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Abstract We study the following modification of a linear subdivision scheme S: let
M be a surface embedded in Euclidean space, and P a smooth projection mapping
onto M . Then the P-projection analogue of S is defined as T := P ◦ S. As it turns
out, the smoothness of the scheme T is always at least as high as the smoothness of
the underlying scheme S or the smoothness of P minus 1, whichever is lower. To
prove this we use the method of proximity as introduced by Wallner et al. (Constr
Approx 24(3):289–318, 2006; Comput Aided Geom Design 22(7):593–622, 2005).
While smoothness equivalence results are already available for interpolatory schemes
S, this is the first result that confirms smoothness equivalence properties of arbitrary
order for general non-interpolatory schemes.

Mathematics Subject Classification (2000) 41AXX · 41A25 · 53B · 22E

1 Introduction

The analysis of nonlinear subdivision schemes derived from linear schemes has been
an active topic in the past few years. The main idea is to modify a linear subdivision
scheme which is defined in Euclidean space so as to operate in nonlinear geometries.
In [9,10] it is shown that if the difference between the linear scheme and its nonlinear
modification is small enough, then the nonlinear scheme enjoys the same smoothness
as the linear scheme. The condition for the nonlinear scheme to be close enough to
the linear scheme is referred to as proximity condition. It is also known that for some
natural nonlinear analogues of linear schemes that operate in nonlinear geometries,
the nonlinear schemes satisfy proximity conditions with the linear schemes that ensure
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164 P. Grohs

C2 smoothness of the nonlinear scheme, provided the linear scheme is C2 and some
other technical conditions are met [5,9,11].

Up to now this was the strongest result concerning smoothness equivalence prop-
erties of general nonlinear schemes.

If the underlying linear subdivision scheme is interpolatory, then it can be shown
that for a very general family of nonlinear analogues, the corresponding nonlinear
scheme enjoys the same smoothness as the linear scheme [4,5,14,17].

In the present work we consider the following nonlinear perturbation of a linear
subdivision scheme S that operates on a surface M embedded in some Euclidean
space: first perform linear subdivision in Euclidean space, and then map the obtained
data back onto M via a suitable projection mapping P . This yields the so called
P-projection analogue T := P ◦ S of S.

We show that if S is of Ck smoothness, then so is T .
Our results for the first time confirm a general smoothness equivalence conjecture

[2] for noninterpolatory subdivision schemes.

1.1 Contents

The outline of this paper is as follows: after briefly introducing some well-known
definitions and results on linear subdivision schemes in Sect. 2, in Sect. 3 we define
the projection analogue of a linear subdivision scheme and discuss some applications.
Section 4 contains the main result, namely the (rather long) proof of a general prox-
imity condition that is satisfied between a linear scheme and its projection analogue.
Finally in Sect. 5 we use a result from [9] to show the implication “proximity ⇒
smoothness of the nonlinear scheme”.

2 Linear subdivision

We briefly review some well-known facts from the theory of linear subdivision
schemes. All the material in this section can be found in [8,3], where only the case of
dilation factor 2 is considered. The extension to arbitrary dilation factors is easy.

Basically a convergent subdivision scheme takes a sequence of points as input and
produces another, more dense, sequence of points. Iterative application of the subdi-
vision operator yields a continuous curve in the limit. If this subdivision operator is a
linear mapping, we speak of linear subdivision. We make this more precise: let (ai )i∈Z

be a sequence of real numbers, only finitely many of them nonzero. Then we define
the linear subdivision operator S associated with this sequence by

(Sp)i =
∑

j∈Z

ai−N j p j , (1)

where pi ∈ R
m are the input data. The sequence (ai )i∈Z is called the mask of S, the

number N > 1 is called dilation factor. S is called of finite mask, since the support of
the sequence (ai ) is finite.

A (linear or nonlinear) subdivision scheme is called convergent, if the sequences
pl := Sl p converge to a continuous curve. This can be made precise as follows:
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Smoothness equivalence properties of univariate subdivision schemes 165

denote by Fl(pl) the piecewise linear interpolation of the sequence pl on the grid
1

Nl Z. Then S is said to be convergent, if the sequence Fl(pl) converges uniformly to
a curve F∞(p)(t). F∞(p) is called the limit function of S corresponding to the input
data p. If the limit function is Cn for all p, we say that S is Cn .

A natural estimate for the nth derivative of the function F∞(p) sampled on the grid
1

Nl Z is the left hand derivative of Fl(pl). It is given by Nln∆n Sl p, where

(∆p)i := pi+1 − pi .

Note that

∆n =
n∑

j=0

(
n

j

)
(−1) j En− j = (E − I )n, (2)

with E as the shift operator that maps a sequence (pi )i∈Z to the sequence (pi+1)i∈Z.
The derived schemes (provided they exist) satisfy the following relations:

S[0] := S, S[n]∆ := N∆S[n−1], n ≥ 1.

Consider the generating function a(x) := ∑
j∈Z

ai xi . The Laurent polynomial
a(x) is called the symbol of S. It is not hard to see that the existence of derived
schemes up to order n + 1 is equivalent to the fact that

a(1) = N and a(l)(ζ ) = 0, l = 0, . . . , n, for all ζ N = 1 �= ζ (3)

These conditions also imply that

∑

j∈Z

ai−N j = 1 for all i.

The above property is called reproduction of constants. In what follows we will always
assume that (3) holds and thus the derived schemes up to order n+1 exist. This assump-
tion is actually not a big restriction. The following theorem is well known, see e.g. [8]:

Theorem 1 If a linear subdivision scheme S produces Ck limit functions, then the
derived schemes S[1], . . . , S[k+1] exist, if S is nonsingular, i.e. nonzero sequences get
mapped to nonzero functions.

A (linear or nonlinear) subdivision operator operates on the space of sequences
p = (pi ∈ R

m)i∈Z. We define a norm on this space via

‖p‖ := sup
i∈Z

‖pi‖′,

where ‖ · ‖′ refers to any norm on the finite dimensional vector space R
m .

Note that this norm is finite only for a bounded sequence of points. However, we are
only interested in smoothness properties of F∞(p)(t), which, near a given parameter
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value, depend only on a finite number of points of the initial sequence p. This is well
known and follows from the fact that S is of finite mask. Therefore we can without
loss of generality assume that p is bounded. We can even assume that p is only a finite
sequence.

The following theorem is well known.

Theorem 2 Let S be a linear subdivision scheme such that the derived schemes up to
order n + 1 exist. S produces Cn functions if and only if

µ j := 1

N
ρ
(
S[ j+1]) < 1 for all j = 0, . . . , n. (4)

Here ρ(S[ j+1]) means the spectral radius of the operator S[ j+1] with respect to the
norm ‖ · ‖.

Actually for Theorem 2 to be valid it is necessary and sufficient that (4) holds only for
j = n. If the subdivision scheme produces smooth limit functions, there is a better
estimate for the constants µ j :

Theorem 3 Under the assumptions of Theorem 2

µ j = 1

N
for j = 0, . . . , n − 1.

Proof It is easy to show that under the assumptions of Theorem 2, the derived schemes
S[ j] converge to the j th derivative of the limit function of S for j = 1, . . . , n
(cf. [3]). Therefore there exists a constant A such that ‖(S[ j])l‖ ≤ A for l ∈ N and
all j = 1, . . . , n. It follows that the spectral radius ρ(S[ j+1]) ≤ 1 for j = 1, . . . , n.
Since Sp = p for all constant sequences p, we get ρ(S[ j+1]) = 1.

We give an example: the Lane-Riesenfeld subdivision scheme of order n, which
produces B-spline curves of degree n, is given by the symbol

a(x) = (1 + x + · · · + x N−1)n+1

(N x)n
.

It satisfies (4) with µ j = 1
N , j = 0, . . . , n. By Theorem 2, the Lane-Riesenfeld

scheme is Cn .

3 The projection analogue

The projection analogue of a linear subdivision scheme S is defined by first applying
a linear subdivision scheme S followed by a projection mapping P . If linear subdi-
vision is applied to data contained in a surface in some vector space R

m , the result
is in general not contained in that surface. If we combine linear subdivision with a
projection-type mapping onto that surface, we obtain a refinement operator which
creates data contained in the surface again. Such a projection mapping does not have
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Smoothness equivalence properties of univariate subdivision schemes 167

to be globally defined, because we can reasonably assume that linear subdivision will
create data which lie not too far away from the surface.

Definition 1 Let P : O ⊆ R
m → R

m , O open in R
m , be a smooth mapping with the

property that P|ran(P) = id and there exists an ε-neighborhood of ran(P) contained
in P’s domain of definition, O . Then P is called a Projection mapping.

The P-projection analogue is defined by first applying the subdivision operator S
to the points (pi ∈ ran(P))i∈Z and then projecting onto the range of P via a projec-
tion mapping P . In other words, the P-projection analogue T of S is the subdivision
scheme defined by

P(Sp), p = (pi ∈ ran(P))i∈Z. (5)

We would like to give some examples of what the mapping P might look like
(compare also [12,10]):

3.1 Subdivision on surfaces

If S ⊆ R
m is a surface embedded into Euclidean space R

m , then it is possible to
define a subdivision scheme that operates in S: first we need a projection mapping
P : O ⊆ R

m → S, where O is an open set with S ⊆ O . This mapping can be
realized e.g. as a closest point projection, or if the surface is given as a level set
f (x1, . . . , xn) = c, we can let P equal the gradient flow. Then the P-projection
analogue of any linear subdivision scheme operates in S.

3.2 Avoiding obstacles

Another application is the following: assume that we are subdividing in Euclidean
space R

m . For certain applications it may be necessary for the subdivided curve to
avoid an obstacle O ⊆ R

m . We define P as follows: if a point p ∈ R
m is not in O, then

P is just the identity mapping. If p ∈ O, then P projects p onto the boundary of O. O
can for example be the interior of a closed surface S ⊆ R

m . Then the mapping P acts
as the projection on S on the points in the interior of S and as the identity mapping
on all the other points. Note that the mapping P is only continuous. Nevertheless the
P-projection analogue T fulfills the lowest order proximity condition and limit curves
enjoy C1 smoothness [12].

3.3 Lie groups

We show how to define a projection mapping onto a compact subgroup G of the
orthogonal group Om . The scalar product

〈x, y〉 := trace
(
xT y

)
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corresponding to the Frobenius norm is both right- and left-invariant [1]. We can thus
define P as the closest point projection onto G with respect to the Frobenius norm. We
can extend this construction to the case that G is any compact matrix group, because
after a suitable change of coordinates, we can think of G as a compact subgroup of
Om [1].

Now let us define a semidirect product G �R
m , where G is a compact matrix group.

After choosing suitable coordinates, we can assume that G is a subgroup of Om . We
can denote elements of G � R

m by (m + 1) × (m + 1)-matrices of the form

(
1 0
t g

)
,

with t ∈ R
m and g ∈ G. We consider the group operation

(
1 0
t1 g1

)
·
(

1 0
t2 g2

)
:=

(
1 0
t1 + g1t2 g1g2

)
.

If G is equal to SOm , then G � R
m is just the Euclidean motion group SEm . A short

computation shows that the Frobenius norm on G � R
m induced by the Frobenius

norm on R
(m+1)×(m+1) is right invariant, but not left invariant. However, this does not

prevent us from defining P as the closest point projection onto G � R
m with respect

to the Frobenius norm. If a matrix of the form

(
1 0
t h

)
, h ∈ GLm

is given, then its closest point projection onto G � R
m is given by

(
1 0
t g

)
, g = P(h),

where P is now the closest point projection onto G.
If G = Om , we can compute the closest point projection explicitly: let h ∈ GLm ,

with the singular value decomposition h = vT Σw, where v,w ∈ Om . The closest
point projection onto Om of h is now given by P(h) = vT w [7].

A different kind of projection analogue has been studied in [9,10,12], where
smoothness equivalence results up to C2 have been obtained. In [14] smoothness
equivalence has been proven for interpolatory subdivision schemes if P is the closest
point projection onto the sphere and related manifolds. In [5] this result is extended
to arbitrary mappings P and multivariate subdivision schemes. For non-interpolato-
ry subdivision schemes, however, the result in the present paper is the first one that
establishes smoothness equivalence for arbitrary smoothness order.
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4 Establishing a proximity condition

Our analysis considers the nonlinear scheme T as a perturbation of the linear scheme S.
In this spirit we define

Definition 2 A linear scheme S and its P-projection analogue T satisfy a local prox-
imity condition of order n if for every compact set K ⊆ ran(P) there exist constants
δ > 0, C such that for all initial data p ∈ K Z with ‖∆p‖ < δ we have the estimate

‖∆n−1(T p − Sp)‖ ≤ C
∑

α1,...,αn∈N0
α1+2α2+···+nαn=n+1

‖∆p‖α1 · · · ‖∆n p‖αn . (6)

The goal of the present section is to prove the following theorem:

Theorem 4 Let S be a linear subdivision scheme such that the derived schemes S[ j],
j = 1, . . . , n + 1 exist, and let P : O → R

m be a Cn+1 projection mapping. Then S
satisfies a local proximity condition of order n with its P-projection analogue T

The nonlinear scheme T is only defined if the subdivided data Sp lies within O . This
can always be achieved by choosing initial data p with ‖∆p‖ small:

Lemma 1 Let O be such that an ε neighborhood of ran(P) is still contained in O.
Then there exists δ > 0 such that for initial data p with ‖∆p‖ ≤ δ, the subdivided
data Sp remains within O. The constant δ depends on S and on ε but not on p.

Proof It is well known (compare [3]) that for a linear subdivision scheme S there
exists a constant C > 0 such that

sup
i∈Z

inf
j∈Z

‖Spi − p j‖′ ≤ C‖∆p‖.

This implies our statement.

The proof of Theorem 4 takes up the whole section. In the first subsection, we derive
a tractable condition for a proximity condition to hold. In the second subsection, we
prove that this condition is always fulfilled if the derived schemes up to order n + 1
exist.

4.1 Expressing the differences through a generating function

In order to obtain a proximity condition as required by Theorem 4, we first look for a
way to rewrite the difference ∆n−1(Sp − T p). At the end of this section, we will see
that a proximity condition holds if a certain generating function has many vanishing
derivatives (compare also [4–6]). The checking of this second fact then is the topic of
Sect. 4.3.
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We start with the following lemma:

Lemma 2 Let S be a linear subdivision scheme with mask (ai )i∈Z and T its
P-projection analogue. Let K ⊆ ran(P) be a compact set. Then there exists δ > 0
(depending only on K ) such that for all initial data (pi )i∈Z ∈ K Z with ‖∆p‖ < δ

and v j := p j − pi

∆n−1(T p − Sp)i =
n∑

l=2

1

l! Bl,i + O
(‖∆p‖n+1), (7)

where

Bl,i =
∑

j=( j1,..., jl )∈Zl

(
∆n−1bl,j

)
i d

l P|pi

(
v j1, . . . , v jl

)
(8)

and

bl,j =
{

(al
i−N j1

− ai−N j1)i∈Z if j1 = · · · = jl ,
(ai−N j1 · · · ai−N jl )i∈Z else.

(9)

The ∆n−1 operator acts on the index i and dl denotes the lth order differential.

Proof The proof is done by Taylor expansion. We have T p = P(Sp) with p ∈ ran(P)

and clearly, Sp = S(P(p)). Therefore, we can write

(T p − Sp)i+h = (P(Sp) − S(P(p)))i+h = P

⎛

⎝
∑

j∈Z

ai+h−N j p j

⎞

⎠

−
∑

j∈Z

ai+h−N j P(p j ), h =0,. . ., N −1. (10)

By compactness of K, there exists δ′ > 0 such that for all v with ‖v‖ ≤ δ′ and all
p ∈ K we can write P in its Taylor expansion (recall that we assumed that P ∈ Cn+1)
as

P(p + v) =
n∑

l=0

1

l!dl P|p(v, . . . , v) + O
(‖v‖′n+1). (11)

Since the mask of S is finite, only a finite number (depending only on the support of
the mask) of initial data points contributes to the computation of (Sp)i+h and (T p)i+h ,
h = 0, . . . , N − 1, and hence (∆n−1(S − T )p)i . Therefore we may assume that p is
only a finite sequence and thus

sup
j

∥∥p j − pi
∥∥′ = O (‖∆p‖)
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and

sup
i

∥∥∥∥∥∥

∑

j

ai−N j
(

p j − pi
)
∥∥∥∥∥∥

′
= O (‖∆p‖) .

The implicit constants only depend on the support size of the mask of S and the oper-
ator norm of S. It follows that there exists δ > 0 such that for all sequences p ∈ K Z

with ‖∆p‖ < δ we can write

p j = P(p j ) =
n∑

l=0

1

l!dl P|pi

(
p j − pi , . . . , p j − pi

) + O
(‖p j − pi‖′n+1),

and thus

(Sp)i+h =
∑

j∈Z

ai+h−N j p j

=
∑

j∈Z

ai+h−N j

n∑

l=0

1

l!dl P|pi

(
p j − pi , . . . , p j − pi

) + O
(‖v‖n+1)

=
n∑

l=0

∑

j∈Z

ai+h−N j
1

l!dl P|pi

(
v j , . . . , v j

) + O
(‖v‖n+1), (12)

with v j := p j − pi and v = (v j ) j∈Z.
The nonlinear scheme can be written as

(T p)i+h = P

⎛

⎝
∑

j∈Z

ai+h−N j p j

⎞

⎠ = P

⎛

⎝pi +
∑

j∈Z

ai+h−N jv j

⎞

⎠

=
n∑

l=0

1

l!dl P|pi

⎛

⎝
∑

j∈Z

ai+h−N jv j , . . . ,
∑

j∈Z

ai+h−N jv j

⎞

⎠

+ O
(‖∆p‖n+1). (13)

(recall that
∑

j∈Z
ai+h−N j = 1 and use (11)). For l = 0, . . . , n we consider the

expression

dl P|pi

⎛

⎝
∑

j∈Z

ai+h−N jv j , . . . ,
∑

j∈Z

ai+h−N jv j

⎞

⎠

−
∑

j∈Z

ai+h−N j d
l P|pi

(
v j , . . . , v j

)
. (14)
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Observe that by the multilinearity of dl P|pi the expression (14) equals

∑

j∈Zl

(
bl,j

)
i+h dl P|pi

(
v j1, . . . , v jl

)
.

With (12) and (13), (10) becomes

(T p − Sp)i+h =
n∑

l=0

1

l!
∑

j∈Zl

(
bl,j

)
i+h dl P|pi

(
v j1, . . . , v jl

) + O
(‖∆p‖n+1).

It is easily seen from the reproduction of constants that the terms corresponding to
l = 0, 1 vanish. We therefore have

(T p − Sp)i+h =
n∑

l=2

1

l!
∑

j∈Zl

(
bl,j

)
i+h dl P|pi

(
v j1, . . . , v jl

) + O
(‖∆p‖n+1).

It remains to apply the linear operator ∆n−1 to arrive at the desired result.

We show how to establish a proximity condition by rewriting the expressions Bl,i .

Lemma 3 Let the assumptions be as in Lemma 2. If for any l = 2, . . . , n, i ∈ Z it is
possible to express Bl,i in the form

∑

β∈Γl

∑

j=( j1,..., jl )∈Zl

cj,βdl P|pi

(
∆β1v j1 , . . . , ∆

βl v jl

)
(15)

with Γl := {(β1, . . . , βl) ∈ N
l
0 : ∑l

i=1 βi = n + 1} and multivariate, finite sequences
cj,β , then the P-projection analogue T of S and S satisfy a local proximity condition
of order n in the sense of Definition 2.

Proof Since the sequence p is K -valued and K is compact, there exists a uniform
constant C1 such that

‖dl P|pi (v1, . . . , vl)‖′ ≤ C1‖v1‖′ · . . . · ‖vl‖′

for all vectors v1, . . . , vl and i ∈ Z. With

C2,β := |{j : cj,β �= 0}| max
j

|cj,β |

it follows that

‖(15)‖′ ≤
∑

β∈Γl

C1C2,β

∥∥∆β1v
∥∥ · . . . · ∥∥∆βl v

∥∥ ,
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v being the sequence (p j − pi ) j∈Z. Since l ≥ 2, ‖v‖ = O(‖∆p‖), ‖∆rv‖ =
O(‖∆r p‖) and ‖∆n+1 p‖ ≤ 2‖∆n p‖, there exists a constant C3 such that

‖(15)‖′ ≤ C3

∑

β∈Γl ,βk≤n∀k

∥∥∆β1 p
∥∥ · . . . · ∥∥∆βl p

∥∥ .

By setting αr := |{ j : β j = r}|, we obtain an estimate of the form

‖(15)‖′ ≤ C4

∑

∑n+1
r=1 rαr =n+1

‖∆p‖α1 · . . . · ∥∥∆n p
∥∥αn .

By Lemma 11 we get for any i a constant such that

∥∥∥∆n−1 pi

∥∥∥
′ ≤ Ci

∑

∑n+1
r=1 rαr =n+1

‖∆p‖α1 . . .
∥∥∆n p

∥∥αn .

By shift-invariance it suffices to only consider the values i = 0, . . . , N − 1. This
proves the statement.

Our goal is to rewrite Bl,i in the form (15). Note that this is a purely algebraic
problem. We first derive a necessary and sufficient condition for such a rewriting rule
to exist. To do this we make some definitions. With v j := p j − pi let

Pl :=
⎧
⎨

⎩
∑

j∈Zl

ejd
l P|pi

(
v j1, . . . , v jl

) : ej = 0 for almost all j

⎫
⎬

⎭ .

Pl is the set of all formal expressions of the form (8). Of course Bl,i is in Pl . Define
a mapping

Φ :

⎧
⎪⎨

⎪⎩

Pl → R

[
x1, x−1

1 , . . . , xl , x−1
l

]

∑

j∈Zl

ejdl P|pi

(
v j1, . . . , v jl

) �→ ∑

j∈Zl

ejx
j1
1 · · · x jl

l .

We impose a ring structure on Pl such that Φ is a ring isomorphism. Multiplication
by (1 − xr )

α in the space R
[
x1, x−1

1 · · · , xl , x−1
l

]
corresponds to the mapping

∑

j∈Zl

ejd
l P|pi (v j1 , . . . , v jl ) �→

∑

j∈Zl

ejd
l P|pi (v j1, . . . , ∆

αv jr , . . . , v jl ),

as seen from (2). It follows that a rewriting rule of the form (15) exists if and only if
the generating function B̃l,i (x1, . . . , xl) = Φ(Bl,i ) can be written in the form

∑

β1+···+βl=n+1

cβ(x1, . . . , xl)(1 − x1)
β1 · · · (1 − xl)

βl , (16)
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for some Laurent polynomials cβ ∈ R

[
x1, x−1

1 , . . . , xl , x−1
l

]
. Applying Taylor’s

formula yields a necessary and sufficient condition for (15), namely that all deriv-
atives of B̃l,i (x1, . . . , xl) of order ≤ n are equal to zero for (x1, . . . , xl) = (1, . . . , 1).
We summarize:

Lemma 4 If all derivatives of order≤ n of the Laurent polynomials B̃l,i (x1, . . . , xl) =
Φ(Bl,i ), l = 2, . . . , n vanish at the point (1, . . . , 1), then S and T satisfy a local prox-
imity condition of order n. We have

B̃l,i (x1, . . . , xl) = ∆n−1

⎛

⎝

⎛

⎝
∑

j∈Z

ai−N j x j
1

⎞

⎠ · · ·
⎛

⎝
∑

j∈Z

ai−N j x j
l

⎞

⎠

−
⎛

⎝
∑

j∈Z

ai−N j x j
1 · · · x j

l

⎞

⎠

⎞

⎠

i

. (17)

Proof By the previous discussion it follows that the vanishing of derivatives of the
Laurent polynomials B̃l,i (x1, . . . , xl) implies that a rewriting rule of the form (15) for
the expressions Bl,i exists. If we apply Lemma 3 we get the first claim that a local
proximity condition of order n holds between S and T . What remains to show is that
(17) holds. Thus, we have to verify that

Φ(Bl,i )=∆n−1

⎛

⎝

⎛

⎝
∑

j∈Z

ai−N j x j
1

⎞

⎠· · ·
⎛

⎝
∑

j∈Z

ai−N j x j
l

⎞

⎠−
⎛

⎝
∑

j∈Z

ai−N j x j
1 · · · x j

l

⎞

⎠

⎞

⎠

i

.

This follows from (9) and the fact that Φ(∆Ei ) = ∆Φ(Ei ) for every Ei ∈ Pl . Again,
we let ∆ act on the index i .

4.2 Combinatorics of generating functions

The goal of this section is to verify the condition given in Lemma 4. This will be
done by a series of lemmas which are subsequently used in the proof of Theorem 4 in
Sect. 4.3. We would like to stress that this section may be read without any connection
to nonlinear subdivision. It contains purely algebraic results for the symbols of linear
schemes which are in our opinion interesting in their own right. It is easy to derive the
following identity (ζ is a primitive N th root of the unit):

qk(x) :=
∑

j∈Z

ak−N j xk−N j = 1

N

(
a(x) +

N−1∑

r=1

ζ−kr a
(
ζ r x

)
)

. (18)

It will turn out that the crux of the proof is to show that all derivatives of B̃l,i (x1, . . . , xl)

vanish. First we look at the moments of the sequences (ak+N j ) j∈Z. To do that, we use
a well-known fact from the theory of generating functions [13]:
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Lemma 5 Let q(x) := ∑
j∈Z

q j x j be the generating function of the sequence

(q j ) j∈Z. Then the generating function of the sequence ( j lq j ) j∈Z is given by

(
x

∂

∂x

)l

q(x). (19)

From (18) and Lemma 5 we can deduce the following identities for the first two
moments of (ak+N j ) j∈Z:

N 2
∑

j∈Z

jak−N j = k N − a(1)(1) (20)

N 3
∑

j∈Z

j2ak−N j = k2 N − (2k − 1)a(1)(1) + a(2)(1). (21)

Lemma 6 Let a(x) be a Laurent polynomial satisfying (3) and define pr (k) :=∑
j∈Z

jr ak−N j . Then the following holds: pr (k) is a polynomial of degree r in k
for 0 ≤ r ≤ n. There exist constants Cr with

(−N )n pr (k) = −
r∑

l=1

(
r

l

)
i l(−N )r−l pr−l(k) + Cr . (22)

The leading terms of pr (k) are given by

1

Nr
kr and − r

Nr+1 a(1)(1)kr−1. (23)

Proof In view of (18) and Lemma 5, the following holds:

∑

j∈Z

(k − N j)r ak−N j =
(

x
∂

∂x

)r
(

1

N

(
a(x) +

N∑

r=1

ζ−kr a(ζ r x)

))∣∣∣∣∣
x=1

. (24)

From the assumption that the derived schemes of orders up to n + 1 exist, it follows
by (3) that the right hand side of (24) is a constant, i.e., does not depend on k. We
denote it by Cr . The binomial formula shows that

(−N )r pr (k) = −
r∑

l=1

(
r

l

)
kl(−N )r−l pr−l(k) + Cr . (25)

It remains to show the statement about the two leading terms of pr . We use induction
on r , the cases r = 1, 2 following from (20) and (21). Let us first show that the leading
coefficient of pr (k) equals 1

Nr . By the induction hypothesis, this holds for all pr−l(k),
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l ≥ 1. Thus the leading coefficient of pr (k) is given by

− (−N )−n
r∑

l=1

(
r

l

)
(−N )r−l N−(r−l) = 1

Nr
(−1)r+1

r∑

l=1

(
r

l

)
(−1)r−l . (26)

It is not hard to see that (26) equals 1
Nr : use the formula

xr = (x − 1 + 1)r =
r∑

l=0

(
r

l

)
(x − 1)r−l , (27)

and substitute x = 0. This gives
∑r

l=1

(r
l

)
(−1)r−l = −(−1)r = (−1)r+1. Putting

this into (26) gives the desired result.
It remains to prove that the term of order r −1 in pr (k) is given by −r

Nr+1 a(1)(1)kr−1:
We start with (25) and extract the terms of order r −1. Using our induction assump-

tion we come up with

(−N )−r a(1)(1)

r∑

l=1

(
r

l

)
(−N )r−l (r − l)

Nr−l+1 .

If we differentiate (27) and let x = 0 (assuming that r ≥ 2), we see that

r∑

l=1

(
r

l

)
(r − l)(−1)r−l = r(−1)r+1.

Now the proof is complete.

Remark 1 The left hand side of (23) is actually well known: if the derived schemes
up to order n + 1 exist, then the subdivision scheme S generates polynomials up to
degree n. pr (k) can be viewed as taking the integer samplings of the polynomial kr as
input and applying the linear subdivision scheme S. From the polynomial generation
property of S it immediately follows that pr (k) is a polynomial, and it is also well
known that the term of degree r is also reproduced [8].

Remark 2 It would not be difficult to make the constants Cr explicit using Stirling
numbers (which describe the base change from the monomial basis to the basis con-
sisting of polynomials Qu(x) := x(x − 1) · · · (x − u + 1) c.f. [13]). We do not need
this for our analysis.

The next well-known lemma describes some elementary properties of the Stirling
numbers S j

i . We will use this result later. The proof is an easy exercise.

Lemma 7 Let Qu(x) = x(x − 1) · · · (x − u + 1). Then

Qu(x) = Su
u xl + Su

u−1xu−1 + · · · + Su
0 ,

with Su
u = 1 and Su

u−1 = − u(u−1)
2 .

We continue to collect lemmas which contribute to our final proximity result.
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Lemma 8 Let a(x) be a Laurent polynomial with (3) and u1 + · · · + ul = n. Define

E(k) :=
⎛

⎝
∑

j∈Z

Qu1( j)ak−N j

⎞

⎠ · · ·
⎛

⎝
∑

j∈Z

Qul ( j)ak−N j

⎞

⎠ and (28)

F(k) :=
∑

j∈Z

Qu1( j) · · · Qul ( j)ak−N j . (29)

Then E(k) and F(k) are polynomials of degree n in k. The terms of degree n and n −1
of E(k) and F(k) agree.

Proof The fact that E(k) and F(k) are polynomials of degree n is a direct consequence
of Lemma 6. From Lemma 7, we obtain

F(k)=
∑

j∈Z

(
ju1 − u1(u1−1)

2
ju1−1+· · ·

)
· · ·

(
jul − ul(ul −1)

2
jul−v1+· · ·

)
ak−N j ,

(30)

where the dots indicate terms of lower order which do not contribute to the two leading
terms of F(k). Multiplying the polynomials in (30) yields

F(k) =
∑

j∈Z

(
jn −

(
u1(u1 − 1)

2
+ · · · + ul(ul − 1)

2

)
jn−1 + · · ·

)
ak−N j .

It follows that

F(k) = pn(k) −
(

u1(u1 − 1)

2
+ · · · + ul(ul − 1)

2

)
pn−1(k) + s(k),

where s(k) is a polynomial of degree ≤ n − 2 in k. Now we use Lemma 6 to conclude
that

F(k)= 1

N n
kn −

((
u1(u1−1)

2
+· · ·+ ul(ul −1)

2

)
1

N n−1 + n

N n+1 a(1)(1)

)
kn−1 + · · · ,

(31)

where the dots indicate terms of order ≤ n − 2. We have to check that E(k) is of the
same form: using Lemma 7, E(k) can be written as

l∏

r=1

∑

j∈Z

(
jur − ur (ur − 1)

2
jur −1 + · · ·

)
ak−N j .
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It follows that

E(k) =
l∏

r=1

(
pur (k) − ur (ur − 1)

2
pur −1(k) + · · ·

)
.

If we use (23), we see that also E(k) has the form (31) and the proof is complete.

4.3 Proof of the proximity condition

Now we are ready to sum up the proof of Theorem 4.

Proof of Theorem 4 In view of Lemma 4 we need to verify that if we apply a differ-
ential operator D := ∂n

(∂x1)
u1 ···(∂xl )

ul , u1 + · · · + ul = n to

⎛

⎝
∑

j∈Z

ai−N j x j
1

⎞

⎠ · · ·
⎛

⎝
∑

j∈Z

ai−N j x j
l

⎞

⎠ −
⎛

⎝
∑

j∈Z

ai−N j x j
1 · · · x j

l

⎞

⎠ , (32)

then applying the operator ∆n−1 in i and evaluating at (x1, . . . , xl) = (1, . . . , 1) yields
zero for l = 1, . . . , n. In the notation of Lemma 8, the expression we get if we apply
the operator D to (32), and evaluate at (x1, . . . , xl) = (1, . . . , 1) is

T (i) := F(i) − E(i).

From Lemma 8 and the fact that the derived schemes of S of order ≤ n + 1 exist we
know that T (i) is a polynomial of degree ≤ n − 2 in i . The operator ∆n−1 annihilates
all polynomials of degree less than n − 1, and thus ∆n−1T (i) = 0. Therefore the
condition (17) is satisfied and we can use Lemma 4. This completes the proof.

5 Smoothness equivalence

Having established a general proximity condition in the previous section, we now
draw on results from [9] to show smoothness equivalence between a linear scheme
and its projection analogue.

Theorem 5 Let S be a linear subdivision scheme with derived schemes S[1], . . . ,
S[n+1] and P a Cn+1 projection mapping. Then the P-projection analogue T of S
produces Cn limit curves for all initial data p = (pi )i∈Z such that T l p converges.

Proof Since the mask of S is finite, the limit function F∞(p) locally depends only on
a finite number of initial data points pi . It is therefore no restriction to assume that p
takes its values in a compact set K . By the assumption that T is convergent, we may
also without loss of generality assume that ‖∆p‖ < δ for any δ > 0. From Theorem 4
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we get a proximity condition of the form

∥∥∥∆n−1(S − T )p
∥∥∥ ≤ C

∑

α1+···+nαn=n+1

‖∆p‖α1 · · · ∥∥∆n p
∥∥αn

which holds on compact sets and initial data p with ‖∆p‖ small enough. Define
µi := 1

N ρ(S[i]) < 1, i = 1, . . . , n + 1. The results of [9] say that if the contractivity
constants µ1, . . . , µn < 1 satisfy

(µ1)
α1

(µ2

N

)α2 · · ·
( µn

N n−1

)αn
<

1

N n

for all n-tuples (α1, . . . , αn) with α1 +· · ·+nαn = n +1, then T is Cn . By Theorem 3
this is always satisfied and that concludes the proof.

5.1 Discussion

The statement “such that T l p converges” in Theorem 5 means that in general we
have to start with a sequence p with δ := ‖∆p‖ small. From the results in [10] it
follows that we can choose δ so that 1 + 2Cδ < 1, where C is chosen such that
‖Sp − T p‖ ≤ C‖∆p‖2. The constant δ is typically rather small (compare also the
discussion in [10,11]).

Only for special schemes and certain nonlinear analogues (geodesic averaging) it
is possible to show that the nonlinear scheme converges for all initial data [15].

It has been reported [17] that it is surprising that the smoothness equivalence can be
derived solely by algebraic manipulations of the mask coefficients, i.e. the smoothness
of the nonlinear subdivision scheme does not depend on the “amount” of nonlinearity.
For the present paper, this is not entirely true in the following sense: for any nonlinear
analogue smoothness equivalence is true for sequences p with δ := ‖∆p‖ such that
1 + 2Cδ < 1. The constant C comes from the proximity condition and is directly
related to the nonlinearity of the subdivision scheme. Even if this bound is in all prob-
ability far from sharp, it indicates that the more nonlinear our subdivision scheme is,
the more dense our initial point sequence has to be.

There exist results where the smoothness of a nonlinear subdivision scheme depends
on the initial data [16]. These nonlinear schemes are, however, quite different from
the ones considered here, in that they are not constructed from linear schemes.
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