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Abstract In this paper we address several theoretical questions related to the
numerical approximation of the scattering of acoustic waves in two or three dimen-
sions by penetrable non-homogeneous obstacles using convolution quadrature (CQ)
techniques for the time variable and coupled boundary element method/finite element
method for the space variable. The applicability of CQ to waves requires polynomial
type bounds for operators related to the operator � − s2 in the right half complex
plane. We propose a new systematic way of dealing with this problem, both at the
continuous and semidiscrete-in-space cases. We apply the technique to three different
situations: scattering by a group of sound-soft and -hard obstacles, by homogeneous
and non-homogeneous obstacles.
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1 Introduction

Physical problem. In this paper we address several theoretical questions related to
the numerical approximation of the scattering of acoustic waves in two or three dimen-
sions by penetrable non-homogeneous obstacles using convolution quadrature (CQ)
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techniques for the time variable and coupled boundary element method/finite element
method (BEM–FEM) for the space variable.

We begin by setting precisely the problem. Let �− be a bounded open set in R
d

(d = 2 or 3), with Lipschitz boundary and connected complement. The complement is
denoted�+ and the common interface,�. The set (the obstacle) can be non-connected
but we preclude the possibility of it having inclusions. Given an incident wave field
in free space uind we try to compute the scattering produced by the presence of the
obstacle in the wave field: for all t > 0

⎡
⎢⎢⎣
�uscat − uscat,t t = 0, in�+,
uscat + uinc = uin, on �,
∂νuscat + ∂νuinc = κ0∂νuin, on �,
∇ · (κ0∇uin)− κ1uin,t t = 0, in�−.

We assume that both uinc and its time derivative vanish in a region that strictly contains
�− at time zero, so the physical placement of the obstacle is feasible. Therefore the
scattered field uscat and the total field inside the obstacle, uin, satisfy:

uscat( · , 0) ≡ uscat,t ( · , 0) ≡ 0, uin( · , 0) ≡ uin,t ( · , 0) ≡ 0.

Because of the finite speed of propagation of solutions of the wave equation we have
the radiation condition: for all t there exists R(t) > 0 such that uscat(x, t) ≡ 0, if
|x| ≥ R(t). This condition is never set explicitly since it comes together with the
causality of the wave equation and the fact that the traces left by the incident wave on
the interface form a set of compactly supported data. The parameters for the interior
domain can depend on the space variable but not on time. In terms of physical magni-
tudes, κ0 and κ1 are, respectively, defined to be 1/ρ and 1/(c2ρ), where ρ is the density
in the equilibrium state and c is the speed of propagation of sound. Both parameters
have been set equal to one in the exterior domain. We will consider three situations:
(a) the general case with non-constant coefficients, which will need a boundary-field
(BEM–FEM) formulation, (b) the case with constant coefficients, which can be for-
mulated only with integral equations, (c) the purely exterior case, when the obstacles
are either sound-soft or sound-hard, so that the pressure uin is not computed inside
the obstacles and we choose one of the Dirichlet or Neumann conditions setting the
interior value to zero. As we will see, the combination of soft and hard obstacles will
arise very naturally in our formulation and we will be able to deal with it as a particular
case of exterior problems with mixed boundary values.

Note that unlike in the time-harmonic case (corresponding to a time-harmonic inci-
dent wave after enough time has gone by so that the resulting scattered wave can be
effectively considered time-harmonic itself), the decomposition of the total wave field
as the sum of incident and scattered fields leads to an apparent paradox. Indeed, even
if the incident wave hits the obstacle on one side and the wave speed of propagation is
slower inside the obstacle than in the surrounding fluid, the scattered field produced
by the object in the opposite extreme begins to appear before the real wave reaches
that part of the obstacle, as if the wave had crossed it at the exterior velocity or sur-
rounded it faster than possible. This is just a false paradox produced by the fact that
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Scattering of acoustic waves 639

the incident wave is a wave in free space. As such, it reaches each point of the obstacle
as if this one were not present. Therefore, at the beginning scattering is just the needed
compensation for the fact that the wave has not reached still a certain region.

Integral representation. In the three-dimensional case, the exterior scattered field can
be represented using Kirchhoff’s formula, an expression that uses both the single- and
double-layer retarded acoustic potentials. A similar formula exists in the two-dimen-
sional case, with the well-known difference of a memory effect in the propagation
of waves. Imposing the coupled transmission conditions of the solution using a weak
formulation inside the obstacle and the integral representation outside leads to one of
several possible coupled boundary-field formulations.

The coupled problem can be understood as a convolution operator equation in time.
This can be easily done as follows. First we take the Laplace transform of the original
problem. Thanks to the vanishing initial conditions, the equations in the Laplace
domain (henceforth referred to as the frequency domain) become

�uscat − s2uscat = 0, ∇ · (κ0∇uin)− s2κ1uin = 0,

where we have kept the same name for the unknowns that depend now on x ∈ �± and
s in the complex plane. Then, we use Green’s Third Theorem (Formula or Identity)
to give a representation of the exterior solution and obtain a coupled boundary-field
formulation for each of these steady-state problems. The fact that multiplication (appli-
cation of operators to functions) in the frequency domain corresponds to convolution
in time can be used to show that both the operator equation and its inverse are in
fact causal convolution equations, i.e., convolution equations with all the elements
(operators, data, unknowns) beginning at time zero. A very precise description of how
Kirchhoff’s formula can be read as a convolution formula for certain vector-valued
distributions is given in [24].

Historical notes on convolution quadrature. The fact that we obtain a convolu-
tion equation suggests the possibility of using CQ methods for the time variable
together with a natural BEM–FEM discretization in space (which is the most rea-
sonable approach to approximate the coupled problem in the frequency domain). By
extending classical ideas of discrete operational calculus, Christian Lubich introduced
CQ in the late eighties [25,26]. For the analysis of Runge–Kutta methods for parabolic
equations, the CQ technique was extended to a new class of methods based on RK
schemes [29]. The analysis of this class of methods has recently been extended in [5].
The relevant paper for our purposes is [27], where the first example of a CQ method
for a retarded integral equation is proposed and analyzed. There was a precedent of
using CQ for boundary integral equations in [30], for the single-layer potential of the
heat equation. More recently, Rothe’s method for the heat equation was successfully
analyzed in [7] by interpreting it as a CQ scheme (Rothe’s method for the wave equa-
tion as explained in [31] admits the same treatment). Some unexpected relations of
CQ with algorithms of digital signal processing are mentioned in [33]. Recent work
both at the theoretical level [28] and on fast implementation techniques [35] applies
exclusively to equations with parabolic character, where the domain of the Laplace
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transform crosses the imaginary axis in the form of the complementary of a sector
around the negative real axis, or equivalently, the corresponding time operator (the
semigroup in the parabolic equation) admits an holomorphic extension. This is not
the case for any of the problems of our interest. A short exposition of the simplest CQ
method is given in Appendix 1.

Although we will eventually give some expressions for the time-domain potentials
we will write all the equations in the frequency domain. It has to be understood how-
ever, that this method works in the time domain, so data are employed causally, as they
arrive to the interface, and solutions are computed in a time-stepping fashion. The fact
that we will be using the operators in the frequency domain (which is a requisite of
CQ) does not mean that we are solving in that domain and then inverting the Laplace
transform. This is a valid strategy for many problems of parabolic type (see [20,38])
but does not work for wave propagation. In addition to that, such approach would have
the disadvantage of requiring knowledge of the Laplace transform of the data instead
of using time steps.

What we do in this paper. Here we intend to set clearly what is needed for the appli-
cation of a fully discrete (space–time) CQ–BEM–FEM to our problem. We want to
remark right at this point that we are still at a certain distance of being able to offer a
full effective numerical simulation of the problem and that some of the estimates could
be non-optimal. Note that application of CQ techniques to wave propagation has been
mainly done in the area of purely exterior problems, be it in the original paper [27], in
recent work [17,21] and in many applications to interesting problems of elastic wave
propagation (including viscoelastic and poroelastic waves) [36].

In Sect. 2, we will describe precisely the class of functions in the transformed
frequency domain that we will be dealing with. In Sect. 3 we will introduce all the
integral potentials and operators that will be used in the remainder of the paper. We
will also give a statement concerning how these operators belong to the abstract clas-
ses of the preceding section, even though we will postpone the proofs to Appendix
2. In Sect. 4 we will finally give the first example of how our technique works. First
we will state a general lemma about a class of variational problems depending on the
complex parameter s. Instead of going directly to one of the three situations under
consideration, we will first illustrate the novel technique of proof by showing how it
works with a simple example related to a symmetric boundary integral representation
of the exterior Steklov–Poincaré operator and its Galerkin discretization. As far as we
have been able to gather from existing literature, our approach is original: it consists
of understanding boundary integral systems, both at the discrete and continuous level,
as non-standard transmission problems. The gist of the method will consists of four
steps: (1) find the non-standard transmission problem that is equivalent to the boundary
integral system; (2) find the equivalent weak formulation of this problem; (3) prove
well-posedness of the variational problem and bounds depending on s following the
general lemma; (4) go back to the original problem and gather the information given
by the chain of equivalences.

The following four sections cover the three physical settings. Section 5 deals with
exterior problems where sound-hard and sound-soft scatterers coexist. We will see
how the four-step technique works simultaneously for the discrete and the continuous

123



Scattering of acoustic waves 641

problem. In Sect. 6 we study the case of non-homogeneous penetrable obstacles.
The space discretization will be done by using an abstract Finite Element space for
the interior variable and two Boundary Element spaces for unknowns on the inter-
face. The coupling procedure will be the symmetric coupling with two equations and
three unknowns as in [6]. The symmetric coupling procedure of [8] or [19] is studied
in Sect. 7 in two different implementable formulations. This coupling method uses
essentially the trace space of the finite element space as one of the boundary element
spaces, but is not equivalent to the three-space coupling. Finally in Sect. 8 we deal
with homogeneous penetrable obstacles and use the symmetric coupling of Costabel
and Stephan [11] to write everything in terms of integral operators.

In many cases, data appear under the action of time operators. In those cases, we
understand that the corresponding time-convolutions have also to be discretized and
we have accordingly analyzed this discretization. We have also covered the possibility
of the space discretization of data before plugging them into integral operators. This is
a very common way of treating data in the engineering literature of boundary integral
methods and has the advantage of making the algorithms closer to the implementation
level. We have also taken into account the fact that what is of interest for us are not
the quantities on the boundary but the pressure field that requires an integral postpro-
cessing. Everything that we do here can be extended almost verbatim to the case of
elastic waves in two and three dimensions.

Still to be done. Because we want to emphasize the novel aspects of our approach with
several situations of interest, we only study the behavior of all the systems with respect
to the variable in the frequency domain. This behavior conditions on the applicability
of CQ and on the regularity of the solution to retain the full order of convergence of
the method. We do this only in the natural Sobolev norms (H1 in the domain, H1/2

for traces, H−1/2 for normal derivatives). At this point we can apply the theory of
Lubich [27]. To obtain a full space-and-time estimate with precise conditions on the
regularity of the solution, there is still some work to be done concerning bounds for the
solution. This will require to plunge back into results as the ones in Appendix 2 and
to revert many estimates in the frequency domain to the adequate norms of functions
depending on the time and space variables. This is the aim of future work. We believe
that our objectives here are clearly set and have been fully attained. The complete
analysis for all the situations will require some additional pages of estimates that we
prefer not to give here, not only to help readability (the article is long enough as it is
and has its share of technicalities, although we do not use very sophisticated results)
but also to emphasize the novelties.

Other approaches to time-domain integral equations. The CQ approach is not the
only possible for exterior problems and is not even the most commonly used. Many
authors in the French school of Numerical Analysis have studied the numerical approx-
imations of retarded integral equations for scattering problems of acoustic, elastic and
electromagnetic waves, almost exclusively in three dimensions. The papers [2,3] study
the numerical approximation of the single- and double-layer retarded acoustic poten-
tials in three dimensions. Extensions of these results are many (see [1,4,16] and the
references in the review [15]), all of them dealing with Galerkin methods. For the
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collocation method applied to the single-layer retarded potential, see [14]. The main
advantage of working directly with these equations relies on the locality in time (which
is lost with CQ, because of the regularization imposed by its approximation through the
Laplace transform). Nevertheless, practical implementation becomes a very delicate
question, for the extreme complexity of the integration domains in time-and-space.
This is even harder in the case of elastic waves and there is no hope for visco-elastic or
poro-elastic waves, since the time-domain fundamental solutions are not known. Also
in the two-dimensional case the advantage of working directly with the time-domain
operators is not so relevant, because of the natural memory terms. The advantage of
CQ is also seen in other equations with memory [12], often modeled with fractional
order derivatives. In addition to [15] an extensive and recent review of time-domain
integral equations is [10].

Sobolev space prerequisites. Extensive use will be made of the most basic Sobolev
spaces on domains and closed boundaries. The letter γ will always be used for the
trace operator. Super/subscripts ± will be used to clarify if these traces are taken from
outside or inside the boundary. The weak normal derivative, with the normal vector
pointing always outwards (inwards from the point of view of the exterior domain)
will be denoted ∂ν or ∂±

ν . A good reference for Sobolev spaces on Lipschitz domains,
as will be used here, is [32], which has also the advantage of including detailed
proofs of the general results about boundary integral operators for elliptic problems
that we will make use of. All boundaries are considered to be Lipschitz. There is
no reason to need them connected, but we will exclude the case when one of the
boundaries encloses another, that is, it will be generally assumed that the exterior
domain is connected, even if the interior one is composed of more than one connected
component. The square bracket will be used for jumps across the boundaries, and
thus

[γ u] = γ−u − γ+u, [∂νu] = ∂−
ν u − ∂+

ν u.

The space of infinitely often differentiable functions with compact support in an open
set O will be denoted D(O).

Notational foreword. Because there will be many operators and spaces involved in
the sequel, we will keep a very strict convention for character types. In formulas,
capital Roman letters (F,V,…) will be used for operators, very often depending on
a complex parameter, in which case the dependence will be written explicitly F(s),
whereas the action on an element of the origin space will be written in multiplicative
form F(s)u. Boldface capitals (such as H) will be used for matrices of operators.

Spaces will be always denoted with mathematical capitals (H, X, . . .) and the sub-
script h will be used to make discretization in the space variables explicit. Very often
we will have a subspace X ⊂ H . Then we will denote by X : X → H the canonical
inclusion of X into H and by Xt : H ′ → X ′ its transpose, which simply restricts the
action of an element of H ′ to the elements of X (the prime index is used to denote
the dual space). The polar set (or annihilator) of X will be denoted X◦ := { f ∈
H ′ | 〈 f, x〉 = 0, ∀x ∈ X}.
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Duality is going to be an issue all along this paper. To avoid the excessive weight
of multiple subscripts hanging from all the duality brackets, we will simply use the
angled bracket 〈 f, x〉 for the action of f ∈ H ′ on x ∈ H , whatever H is. The bracket
is linear (not conjugate linear) in both components. There is not going to be ambiguity
on which are the primal and dual spaces in each of the expressions.

The spaces H±1/2(�) are dual of each other as an extension of the real inner prod-
uct in L2(�). When used on elements of these spaces, it has to be understood that even
with complex valued functions

〈 f, g〉 extends
∫

�

f g for f ∈ H−1/2(�) and g ∈ H1/2(�),

always in this order and with no conjugation. This will be the only exception where
the dual space can be in the second component, namely, when H1/2(�) is considered
as the dual space of H−1/2(�).

2 Abstract concepts

Consider two complex Hilbert spaces X and Y and let L(X,Y ) be the space of bounded
linear operators from X to Y . We set

C+ := {s ∈ C | Re s > 0}.

For a given µ ∈ R, the elements of the class A(µ, X,Y ) are the analytic functions
F : C+ → L(X,Y ) for which there exists a real number µ such that for all σ > 0
there is C0 = C0(σ ) such that

‖F(s)‖ ≤ C0|s|µ, ∀s s.t. Re s > σ.

Equivalently we can write that there exists a non-increasing function C0 : (0,∞) →
(0,∞) such that

‖F(s)‖ ≤ C0(Re s) |s|µ, ∀s ∈ C+.

It is clear that A(µ, X,Y ) is a complex vector space and that these classes are ordered
by the parameter µ:

A(µ, X,Y ) ⊂ A(µ+ ε, X,Y ), ∀ε > 0.

If X,Y and Z are Hilbert spaces it is easy to see that

F ∈ A(µ1,Y, Z), G ∈ A(µ2, X,Y ), �⇒ F G ∈ A(µ1 + µ2, X, Z). (1)

In any case, let us emphasize that this composition rule gives only an upper bound of
µ (which is a parameter reflecting lack of regularity) and that, because of cancelations,
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we will find very often that composition decreases the value of this parameter. In this
respect one has to abandon the false intuition of dealing with operators in this family
as ‘monomials’ that always increase degree by multiplication.

The following two results relate the functions of the preceding classes to be Laplace
transforms of some functions or tempered distributions. Their proofs follow classical
arguments of distribution theory, complex analysis and the formula for the inverse of
the Laplace transform. Proofs of very similar results (the functional classes are not
exactly the same) can be found in any text that includes the distributional approach to
the Laplace transform, such as [37].

Theorem 1 Let F ∈ A(µ, X,Y ) with µ < −1. Then there exists a continuous func-
tion f : R → L(X,Y ) such that supp f ⊆ [0,∞) and such that its Laplace transform,
defined in C+, is F. If µ < −k − 1 with k positive integer, then f ∈ Ck(R,L(X,Y )).

Implicit in the fact that there exists the Laplace transform of f in C+ is the fact
that exp(−σ · ) f is a tempered distribution with values in L(X,Y ) for all σ > 0, as
this allows us to define the Laplace transform. In fact we can prove that

‖ f (t)‖ ≤ exp(σ t)C(σ,F), ∀σ > 0, ∀t,

which ensures that exp(−σ · ) f is tempered.

Theorem 2 Let F ∈ A(µ, X,Y ) with µ ≥ −1. Take k such that 1 +µ < k ≤ 2 +µ.
Then there exists g ∈ C(R,L(X,Y )) such that supp g ⊆ [0,∞) and F is the Laplace
transform of g(k) in C+, where the derivative is understood in the sense of distributions
in R.

Constant operators F(s) ≡ F0 belong to A(0, X,Y ). They correspond in the time
domain to impulses at t = 0, i.e., distributions of the form δ0 ⊗ F0.

We will consider another class of operators. For these ones we need that the Hilbert
spaces involved admit a conjugation operator, such as in the case when they are com-
plexifications of real Hilbert spaces. In this case, the parameters are µ ∈ R and a
function θ : C+ → R. We write that F ∈ E(µ, θ, X) when F : C+ → L(X, X ′) is
analytic and there exists a non-decreasing function c : (0,∞) → (0,∞) such that

Re
(

eıθ(s)〈F(s)ψ,ψ〉
)

≥ c(Re s)

|s|µ ‖ψ‖2, ∀ψ ∈ X, ∀s ∈ C+. (2)

The classes E(µ, θ, X) are vector spaces and they are ordered in µ

E(µ, θ, X) ⊂ E(µ+ ε, θ, X), ε > 0.

Proposition 3 If F ∈ E(µ, θ, X), then F−1 ∈ A(µ, X ′, X).

Proof The inequality (2) implies that F(s) is invertible for all s ∈ C+. If F : C+ →
L(X,Y ) is analytic and (F(s))−1 exists for all s ∈ C+, then F−1 is analytic as a func-
tion with values in L(Y, X). The ellipticity condition permits to prove that ‖F(s)−1‖ ≤

1
c(Re s) |s|µ, which shows that F−1 is in the corresponding class. ��
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Let now Xh and Yh be two sequences of spaces and assume that Fh ∈ A(µ, Xh,Yh).
We write that

Fh ∈ Aunif(µ, Xh,Yh)

when the functions C0 do not depend on h.

Proposition 4 (Galerkin projections) Let F ∈ A(µ, X,Y ′) and consider two seq-
uences of subspaces

Xh ⊂ X, Yh ⊂ Y

and the operators Fh : C+ → L(Xh,Y ′
h) defined by

Fh(s)xh := 〈F(s)xh, · 〉 : Yh → C.

Then Fh ∈ Aunif(µ, Xh,Y ′
h). If, on the other hand, F ∈ E(µ, θ, X), then F−1

h ∈
Aunif(µ, X ′

h, Xh).

3 Bounds in the resolvent set

We first recall the fundamental solution for the operator � − s2 in two and three
dimensions:

�(x, y, s) :=

⎧⎪⎨
⎪⎩

ı

4
H (1)

0 (ıs |x − y|), when d = 2,

e−s|x−y|

4π |x − y| , when d = 3.

Here H (1)
0 is the Hankel function of the first kind and order zero. We will consider the

layer potentials and integral operators associated to this operator for s ∈ C+. Note that
with s2 we are covering C\(−∞, 0]. Given λ ∈ H−1/2(�) and φ ∈ H1/2(�) we can
define the single- and double-layer potentials with the expressions, valid as dualities
on � for arbitrary x ∈ R

d\�:

(S(s)λ)(x) :=
∫

�

�(x, y, s) λ(y) d�(y),

(D(s)φ)(x) :=
∫

�

∂ν(y)�(x, y, s) φ(y) d�(y).

The four operators that participate in Calderón’s projector are extensions of the
following integral expressions, all of them defining functions on �:
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V(s)λ :=
∫

�

�( · , y, s) λ(y) d�(y),

Kt (s)λ :=
∫

�

∂ν( · )�( · , y, s) λ(y) d�(y),

K(s)φ :=
∫

�

∂ν(y)�( · , y, s) φ(y) d�(y),

W(s)φ := −∂ν
∫

�

∂ν(y)�( · , y, s) φ(y) d�(y).

With DtN±(s), NtD±(s) we, respectively, denote the Dirichlet-to-Neumann and
Neumann-to-Dirichlet operators for the equation�u−s2u = 0 in�±. If�u−s2u = 0
in R

d\� and we denote [γ u] = γ−u − γ+u and [∂νu] = ∂−
ν u − ∂+

ν u, then Green’s
Third Theorem represents u in potential form

u = S(s)[∂νu] − D(s)[γ u]. (3)

A collection of useful formulas related to these operators and potentials is given in
Appendix 2 for easy reference. Proofs of these results follow from [9] and can be
found in [32] in full generality for Lipschitz domains in any dimension.

Let us briefly recall what some of these operators look like in the time-domain. In
three dimensions, the potential S(s) and its trace V(s) correspond in the time domain
to the single-layer retarded potential

∫

�

λ(y, t − |x − y|)
4π |x − y| d�(y).

The potential D(s) corresponds to the double-layer retarded potential

∫

�

∂ν(y)

(
φ(z, t − |x − y|)

4π |x − y|
) ∣∣∣∣

z=y
d�(y),

that, as can be seen by formally computing the normal derivative, includes a time
derivative of the density φ.

Green’s Third Theorem (3) is the frequency domain version of the well-known Kir-
chhoff formula for solutions of the unforced wave equation in the space. A detailed
and precise description of these time convolution operators with very mild regularity
assumptions in time and space is given in [24].

In the three-dimensional space, Huygens principle holds and potentials have no
memory. However, two-dimensional waves have memory in addition to the delay
due to the finite speed of propagation. For instance, the single-layer potential can be
formally written as
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∫

�

⎛
⎜⎝

t∫

|x−y|

ψ(y, t − τ)

2π
√
τ 2 − |x − y|2 dτ

⎞
⎟⎠ d�(y)

=
∫

�

⎛
⎜⎝

t−|x−y|∫

0

ψ(y, τ )

2π
√
(τ − t)2 − |x − y|2 dτ

⎞
⎟⎠ d�(y).

(in both expressions we implicitly assume that ψ( · , t) ≡ 0 for t < 0). Note however,
that these time-domain expressions of the operators are never used in CQ discretiza-
tions.

Next, let us briefly discuss a couple of details it is important to be extremely careful
about. If we use the complex adjoints, then

V∗(s) = V(s), W∗(s) = W(s), K∗(s) = Kt (s).

This fact affects the analysis more than expected, since some matrices of operators
that we will obtain will be symmetric but not self-adjoint and many of the cancelations
that one is used to have when dealing with the Helmholtz equation will not be valid
here. Recall the well-known fact that if F is holomorphic then F(s) is not, unless F
is constant. Therefore, modifying the equations with the use of adjoints is not a valid
option since we leave the realm of analytic functions, which is a key for applying the
results on CQ. On the other hand, we have the symmetry property

Vt (s) = V(s), Wt (s) = W(s). (4)

The main result of this section, which we will not formulate as a theorem, is con-
tained in Tables 1 and 2. Detailed proofs of these results are given in Appendix 2. Some
of them had already appeared in the literature of time-domain integral equations.

Table 1 Classes corresponding
to operators in the resolvent set
of the Laplacian

The assertion for each row
is given by the first line,
a prototype denoting
F ∈ A(µ, X, Y )

F X Y µ

S H−1/2(�) H1(Rd ) 1

D H1/2(�) H1(Rd\�) 3/2

V H−1/2(�) H1/2(�) 1

W H1/2(�) H−1/2(�) 2

K H1/2(�) H1/2(�) 3/2

Kt H−1/2(�) H−1/2(�) 3/2

DtN± H1/2(�) H−1/2(�) 2

NtD± H−1/2(�) H1/2(�) 1
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Table 2 Ellipticity classes

The prototype is F ∈ E(µ, θ, X)

F θ X µ

−DtN+,DtN−,V−1,W −Arg H1/2(�) 1

−NtD+,NtD−,W−1,V Arg H−1/2(�) 2

4 The proof technique with a first example

In our analysis, to be able to transform discretized boundary integral equations (alone
or coupled with FEM discretizations of interior problems) into non-standard transmis-
sion problems plays an important role. Let us introduce the notations that will allow
us to do it in a systematic and hopefully optimal way.

Given an open set O ⊂ R
d let us consider the operator AO(s) defined from H1(O)

into its dual by

〈AO(s)u, v〉 :=
∫

O
∇u · ∇v + s2

∫

O
uv.

When s = δ > 0 we have the norm

|||u|||δ,O := 〈AO(δ)u, u〉1/2,

which is equivalent to the usual one. Note that ||| · ||||s|,O can be interpreted as the total
energy (potential plus kinetic) in the frequency domain.

Notation First of all, we will always write σ for the real part of s, so this substitu-
tion has to be done implicitly wherever σ appears. Also, we will write the truncated
variable

a > 0 �−→ a := min{1, a}.

This truncation operator inherits these useful properties in monomial fashion

ak = (a)k, ak+k′ = ak ak′
, k, k′ > 0.

Because of the first property we will be able to write ak without ambiguity.

The energy norms can be easily related to the usual norms: for all s ∈ C+

σ‖u‖1,O ≤ |||u||||s|,O ≤ |s|
σ

‖u‖1,O, ∀u ∈ H1(O), (5)

where in the last inequality we have used that max{1, |s|} min{1, σ } ≤ |s| for all
s ∈ C+. Also we have for all s ∈ C+:

|〈AO(s)u, v〉| ≤ |||u||||s|,O |||v||||s|,O, ∀u, v ∈ H1(O). (6)
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Finally

Re
(

e−ıArg s〈AO(s)u, u〉
)

= σ

|s| |||u|||2|s|,O. (7)

Lemma 5 Let O1, . . . ,Op be open sets in R
d and consider a closed subspace

Ĥ ⊂ H1(O1)× · · · × H1(Op).

Let γ̂ : Ĥ → � be a surjective bounded linear map onto another Hilbert space �,
γ̂ † a linear bounded right-inverse of γ̂ and let Ĥ0 be the kernel of γ̂ . Finally, let

〈A(s)u, v〉 :=
p∑

j=1

〈AO j (s)u j , v j 〉, u = (u1, . . . , u p), v = (v1, . . . , vp).

Then for arbitrary � ∈ Ĥ ′ and ξ ∈ �, the unique solution of

[
u ∈ Ĥ , γ̂ u = ξ,

〈A(s)u, v〉 = 〈�, v〉, ∀v ∈ Ĥ0,
(8)

satisfies the bound

⎛
⎝

p∑
j=1

|||u|||2|s|,O j

⎞
⎠

1/2

≤ 3|s|2
σ σ 3

(
‖�‖ + 2‖γ̂ †‖ ‖ξ‖

)
(9)

The norms of �, ξ and of the right-inverse γ̂ † are the ones of Ĥ ′, � and L(�, Ĥ),
respectively.

Proof The existence and uniqueness of solution of (8) follow readily from (7) and the
surjectivity of γ̂ . The only estimate left to prove is thus (9). For notational simplicity
we will use ‖ · ‖1 for the product H1(O1) × · · · × H1(Op) norm and ||| · ||||s| for
the norm in the left-hand side of (9). Part of the argument is the usual one for elliptic
boundary value problems with non-homogeneous essential conditions. First we solve
the problem

[
û ∈ Ĥ , γ̂ û = ξ,

〈A(1)̂u, v〉 = 〈�, v〉, ∀v ∈ Ĥ0.

This is accomplished by writing û = γ̂ †ξ +w0 withw0 ∈ Ĥ0 and using the ellipticity
bound

‖w0‖2
1 = 〈A(1)w0, w0〉 = |〈�,w0〉 − 〈A(1)γ̂ †ξ,w0〉| ≤ ‖w0‖1

(
‖�‖ + ‖γ̂ †‖ ‖ξ‖

)
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to obtain

σ

|s| |||̂u||||s| ≤ ‖û‖1 ≤ ‖�‖ + 2‖γ̂ †‖ ‖ξ‖. (10)

Second, we decompose u = û + u0 where u0 has to solve

[
u0 ∈ Ĥ0,

〈A(s)u0, v〉 = 〈(A(1)− A(s))̂u, v〉, ∀v ∈ Ĥ0.

Using (5)–(7) we obtain

σ

|s| |||u0|||2|s| = Re
(

e−ıArgs〈A(s)u0, u0〉
)

≤ |〈(A(1)− A(s))̂u, u0〉|

≤
(

1

σ 2 + 1

)
|||̂u||||s||||u0||||s|.

With this inequality, (5) and (10) we prove

|||u||||s| ≤ |||̂u||||s| + |||u0||||s| ≤
(

1 + |s|
σ

(
1

σ 2 + 1

))
|||̂u||||s|

≤
(

1 + |s|
σ

(
1

σ 2 + 1

)) |s|
σ

(
‖�‖ + 2‖γ̂ †‖ ‖ξ‖

)
.

We can now simplify the constant in the previous inequality using the overestimates
σ ≤ 1 and σ ≤ |s| to obtain (9). ��

We will use Lemma 5 with p = 1 or 2, although some of the applications will
admit different re-writings with more subdomains (we will often encounter the domain
R

d\�, that can be split into�− and�+). The result can be easily extended to bilinear
forms

∫

O
κ0∇u · ∇v + s2

∫

O
κ1uv,

where κ0, κ1, 1/κ0, 1/κ1 ∈ L∞(O) are positive. We only have to change the con-
stants in (5), that depend on these coefficients and translate their influence to all other
constants in the Lemma.

Our first example for showing the proof technique is to show the invertibility of the
discrete version of an exterior symmetric Steklov–Poincaré (Dirichlet-to-Neumann)
boundary integral operator. As we will use it, this method is too complicated for the
exterior Dirichlet problem (both a direct and indirect method based on the invertibility
of V are valid in this occasion), but we will use it to demonstrate how the method of
proof works before dealing with the three situations of our interest.
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Consider the scattering problem, given in the frequency domain

[
�u − s2u = 0, in�+,
γ+u = −γ uinc,

(11)

where uinc is the Laplace transform of the trace of an incident wave that reaches the
obstacle at time greater than zero. We want to emphasize once again that CQ is not a
method of inversion of the Laplace transform and that data (the incident wave) is used
in the time domain when discretized. If we denote φ := γ+u and λ := ∂+

ν u, then the
frequency domain version of Kirchhoff’s formula is Green’s Third Theorem for the
solution of (11):

u = D(s)φ − S(s)λ.

Therefore, by the jumps relations of potentials, we know that (λ, φ) ∈ H−1/2(�) ×
H1/2(�) solves the equation

H(s)
[
λ

φ

]
:=
[

V(s) −( 1
2 I + K(s))

( 1
2 I + K(s))t W(s)

] [
λ

φ

]
=
[

d1
d2

]
(12)

with right-hand side (d1, d2) = (γ uinc, 0). Note first that for s > 0, the opera-
tor H(s) is elliptic but that this is not so obviously true anymore for non-real s,
since K∗(s) = Kt (s) �= Kt (s) and conjugations in the tests (therefore adjoints
more that transposes) play a key role in the ellipticity estimates for V(s) and W(s)
(see Appendix 2).

If B(s) is a p × p matrix of operators it is easy to prove that

‖B(s)‖ ≤ p max
i, j

‖Bi j (s)‖. (13)

Therefore, using the bounds for the integral operators, we obtain

H ∈ A(2, H−1/2(�)× H1/2(�), H1/2(�)× H−1/2(�)).

Proposition 6 For all s ∈ C+, H−1(s) exists and

H−1 ∈ A
(

2, H1/2(�)× H−1/2(�), H−1/2(�)× H1/2(�)
)
.

Proof Using identities for the integral operators it is possible to prove that

H−1(s) =
[−DtN+(s) I

−I NtD−(s)

]
. (14)
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To see this in a direct way, we argue as follows. If (λ, φ) solves (12), then we can
define u := S(s)λ− D(s)φ and we know that

⎡
⎣
�u − s2u = 0, in R

d\�,
γ+u = d1,

∂−
ν u = d2.

(15)

Now, (15) is just an interior Neumann problem together with an exterior Dirichlet
problem. The jumps [∂νu] = λ and [γ u] = φ can be recovered by solving these
problems and it is then straightforward to see that

[∂νu] = d2 − ∂+
ν u = d2 − DtN+(s)d1

and

[γ u] = γ−u − d1 = NtD−(s)d1 − d2.

This proves (14). The needed bound can now be obtained using the results of Sect. 3
and (13). ��

Let us now discretize Eq. (12). We take a sequence of finite-dimensional spaces

Xh ⊂ H−1/2(�), Yh ⊂ H1/2(�).

Given g ∈ H1/2(�), we denote Xt
h g := 〈 · , g〉 : Xh → C. Similarly Yt

h restricts the
action of elements of H−1/2(�) to Yh . Note that Xt

h : H1/2(�) → X ′
h is the trans-

pose of the natural inclusion of Xh into H−1/2(�). We now set the discrete equations
of a Galerkin method

⎡
⎣
(λh, φh) ∈ Xh × Yh,

〈µh,V(s)λh〉 −〈µh, (
1
2 I + K(s))λh〉 = 〈µh, d1〉, ∀µh ∈ Xh,

〈( 1
2 I + K(s))tλh, ϕh〉 +〈W(s)φh, ϕh〉 = 〈d2, ϕh〉, ∀ϕh ∈ Yh,

that can be written in operator form as

Hh(s)

[
λh

φh

]
:=
[

Vh(s) −( 1
2 I + K(s))h

( 1
2 I + K(s))th Wh(s)

] [
λh

φh

]
=
[

Xt
hd1

Yt
hd2

]
, (16)

The remainder of this section is a proof of the following result.

Proposition 7 H−1
h ∈ Aunif( 5

2 , X ′
h × Y ′

h, Xh × Yh).

Proof We will do this proof in four steps.
Step 1 Take (d1, d2) ∈ X ′

h × Y ′
h . If

Hh(s)(λh, φh)
� = (d1, d2)

�, (17)
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then the function u = S(s)λh −D(s)φh is a solution to the non-standard transmission/
boundary value problem

⎡
⎣
�u − s2u = 0, in R

d\�,
[γ u] ∈ Yh, [∂νu] ∈ Xh,

Xt
hγ

+u = d1, Yt
h∂

−
ν u = d2.

(18)

Reciprocally, if u ∈ H1(Rd\�) solves (18), then ([∂νu], [γ u]) solves the discrete
equations (17). Since solutions of �u − s2u = 0 in R

d\� are characterized by the
jumps of their Cauchy data on � (by Green’s Third Theorem), uniqueness of solution
of each problem is implied by the other one.
Step 2 Consider the space Ĥ := {u ∈ H1(Rd\�) | [γ u] ∈ Yh} and the operator
γ̂ := Xt

hγ
+ : Ĥ → X ′

h . Then

Ĥ0 := kerγ̂ =
{

u ∈ H1(Rd\�)
∣∣∣ [γ u] ∈ Yh, γ+u ∈ X◦

h

}
,

X◦
h being the polar set (or annihilator) of Xh . The second step consists of proving that

(18) is equivalent to the following weak problem

[
u ∈ Ĥ , γ̂ u = d1,

〈ARd\�(s)u, v〉 = 〈d2, [γ v]〉, ∀v ∈ Ĥ0.
(19)

If u solves this last problem, then using that D(Rd\�) ⊂ Ĥ0 it follows that�u−s2u =
0 in R

d\� and using the definition of weak normal derivative (Green’s First Theorem),

〈∂−
ν u, γ−v〉 − 〈∂+

ν u, γ+v〉 = 〈d2, [γ v]〉, ∀v ∈ Ĥ0. (20)

Let ξ ∈ X◦
h and lift it to v ∈ H1(Rd) such that γ±v = ξ . Then (20) implies that

〈[∂νu], ξ 〉 = 0, ∀ξ ∈ X◦
h,

from where it follows that [∂νu] ∈ Xh . Finally, take ϕh ∈ Yh and construct v ∈
H1(Rd\�) in the following way: in �+ we take v ≡ 0 and in �− we take any lifting
of ϕh . Inputting the resulting v ∈ Ĥ0 in (20) we obtain

〈∂−
ν u, ϕh〉 = 〈d2, ϕh〉, ∀ϕh ∈ Yh,

i.e., Yt
h∂

−
ν u = d2. We have thus proved that u solves (18). For the reciprocal statement

notice first that

〈∂−
ν u, γ−v〉 − 〈∂+

ν u, γ+v〉 = 〈∂−
ν u, [γ v]〉 + 〈[∂νu], γ+v〉.

Then, if u is a solution to (18), it also satisfies (20). From this equation and the partial
differential equation�u−s2u = 0, we easily arrive at the variational formulation (19).
Step 3 Given ξ ∈ X ′

h we can extend it to ξ̃ ∈ H1/2(�) = (H−1/2(�))′ with ‖̃ξ‖1/2,� =
‖ξ‖ by demanding
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ξ̃ |Xh = ξ, ξ̃ |X⊥
h

= 0, (21)

X⊥
h being the orthogonal complement to Xh . Now we take a continuous lifting u :=

γ †ξ̃ ∈ H1(Rd). Hence γ̂ is onto and we have a uniformly bounded right-inverse, so
we are in the hypotheses of Lemma 5 and we have a unique solution to (18) and (19)
satisfying

|||u||||s|,Rd\� ≤ C(σ ) |s|2 (‖d1‖ + ‖d2‖) . (22)

We have therefore a solution to (17), which proves that H−1
h (s) exists for all s.

Step 4 Using (63) in Appendix 2 as well as (5) we can bound

‖λh‖−1/2,� + ‖φh‖1/2,� = ‖[∂νu]‖−1/2,� + ‖[γ u]‖1/2,�

≤ C�

( |s|1/2
σ 1/2 + 1

σ

)
|||u||||s|,Rd\�.

From this and (22) we obtain the necessary bound to prove the statement of the
Proposition. ��

There is an interesting and somewhat unexpected by-product of this form of anal-
ysis. Usually one concentrates in the discretization of the boundary integral system,
but we also have to take into account the postprocessing of the solution to obtain
the exterior solution. In the context of CQ methods, this means that we apply the
method for the boundary integral equations and then plug the result into the retarded
potential expression, which is again discretized using CQ. In the frequency domain this
is just

[−S(s) D(s)
]

H−1
h (s)

[
Xt

huinc

0

]
.

Because CQ is a discrete operational calculus, if we have a bound in s for the opera-
tor in the previous expression, we obtain the behavior for the progressive application
of the solution of the boundary integral system and the potential postprocessing. If
we apply the composition rule (1) and Proposition 7, we end up with an index µ =
5
2 + 2. However, the operator

[
S(s) −D(s)

]
H−1

h (s) gives precisely u in the proof of
Proposition 7 and therefore, using (9) and (5) we have proved that

[−S D
]

H−1
h ∈ Aunif

(
2, X ′

h × Y ′
h, H1(�+)

)
.

5 Mixed exterior boundary conditions

Consider now the following exterior mixed scattering problem, written again in the
frequency domain:
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⎡
⎣
�u − s2u = 0, in�+,
γ+u = −γ uinc, on �D,

∂+
ν u = −∂νuinc, on �N .

(23)

The sets �D , �N form a non-overlapping conforming partition of the boundary � with
the usual Lipschitz requirements. This problem arises when the scatterer is composed
of several disjoint obstacles some of which are sound-soft (Dirichlet conditions), the
others being sound-hard (Neumann conditions). We will accept anyway the case in
which the boundary of a scatterer is part Dirichlet, part Neumann since it does not
influence our analysis.

We will proceed following an idea that is a slight modification of the coupling
method in [39]. First of all we assume that we have extended the Dirichlet and Neu-
mann data to the whole boundary, so we are given g1 ∈ H1/2(�) and g2 ∈ H−1/2(�)

that extend the boundary values we want to impose. If the Dirichlet/Neumann decom-
position corresponds to boundaries of different scatterers we can extend the data by
zero. Given the fact that data are traces from an incident wave it is even simpler to use
the full traces of the incident wave as extended boundary values.

The unknowns will be

φ := γ+u − g1 ∈ YN :=
{
φ ∈ H1/2(�)

∣∣∣φ ≡ 0, in �D

}
(24)

and

λ := ∂+
ν u − g2 ∈ X D:=

{
λ ∈ H−1/2(�)

∣∣∣ λ = 0, in �N

}

=
{
λ ∈ H−1/2(�)

∣∣∣ 〈λ, ϕ〉 = 0, ∀ϕ ∈ YN

}
. (25)

Note that YN is isomorphic to H1/2
0 (�N ) (elements of H1/2(�N ) that can be extended

by zero) and X D is isomorphic to the dual space of H1/2(�D). We can then use the
symmetric identities

V(s)∂+
ν u −

(
1

2
I + K(s)

)
γ+u = −γ+u,

(
1

2
I + K(s)

)t

∂+
ν u + W(s)γ+u = 0

substitute γ+u = φ + g1, ∂+
ν u = λ + g2, test the first equation with X D and the

second one with YN . Using the definition of X D and YN , we see that Xt
Dφ = 0

and therefore the term that appears in right-hand side of the first equation is simply
−Xt

Dg1 = γ uinc. Note that time operators affect the data and we have to take that into
account in the full analysis. We will even consider the possibility of discretizing data
in space.

We will cover at the same time several situations, continuous and discrete in a uni-
fied analysis. We need four closed spaces: two for unknowns (subscripted with u) and
two for data (subscripted with d)
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Xu, Xd ⊂ H−1/2(�), Yu, Yd ⊂ H1/2(�).

Writing Xα : Xα → H−1/2(�) and Yα : Yα → H1/2(�) for the inclusion operators
with α ∈ {u, d}, we can define the operators

Huα(s) :=
[

Xt
u 0

0 Yt
u

]
H(s)

[
Xα 0

0 Yα

]
: Xα × Yα → X ′

u × Y ′
u, α ∈ {u, d},

where H(s) is the operator of (12). The general equations are

[
Huu(s) Hud(s)

0 I

]
⎡
⎢⎢⎢⎣

λu

φu

λd

φd

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

d1

d2

d3

d4

⎤
⎥⎥⎥⎦ . (26)

Before going any further, let us detail several different examples that fit into this frame.

(a) We take Yu = YN and Xu = X D , the spaces of (24) and (25), plus Xd = H1/2(�)

and Yd = H−1/2(�). Equations (26) with right-hand side (−Xt
u g1, 0, g2, g1) are

the ones of the mixed problem. Recall that −Xt
Dg1 is equal to the value of γ uinc

on �D .
(b) If Xu = Xh ⊂ X D and Yu = Yh ⊂ YN are finite-dimensional, we leave the

other two spaces as in (a) and take the same right-hand side, we are dealing with
a discretization of the equations for the mixed exterior boundary value problem.

(c) With the same choice for the spaces Xu and Yu as in (b) and taking finite-dimen-
sional spaces Xh

d ⊂ H−1/2(�) and Y h
d ⊂ H1/2(�), we are dealing with a discrete

model that projects the incoming data into discrete subspaces before inputting
them into the potentials. In the mixed problem that motivates this section, the
right-hand side is constructed as follows. We need two uniformly bounded pro-
jections

Ph : H−1/2(�) → Xh
d , Qh : H1/2(�) → Y h

d . (27)

The right-hand side is then (−Xt
uQh g1, 0,Ph g2,Qh g1). This kind of projection

of data into discrete spaces is the Galerkin version of what is usually done in the
engineering literature of BEM: treating data as unknowns and then substituting
their known values at the final step [34].

(d) We can take Xu = H−1/2(�), Yu = {0}, Xd = {0} and Yd = H1/2(�). In this
case we are analyzing an integral formulation for the exterior Dirichlet problem
using the first integral identity

V(s)λu + ( 1
2 I − K(s))φd = 0, φd = g.

The non-trivial spaces can be discretized (only Xu or both of them) corresponding
to Galerkin discretization of the equation with or without discretization of data.

123



Scattering of acoustic waves 657

(e) We can deal with the opposite situation by taking Xu = {0}, Yu = H1/2(�),
Xd = H−1/2(�), Yd = {0}. In this case, we are using the second integral identity

W(s)φu + ( 1
2 I + K(s))tλd = 0, λd = g,

for the exterior Neumann problem. Discretization of this case can also be accom-
plished as in (d), be it only for the unknown φu or for the copy of the data too.

Other choices of the four spaces (that are completely free) lead to more or less
exotic transmission/BVP problems in R

d\�.
Let us denote by Hmix(s) the operator in (26). By (13) and the bounds collected in

Sect. 3, it follows that

Hmix ∈ A(2, Xu × Yu × Xd × Yd , X ′
u × Y ′

u × Xd × Yd)

and the constants can be taken independent of the choice of the four spaces.

Proposition 8 The operator Hmix(s) is invertible for all s ∈ C+ and

H−1
mix ∈ A

(
5
2 , X ′

u × Y ′
u × Xd × Yd , Xu × Yu × Xd × Yd

)
.

All constants in the bounds can be taken independent of the choice of the spaces, so
in the discrete case we have elements of the uniform classes. Finally the operator

[
S(s) −D(s)

] [Xu 0 Xd 0
0 Yu 0 Yd

]
H−1

mix(s) (28)

belongs to A(2, X ′
u ×Y ′

u × Xd ×Yd , H1(�+)with constants independent of the choice
of the spaces.

Proof Let (λu, φu, λd , φd) solve (26). Then

u := S(s)(λu + λd)− D(s)(φu + φd) (29)

satisfies

⎡
⎣
�u − s2u = 0, in R

d\�,
Xt

uγ
+u = d1, Yt

u∂
−
ν u = d2,

[∂νu] − d3 ∈ Xu, [γ u] − d4 ∈ Yu .

(30)

Reciprocally, given a solution u of (30), the function

([∂νu] − d3, [γ u] − d4, d3, d4)
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solves (26). The fourth condition of (30) (second of the transmission conditions) has
to be written in weak form to fit our general frame. To do that we simply remark that
this condition is equivalent to

(Y◦
u)

t [γ u] = (Y◦
u)

t d4,

where Y◦
u : Y ◦

u → H−1/2(�) is, as usual, the canonical inclusion. With these elements
in hand, we take now Ĥ := H1(Rd\�), γ̂ : Ĥ → X ′

u × (Y ◦
u )

′ given by

γ̂ u := (Xt
uγ

+u, (Y◦
u)

t [γ u]),

so that

Ĥ0 =
{
v ∈ H1(Rd\�)

∣∣∣ γ+v ∈ X◦
u, [γ v] ∈ Yu

}
.

Then (30) is shown to be equivalent to

[
u ∈ Ĥ , γ̂ u = (d1, (Y◦

u)
t d4),

〈ARd\�(s)u, v〉 = 〈d3, γ
+v〉 + 〈d2, [γ v]〉, ∀v ∈ Ĥ0.

(31)

Before going any further, let us remark that the choice of Xu and Yu is immaterial
in all the preceding arguments. A right-inverse for γ̂ , with bound independent of
what the spaces are, is easy to obtain. If we want to find u ∈ Ĥ such that γ̂ u =
(ξ, η) ∈ X ′

u × (Y ◦
u )

′, following the construction in (21), we first extend ξ and η to
ξ̃ , η̃ ∈ H1/2(�) preserving the respective norms. We the proceed to take u ∈ H1(�+)
such that γ+u = ξ̃ and u ∈ H1(�−) such that γ−u = ξ̃ + η̃, using a continuous
lifting operator on each side of �. This provides a linear bounded right-inverse of γ̂ .

The remainder of the proof consists of using Lemma 5 and then bounding the
jump of the trace and of the normal derivative of u that are needed to reconstruct λu

and φu . Finally the bound for the operator (28) is obtained as in Sect. 4, since the
effect of applying this operator is precisely the result of solving the Eq. (26) and then
constructing u with (29). ��

6 Non-homogeneous penetrable obstacles (1)

Consider now a transmission problem, written in the frequency domain:

⎡
⎢⎢⎣

∇ · (κ0∇u)− s2κ1u = 0, in�−,
[γ u] = γ uinc,

κ0∂
−
ν u − ∂+

ν u = ∂νuinc,

�u − s2u = 0, in�+.

(32)

Here κ0, κ1 ∈ L∞(�−) are strictly positive functions, so that 1/κ0, 1/κ1 ∈ L∞(�−).
The interior flux κ0 ∂

−
ν u is defined similarly to the normal derivative. We can now use

the representation for the exterior solution (60), write

123



Scattering of acoustic waves 659

λ := ∂+
ν u, φ := γ+u (33)

and leave the name u for the part of the unknown defined in the interior domain. With
some abuse of notation (see the comments after the proof of Lemma 5), we will not
change the name for the operator in the interior domain

〈A�−(s)u, v〉 :=
∫

�−

κ0∇u · ∇v + s2
∫

�−

κ1u v.

We will use the symbol γ for the traces of functions defined only in �−, where there
is no doubt of whether there is an interior or exterior trace since there is no exterior
component. Using the identities for the Cauchy data of the exterior solution (60) we
see that (u, λ, φ) solves

⎡
⎢⎣

A�−(s) −γ t 0

γ V(s) −( 1
2 I + K(s))

0 ( 1
2 I + K(s))t W(s)

⎤
⎥⎦

⎡
⎢⎣

u

λ

φ

⎤
⎥⎦ =

⎡
⎢⎣

d1

d2

d3

⎤
⎥⎦ (34)

with (d1, d2, d3) = (γ t∂νuinc, γ uinc, 0). This coupling procedure yields a symmetric
operator system (change the sign of the second row to obtain symmetry and recall
(4)). It is a variant of the symmetric coupling of [8,19] that can be found in [6] in the
context of coupling non-conforming FEM and BEM.

A small digression. Before performing the corresponding discrete analysis (which
will include a bound for the continuous operator as in the preceding section), let us
display a decomposition of the boundary-field operator of (34), henceforth denoted
Hbf(s). Gaussian elimination and scaling of the rows and columns of the operator
produce a simpler form of Hbf(s), where the hidden ellipticity is recovered. Indeed,
taking

P(s) :=
⎡
⎢⎣

I 0 0

0 I 0

0 NtD+(s) I

⎤
⎥⎦ ,

and using two of the identities for NtD+ given in (58) we have the decomposition

P(s)t

⎡
⎢⎣

A�−(s) −γ t 0

γ −NtD+(s) 0

0 0 W(s)

⎤
⎥⎦P(s) = Hbf(s).

If we consider a diagonal scaling matrix D(s)= diag
(
eı(Args)/2I, e−ı(Args)/2I,

eı(Args)/2I
)
, we can proceed further in the decomposition to obtain Hbf (s)= Pt (s)Dt (s)

C(s)D(s)P(s) with
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C(s) :=

⎡
⎢⎢⎣

e−ıArgsA�−(s) −γ t 0

γ eıArgsNtD−(s) 0

0 0 e−ıArgs W (s)

⎤
⎥⎥⎦ .

Using (7), Propositions 17 and 19 we can prove that

Re 〈C(s)(u, λ, φ), (u, λ, φ)〉 ≥ C(Re s)|s|−2‖(u, λ, φ)‖2,

which can be used to give a bound for the inverse of Hbf . Note however, that when
inverting the operators P and Pt the parameter µ is increased by the composition rule
(1). This fact produces a clear overestimate of the ‘order’ of the inverse that we will
be able to avoid using our strategy for analysis.

Take now three arbitrary families of finite-dimensional subspaces

Vh ⊂ H1(�−), Xh ⊂ H−1/2(�), Yh ⊂ H1/2(�)

and consider the discrete equations

⎡
⎢⎢⎣

Ah
�−(s) −γ t

h 0

γh Vh(s) −( 1
2 I + K(s))h

0 ( 1
2 I + K(s))th Wh(s)

⎤
⎥⎥⎦

⎡
⎢⎢⎣

uh

λh

φh

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

d1

d2

d3

⎤
⎥⎥⎦ (35)

for a general right-hand side in V ′
h × X ′

h ×Y ′
h . Let us denote by Hbf,h(s) the operator in

(35). For the sake of clarity and for the last time in this article, let us write the discrete
equations corresponding to (35) when the right-hand side is the discrete version of
(γ t∂νuinc, γ uinc, 0):

⎡
⎢⎢⎢⎢⎢⎢⎣

(uh, λh, φh) ∈ Vh × Xh × Yh,

〈A�−(s)uh, vh〉 −〈λh, γ vh〉 = 〈∂νuinc, γ vh〉,
〈µh, γ uh〉 +〈µh,V(s)λh〉 −〈µh, (

1
2 I + K(s))φh〉 = 〈µh, γ uinc〉,

〈λh, (
1
2 I + K(s))ϕh〉 +〈W(s)φh, ϕh〉 = 0,

∀(vh, µh, ϕh) ∈ Vh × Xh × Yh .

As usual this is a space discretization in the frequency domain, corresponding to
a space discretization of a time-dependent equation that involves retarded integral
equations and the second time derivative in the interior (FEM) domain. The unknown
in the exterior domain is recovered with the formula D(s)φh − S(s)λh that involves
the retarded potentials.

Proposition 9 For any choice of the subspaces, Hbf,h(s) is invertible for all s ∈ C+.
Moreover,

H−1
bf,h ∈ Aunif

(
5
2 , V ′

h × X ′
h × Y ′

h, Vh × Xh × Yh

)
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and

H−1
bf ∈ A

(
5
2 , H1(�−)′ × H1/2(�)× H−1/2(�), H1(�−)× H−1/2(�)× H1/2(�)

)

Finally the operator that associates to given right-hand sides the interior and exterior
fields

[
I 0 0

0 −S(s) D(s)

]
H−1

bf,h(s) (36)

belongs to Aunif(2, V ′
h × X ′

h × Y ′
h, Vh × H1(�+)).

Proof We follow the four step program. First of all, given a solution to (35) we define

u∗ := S(s)λh − D(s)φh

and notice that the pair (uh, u∗) ∈ Vh × H1(Rd\�) solves the problem

⎡
⎢⎢⎣
�u∗ − s2u∗ = 0, in R

d\�,
[∂νu∗] ∈ Xh, [γ u∗] ∈ Yh,

Xt
h(γ uh + γ+u∗) = d2, Yt

h∂
−
ν u∗ = d3,

Ah
�−(s)uh − γ t

h [∂νu∗] = d1,

(37)

where the operators Xt
h and Yt

h are defined as usual. Reciprocally, given a solution
(uh, u∗) of (37) the triplet (uh, [∂νu∗], [γ u∗]) solves (35). Second, we define the closed
space where we will look for the pair u := (uh, u∗)

Ĥ := Vh ×
{

u∗ ∈ H1(Rd\�)
∣∣∣ [γ u∗] ∈ Yh

}
,

the abstract trace

γ̂ u = γ̂ (uh, u∗) := Xt
h(γ uh + γ+u∗) ∈ X ′

h

(which is just taking γ uh + γ+u∗ and testing it with elements of Xh) and its kernel
Ĥ0. We then show that (37) is equivalent to

[
u = (uh, u∗) ∈ Ĥ , γ̂ u = d2,

〈A(s)u, v〉 = 〈d1, vh〉 + 〈d3, [γ v∗]〉, ∀v = (vh, v
∗) ∈ Ĥ0,

(38)

where in the context of the abstract lemma of Sect. 2, O1 := �− and O2 := R
d\�.

Since this is somewhat more involved than what we have done in Sects. 4 and 5, we
are going to detail one of the implications. Given a solution of (38), we can test it with
(0, v∗) ∈ {0}×D(Rd\�) ⊂ Ĥ0 to obtain the first equation of (37). Applying Green’s
First Theorem we obtain that

〈A�−(s)uh, vh〉 + 〈∂−
ν u∗, [γ v∗]〉 + 〈[∂νu∗], γ+v∗〉 = 〈d1, vh〉 + 〈d3, [γ v∗]〉, (39)

123



662 A. R. Laliena, F.-J. Sayas

for all (vh, v
∗) ∈ Ĥ0. We now take vh = 0 and γ+v∗ = γ−v∗ equalling an arbitrary

element ξ ∈ X◦
h to prove, from (39), that

〈[∂νu∗], ξ 〉 = 0, ∀ξ ∈ X◦
h,

and therefore [∂νu∗] ∈ Xh . Using this together with the fact that γ vh + γ+v∗ ∈ X◦
h ,

we further transform (39) into

〈A�−(s)uh, vh〉 + 〈∂−
ν u∗, [γ v∗]〉 − 〈[∂νu∗], γ vh〉 = 〈d1, vh〉 + 〈d3, [γ v∗]〉, (40)

for all (vh, v
∗) ∈ Ĥ0. We are now free to take again vh = 0 and v∗ such that [γ v∗]

is any element of Yh , to prove that Yt
h∂

−
ν u∗ = d3, which allows to simplify (40) and

prove the remaining equation in (37).
Third, we apply Lemma 5 to problem (38). To do that we need to create a right-

inverse of γ̂ . This can be done as in the proof of Proposition 8 (the interior discrete
component uh can be set to zero) with a bound independent of h. Then

|||uh ||||s|,�− + |||u∗||||s|,Rd\� ≤ C(σ )|s|2‖(d1, d2, d3)‖.

Using (5), this gives a proof of the bound for the operator in (36). Fourth and final,
a simple application of (63) gives a bound for the reconstructed variables λh and φh

and proves the result for the discrete operator.
Because the finite-dimensionality of the spaces is never used (only the fact that

they are closed is important), the proof still holds when we take Vh = H1(�−),
Xh = H−1/2(�) and Yh = H1/2(�). We thus obtain the bound for the continuous
operator. ��

Note that unlike in the expression (28), we have omitted the inclusion operators in
(36), since in this case the expressions are more self-explanatory. (Note also that in
Sect. 5, even the continuous spaces were subspaces of the spaces H±1/2(�)). We will
keep this simplified notation for all the forthcoming sections.

7 Non-homogeneous penetrable obstacles (2)

We go back to the transmission problem (32) and show two alternative ways of for-
mulating the coupling, both having in common the non-duplication of the trace on
the transmission interface (in the previous section φh and γ uh are essentially approx-
imating the same quantity, up to the jump given by the incident wave). This amounts
to going back to the coupling procedure of [8] or [19]. There is going to be a crucial
difference with [8,19], which will provoke the duality of approaches. The original
coupling procedures were constructed for problems with homogeneous transmission
conditions and did not have to take into account the fact that data are affected by inte-
gral operators. Since all operators that depend on s have to be discretized in time, we
will have to deal with this effect. An alternative formulation to (34) at the continuous
level consists of solving
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⎡
⎢⎢⎣

A�−(s) −γ t ( 1
2 I − K(s))t γ t W(s)

0 V(s) 1
2 I − K(s)

γ 0 −I

⎤
⎥⎥⎦

⎡
⎢⎢⎣

u

λ

φ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

d1

d2

d3

⎤
⎥⎥⎦ . (41)

with (d1, d2, d3) = (γ t∂νuinc, 0, γ uinc) and the unknowns as in Sect. 6. One of these,
namely φ, can be easily eliminated from the coupled system and we obtain (in the
particular case of the right-hand side of the scattering problem)

[
A(s)+ γ t W(s)γ −γ t ( 1

2 I − K(s))t

( 1
2 I − K(s))γ V(s)

] [
u

λ

]
=
[
γ t∂νuinc + γ t W(s)γ uinc

( 1
2 I − K(s))γ uinc

]
.

(42)

Note that γ uinc is affected by two integral operators that will have to be approximated
in the time domain. Therefore, we proceed as in Sect. 5 and add an unknown φd that
will deal with data under the action of integral operators. We are then led to studying
systems of the form

⎡
⎢⎢⎣

A(s)+ γ t W(s)γ −γ t ( 1
2 I − K(s))t −γ t W(s)

( 1
2 I − K(s))γ V(s) −( 1

2 I − K(s))

0 0 I

⎤
⎥⎥⎦

⎡
⎢⎢⎣

u

λ

φd

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

d1

d2

d3

⎤
⎥⎥⎦ , (43)

with (d1, d2, d3) = (γ t∂νuinc, 0, γ uinc). All the dependence on s is in the operator
again. We will study both (41) and (43) and the continuous and discrete levels.

Let us begin with (41). For discretization we will use the spaces

Vh ⊂ H1(�−), Xh ⊂ H−1/2(�), Yh := γ Vh ⊂ H1/2(�).

Note that the space for the last unknown is just the trace space of the interior (Finite
Element) space Vh . The discrete equations are:

⎡
⎢⎢⎣

Ah
�−(s) −γ t

h(
1
2 I − K(s))th γ t

hWh(s)

0 Vh(s) ( 1
2 I − K(s))h

γ 0 −I

⎤
⎥⎥⎦

⎡
⎢⎢⎣

uh

λh

φh

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

d1

d2

d3

⎤
⎥⎥⎦ . (44)

In the case of the scattering problem, the discrete right-hand side is (γ t
h∂

+
ν uinc, 0,

Qhγ
+uinc), where Qh : H1/2(�) → Yh is a stable projection onto Yh (i.e., a projection

with norm bounded independently of h). Note that from the point of view of imple-
mentation we can easily obtain a simpler scheme with only two unknowns, resembling
(42), since the variable φh can be eliminated from the system. The last equation in
(44) as well as the last one in (41) are not discretized or tested by any space, but taken
at face value. Actually, it is the right-hand side that has to be preprocessed.
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Proposition 10 Let Hbf2,h(s) be the operator of Eq. (44). Then

H−1
bf2,h ∈ Aunif

(
5
2 , V ′

h × X ′
h × Yh, Vh × Xh × Yh

)
.

If Hbf2(s) is the operator of Eq. (41), then

H−1
bf2 ∈ A

(
5
2 , H1(�−)′ × H1/2(�)× H1/2(�), H1(�−)× H−1/2(�)× H1/2(�)

)
.

Finally the operator constructed by using the expression (36) with Hbf2,h(s) in place
of Hbf,h(s) has the same property as the one in Proposition 9.

Proof We will simply point out the milestones in the process of proof. Details can be
filled by following carefully the proof of Proposition 9. Given a solution of (44) for
(d1, d2, d3) ∈ V ′

h × X ′
h × Yh , we define u∗ = S(s)λh − D(s)φh and prove that the

pair (uh, u∗) satisfies the transmission problem

⎡
⎢⎢⎣
�u∗ − s2u∗ = 0, in R

d\�,
[∂νu∗] ∈ Xh, [γ u∗] ∈ Yh,

γ uh − [γ u∗] = d3, Xt
hγ

−u∗ = d2,

Ah
�−(s)uh + γ t

h∂
+
ν u∗ = d1.

(45)

Reciprocally, a solution to (45) gives another one for (44) by taking λh := [∂νu∗] and
φh := [γ u∗]. The space for the weak formulation of (45) is

Ĥ := Vh ×
{

u∗ ∈ H1(Rd\�)
∣∣∣ [γ u∗] ∈ Yh

}
.

The essential conditions are given by the trace operator

γ̂ (uh, u∗) := (
Xt

hγ
−u∗, γ uh − [γ u∗]) ∈ X ′

h × Yh,

which admits a uniformly bounded right-inverse. The weak formulation is then

[
u ∈ Ĥ , γ̂ u = (d2, d3),

〈A(s)u, v〉 = 〈d3, vh〉, ∀v = (vh, v
∗) ∈ Ĥ0.

What is left to be done about the discrete operator goes on as usual. Because the
finite-dimensionality of the spaces does not play any role in the preceding argument,
everything works with Vh = H1(�−), Xh = H−1/2(�) and Yh = H1/2(�) and we
obtain the bound for the continuous operator. ��

We now move to the Galerkin discretization of (43). We take two sequences of
spaces Vh ⊂ H1(�−) and Xh ⊂ H−1/2(�) and a third space Yd ⊂ H1/2(�). There
are several options for this last space. If we do not want to discretize in space the
incoming data, we take Yd to be the full H1/2(�). A second option consists of taking
Yd = γ Vh . It is possible to prove that the resulting system is equivalent to (44). The
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relationship between the variables is simply φd = γ uh −φh . Finally Yd can be an ele-
ment of a sequence of discrete spaces completely independent of the other pair and in
that case, the third component of the exact data for the scattering problem d3 = γ uinc
has to be projected onto Yd in a stable way.

Proposition 10 holds for this new discrete operator that, as already mentioned, gen-
eralizes the previous choice. We are not going to develop all the details and simply
show the main steps. The auxiliary function is

u∗ = S(s)λh − D(s)(γ uh + φd).

Therefore, the variables on the boundary (λh, φd) can be easily recovered from knowl-
edge of uh and u∗. The pair (uh, u∗) satisfies the non-standard transmission problem

⎡
⎢⎢⎣
�u∗ − s2u∗ = 0, in R

d\�,
[∂νu∗] ∈ Xh,

[γ u∗] − γ uh = d3, Xt
hγ

−u∗ = d2,

Ah
�−(s)uh + γ+

h ∂
+
ν u∗ = d1,

where (d1, d2, d3) ∈ V ′
h × X ′

h × Yd . Not surprisingly this problem is very similar
to problem (45) with the condition on the jump [γ u∗] relaxed. We can find a weak
formulation of this problem in the space Vh × H1(Rd\�). The remainder of the proof
follows the same steps as in previous examples.

8 Homogeneous obstacles

We now go back to the transmission problem (32) and assume that both interior coef-
ficients are constant. To simplify we write α = κ0 and c−2 = κ1/κ0. The equations in
frequency domain are:

⎡
⎢⎢⎣
�u − (s/c)2u = 0, in�−,
[γ u] = γ uinc, on �,
α∂−
ν u − ∂+

ν u = ∂νuinc, on �,
�u − s2u = 0, in�+.

(46)

In this case both the interior and exterior fields can be represented from the boundary.
We are going to follow here the method of Costabel and Stephan [11]. The symmet-
ric method of [22] is also applicable but we will not present the details here. The
unknowns for the coupled system will be

λ := ∂−
ν u, φ := γ−u.

Green’s Third Theorem allows us to represent the solution as

u =
{

S(s/c)λ− D(s/c)φ, in�−,
−S(s)(αλ− ∂νuinc)+ D(s)(φ − γ uinc), in�+.

(47)
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The jump conditions of potentials applied to (47) and the transmission conditions in
(46) give the following integral system

[
V(s/c)+ αV(s) −K(s/c)− K(s)

Kt (s/c)+ Kt (s) W(s/c)+ α−1W(s)

] [
λ

φ

]

=
[

V(s) 1
2 I − K(s)

α−1( 1
2 I + Kt (s)) α−1W(s)

][
∂νuinc

γ uinc

]
. (48)

As in previous examples we will copy the data in two variables to deal both with how
they are affected by integral operators and with the possibility of discretizing them in
space. Therefore we need four closed spaces, two for unknowns (subscripted with u)
and two for data (subscripted with d):

Xu, Xd ⊂ H−1/2(�), Yu, Yd ⊂ H1/2(�).

As in Sect. 5, we consider two matrices of operators to represent both sides of (48)

H1(s) :=
[

Xt
u 0

0 Yt
u

][
V(s/c)+ αV(s) −K(s/c)− K(s)

Kt (s/c)+ Kt (s) W(s/c)+ α−1W(s)

][
Xu 0

0 Yu

]

H2(s) :=
[

Xt
u 0

0 Yt
u

][
V(s) 1

2 I − K(s)

α−1( 1
2 I + Kt (s)) α−1W(s)

][
Xd 0

0 Yd

]
.

The full system is described by a single operator acting from Xu × Yu × Xd × Yd into
X ′

u × Y ′
u × Xd × Yd

HCS(s)

⎡
⎢⎢⎢⎢⎢⎣

λ

φ

λd

φd

⎤
⎥⎥⎥⎥⎥⎦

:=
[

H1(s) −H2(s)

0 I

]
⎡
⎢⎢⎢⎢⎢⎣

λ

φ

λd

φd

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

d1

d2

d3

d4

⎤
⎥⎥⎥⎥⎥⎦
. (49)

We will take one of the following three choices:

(a) All of the subspaces are taken to be the full space. This case corresponds to the
exact continuous operator. The right-hand side that makes this system equivalent
to (48) is simply (0, 0, ∂νuinc, γ uinc).

(b) Xu = Xh and Yu = Yh are finite-dimensional spaces and Xd and Yd are left
as before. This case corresponds to a traditional Galerkin discretization of the
Eq. (48).

(c) Xu and Yu are as in (b) but now Xd = Xh
d and Yd = Y h

d are finite-dimensional
too. This case corresponds to the preprocessing of data in a discrete space plus the
Galerkin discretization of (48). Section 5 shows how this process is carried out.
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Before proceeding any further, let us remark that the type of transmission conditions
that are going to appear in the non-standard transmission problem can be guessed by
trying to reconstruct the matrix of integral operators from the potential expression
(47). In fact, it is simple to prove that

[
γ+ γ−

α−1∂+
ν ∂−

ν

][
S(s/c) −D(s/c) 0 0

α S(s) −D(s) −S(s) D(s)

]
= [

H1(s) −H2(s)
]

The left-most matrix gives the conditions that will be imposed, whereas the matrix of
potentials is the one relating the integral system with the transmission problem.

Proposition 11 The operator HCS(s) is invertible for all s ∈ C+ and

H−1
CS ∈ A

(
5
2 , X ′

u × Y ′
u × Xd × Yd , Xu × Yu × Xd × Yd

)
.

All constants in the bounds can be taken independent of the choice of the spaces. In
the discrete case we thus have elements of the uniform classes. Finally the operator

[
S(s/c) −D(s/c) 0 0

α S(s) −D(s) −S(s) D(s)

]
H−1

CS(s) (50)

belongs to A(2, X ′
u ×Y ′

u × Xd ×Yd , H1(�−)× H1(�+))with constants independent
of the choice of the spaces.

Proof First step. Problem (49) is equivalent to the system of transmission problems

⎡
⎢⎢⎢⎢⎣

�u − s2u = 0, in R
d\�,

�u∗ − (s/c)2u∗ = 0, in R
d\�,

[γ u] ∈ Yu, [∂νu] ∈ Xu,

[γ u] − [γ u∗] = d4, α [∂νu] − [∂νu∗] = d3,

Xt
u(γ

+u + γ−u∗) = d1, Yt
u(α ∂

−
ν u + ∂+

ν u∗) = α d2,

(51)

as follows: given a solution to (49), the pair

u := S(s/c)λ− D(s/c)φ, u∗ := S(s)(αλ− λd)− D(s)(φ − φd)

solves (51), and reciprocally ([∂νu], [γ u], d3, d4) provides a solution to (49).
Second step. Let us now find a weak formulation for (51). The main space is

Ĥ :=
{
(u, u∗) ∈ H1(Rd\�)× H1(Rd\�)

∣∣∣ [γ u] ∈ Yu

}
,

the generalized trace operator associates

Ĥ � (u, u∗) �−→ γ̂ (u, u∗) := (
Xt

u(γ
+u + γ−u∗), [γ u] − [γ u∗]) ∈ X ′

u × H1/2(�)
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and its kernel is

Ĥ0 :=
{
(v, v∗) ∈ H1(Rd\�)× H1(Rd\�)

∣∣∣ γ+v + γ−v∗ ∈ X◦
u,

[γ v] = [γ v∗] ∈ Yu

}
.

Then (51) is equivalent to

⎡
⎣
(u, u∗) ∈ Ĥ , γ̂ (u, u∗) = (d1, d4),

α〈ARd\�(s/c)u, v〉 + 〈ARd\�(s)u∗, v∗〉 = α〈d2, [γ v]〉 − 〈d3, γ
−v∗〉,

∀(v, v∗) ∈ Ĥ0.

(52)

The proof of this assertion can be verified by following carefully the technique
explained in the previous sections. Let us just show what the key points are in a
very condensed form. First of all we have the identity for arbitrary (v, v∗) ∈ Ĥ0

α
(〈∂−

ν u, γ−v〉 − 〈∂+
ν u, γ+v〉)+ 〈∂−

ν u∗, γ−v∗〉 − 〈∂+
ν u∗, γ+v∗〉

= 〈α∂−
ν u + ∂+

ν u∗, [γ v]〉 + α〈[∂νu], γ+v + γ−v∗〉 − 〈α[∂νu] − [∂νu∗], γ−v∗〉.

The second point is the realization that the three types of boundary values in the
right-hand side of the preceding identity

[γ v∗] = [γ v] ∈ Yu, γ+v + γ−v∗ ∈ X◦
u, γ−v∗ ∈ H1/2(�)

can be chosen independently. With these ideas, it is simple to prove the equivalence
of both problems.
Third step. We have to find a right-inverse of γ̂ with norm independent of the choice of
the spaces. Because the liftings of the trace can be done independently for the interior
and exterior domains, if we want to fix values of

γ+u + γ−u∗ = ξ1, [γ u] − [γ u∗] = ξ2

demanding that [γ u] ∈ Yu , the simplest choice is to pick

γ−u = γ+u = γ−u∗ = ξ1/2, γ+u∗ = ξ2 + ξ1/2

so that we do not even have to worry about the restriction on the jump of the trace
of u, which is set to zero. In fact, we need to impose the value of Xt

u(γ
+u + γ−u∗),

but as usual, we first extend the given functional in X ′
u to another one in H1/2(�) =

H−1/2(�)′ with the same norm.
The fourth step and the bounds for the potential postprocessing do not differ from

what we have already done several times. ��
Acknowledgments The authors are partially supported by MEC-FEDER Project MTM2007-63204 and
Gobierno de Aragón (Grupo Consolidado PDIE). This work was developed while the second author was at
the University of Minnesota supported by a Spanish MEC grant PR2007-0016. The authors want to thank
the referees for their helpful comments and corrections as well as for their encouragement.
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Appendix 1: Convolution quadrature

There are two families of convolution quadrature (CQ) methods. One is related to
multistep methods and can be considered as a scalar valued method. The second one
is related to Runge–Kutta methods and can be considered as a vector-valued scheme.

In general we can assume that our problem is of the following abstract form: given
d, solve

f1 ∗ g = d (53)

and then postprocess to compute

u = f2 ∗ g. (54)

All elements participating in these expressions are functions of the time variable begin-
ning at t = 0. In fact behavior with respect to the time variable can be distributional
(as will be the case for all of our examples). It helps to imagine that f1 and f2 are
matrix-valued and g is vector valued. In truth, both f1 and f2 will be operator-valued
and g will take values on a function space.

Convolution quadrature works with the Laplace transform of the convolution oper-
ators f1 and f2, but uses the data function d in time and provides approximations of g
and u in time too. The respective Laplace transforms of f1 and f2 will be denoted F1
and F2. Some basic assumptions on f1 and f2 (actually on their Laplace transforms)
are given in Sect. 2.

For the moment we perform all the manipulations formally. Note that the double
process of solving and postprocessing can be seen as a single system of equations:

[
f1 0

f2 −δ0

]
∗
[

g

u

]
=
[

d

0

]
, (55)

where convolution with the Dirac delta at zero is the identity operator (properly speak-
ing we should write δ0 ⊗ I, where I is the identity operator in the space where u takes
values). In the frequency domain the operator associated to these equations is

[
F1(s) 0

F2(s) −I

]
. (56)

Its inverse is
[

F−1
1 (s) 0

F2(s)F
−1
1 (s) −I

]

so we will have to pay attention to both F−1
1 and F2F−1

1 .
The derivation of the method can be found in [25] for the multistep-based method

and in [29] for the Runge–Kutta (RK) case. We remark that the use of the RK-based
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methods for scattering problems has still to be explored. We are just going to explain
here the scalar-valued schemes, associated to multistep methods. For RK-based meth-
ods, we refer the reader to the original article [29], to the more recent [5] and, in the
context of waves and integral equations, to [23].

The method uses a fixed time-step k > 0 and works on the uniform grid

tn := n k, n ≥ 0.

Let us first deal with the problem still written in form (53), (54). The main ingredient
of the method is a scalar complex function p such that:

(a) It is holomorphic in a disk centered at the origin with radius r > 1.
(b) Re p(ζ ) > 0 for all |ζ | < 1.
(c) There exists q ≥ 1 such that

h−1 p(e−h) = 1 + O(hq), as h → 0+.

Note that (c) implies the existence of a simple zero of p at ζ = 1.
The second ingredient of the method consists of the derivation of two power expan-

sions

F j (p(ζ )/k) =
∞∑

n=0

ω
j
n(k) ζ

n, j = 1, 2.

Hypothesis (b) together with the requirement that F j ∈ A(µ, X,Y ) for some µ,
guarantee that this expansion can be done. In this paper we assumed that the weight
coefficients are computed exactly. Note that when working with acoustic waves, apart
from the possibility of using contour integrals as in [17,21] or [36] the corresponding
operators of the expansion can be dealt with exactly [23]. For the moment being, it is
enough to assume that we can compute exactly ω j

n(k) for all the operators involved.
We can now apply the method. The convolution equation (53) is translated into the

triangular process

ω1
0(k)gn = d(tn)−

n∑
m=1

ω1
m(k) gn−m

that computes progressively values gn ≈ g(tn). The postprocess (54) keeps the same
causal relation that the discrete convolution equation does and approximates

u(tn) ≈
n∑

m=0

ω2
m(k) gn−m .

Note that we do not have to wait for the full sequence of gn to be computed to begin the
postprocess. It is simple to see that if we apply the process directly to the convolution
equation (55), the expansion associated to (56) is just
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∞∑
n=0

[
ω1

n(k) 0

ω2
n(k) δn,0

]
ζ n,

(δn,0 is the Kronecker symbol) and we end up with exactly the same numerical scheme.
Therefore, we can restrict our attention to convolution equations and consider post-
processing as part of a wider equation.

The simplest examples are the methods derived from the backward Euler scheme
and from BDF2

1 − ζ, 3
2 − 2ζ + 1

2ζ
2,

with respective values of q equalling one and two. Unfortunately, it is known since
long time ago that it is impossible to obtain q = 3 or higher in hypothesis (c) pre-
serving hypothesis (b) if p is rational. In the numerical ODE community this result is
known as the second Dahlquist barrier and states that there are no A-stable multistep
methods of order larger that two (see [18, Chapter V]). For higher order we can always
revert to the RK-based methods. When p is rational, we can easily prove the following
result, using the CQ discrete operator calculus, or a purely mechanical manipulation
of discrete convolutions.

Proposition 12 Assume that p is a rational function and let us write

p(ζ )2 = q0 + q1ζ + · · · + qN ζ
N

r0 + r1ζ + · · · + rN ζ N
.

Consider operators of the form F1(s) = A0 + s2A1 + B(s)P and expand

B(p(ζ )/k) =
∞∑

n=0

ωb
n(k)ζ

n .

Then the CQ method applied to f1 ∗ g = d is equivalent to the combined recurrence

(
r0A0 + k−2q0A1

)
gn + r0λn=

min{N ,n}∑
m=0

rmd(tn−m)

−
min{N ,n}∑

m=1

((
rm A0 + k−2qm A1

)
gn−m + rmλn−m

)

ωb
0(k)Pgn − λn =

n∑
m=1

ωb
m(k)ρn−m

where ρn := Pgn.

When A0 = 0,A1 = I,B(s) ≡ 0, we recover the multistep method to the dif-
ferential equation u′′ = δ′′0 ∗ u = d with zero initial conditions. The meaning of the
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recurrence is the following: the explicit occurrences of the unknown gn include only
a finite number of memory terms, as in a multistep method, whereas the long-term
memory is handled by the auxiliary variable λn which only uses ρn = Pgn in the past
times.

In the example of Sect. 6, P(u, λ, φ) = (λ, φ) and only the variables on the bound-
ary have to be retained for all past times, whereas the unknown in the interior is kept
as long as the multistep method uses it. This means that the time discretization of
the system in this section is a multistep-type discretization of a differential equation
with non-standard boundary conditions that require memory and proceeds from a
CQ-discretization of an integral form of the exterior Dirichlet-to-Neumann operator
(the one in Sect. 4). We can therefore understand the whole scheme as a time-stepping
method with absorbing boundary conditions.

In the example of Sect. 7, P(u, λ) := (γ u, λ) and we only have to retain the
boundary unknown λ and the trace of the interior unknown.

Sometimes we will find that instead of (53) we have an equation of the kind

f1 ∗ g = f3 ∗ d,

i.e., data are also affected by a convolution operator. The treatment of this equation is
similar and can be put in the same frame of convolution equations by copying data as
an additional unknown

[
f1 − f3

0 δ0

]
∗
[

g

gd

]
=
[

0

d

]
.

The value ofµ in Sect. 2 (and in all our examples) is relevant in imposing regularity
conditions for data in CQ to restore full order of convergence in the time variable (see
[27, Theorems 3.1–3.3]). For instance, a specialization of Theorem 3.2 in [27] reads
as follows:

Proposition 13 Assume that p satisfies the hypotheses above and that F ∈ A(µ, X,Y ).
Let u := f ∗ g and let un ≈ u(tn) be the p−based CQ approximation of u at the
discrete time tn := n k. If

g ∈ Hm((0, T ), X), g(0) = · · · = g(m−1)(0) = 0

with m > µ+ q + 1
2 , then

‖u(t)− un‖ ≤ C(T )kq

⎛
⎝

T∫

0

|g(m)(t)|2dt

⎞
⎠

1/2

,

for all tn ≤ T .

For the only result on time-and-space discretization that we are aware of, see [27,
Theorem 5.4]: once full order of discretization is attained in the time variable, error
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caused by the space discretization follows from analysis of stable Galerkin methods
and careful arguments on best approximation in Sobolev spaces.

Appendix 2: Operators associated to � − s2

2.1 Formulas

For easy reference we list here several useful formulas related to potentials, bound-
ary integral operators and Steklov–Poincaré type operators. All formulas hold for any
value of s, so we are free to write some of them as formulas satisfied by analytic
functions of the parameter s. The following formulas are known as the jump relations
of potentials:

γ±S = V, ∂±
ν S = ∓ 1

2 I + Kt , γ±D = ± 1
2 I + K, ∂±

ν D = −W. (57)

The Dirichlet-to-Neumann (Steklov–Poincaré) operators and their inverses admit sev-
eral different expressions in terms of the boundary integral operators. Note that since
DtN−1 = NtD each of them gives another one using inverses:

DtN− = V−1
(

1
2 I + K

)
=
(

1
2 I + K

)t
V−1 = W +

(
1
2 I + K

)t
V−1

(
1
2 I + K

)
,

−DtN+ = V−1
(

1
2 I − K

)
=
(

1
2 I − K

)t
V−1 = W +

(
1
2 I − K

)t
V−1

(
1
2 I − K

)
,

NtD− = W−1
(

1
2 I − K

)t =
(

1
2 I − K

)
W−1 = V +

(
1
2 I − K

)t
W−1

(
1
2 I − K

)t
,

−NtD+ = W−1
(

1
2 I + K

)t =
(

1
2 I + K

)
W−1 = V +

(
1
2 I + K

)t
W−1

(
1
2 I + K

)t
.

(58)

In particular, adding two consecutive equations in (58) we obtain

V−1 = DtN− − DtN+, W−1 = NtD− − NtD+. (59)

Any solution to�u − s2u = 0 in R
d\� can be written as u = S(s)[∂νu] − D(s)[γ u].

Taking u to be identically zero in �−, we have the formulas satisfied for exterior
solutions

u = D(s)γ+u − S(s)∂+
ν u,

[
V(s) 1

2 I − K(s)

( 1
2 I + K(s))t W(s)

] [
∂+
ν u

γ+u

]
=
[

0

0

]
. (60)

2.2 Bounds

The first important result in this section is a Lemma from [2].

Lemma 14 Let O be a bounded open set with Lipschitz boundary or the exterior of
one of such sets. Then there exists CO such that for any δ > 0 and φ ∈ H1/2(∂O),
the solution of
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[−�u + δ2u = 0, in O,
u = φ, on ∂O,

(61)

satisfies

|||u|||δ,O ≤ CO max{1, δ}1/2‖φ‖1/2,∂O. (62)

The result can be stated also as the existence of a family of liftings of the trace
operator, depending on the parameter δ such that (62) holds taking u as such lifting.
Note that the solution to (61) is the function in H1(O) such that its trace is φ and
its ||| · |||δ,O norm is minimal. A bound similar to (62) but with δ in place of δ1/2 is
straightforward to prove.

The proof of Lemma 14 is given in [2] by using local charts. Note that the result
in [2] is proved for smooth boundaries but that Lipschitz regularity is enough for
the arguments to hold. Note also that the corresponding Lemma in [2] uses a certain
complex parameter instead of the positive real number δ. Our statement is a particular
case of that one but the general case is a consequence of the particular case, so this
result is as general as the original. Finally, when comparing results in this section with
those of [2], one has to be careful to translate the variable s to ıω: following the French
tradition (see [13]), the Laplace transform is rotated ninety degrees in the complex
plane; it is just an extension of the Fourier transform with the aim of applying directly
the Payley–Wiener theorems.

Lemma 15 Let O be as in Lemma 14 and CO be the constant of the inequality (62).
Given u ∈ H1(O) such that �u − s2u = 0 we have

‖∂νu‖−1/2,∂O ≤ CO
( |s|
σ

)1/2

|||u||||s|,O.

Proof Let φ ∈ H1/2(∂O) and take v as in (61). Then by (6) and (62) it follows that

|〈∂νu, φ〉| =
∣∣∣∣∣∣

∫

O
∇u · ∇v + s2

∫

O
u v

∣∣∣∣∣∣
= |〈AO(s)u, v〉|

≤ |||u||||s|,O |||v||||s|,O ≤ CO max{1, |s|1/2}‖φ‖1/2,∂O |||u||||s|,O
≤ CO

|s|1/2
σ 1/2 ‖φ‖1/2,∂O |||u||||s|,O.

The result is a simple consequence of the definition of the H−1/2(∂O) norm. ��
From here on we revert to the geometrical setting of Sect. 4: �− and �+ are sep-

arated by a closed Lipschitz interface �. By applying Lemma 15 to �− and �+ we
can easily prove that if �u − s2u = 0 in R

d\� = �− ∪�+, then

‖[∂νu]‖−1/2,� ≤ C
|s|1/2
σ 1/2 |||u||||s|,Rd\�. (63)
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We now begin to prove the bounds given in the tables of Sect. 4. Note that every time
we obtain an ellipticity result we have a bound for the inverse operator by Proposi-
tion 3. The ellipticity bounds for V in Proposition 16 and W in Proposition 19 appear
already in [2,3].

Proposition 16 The single-layer potential satisfies S ∈ A(1, H−1/2(�), H1(Rd)).
The corresponding boundary operator satisfies

V ∈ E
(

2,Arg , H−1/2(�)
)

∩ A
(

1, H−1/2(�), H1/2(�)
)
.

Proof Let λ ∈ H−1/2(�) and u := S(s)λ, so that λ = [∂νu] and γ u = V(s)λ. Then

〈λ,V(s)λ〉 = 〈ARd\�(s)u, u〉.

Hence by (7) and (63)

Re
(

eıArg s〈λ,V(s)λ〉
)

= σ

|s| |||u|||2|s|,Rd\� ≥ C
σ σ

|s|2 ‖λ‖2−1/2,�,

which proves the desired ellipticity estimate. On the other hand by (5)

σ σ 2

|s| ‖u‖2
1,Rd\� ≤ σ

|s| |||u|||2|s|,Rd\� ≤ |〈λ,V(s)λ〉| = |〈λ, γ u〉|
≤ ‖γ u‖1/2,�‖λ‖−1/2,� ≤ C‖u‖1,Rd\� ‖λ‖−1/2,�,

where C is the continuity constant for the trace theorem. This gives the estimate for
S(s). Given the fact that V(s) = γS(s) the remaining assertion follows readily. ��
Proposition 17 DtN−, −DtN+, V−1 ∈ E(1,−Arg, H1/2(�)).

Proof Let φ ∈ H1/2(�) and define u as the solution to

[
�u − s2u = 0, in�−,
γ u = φ, on �,

so that ∂νu = DtN−(s)φ. Then 〈A�−s)u, u〉 = 〈DtN−(s)φ, φ〉 and hence by (7), (5)
and the trace theorem

Re
(

e−ıArg s〈DtN−(s)φ, φ〉
)

= σ

|s| |||u|||2|s|,�− ≥ σ σ 2

|s| ‖u‖2
1,�− ≥ C

σ σ 2

|s| ‖φ‖2
1/2,�.

A similar bound can be easily obtained for −DtN+ (note that the change of sign
is due to the reorientation of the normal vector which now points inwards). Finally,
by the first identity of (59) and since E(1,−Arg, H−1/2(�)) is a vector space, V−1

belongs to this space. Note that this result gives an alternative proof to the fact that
V ∈ A(1, H−1/2(�), H1/2(�)) (see Proposition 16). ��
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Proposition 18 NtD−, −NtD+, W−1 ∈ E(2,Arg, H−1/2(�)).

Proof Let λ ∈ H−1/2(�) and define u as the solution to

[
�u − s2u = 0, in�−,
∂νu = λ, on �,

so that γ u = NtD−1(s)u. Then, using again (7) and Lemma 15 it follows that

Re
(

eıArgs〈λ,NtD−(s)λ〉
)

= Re
(

eıArgsA�−(s)u, u〉
)

= σ

|s| |||u|||2|s|,�−

≥ σ σ

|s|2 ‖λ‖2−1/2,�.

The proof for NtD+ is very similar and the second identity in (59) proves the remaining
bound. ��

Proposition 19 The double-layer potential satisfies D ∈ A( 3
2 , H1/2(�), H1(Rd\�))

and the hypersingular operator satisfies W ∈ E(1,−Arg, H1/2(�)).

Proof Letφ ∈ H1/2(�) and define u := −D(s)φ, so that [γ u] = φ and ∂±
ν u = W (s)φ

and

〈W(s)φ, φ〉 = 〈ARd\�(s)u, u〉.

Using the same arguments of preceding propositions we easily prove that

Re
(

e−ıArgs〈W(s)φ, φ〉
)

= σ

|s| |||u|||2|s|,Rd\� ≥ σσ 2

|s| ‖u‖2
1,Rd\� ≥ C�

σσ 2

|s| ‖φ‖2
1/2,�,

as well as

σ

|s| |||u|||2|s|,Rd\� ≤ |〈W(s)φ, φ〉| ≤ ‖W(s)φ‖−1/2,�‖φ‖1/2,� ≤ C
|s|2
σ σ

‖φ‖2
1/2,�,

where in the last step we have used the boundedness property of W(s) that is derived
from the ellipticity of W−1(s) (Proposition 18). The previous inequalities prove the
statement. ��

Proposition 20 K∈A( 3
2 , H1/2(�), H1/2(�)) and Kt∈A( 3

2 , H−1/2(�), H−1/2(�)).

Proof Note that 1
2 I +K(s) = γ+D(s). Applying then Proposition 19 and the fact that

I ∈ A(0, H1/2(�), H1/2(�)) we obtain the result for K. The one for Kt is obtained
by transposition. ��
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