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Abstract A model second-order elliptic equation on a general convex polyhedral
domain in three dimensions is considered. The aim of this paper is twofold: First sharp
Hölder estimates for the corresponding Green’s function are obtained. As an applica-
tions of these estimates to finite element methods, we show the best approximation
property of the error in W 1∞. In contrast to previously known results, W 2

p regularity for
p > 3, which does not hold for general convex polyhedral domains, is not required.
Furthermore, the new Green’s function estimates allow us to obtain localized error
estimates at a point.
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1 Introduction

In this paper we consider the model second-order elliptic problem

− �u = f, in �, (1.1)

u = 0, on ∂�,

where � is a convex polyhedral domain in three dimensions and f is a smooth function.
It is well known that for the above problem there exists a unique solution in H2(�)

(cf. [12]).
Let Sh be a finite dimensional subspace of H1

0 (�) composed of piecewise polyno-
mials of degree k on a quasi-uniform mesh of size h and uh ∈ Sh be the finite element
approximation to u,

(∇uh,∇χ)� = (∇u,∇χ)�, ∀χ ∈ Sh,

where (∇u,∇v)S = ∫
S ∇u · ∇v.

Our motivation is to establish the following best approximation property

‖∇(u − uh)‖L∞(�) ≤ C inf
χ∈Sh

‖∇(u − χ)‖L∞(�), (1.2)

with constant C independent of h. Such a result has many applications. For example,
(1.2) is needed in order to establish the numerically observed L2 error estimate for
bi-harmonic problems (cf. [37]). By taking χ = 0 in (1.2), we obtain the following
stability result

‖∇uh‖L∞(�) ≤ C‖∇u‖L∞(�), (1.3)

which is essential, for example, in analyzing the finite element solution of nonlinear
problems (cf. [6,7,9,11,29]).

Many important contributions have been made in order to establish (1.2) with var-
ious assumptions on the finite element spaces and geometry of �. Here we highlight
some of the contributions. The first results valid for general quasi-uniform meshes were
obtained by Natterer [23] and Scott [38]. Natterer treated piecewise linear approxi-
mation on convex polygonal domains and Scott treated the problem with Neumann
boundary conditions in two dimensions. Rannacher [27] and Nitsche [24,25] con-
sidered the problem for arbitrary order approximations and on a smooth domain �.
Schatz [30] considered non-convex polygonal domains and used a discrete maximum
principle in his proof. All the above results were sub-optimal (contained a logarithmic
factor) for piecewise linear elements. In 1982, Rannacher and Scott in [28] proved opti-
mal error estimates for convex polygonal domains and smooth domains. In the book
by Brenner and Scott [3], these results were extended to three dimensional polyhedral
domains with certain restrictions on the geometry.
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Estimates on convex polyhedral domains 223

The main analytical tool used in [3,24,25,27,28] was the fact that it is possible to
obtain L∞ bounds from certain weighted L2 estimates. However, the above technique
has not been shown to give optimal error estimates for general polyhedral domains
in three dimensions. For example, the estimates contained in [3] require W 2

p regular-
ity, where p must be strictly greater than the space dimension. Although such regu-
larity holds for general convex polygonal domains, in three dimensions such result
puts strong restrictions on the geometry of polyhedral domains. More specifically, it
requires that inner dihedral angles be smaller than 3π/4 (cf. Theorem 7.1 in [21]).
The reason for this is that the solutions both in a two-dimensional angle K and in a
three-dimensional dihedral angle K × R contain the singular term rπ/θ sin(πϕ/θ),
where r, ϕ are the polar coordinates in K and θ is the opening of the angle. This
term belongs to W 2

p if θ <
p

2p−2 π . The restriction θ < 3π/4 in the three-dimensional

case is unnatural since it is known that for any convex polyhedral domain � the solu-
tion u to (1.1) is in W 1∞(�). Actually, the gradient of the solution is Hölder continuous,
where the modulus of the continuity depends on the geometry of the domain. Using
imbedding theorems, this result can be deduced from the regularity results in weighted
Sobolev spaces (cf. [19]). For the Stokes system such C1+σ result is established for
the velocity field in [22].

A different technique was developed by Schatz and Wahlbin (cf. [31,34–36]). In
those papers instead of using global weighted L2 error estimates, they used local L2

error estimates (cf. [26]), along with dyadic decompositions of �. The technique is
independent of dimension, but relies on sharp pointwise bounds for high-order deriva-
tives of the Green’s function. These types of the Green’s function estimates are known
for smooth domains [18], but do not hold for general convex polyhedral domains (cf.
[12,15]).

Carefully examining the arguments of Schatz and Wahlbin, one can notice that in
order to establish (1.2), it is sufficient to have certain Hölder type estimates for the first
order derivatives and the second order mixed derivatives of the Green’s function. More
precisely, one would require for some σ > 0, which may depend on the geometry of
the domain �,

|∂xi G(x, ξ) − ∂yi G(y, ξ)|
|x − y|σ ≤ C

(
|x − ξ |−2−σ + |y − ξ |−2−σ

)
,

|∂xi ∂ξ j G(x, ξ) − ∂yi ∂ξ j G(y, ξ)|
|x − y|σ ≤ C

(
|x − ξ |−3−σ + |y − ξ |−3−σ

)
,

(1.4)

for i, j = 1, 2, 3.
Therefore, the main contribution of this papers is twofold. First we establish Hölder

estimates for the Green’s function (1.4), then using these estimates we prove the best
approximation property (1.2) for the finite element method for a general convex poly-
hedral domain.

Now we comment on (1.4). If � ⊂ R
3 has a smooth boundary, the following

estimate holds (cf. [18])

|Dα
x Dβ

ξ G(x, ξ)| ≤ C

|x − ξ |1+|α|+|β| . (1.5)
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If ∂� is not smooth, then in general the right-hand side of the above estimate will be
a function of the distance of x and ξ to the singularities of ∂� (cf. [19]). However, in
the case � is convex, but not necessarily a polyhedral domain, the above estimates are
known to hold for |α| ≤ 1 and |β| ≤ 1 (cf. [12,15]). In the case of C1+σ boundaries,
estimates of the type (1.4) were proved in [15]. However, the counter-example given
by Fromm [12] indicates that estimates (1.4) can not be extended to general convex
domains. In this paper we show that (1.4) holds for convex polyhedral domains �,
where σ > 0 depends on the geometry of �. For example, if � is a cube, then the
estimates (1.4) are valid for arbitrary 0 < σ < 1.

Finally, we would like to present an improvement to (1.2), weighted pointwise error
estimates. Until 1998, all the pointwise error estimates were global, in the sense that
the error at a point z ∈ � depended equally on the smoothness of u on the whole
domain �. However, in [31], for smooth domains Schatz proved weighted pointwise
error estimates that showed that the error at a point z ∈ � depends strongly on the
behavior of u in the vicinity of z and rather weakly on the behavior of u far from z. Here
we prove a similar weighted result for convex polyhedral domains. More specifically,
we show that for an arbitrary point z ∈ �,

|∇(u − uh)(z)| ≤ C inf
χ∈Sh

‖ωs∇(u − χ)‖L∞(�), (1.6)

where the weight ω(y) = ωz,h(y) = h
h+|z−y| and the power s satisfies 0 ≤ s < σ .

This is in contrast to smooth domains, where the power s can be taken as high as the
order of the approximating polynomials (cf. [31]). Notice that if we choose s = 0 then
the estimate reduces to (1.2). However, for s > 0 we have an improvement over (1.2).
Finally we would like to point that the error estimate (1.6) is the first a priori weighted
error estimate proved for general convex polyhedral domains which holds up to the
boundary.

Such weighted results proved to be very fruitful and inspired many interesting
applications, for example, asymptotic error expansion inequalities (cf. [1,31,32]), su-
perconvergence (cf. [33]), a posteriori averaging technique (cf. [4,16]), a posteriori
residual type estimators (cf. [6]), localized pointwise error estimates for quasilinear
problems (cf. [8]), and Richardson Extrapolation (cf. [2]).

Remark 1 An anonymous referee pointed out to us that similar weighted result just
appeared in the new edition of [3], namely Corollary 8.2.8. There the weight ω can
be taken to any power 0 < s < 1 − n/p, provided the solution u ∈ W 2

p for p > n.
In three dimensions, i.e. n = 3, it is geometrically very restrictive and do not hold
for general convex polyhedral domains. In two dimensions the exponents in the above
results are related through the Sobolev imbedding theorems, but in three dimensions
the connection is less clear.

The rest of the paper is organized as follows. The next two sections are devoted
to the proof of Green’s function estimates (1.4). The proof is given for more general
polyhedral type domains. In Sect. 4 we concentrate on the application of the Green’s
function estimates to finite element method. Thus, in Sect. 4.1 we state the basic
assumptions on the mesh and the finite element spaces and in Sect. 4.2 we give a proof
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of the best approximation property (1.2). In Sect. (4.3) we state the localized pointwise
estimate (1.6). Finally, in the last section we comment on possible generalizations and
extension to more complicated systems.

2 Maximum modulus estimates for the Green’s function in polyhedral domains

2.1 The domain

Although for our finite element error estimates we will only consider convex poly-
hedral domains (flat faces and straight edges) we will prove (1.4) for more general
polyhedral type domains (curved faces and edges).

In the proof of the Green’s function estimates we assume that � is a bounded
domain of polyhedral type in R

3. This means that

(i) the boundary ∂� consists of smooth (of class C∞) open two-dimensional man-
ifolds  j (the faces of �), j = 1, . . . , N , smooth curves Mk (the edges),
k = 1, . . . , N ′, and corners x (1), . . . , x (d),

(ii) for every ξ ∈ Mk there exist a neighborhood Uξ and a diffeomorphism (a C∞
mapping) κξ which maps � ∩ Uξ onto Dξ ∩ B1, where Dξ is a dihedron of the
form

{x = (x1, x2, x3) ∈ R
3 : 0 < r < ∞, 0 < ϕ < θξ , x3 ∈ R}

(here r, ϕ are the polar coordinates in the (x1, x2)-plane) and B1 is the unit ball,
(iii) for every corner x ( j) there exist a neighborhood U j and a diffeomorphism κ j

mapping � ∩ U j onto K j ∩ B1, where

K j = {x ∈ R
3 : x/|x | ∈ X j } (2.1)

is a cone with vertex at the origin.

The domains X j in (iii) are subdomains of the unit sphere S2 of polygonal type, i.e.,
the boundary of X j consists of finitely many smooth curves meeting under nonzero
angles.

2.2 Notation

In what follows, ρ j (x) denotes the distance of the point x from the vertex x ( j), rk(x)

the distance from the edge Mk and r(x) = mink rk(x) the distance from the set of
all edge points. Let ξ be a point on the edge Mk , and let k+ , k− be the faces of �

adjacent to ξ . Then by Dξ , we denote the dihedron which is bounded by the half-planes
◦

k± tangential to k± at ξ . The angle between ◦
k+ and ◦

k− is denoted by θ(ξ). We set

θk = sup
ξ∈Mk

θ(ξ), µk = π/θk, and µ(x) = π/θk(x),
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where Mk(x) is the nearest edge to x (more precisely, k(x) is the smallest k such that
rk(x) = r(x)). Let x ( j) be a vertex of �, and let I j be the set of all indices k such
that x ( j) is an end-point of the edge Mk . By our assumptions on �, there exist a
neighborhood U j of x ( j) and a diffeomorphism κ j mapping � ∩ U j onto a subset of
the cone (2.1). Without loss of generality, we may assume that the Jacobian matrix
κ ′(x) coincides with the identity matrix at x ( j). We denote by λ j the smallest eigen-
value of the Laplace-Beltrami operator −δ on the domain X j (with Dirichlet boundary
conditions). Furthermore, let

� j = −1

2
+

√
1

4
+ λ j

for j = 1, . . . , d. This means that λ j = � j (� j + 1).

2.3 Point estimates of the Green’s function

Let G(x, ξ) be the Green’s function of the Dirichlet problem to the Laplace equation,
i.e. G(x, ξ) is the solution of the problem

−�x G(x, ξ) = δ(x − ξ) for x, ξ ∈ �,

G(x, ξ) = 0 for x ∈ ∂�, ξ ∈ �.
(2.2)

In the following, let V j be a neighborhood of the vertex x ( j) which has a positive
distance to the edges Mk , k �∈ I j .

The following estimates of G(x, ξ) were proved in [19] (cf. also [20]).

(1) If x, ξ ∈ � ∩ V j , and ρ j (ξ) < 2ρ j (x)/3, then

∣
∣
∣Dα

x Dγ
ξ G(x, ξ)

∣
∣
∣ ≤ cα,γ ρ j (x)−1−� j −|α|+ε ρ j (ξ)� j −|γ |−ε

×
∏

k∈I j

(
rk(x)

ρ j (x)

)µk−|α|−ε ∏

k∈I j

(
rk(ξ)

ρ j (ξ)

)µk−|γ |−ε

, (2.3)

for all multi-indices α and γ , where ε is an arbitrarily small positive number. The
constant cα,γ is independent of x and ξ .

(2) If x, ξ ∈ � ∩ V j , and ρ j (ξ) > 3ρ j (x)/2, then

∣
∣
∣Dα

x Dγ
ξ G(x, ξ)

∣
∣
∣ ≤ cα,γ ρ j (x)� j −|α|−ε ρ j (ξ)−1−� j −|γ |+ε

×
∏

k∈I j

(
rk(x)

ρ j (x)

)µk−|α|−ε ∏

k∈I j

(
rk(ξ)

ρ j (ξ)

)µk−|γ |−ε

. (2.4)
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(3) If x, ξ ∈ � ∩ V j , ρ j (x)/3 < ρ j (ξ) < 3ρ j (x) and |x − ξ | > 2
3 min(r(x), r(ξ)),

then

∣
∣
∣Dα

x Dγ
ξ G(x, ξ)

∣
∣
∣ ≤ cα,γ |x − ξ |−1−|α|−|γ |

(
r(x)

|x − ξ |
)µ(x)−|α|−ε

×
(

r(ξ)

|x − ξ |
)µ(ξ)−|γ |−ε

. (2.5)

(4) If x, ξ ∈ � ∩ V j , ρ j (x)/3 < ρ j (ξ) < 3ρ j (x) and |x − ξ | < min(r(x), r(ξ)),
then

∣
∣
∣Dα

x Dγ
ξ G(x, ξ)

∣
∣
∣ ≤ cα,γ |x − ξ |−1−|α|−|γ |. (2.6)

(5) If x and ξ lie in neighborhoods Vi and V j of different vertices x (i) and x ( j) and
|x − ξ | > δ, where δ is a fixed positive number, then

∣
∣
∣Dα

x Dγ
ξ G(x, ξ)

∣
∣
∣ ≤ cα,γ ρi (x)�i −|α|−ε ρ j (ξ)� j −|γ |−ε

×
∏

k∈Ii

(
rk(x)

ρi (x)

)µk−|α|−ε ∏

k∈I j

(
rk(ξ)

ρ j (ξ)

)µk−|γ |−ε

. (2.7)

From this point on we will assume that the domain � satisfies the following con-
ditions.

C1 : X j is a proper subset of the half-sphere for all j,

C2 : θk < π for all k.

Condition C2 implies that µk > 1 for all k. Condition C1 will allow us to use the
following result which can be found for example in [17].

Proposition 2.1 If X j is a proper subset of the half-sphere then � j > 1.

It is important to note that every convex domain of polyhedral type satisfies condi-
tions C1 and C2.

If � satisfies conditions C1 and C2 then using (2.3)–(2.7) one has the following
bound

∣
∣∂x j G(x, ξ)

∣
∣ ≤ c |x − ξ |−2 and

∣
∣∂x j ∂ξk G(x, ξ)

∣
∣ ≤ c |x − ξ |−3 (2.8)

for all x, ξ ∈ �, j, k = 1, 2, 3. In particular, if � is a convex polyhedral domain the
above estimate holds. In fact, by [12,15], these estimates are valid for general convex
domains.
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3 Hölder estimates of Green’s function

Lemma 3.1 Let � ⊂ R
3 satisfy conditions C1 and C2 and let m be an arbitrary

positive number. Then the estimates (1.4) are satisfied with arbitrary σ ∈ (0, 1) for
|x − ξ | < m |x − y|.
Proof If |x − ξ | < m |x − y|, then |y − ξ | < (m + 1) |x − y| and (2.8) implies

∣
∣∂xi G(x, ξ) − ∂yi G(y, ξ)

∣
∣

|x − y|σ ≤
∣
∣∂xi G(x, ξ)

∣
∣

|x − y|σ +
∣
∣∂yi G(y, ξ)

∣
∣

|x − y|σ

≤ c
|x − ξ |−2

|x − y|σ + |y − ξ |−2

|x − y|σ ≤ c (m + 1)σ
(
|x − ξ |−2−σ + |y − ξ |−2−σ

)
.

In the same way, the second estimate of (1.4) holds. �
In the following, we assume that m is a sufficiently large positive number.

Lemma 3.2 Let � ⊂ R
3 satisfy conditions C1 and C2. Furthermore, let σ be a

positive number, σ < 1, σ < � j − 1 for all j , and σ < µk − 1 for all k. Then there
exists a constant c such that

∣
∣∂xi G(x, ξ) − ∂yi G(y, ξ)

∣
∣

|x − y|σ ≤ c |x − ξ |−2−σ , (3.1)
∣
∣∂xi ∂ξ j G(x, ξ) − ∂yi ∂ξ j G(y, ξ)

∣
∣

|x − y|σ ≤ c |x − ξ |−3−σ . (3.2)

for all x, y, ξ ∈ �, x �= y, |x − ξ | > m |x − y| > r(x).

Proof Since |x − ξ | > m |x − y| with a sufficiently large m, we may assume that x
and y lie in a neighborhood V j of the same vertex x ( j). As before we suppose that V j

has a positive distance to the edges Mk , k �∈ I j . From the condition r(x) < m |x − y|
it follows that

r(y) < (m + 1) |x − y|.

Furthermore, the condition |x − y| < |x − ξ |/m implies

(

1 − 1

m

)

|x − ξ | < |y − ξ | <

(

1 + 1

m

)

|x − ξ |.

We consider the following cases

1) ξ ∈ V j and ρ j (x) < ρ j (ξ)/2
2) ξ ∈ V j and ρ j (x) > 2ρ j (ξ)

3) ξ ∈ V j and ρ j (ξ)/2 < ρ j (x) < 2ρ j (ξ)

4) ξ lies in a neighborhood of another vertex x (ν) and |x − ξ | > δ, where δ is a fixed
positive number.

123



Estimates on convex polyhedral domains 229

We start with Case 1. Then obviously |x − ξ | < ρ j (x) + ρ j (ξ) < 3
2ρ j (ξ) and

ρ j (y) < ρ j (x) + |x − y| < ρ j (x) + 1

m
|x − ξ | <

(
1

2
+ 3

2m

)

ρ j (ξ).

Consequently (2.4) yields

∣
∣∂xi G(x, ξ) − ∂yi G(y, ξ)

∣
∣ ≤ ∣

∣∂xi G(x, ξ)
∣
∣ + ∣

∣∂yi G(y, ξ)
∣
∣

≤ c ρ j (ξ)−1−� j +ε

(

ρ j (x)� j −1−ε

(
r(x)

ρ j (x)

)σ

+ ρ j (y)� j −1−ε

(
r(y)

ρ j (y)

)σ )

.

Here ε can be chosen such that � j − 1 − ε − σ ≥ 0. Thus,

∣
∣∂xi G(x, ξ)−∂yi G(y, ξ)

∣
∣ ≤c ρ j (ξ)−2−σ

(
r(x)σ + r(y)σ

) ≤c′ |x−ξ |−2−σ |x−y|σ .

Analogously, we obtain

∣
∣∂xi ∂ξl G(x, ξ) − ∂yi ∂ξl G(y, ξ)

∣
∣

≤ c ρ j (ξ)−2−� j +ε

(

ρ j (x)� j −1−ε

(
r(x)

ρ j (x)

)σ

+ ρ j (y)� j −1−ε

(
r(y)

ρ j (y)

)σ )

≤ c ρ j (ξ)−3−σ
(
r(x)σ + r(y)σ

) ≤ c′ |x − ξ |−3−σ |x − y|σ .

Case 2 In this case |x − ξ | < ρ j (x) + ρ j (ξ) < 3
2 ρ j (x) and

ρ j (y) > ρ j (x) − |x − y| > ρ j (x) − 1

m
|x − ξ | > ρ j (x) − 1

m

(
ρ j (x) + ρ j (ξ)

)

>

(

1 − 3

2m

)

ρ j (x) >

(

2 − 3

m

)

ρ j (ξ).

Therefore by (2.3)

∣
∣∂xi G(x, ξ) − ∂yi G(y, ξ)

∣
∣ ≤ ∣

∣∂xi G(x, ξ)
∣
∣ + ∣

∣∂yi G(y, ξ)
∣
∣

≤ c ρ j (ξ)� j −ε

(

ρ j (x)−2−� j +ε

(
r(x)

ρ j (x)

)σ

+ ρ j (y)−2−� j +ε

(
r(y)

ρ j (y)

)σ )

≤ c′ (
ρ j (x)−2−σ r(x)σ + ρ j (y)−2−σ r(y)σ

)

≤ c′′ |x − ξ |−2−σ |x − y|σ

and analogously,
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∣
∣∂xi ∂ξ j G(x, ξ) − ∂yi ∂ξ j G(y, ξ)

∣
∣ ≤ ∣

∣∂xi ∂ξ j G(x, ξ)
∣
∣ + ∣

∣∂yi ∂ξ j G(y, ξ)
∣
∣

≤ c ρ j (ξ)� j −1−ε

(

ρ j (x)−2−� j +ε

(
r(x)

ρ j (x)

)σ

+ ρ j (y)−2−� j +ε

(
r(y)

ρ j (y)

)σ )

≤ c′ (
ρ j (x)−3−σ r(x)σ + ρ j (y)−3−σ r(y)σ

)
≤ c′′ |x − ξ |−3−σ |x − y|σ .

Case 3 Then |x − ξ | < 3ρ j (ξ) and

(
1

2
− 3

m

)

ρ j (ξ) < ρ j (y) <

(

2 + 3

m

)

ρ j (ξ) .

Since r(x) < |x − ξ | and

r(y) < (m + 1) |x − y| <
m + 1

m
|x − ξ | <

m + 1

m − 1
|y − ξ |,

we can apply (2.5) and obtain

∣
∣∂xi G(x, ξ) − ∂yi G(y, ξ)

∣
∣ ≤ ∣

∣∂xi G(x, ξ)
∣
∣ + ∣

∣∂yi G(y, ξ)
∣
∣

≤ c

(

|x − ξ |−2
(

r(x)

|x − ξ |
)σ

+ |y − ξ |−2
(

r(y)

|y − ξ |
)σ )

≤ c′ |x − ξ |−2−σ |x − y|σ .

Analogously,

∣
∣∂xi ∂ξl G(x, ξ) − ∂yi ∂ξl G(y, ξ)

∣
∣ ≤ c

(

|x − ξ |−3
(

r(x)

|x − ξ |
)σ

+ |y − ξ |−3
(

r(y)

|y − ξ |
)σ )

≤ c′ |x − ξ |−3−σ |x − y|σ .

Case 4 Finally, we consider the case when x and y lie in the neighborhood V j of the
vertex x ( j) and ξ lies in a neighborhood of another vertex x (ν) such that |x − ξ | > δ,
where δ is a fixed positive number. Then by (2.7)

∣
∣∂xi G(x, ξ) − ∂yi G(y, ξ)

∣
∣ ≤ ∣

∣∂xi G(x, ξ)
∣
∣ + ∣

∣∂yi G(y, ξ)
∣
∣

≤ c ρν(ξ)�ν−ε

(

ρ j (x)� j −1−ε

(
r(x)

ρ j (x)

)σ

+ ρ j (y)� j −1−ε

(
r(y)

ρ j (y)

)σ )

≤ c′ (
r(x)σ + r(y)σ

) ≤ 2c′ (m + 1)σ |x − y|σ

and analogously,
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∣
∣∂xi ∂ξl G(x, ξ) − ∂yi ∂ξl G(y, ξ)

∣
∣ ≤ ∣

∣∂xi ∂ξl G(x, ξ)
∣
∣ + ∣

∣∂yi ∂ξl G(y, ξ)
∣
∣

≤ c ρν(ξ)�ν−1−ε

(

ρ j (x)� j −1−ε

(
r(x)

ρ j (x)

)σ

+ ρ j (y)� j −1−ε

(
r(y)

ρ j (y)

)σ )

≤ c′ |x − y|σ .

This completes the proof. �
Lemma 3.3 Let � ⊂ R

3 be a convex domain of polyhedral type. Furthermore, let σ

be a positive number, σ < � j − 1 for all j , σ < µk − 1 for all k, and σ < 1. Then
there exists a constant c such that the estimates (3.1) and (3.2) are satisfied for all
x, y, ξ ∈ �, ξ �= x �= y, |x − ξ | > m |x − y|, r(x) > m |x − y|.
Proof From the mean value theorem it follows that

∣
∣∂xi G(x, ξ) − ∂yi G(y, ξ)

∣
∣

|x − y|σ ≤ |x − y|1−σ |∇z∂zi G(z, ξ)| (3.3)

and
∣
∣∂xi ∂ξl G(x, ξ) − ∂yi ∂ξl G(y, ξ)

∣
∣

|x − y|σ ≤ |x − y|1−σ |∇z∂zi ∂ξl G(z, ξ)|, (3.4)

where z = x + t (y − x), 0 < t < 1. Since � is convex z ∈ �. We assume again that
x and y lie in the neighborhood V j of the vertex x ( j) and consider the same cases 1–4
as in the proof of Lemma 3.2.

Case 1 Since

ρ j (z) < ρ j (x) + |x − y| < ρ j (x) + 1

m
|x − ξ | < ρ j (x) + 1

m

(
ρ j (x) + ρ j (ξ)

)

<

(
1

2
+ 3

2m

)

ρ j (ξ),

the derivatives of G at the point (z, ξ) satisfy the estimates (cf. (2.4))

|∇z∂zi G(z, ξ)| ≤ ρ j (z)
� j −2−ε ρ j (ξ)−1−� j +ε

(
r(z)

ρ j (z)

)σ−1

and

|∇z∂zi ∂ξl G(z, ξ)| ≤ c ρ j (z)
� j −2−ε ρ j (ξ)−2−� j +ε

(
r(z)

ρ j (z)

)σ−1

.

The number ε can be chosen such that � j − 1 − ε − σ ≥ 0. Consequently,

∣
∣∂xi G(x, ξ) − ∂yi G(y, ξ)

∣
∣

|x − y|σ ≤ c |x − y|1−σ ρ j (ξ)−2−σ r(z)σ−1
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and

∣
∣∂xi ∂ξl G(x, ξ) − ∂yi ∂ξl G(y, ξ)

∣
∣

|x − y|σ ≤ |x − y|1−σ ρ j (ξ)−3−σ r(z)σ−1.

Using the inequalities r(z) > (m − 1) |x − y| and ρ j (ξ) > 2
3 |x − ξ |, we get (3.1) and

(3.2).
In Case 2 we obtain the estimate

ρ j (z) > ρ j (x) − |x − y| > ρ j (x) − 1

m
|x − ξ | > ρ j (x) − 1

m

(
ρ j (x) + ρ j (ξ)

)

>

(

1 − 3

2m

)

ρ j (x) >

(

2 − 3

m

)

ρ j (ξ).

Therefore by (2.3)

|∇z∂zi G(z, ξ)| ≤ c ρ j (z)
−3−� j +ε ρ j (ξ)� j −ε

(
r(z)

ρ j (z)

)σ−1

≤ c′ ρ j (z)
−2−σ r(z)σ−1,

and

|∇z∂zi ∂ξl G(z, ξ)| ≤ c ρ j (z)
−3−� j +ε ρ j (ξ)� j −1−ε

(
r(z)

ρ j (z)

)σ−1

≤ c′ ρ j (z)
−3−σ r(z)σ−1,

Using the inequalities r(z) > (m − 1) |x − y| and

ρ j (z) > ρ j (x) − |x − y| >
2

3
|x − ξ | − 1

m
|x − ξ |,

we obtain (3.1) and (3.2).
Case 3 From the inequalities ρ j (ξ)/2 < ρ j (x) < 2ρ j (ξ) and |x − ξ | > m|x − z|

it follows that

(
1

2
− 3

m

)

ρ j (ξ) < ρ j (z) <

(

2 + 3

m

)

ρ j (ξ).

Furthermore, the inequalities |x − ξ | > m |x − z| and r(x) > m |x − z| yield

(

1 − 1

m

)

|x − ξ | < |z − ξ | <

(

1 + 1

m

)

|x − ξ | and

(

1 − 1

m

)

r(x) < r(z)

<

(

1 + 1

m

)

r(x). (3.5)
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If |z − ξ | > min(r(z), r(ξ)), then (2.5) and (3.5) imply

∣
∣∇z∂zi G(z, ξ)

∣
∣ ≤ c |z − ξ |−3

(
r(z)

|z − ξ |
)σ−1

≤ c′ |x − ξ |−2−σ r(x)σ−1

≤ c′ mσ−1 |x − ξ |−2−σ |x − y|σ−1.

In the case |z − ξ | < min(r(z), r(ξ)), it follows from (2.6) that

∣
∣∇z∂zi G(z, ξ)

∣
∣ ≤ c |z − ξ |−3 ≤ c′ |x − ξ |−3 ≤ c′ mσ−1 |x − ξ |−2−σ |x − y|σ−1.

This together with (3.3) implies (3.1). Analogously, we obtain the estimates

∣
∣∇z∂zi ∂ξl G(z, ξ)

∣
∣ ≤ c |z − ξ |−4

(
r(z)

|z − ξ |
)σ−1

≤ c′ |x − ξ |−3−σ |x − y|σ−1

for |z − ξ | > min(r(z), r(ξ)) and

∣
∣∇z∂zi ∂ξl G(z, ξ)

∣
∣ ≤ c |z − ξ |−4 ≤ c′ mσ−1 |x − ξ |−3−σ |x − y|σ−1.

for |z − ξ | < min(r(z), r(ξ)) what together with (3.4) yields (3.2).
Case 4 Suppose that ξ lies in a neighborhood Vν of the vertex x (ν) and that |x −ξ | >

δ, where δ is a fixed positive number. Then

|∇z∂zi G(z, ξ)| ≤ c ρ j (z)
� j −2−ε ρν(ξ)�ν−ε

(
r(z)

ρ j (z)

)σ−1

≤ c′ r(z)σ−1

and

|∇z∂zi ∂ξl G(z, ξ)| ≤ c ρ j (z)
� j −2−ε ρν(ξ)�ν−1−ε

(
r(z)

ρ j (z)

)σ−1

≤ r(z)σ−1.

Using the last two estimates together with the inequalities (3.3), (3.4), |x − ξ | > δ and
r(z) > (m −1) |x − y|, we obtain (3.1) and (3.2). The proof of the lemma is complete.

�
Now the following theorem holds as an immediate consequence of Lemmas 3.1–

3.3.

Theorem 1 Let � ⊂ R
3 be a convex domain of polyhedral type. Furthermore, let σ

be a positive number, σ < 1, σ < � j − 1 for all j , and σ < µk − 1 for all k. Then
there exists a constant c such that the estimates (1.4) are satisfied for all x, y, ξ ∈ �,
x �= y.

As an example, we consider the case when � is a cube. In this case, � j = 3 for
all j and µk = 2 for all k. Consequently, the estimates (1.4) are valid for arbitrary
0 < σ < 1.
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Remark 2 In the proof of Theorem 1, we used only the estimates of Green’s function
in Sect. 2.3 and the fact that � j > 1 and µk > 1 for convex domains of polyhedral
type. The result of the theorem is also true for other second order elliptic equations
or systems provided the Green’s function (matrix) satisfies the estimates (2.3)–(2.7)
with exponents � j and µk greater than 1. For example, the estimates (1.4) hold for
the Green matrix of the Dirichlet problem to the Lamè system. To the best of our
knowledge, whether � j > 1 for general second order elliptic operator is not known.

4 Applications to finite element methods

4.1 Preliminaries and basic assumptions

For the finite element approximation of the problem, let {Th}h , 0 < h < 1, be a
sequence of triangulations of �, � = ⋃

τ∈Th
τ , with the elements τ mutually disjoint.

The partitions are face-to-face so that simplices meet only in full lower-dimensional
faces or not at all. The triangulations are assumed to be quasi-uniform, i.e. (if necessary
after a renormalization of h),

diam τ ≤ h ≤ C(meas τ)1/3, ∀τ ∈ Th .

Our finite element spaces are then the C0 simplicial Lagrange elements

Sh = Sk
h(�) = {χ ∈ H1

0 (�) : v|τ ∈ P
k(τ ),∀τ ∈ Th},

where P
k(τ ) denotes the set of polynomials of degree less than or equal to k on τ .

Thus the scaling properties hold.
The particular approximation property we actually need is a standard approximation

result (cf. [10]).

Lemma 4.1 Let Q ⊂ Qd ⊂ �, with d ≥ κh, for some fixed κ sufficiently large and
Qd = {x ∈ � : dist (x, Q) ≤ d}. Furthermore, let I h : C(�) → Sh be the Lagrange
interpolant. For any v ∈ C1+σ (�) there exists C independent of h such that

‖v − I hv‖W t∞(Q) ≤ Ch1−t+σ ‖v‖C1+σ (Qd ), t = 0, 1, (4.1)

where

‖v‖C1+σ (Q) = ‖v‖C1(Q) + sup
x1,x2∈Q

|∇v(x1) − ∇v(x2)|
|x1 − x2|σ . (4.2)

Another result that we need is the local energy error estimate. First such result was
proved in [26] in the interior of the domain, it was extended up to the boundary in
[34], Lemma 4.4 for smooth domains. The precise result we require is Corollary 9.1
in [39], which is valid for polyhedral domains up to the boundary.
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Lemma 4.2 Let Q ⊂ Qd ⊂ �, with d ≥ κh, for some fixed κ sufficiently large and
Qd = {x ∈ � : dist (x, Q) ≤ d}. If w ∈ H1

0 (�) and wh ∈ Sh satisfy

(∇(w − wh),∇χ)� = 0, ∀χ ∈ Sh,

then

‖w − wh‖H1(Q) ≤ C min
χ∈Sh

(
‖w − χ‖H1(Qd ) + d−1‖w − χ‖L2(Qd )

)

+ Cd−1‖w − wh‖L2(Qd ), (4.3)

where C is independent of Q, h, d, w, and wh.

4.2 Best approximation result.

Theorem 2 Let � ⊂ R
3 be a convex polyhedral domain and suppose that u satisfies

(1.1) and let uh ∈ Sh be its finite element approximation. Then, there exists a constant
C independent of h, u and uh such that (1.2) holds.

Proof Let z ∈ � and z ∈ τ for some τ ∈ Th . We will be interested in bounding
|∇(u − uh)(z)|. There exists η ∈ C1

c (τ ), the regularized Dirac delta function, which
satisfies

∫

τ

χη = (χ, η)τ = χ(z), ∀χ ∈ P
k(τ ),

with the property

‖Dtη‖L∞(�) ≤ Ch−3−t , for t = 0, 1. (4.4)

Let ∂zl (u − uh) denote one of the partial derivatives of u − uh . Now we define the
function g, which satisfies the following equation,

(∇g,∇φ) = (∂zl η, φ), ∀φ ∈ H1
0 (�). (4.5)

Then for any χ ∈ Sh using (4.5) and the Galerkin orthogonality,

∂zl (χ − uh)(z) = (∂zl (χ − uh), η) = −(χ − uh, ∂zl η)

= −(∇(χ − uh),∇g)

= (∇(uh − u),∇g) + (∇(u − χ),∇g)

= (∇(uh − u),∇(g − gh)) + (u − χ, ∂zl η)

= (∇(χ − u),∇(g − gh)) − (∂zl (u − χ), η)

≤ ‖∇(u − χ)‖L∞(�)

(‖η‖L1(�) + ‖∇(g − gh)‖L1(�)

)

≤ ‖∇(u − χ)‖L∞(�)

(
C + ‖∇(g − gh)‖L1(�)

)
.
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Hence,

|∂zl (u − uh)(z)| ≤ ‖∇(u − χ)‖L∞(�)

(
C + ‖∇(g − gh)‖L1(�)

)
.

Since the above estimate is valid for arbitrary χ ∈ Sh and any partial derivative, taking
the infimum over Sh and supremum over all partial derivatives, we obtain

|∇(u − uh)(z)| ≤ inf
χ∈Sh

‖∇(u − χ)‖L∞(�)(C + ‖∇(g − gh)‖L1(�)).

Thus, in order to establish the estimate (1.2), we need to show

‖∇(g − gh)‖L1(�) ≤ C. (4.6)

Note, g depends on z. Thus, we shall prove the above inequality with constant C
independent of z. We prove (4.6) in several steps.

Step 1: Dyadic decomposition Without loss of generality we assume that the diam-
eter of � is less than 1. We use a dyadic decomposition of �. Let d j = 2− j then we
have

� = �∗ ∪
J⋃

j=0

� j ,

where

�∗ = {x ∈ � : |x − z| ≤ K h},
� j = {x ∈ � : d j+1 ≤ |x − z| ≤ d j },

where K is a sufficiently large constant to be chosen later and J is the integer such
that 2−J ≤ K h ≤ 2−J+1. Note that J ≈ | log h|. In the analysis below the generic
constants will be denoted by C , but we will keep track on the explicit dependence of
the constants on K . This will be important later for the double kickback argument.

Thus, by the Cauchy–Schwarz inequality, we have

‖∇(g − gh)‖L1(�)≤C K 3/2h3/2‖∇(g − gh)‖L2(�∗)+C
J∑

j=0

d3/2
j ‖∇(g − gh)‖L2(� j )

.

First we estimate the first term. Using the Cauchy–Schwarz inequality, the global a
priori error estimates, (4.4), and H2 regularity we have

(K h)3/2‖∇(g − gh)‖L2(�∗) ≤ C K 3/2h3/2+1‖D2g‖L2(�)

≤ C K 3/2h5/2‖∇η‖L2(τ )

≤ C K 3/2h4‖∇η‖L∞(τ ) ≤ C K 3/2.
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Thus, we have

‖∇(g − gh)‖L1(�) ≤ C K 3/2 +
J∑

j=0

M j , (4.7)

where

M j = d3/2
j ‖∇(g − gh)‖L2(� j )

.

Step 2: Initial estimate for M j . We first need to define the following sets

�′
j = {x ∈ � : d j+2 ≤ |x − z| ≤ d j−1},

�′′
j = {x ∈ � : d j+3 ≤ |x − z| ≤ d j−2}.

By the local energy estimate (4.3),

‖∇(g − gh)‖L2(� j )
≤ C

(
‖∇(g − I h g)‖L2(�′

j )
+ d−1

j ‖g − I h g‖L2(�′
j )

+d−1
j ‖g − gh‖L2(�′

j )

)
.

First we will treat the first two terms on the right hand side. By the Cauchy–Schwarz
inequality and the approximation result (4.1)

‖∇(g − I h g)‖L2(�′
j )

+ d−1
j ‖g − I h g‖L2(�′

j )

≤ Cd3/2
j

(
‖∇(g − I h g)‖L∞(�′

j )
+ d−1

j ‖g − I h g‖L∞(�′
j )

)

≤ Cd3/2
j hσ ‖g‖C1+σ (�′′

j )
.

Now we will use the Hölder estimates (1.4) to derive a bound for ‖g‖C1+σ (�′′
j )

. Using
the Green’s function representation we have,

∂xi g(x) − ∂yi g(y) = −
∫

�

(∂xi G(x, ξ) − ∂yi G(y, ξ))∂ξl η(ξ)dξ

=
∫

τ

(∂ξl ∂xi G(x, ξ) − ∂ξl ∂yi G(y, ξ))η(ξ)dξ, i = 1, 2, 3.

Let x, y ∈ �′′
j , x �= y, then by (1.4),

|∂xi g(x) − ∂yi g(y)|
|x − y|σ ≤ max

ξ∈τ

|∂ξl ∂xi G(x, ξ) − ∂ξl ∂yi G(y, ξ)|
|x − y|σ ‖η‖L1(τ )

≤ C max
ξ∈τ

(|x − ξ |−3−σ + |y − ξ |−3−σ )‖η‖L1(τ ) ≤ d−3−σ
j .
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In the last inequality we used that for any ξ ∈ τ , |x − ξ |, |y − ξ | ≥ Cd j and
‖η‖L1(τ ) ≤ C . Therefore,

sup
x,y∈�′′

j

|∇g(x) − ∇g(y)|
|x − y|σ ≤ d−3−σ

j .

Similarly, we can bound the other term of ‖g‖C1+σ (�′′
j )

to obtain

‖g‖C1+σ (�′′
j )

≤ Cd−3−σ
j .

Thus, we have shown that

‖∇(g − I h g)‖L2(�′
j )

+ d−1
j ‖g − I h g‖L2(�′

j )
≤ Cd−3/2−σ

j hσ.

Hence,

M j ≤ C
(
(h/d j )

σ + d1/2
j ‖g − gh‖L2(�′

j )

)
.

We still need to estimate ‖g −gh‖L2(�′
j )

. We will accomplish it by a duality argument.

Step 3: Duality argument. We have the following representation

‖g − gh‖L2(�′
j )

= sup
v∈C∞

c (�′
j ),‖v‖L2(�′

j )
≤1

(g − gh, v).

Let w be the solution of the following problem

− �w = v, in �, (4.8)

w = 0, on ∂�, (4.9)

with v ∈ C∞
c (�′

j ) and ‖v‖L2(�′
j )

≤ 1. Thus, if I hw ∈ Sh denotes the interpolant of
w, we have

(g − gh, v) = (∇(g − gh),∇w) = (∇(g − gh),∇(w − I hw))

= (∇(g − gh),∇(w − I hw))�′′
j
+ (∇(g − gh),∇(w − I hw))�\�′′

j
.

First we estimate (∇(g−gh),∇(w− I hw))�′′
j
. By the Cauchy–Schwarz inequality,

the global a priori error estimate, and H2 regularity we have

(∇(g − gh),∇(w − I hw))�′′
j
≤ ‖∇(g − gh)‖L2(�′′

j )
‖∇(w − I hw)‖L2(�)

≤ ‖∇(g − gh)‖L2(�′′
j )

Ch‖D2w‖L2(�)

≤ Ch‖∇(g − gh)‖L2(�′′
j )
.
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Next we estimate the second term

(∇(g − gh),∇(w − I hw))�\�′′
j
≤ ‖∇(g − gh)‖L1(�)‖∇(w − I hw)‖L∞(�\�′′

j )

≤ ‖∇(g − gh)‖L1(�)Chσ ‖w‖C1+σ (�\�′′
j )
.

Since �\�′′
j is separated from �′

j by at least d j , we have for x, y ∈ �\�′′
j , using the

first estimate of (1.4)

|∂xi w(x) − ∂yi w(y)|
|x − y|σ ≤

∫

�′
j

|∂xi G(x, ξ) − ∂yi G(y, ξ)|
|x − y|σ |v(ξ)|dξ

≤ C max
ξ∈�′

j

(|x − ξ | + |y − ξ |)−2−σ

∫

�′
j

|v(ξ)|dξ

≤ Cd−2−σ
j d3/2

j ‖v‖L2(�′
j )

≤ Cd−1/2−σ
j .

Hence,

‖w‖C1+σ (�\�′′
j )

≤ Cd−1/2−σ
j ,

which implies that

(∇(g − gh),∇(w − I hw))�\�′′
j
≤ Chσ d−1/2−σ

j ‖∇(g − gh)‖L1(�).

Therefore,

‖g − gh‖L2(�′
j )

≤ Chσ d−1/2−σ
j ‖∇(g − gh)‖L1(�) + Ch‖∇(g − gh)‖L2(�′′

j )
.

To summarize,

M j ≤ C(h/d j )
σ + C(h/d j )

σ ‖∇(g − gh)‖L1(�) + Chd1/2
j ‖∇(g − gh)‖L2(�′′

j )
.

Step 4: Double kick-back argument. Summing over j we obtain

J∑

j=0

M j ≤ C

K σ
+ C

K σ
‖∇(g − gh)‖L1(�) + Ch

dJ

J∑

j=0

d3/2
j ‖∇(g − gh)‖L2(�′′

j )
,

where we have used that

J∑

j=0

(h/d j )
σ ≤ hσ

J∑

j=0

2 jσ ≤ Chσ 2σ J ≤ C K −σ and d−1
j ≤ d−1

J .
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Clearly,

J∑

j=0

d3/2
j ‖∇(g − gh)‖L2(�′′

j )
≤ C

J∑

j=0

M j + C(K h)3/2‖∇(g − gh)‖L2(�∗)

≤ C
J∑

j=0

M j + C K 3/2.

Thus, using that h/dJ ≤ K −1, and taking K large enough we have

J∑

j=0

M j ≤ C(K 3/2 + 1) + C

K σ
‖∇(g − gh)‖L1(�).

Therefore, if we plug this result into (4.7) we get

‖∇(g − gh)‖L1(�) ≤ C(K 3/2 + 1) + C

K σ
‖∇(g − gh)‖L1(�).

Again by choosing K large enough we can conclude

‖∇(g − gh)‖L1(�) ≤ C.

Thus the proof of (4.6) is complete and hence we have established (1.2). �

4.3 Localized pointwise error estimate.

Theorem 3 With the assumptions of Theorem 2, the following estimate holds,

|∇(u − uh)(z)| ≤ C inf
χ∈Sh

‖ωs∇(u − χ)‖L∞(�),

for any 0 ≤ s < σ , where ω = ωz,h(y) = h
h+|z−y| is the weight function.

The proof of this result is very similar to the proof of Theorem 2. We leave the
details to the reader.

Following the presentation in [31], one can obtain the following error expansion
inequality, which shows that the error is localized.

Corollary 4 Assume that u ∈ Ck+1+s(�) for 0 ≤ s < σ . With the assumptions of
Theorem 2, the following estimate holds,

|∇(u − uh)(z)| ≤ Chk

⎛

⎝
∑

|α|=k+1

|Dαu(z)| + hs‖u‖Ck+1+s (�)

⎞

⎠ .
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Remark 3 The proofs of Theorems 2 and 3 essentially rely on two results: the H2

regularity of the solution u and the Green’s function estimates. Adapting the proof
from [31], we could treat more general uniformly elliptic operator, provided the above
two results hold. Although the H2 regularity of the solutions is well known for more
general elliptic operators, the question whether the Hölder type Green’s function esti-
mates hold is more involved and depends on the operator (cf. Remark 2).

5 Concluding remarks

We proved optimal W 1∞ error estimates for convex polyhedral domains in three dimen-
sions. One of the main tools used in the proof are new Hölder type estimates for the
Green’s function on convex polyhedral domains. It is not difficult to see that if ana-
logues Hölder estimates for the Green’s function hold in higher dimensions then the
same technique can be used to prove such optimal W 1∞ error estimates in higher
dimensions.

The analysis carried out here can also be applied to discontinuous Galerkin (DG)
methods. Using the local error estimates found in [5] and [14] and the techniques used
here, we can prove optimal W 1∞ error estimates for various DG methods on convex
polyhedral domains.

Recently Girault et al. [13] proved stability in W 1∞ norm for certain finite element
methods for Stokes problem on polygonal and polyhedral domains. In three dimen-
sions, W 2

p regularity with p > 3, was required for the velocity field. This leads to
strong restrictions on the inner dihedral angles of the polyhedral domain, despite the
fact that the derivatives of the velocity are Hölder continuous for general convex poly-
hedra (cf. [22]). It would be interesting to see if the techniques used in this paper can
be applied to Stokes problem in order to remove those restrictions. This is subject of
ongoing work.

Acknowledgments The authors would like to thank Alan Demlow and Lars Wahlbin for helpful discus-
sions that improve the presentation of this paper.
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