu-
script, I. Ipsen, and two referees for many useful suggestions that have helped us to improve the presentation,
as well as, to improve some of the results in Sect. 4. Moreover, we want to remark that one of these referees,
Z. Drmač, suggested the preconditioning technique included in Sect. 8. This technique plays an essential
role to speed-up the implicit Jacobi algorithm and to make it useful in practice. F. M. Dopico and J. M.
Molera were partially supported by the Ministerio de Educación y Ciencia of Spain through grant MTM-
2006-06671 and by the PRICIT Program of the Comunidad de Madrid through SIMUMAT Project (Ref.
S-0505/ESP/0158). P. Koev was partially supported by National Science Foundation grants DMS-0314286
and DMS-0608306.

References

1. Anda, A., Park, H.: Fast plane rotations with dynamic scaling. . SIAM J. Matrix Anal. Appl. 15, 162–
174 (1994)

2. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A.,
Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide, 3rd edn, Software Environ.
Tools 9. SIAM, Philadelphia (1999)

3. Barlow, J., Demmel, J.: Computing accurate eigensystems of scaled diagonally dominant matri-
ces. SIAM J. Num. Anal. 27(3), 762–791 (1990)

4. Businger, P., Golub, G.H.: Linear least squares solutions by householder transformations. Numer.
Math. 7, 269–276 (1965)

5. Demmel, J.: Accurate singular value decompositions of structured matrices. SIAM J. Matrix Anal.
Appl. 21(2), 562–580 (1999)

6. Demmel, J., Gragg, W.: On computing accurate singular values and eigenvalues of acyclic matri-
ces. Linear Algebra Appl. 185, 203–218 (1993)

123

552 F. M. Dopico et al.

7. Demmel, J., Gu, M., Eisenstat, S., Slapničar, I., Veselić, K., Drmač, Z.: Computing the singular value
decomposition with high relative accuracy. Linear Algebra Appl. 299(1–3), 21–80 (1999)

8. Demmel, J., Kahan, W.: Accurate singular values of bidiagonal matrices. SIAM J. Sci. Statist. Com-
put. 11(5), 873–912 (1990)

9. Demmel, J., Koev, P.: Necessary and sufficient conditions for accurate and efficient rational function
evaluation and factorizations of rational matrices. In: Structured matrices in mathematics, computer
science, and engineering, II (Boulder, CO, 1999), Contemp. Math., vol 281, pp. 117–143. Amer. Math.
Soc., Providence, RI (2001)

10. Demmel, J., Koev, P.: Accurate SVDs of weakly diagonally dominant M-matrices. Numer.
Math. 98(1), 99–104 (2004)

11. Demmel, J., Koev, P.: Accurate SVDs of polynomial Vandermonde matrices involving orthonormal
polynomials. Linear Algebra Appl. 417(2–3), 382–396 (2006)

12. Demmel, J., Veselić, K.: Jacobi’s method is more accurate than QR. SIAM J. Matrix Anal.
Appl. 13(4), 1204–1246 (1992)

13. Demmel, J.W.: Applied Numerical Linear Algebra. SIAM, Philadelphia (1997)
14. Dopico, F.M., Koev, P.: Accurate symmetric rank revealing and eigendecompositions of symmetric

structured matrices. SIAM J. Matrix Anal. Appl. 28(4), 1126–1156 (2006)
15. Dopico, F.M., Molera, J.M.: Perturbation theory for factorizations of LU type through series expan-

sions. SIAM J. Matrix Anal. Appl. 27(2), 561–581 (2005)
16. Dopico, F.M., Molera, J.M., Moro, J.: An orthogonal high relative accuracy algorithm for the symmetric

eigenproblem. SIAM J. Matrix Anal. Appl. 25(2), 301–351 (2003)
17. Drmač, Z.: Implementation of Jacobi rotations for accurate singular value computation in floating point

arithmetic. SIAM J. Sci. Comput. 18(4), 1200–1222 (1997)
18. Drmač, Z.: Accurate computation of the product induced singular value decomposition with applica-

tions. SIAM J. Num. Anal. 35(5), 1969–1994 (1998)
19. Drmač, Z.: A posteriori computation of the singular vectors in a preconditioned Jacobi SVD algo-

rithm. IMA J. Num. Anal. 19, 191–213 (1999)
20. Drmač, Z., Veselić, K.: New fast and accurate Jacobi SVD algorithm. I. SIAM J. Matrix Anal.

Appl. 29(4), 1322–1342 (2008)
21. Drmač, Z., Veselić, K.: New fast and accurate Jacobi SVD algorithm. II. SIAM J. Matrix Anal.

Appl. 29(4), 1343–1362 (2008)
22. Eisenstat, S., Ipsen, I.: Relative perturbation techniques for singular value problems. SIAM J. Numer.

Anal. 32(6), 1972–1988 (1995)
23. Fernando, K., Parlett, B.: Accurate singular values and differential qd algorithms. Numer. Math. 67,

191–229 (1994)
24. Gentleman, W.M.: Error analysis of QR decompositions by Givens transformations. Linear Algebra

and Appl. 10, 189–197 (1975)
25. Golub, G., Van Loan, C.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore

(1996)
26. Hari, V.: Accelerating the SVD block-Jacobi method. Computing 75(1), 27–53 (2005)
27. Hari, V.: Convergence of a block-oriented quasi-cyclic Jacobi method. SIAM J. Matrix Anal.

Appl. 29(2), 349–369 (2007)
28. Higham, N.J.: The Matrix computation toolbox. http://www.ma.man.ac.uk/~higham/mctoolbox
29. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. SIAM, Philadelphia (2002)
30. Horn, R.A., Johnson, C.R.: Topics in matrix analysis. Cambridge University Press, Cambridge (1994).

(Corrected reprint of the 1991 original)
31. Koev, P.: Accurate eigenvalues and SVDs of totally nonnegative matrices. SIAM J. Matrix Anal.

Appl. 27(1), 1–23 (2005)
32. Koev, P., Dopico, F.: Accurate eigenvalues of certain sign regular matrices. Linear Algebra Appl.

424(2–3), 435–447 (2007)
33. Li, R.C.: Relative perturbation theory. II. Eigenspace and singular subspace variations. SIAM J. Matrix

Anal. Appl. 20(2), 471–492 (1999)
34. Li, R.C.: Relative perturbation theory. IV. sin 2θ theorems. Linear Algebra Appl. 311(1–3), 45–60

(2000)
35. Mathias, R.: Accurate eigensystem computations by Jacobi methods. SIAM J. Mat. Anal. Appl. 16(3),

977–1003 (1995)
36. The MathWorks, Inc., Natick, MA: MATLAB Reference guide (1992)

123

http://www.ma.man.ac.uk/~higham/mctoolbox

Implicit standard Jacobi gives high relative accuracy 553

37. Parlett, B.N.: The symmetric eigenvalue problem. SIAM, Philadelphia (1998)
38. Peláez, M.J., Moro, J.: Accurate factorization and eigenvalue algorithms for symmetric DSTU and

TSC matrices. SIAM J. Matrix Anal. Appl. 28(4), 1173–1198 (2006)
39. Rutishauser, H.: The Jacobi method for real symmetric matrices. Numer. Math. 9(1), 1–10 (1966)
40. Slapničar, I.: Componentwise analysis of direct factorization of real symmetric and Hermitian matri-

ces. Linear Algebra Appl. 272, 227–275 (1998)
41. Slapničar, I.: Highly accurate symmetric eigenvalue decomposition and hyperbolic SVD. Linear Alge-

bra Appl. 358, 387–424 (2003). Special issue on accurate solution of eigenvalue problems (Hagen,
2000)

42. Slapničar, I.: Accurate symmetric eigenreduction by a Jacobi method. Ph.D. thesis, Fernuniversität -
Hagen, Hagen, Germany (1992)

43. Stewart, G.W., Sun, J.G.: Matrix perturbation theory. Academic Press, New York (1990)
44. Veselić, K.: A Jacobi eigenreduction algorithm for definite matrix pairs. Num. Math. 64, 241–269

(1993)
45. Ye, Q.: Computing singular values of diagonally dominant matrices to high relative accuracy. Math.

Comp. 77(264), 2195–2230 (2008)

123

	Implicit standard Jacobi gives high relative accuracy
	Abstract
	1 Introduction
	2 The implicit Jacobi algorithm
	3 Basic results on multiplicative perturbation theory
	4 Diagonal and scaled diagonally dominant RRDs
	5 Rounding error analysis of the implicit Jacobi algorithm
	5.1 Rounding errors in the stopping criterion of Algorithm 1
	5.2 Multiplicative backward error analysis of Algorithm 1

	6 Singular RRDs: RRDs with rectangular factors
	7 The effect of errors in X and D
	8 QR factorization as preconditioner and other implementation details
	9 Numerical tests
	10 Conclusions
	Acknowledgements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

